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We develop a method to find Rodrigues’s formulas for orthogonal
matrix polynomials satisfying higher-order differential equations
with coefficients independent of n.

1. INTRODUCTION

The theory of orthogonal matrix polynomials starts with
two papers by M. G. Krein that appeared in 1949, [Krein
49a, Krein 49b]. Each sequence of orthogonal matrix
polynomials (Pn )n is associated with a weight matrix
W and satisfies that Pn , n ≥ 0, is a matrix polyno-
mial of degree n with nonsingular leading coefficient and∫

PndWP ∗
m = ∆nδn,m , where ∆n , n ≥ 0, is a positive

definite matrix. When ∆n = I, we say that the polyno-
mials (Pn )n are orthonormal.

More than fifty years have been necessary to pro-
duce the first examples of orthogonal matrix polynomials
(Pn )n satisfying second-order differential equations of the
form

P ′′
n (t)F2(t) + P ′

n (t)F1(t) + Pn (t)F0 = ΛnPn (t), (1–1)

n = 0, 1, . . . . Here F2 , F1 , and F0 are matrix polynomials
(which do not depend on n) of degrees less than or equal
to 2, 1, and 0, respectively (see [Durán and Grünbaum
04, Grünbaum 03, Grünbaum et al. 03], also [Durán 97]).

It is well known that in the scalar case, there are only
three families of orthogonal polynomials (pn )n with re-
spect to a positive measure satisfying second-order dif-
ferential equations of the form

f2p
′′
n + f1p

′
n = λnpn , n ≥ 0,

where fi , i = 1, 2, are polynomials of degree not larger
that i (independent of n), namely the classical families of
Hermite, Laguerre, and Jacobi. Each one of these classical
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families can be defined using a Rodrigues’s formula:

pn = (fn
2 w)(n)/w, (1–2)

where w is the corresponding classical weight e−t2
, tαe−t ,

α > −1, or (1 + t)α (1 − t)β , α, β > −1, and f2 = 1, t ,
and 1 − t2 , respectively. This kind of Rodrigues’s formula
also characterizes the classical families of scalar orthog-
onal polynomials (for a good historical account, see, for
instance, [Chihara 78, Al-Salam 90]).

Instead of (1–2), orthogonal matrix polynomials Pn

satisfying a differential equation like (1–1) seem to satisfy
some modified Rodrigues’s formula. The first instance of
that modified Rodrigues’s formula appeared in [Durán
and Grünbaum 04]: the expression

Pn (t) =

[
e−t2

(
1 + |a|2t2 + |a|2 n

2 at

āt 1

)](n)

W−1(t),

(1–3)
defines a sequence of orthogonal matrix polynomials with
respect to the weight matrix

W (t) = e−t2

(
1 + |a|2t2 at

āt 1

)
.

Afterward, Rodrigues’s formulas of the form

Pn (t) = (fn
2 ρξn )(n) W−1 , (1–4)

where W = ρZ, ξn are certain matrix functions, ρ = e−t2
,

tαe−t , or (1 + t)α (1 − t)β , and f2 is equal to 1, t , and
1 − t2 , respectively, have been found for other families
of orthogonal polynomials of size 2 × 2 (see [Durán and
Grünbaum 05a, Durán and Grünbaum 07, Durán and
López-Rodŕıguez 07, Durán and Iglesia 08], also [Durán
and Grünbaum 05b]). In all these examples, the functions
ξn are simple enough to make the Rodrigues’s formula
(1–4) useful for the explicit calculation of the sequence
of orthogonal polynomials Pn with respect to W .

In [Durán 10], a method to find the functions ξn has
been developed, and using it the first Rodrigues’s formu-
las for families of arbitrary size N × N have been found.
The method uses the following result as the main tool:
under suitable conditions on the weight matrix W and
the differential coefficients F2 , F1 , and F0 (see (2–2), (2–
3), and (2–4)), we have that if for a matrix Λn , the func-
tion Rn satisfies

(RnF ∗
2 )′′ − (Rn

[
F ∗

1 + n(F ∗
2 )′
])′

+ Rn

[
F ∗

0 + n(F ∗
1 )′ +

(
n

2

)
(F ∗

2 )′′
]

= ΛnRn ,

then the function Pn = R
(n)
n W−1 satisfies

P′′n (t)F2(t) + P′n (t)F1(t) + Pn (t)F0 = ΛnPn (t).

The purpose of this paper is to extend that method
to find Rodrigues’s formulas for orthogonal matrix poly-
nomials satisfying higher-order differential equations. In-
deed, we consider orthogonal matrix polynomials (Pn )n

satisfying differential equations of the form
k∑

j=0

P (j )
n Fj = ΛnPn , n ≥ 0, (1–5)

where each Fj , j = 0, . . . , k, is a matrix polynomial of de-
gree not larger than j . In the scalar case, all the known ex-
amples of orthogonal polynomials satisfying higher-order
differential equations of the form (1–5) are orthogonal
with respect to one of the classical weights of Hermite,
Laguerre, and Jacobi, or to some weights obtained by
adding masses to the classical ones (at the endpoints of
the orthogonality interval); see, for instance, [Littlejohn
and Krall 89] or [Grünbaum and Haine 97]. The situa-
tion in the matrix case is much richer, as the examples in
Section 3 of this paper show. We display there three illus-
trative examples of weight matrices whose entries are ab-
solutely continuous with respect to the Lebesgue measure
and supported at (0, 1), R, and (0,+∞), respectively, and
are of sizes 2 × 2 and 3 × 3.

In [Durán and Iglesia 08] it was proved that under the
boundary conditions

lim
t→a+ ,b−

tn
p−1∑
i=0

(−1)k−i+p−1
(

k − i

l

)(
Fk−i · W

)(p−1−i)

= 0, (1–6)

for p = 1, . . . , k, l = 0, . . . , k − p, and n ≥ 0, the differ-
ential equations

k∑
j= l

(−1)j

(
j

l

)
(FjW )(j−l) = WF ∗

l , l = 0, . . . , k, (1–7)

imply that the orthonormal polynomials with respect to
W satisfy the differential equation (1–5) with Hermitian
eigenvalues Λn .

Our method to find Rodrigues’s formulas can be ex-
tended for weight matrices with a sequence of orthogo-
nal matrix polynomials satisfying higher-order differen-
tial equations like (1–5).

Lemma 1.1. Let Fj , 0 ≤ j ≤ k, be matrix polynomials, Fj

of degree not larger than j. Let W, Rn be N × N matrix
functions that are respectively k and n times differentiable
in an open set Ω of the real line. Assume that W (t) is
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nonsingular for t ∈ Ω and that it satisfies the differential
equations (1–7). Define the functions Pn , n ≥ 1, by

Pn = R(n)
n W−1 . (1–8)

If for a matrix Λn , the function Rn satisfies

k∑
j=0

(−1)j

⎛
⎝Rn

k∑
m=j

(
n

m − j

)
(F ∗

m )(m−j )

⎞
⎠

(j )

= ΛnRn ,

(1–9)

then the function Pn satisfies

k∑
j=0

P(j )
n (t)Fj (t) = ΛnPn (t). (1–10)

Moreover, if Rn = ρZn , where Zn is a matrix polynomial
and ρ is equal to e−t2

, tαe−t , or (1 − t)α (1 + t)β (in this
last case with α or β nonintegral), then the converse is
also true.

Lemma 1.1 will be proved in Section 2. Using it, we
find Rodrigues’s formulas for the three illustrative exam-
ples mentioned above.

To make this introduction more useful to the reader,
we display in full detail one of these examples.

Consider the weight matrix

W (t) =

(
8t3 + (1 − 2t)2 2(−1 + 2t)(−1 + t)

2(−1 + 2t)(−1 + t) 4(−1 + t)2

)
,

(1–11)

0 ≤ t ≤ 1. This matrix can be factored in the form

W (t) = T (t)

(
2t 0
0 1

)
T ∗(t),

where

T (t) =

(
2t 1 − 2t

0 2 − 2t

)
. (1–12)

The orthogonal matrix polynomials (Pn )n with re-
spect to this weight matrix W do not satisfy any second-
order differential equation like (1–1), but they satisfy the
fourth-order differential equation

4∑
j=0

P (j )
n (t)Fj (t) = ΛnPn (t),

where

F4(t) = t2(1 − t)2I, (1–13)

F3(t) =

(
2t(5 − 12t + 7t2) −t(3 − 5t + 2t2)

0 4t(1 − 4t + 3t2)

)
,

F2 =
1
9

(
178 − 642t + 482t2 −80 + 223t − 134t2

−4 + 4t 20 − 252t + 340t2

)
,

F1 =
1
9

(
−416 + 520t 156 − 192t

8 −72 + 280t

)
,

F0 =
1
9

(
64 −16
0 0

)
.

Using Lemma 1.1, we find that a sequence of orthogo-
nal polynomials (Pn )nwith respect to the weight matrix
W (1–11) can be defined using the Rodrigues’s formula

Pn (t) =
(
tn (1 − t)n (C0,n + C1,n t + C2,n t2)T ∗)(n)

W−1 ,

n = 1, 2, 3, . . . , where T is defined by (1–12) and

C0,n =
9n2 + 27n + 16

2

(
0 0
n 2(n + 1)

)
, (1–14)

C1,n =

(
n/2 n + 2

4(n + 1)n −(n + 2)(9n2 + 19n + 8)

)
,

C2,n = −9n2 + 27n + 16
2

(
1 0
0 0

)
.

2. PROOF OF LEMMA 1.1

Before proving Lemma 1.1, we need some definitions and
basic facts.

A weight matrix W is an N × N matrix of mea-
sures supported in the real line satisfying the following
three conditions: (1) W (A) is positive semidefinite for any
Borel set A ∈ R, (2) W has finite moments

∫
tndW (t) of

every order n ≥ 0, and (3)
∫

P (t)dW (t)P ∗(t) is nonsin-
gular if the leading coefficient of the matrix polynomial
P is nonsingular. All the examples of weight matrices W
considered in this paper have entries with a smooth den-
sity with respect to the Lebesgue measure, and we will
again write W (t) for the matrix whose entries are these
densities. Condition (3) above is necessary and sufficient
to guarantee the existence of a sequence (Pn )n of ma-
trix polynomials of degree n orthogonal with respect to
W with nonsingular leading coefficient. This condition is
fulfilled in particular when W (t) is positive definite on
an interval of the real line.



18 Experimental Mathematics, Vol. 20 (2011), No. 1

Equations (1–1) are guaranteed by a set of differential
equations for the weight matrix with respect to which
the polynomials (Pn )n are orthogonal. Indeed, let W be
a weight matrix supported in the interval (a, b) (a and b
finite or infinite) and assume the boundary conditions

lim
t→a+ ,b−

tnF2(t)W (t) = 0, (2–1)

lim
t→a+ ,b−

tn [(F2(t)W (t))′ − F1(t)W (t)] = 0, n ≥ 0.

Then the equations

F2W = WF ∗
2 , (2–2)

2(F2W )′ − F1W = WF ∗
1 , (2–3)

(F2W )′′ − (F1W )′ + F0W = WF ∗
0 , (2–4)

imply that the orthonormal polynomials with respect
to W satisfy the second-order differential equation (1–
1) with Hermitian eigenvalues Λn . Equations (1–7) are
an extension of (2–2), (2–3), and (2–4) for weight ma-
trices whose sequences of orthogonal polynomials satisfy
higher-order differential equations.

To prove Lemma 1.1, we finally need the following
claim (which will be proved later).

Claim 2.1. Under the same assumptions of Lemma 1.1,
we have for l = 0, . . . , k that

k∑
j= l

(
j

l

)
(W−1)j−lFj =

⎛
⎝ k∑

j= l

(−1)j

(
j

l

)
(F ∗

j )j−l

⎞
⎠W−1 .

(2–5)

Proof of Lemma 1.1: Write En = R
(n)
n , so that Pn =

EnW−1 . Then it easily follows that
k∑

j=0

P(j )
n Fj =

k∑
j=0

(EnW−1)(j )Fj (2–6)

=
k∑

j=0

(
j∑

l=0

(
j

l

)
E(l)

n (W−1)(j−l)

)
Fj

=
k∑

l=0

E(l)
n

⎛
⎝ k∑

j= l

(
j

l

)
(W−1)(j−l)Fj

⎞
⎠ .

Using the claim, we have

k∑
j=0

P(j )
n Fj =

k∑
l=0

E(l)
n

⎛
⎝ k∑

j= l

(−1)j

(
j

l

)
(F ∗

j )j−l

⎞
⎠W−1 .

(2–7)

Hence, for any matrix Λn , the function Pn satisfies the
differential equation (1–10) if and only if the function

En satisfies the differential equation

k∑
l=0

E(l)
n

⎛
⎝ k∑

j= l

(−1)j

(
j

l

)
(F ∗

j )j−l

⎞
⎠ = ΛnEn .

Taking into account that En = R
(n)
n , this equation can

be written in the form

k∑
l=0

R(n+ l)
n

⎛
⎝ k∑

j= l

(−1)j

(
j

l

)
(F ∗

j )j−l

⎞
⎠ = ΛnR(n)

n . (2–8)

Now write

Un,j =
k∑

m=j

(
n

m − j

)
(F ∗

m )m−j , j = 0, . . . , k (2–9)

(where as usual we take
(

i
j

)
= 0 if j > i). Since Fj , j =

0, . . . , k, are matrix polynomials of degrees not larger
than j , it follows that Un,j , n ≥ 0, j = 0, . . . , k, are also
matrix polynomials of degrees not larger than j . Using
this we can write

k∑
j=0

(−1)j (RnUn,j )
(j+n)

=
k∑

j=0

(−1)j

j∑
l=0

(
j + n

j − l

)
R(n+ l)

n U
(j−l)
n,j

=
k∑

l=0

R(n+ l)
n

k∑
j= l

(−1)j

(
j + n

j − l

)
U

(j−l)
n,j . (2–10)

Using (2–9), we have

k∑
j= l

(−1)j

(
j + n

j − l

)
U

(j−l)
n,j

=
k∑

j= l

(−1)j

(
j + n

j − l

) k∑
m=j

(
n

m − j

)
(F ∗

m )(m−l)

=
k∑

m= l

(F ∗
m )(m−l)

m∑
j= l

(−1)j

(
j + n

j − l

)(
n

m − j

)
.

Taking into account now that

m∑
j= l

(−1)j

(
j + n

j − l

)(
n

m − j

)
= (−1)m

(
m

l

)

(which can easily be proved by induction on n), we finally
have that

k∑
j= l

(−1)j

(
j + n

j − l

)
U

(j−l)
n,j =

k∑
j= l

(−1)j

(
j

l

)
(F ∗

j )j−l .
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This equation, (2–9), and (2–10) show that

k∑
j=0

(−1)j

⎛
⎝Rn

k∑
m=j

(
n

m − j

)
(F ∗

m )m−j

⎞
⎠

(j+n)

=
k∑

l=0

R(n+ l)
n

⎛
⎝ k∑

j= l

(
j

l

)
(−1)j (F ∗

j )(j−l)

⎞
⎠ .

Hence, we can rewrite (2–8) in the form
⎡
⎢⎣ k∑

j=0

(−1)j

⎛
⎝Rn

k∑
m=j

(
n

m − j

)
(F ∗

m )m−j

⎞
⎠

(j )

− ΛnRn

⎤
⎥⎦

(n)

= 0. (2–11)

This finishes the proof of the first part of Lemma 1, since
the function Pn satisfies the differential equation (1–10) if
and only if the function Rn satisfies the differential equa-
tion (2–8).

Assume now that Rn = ρZn , where Zn is a matrix
polynomial and ρ equals e−t2

, tαe−t , or (1 − t)α (1 + t)β

(in this last case with α or β nonintegral). Since ρ and 1
are linearly independent in the linear space of polynomi-
als, we have that (2–11) is equivalent to

k∑
j=0

(−1)j

⎛
⎝Rn

k∑
m=j

(
n

m − j

)
(F ∗

m )m−j

⎞
⎠

(j )

− ΛnRn = 0.

This proves the second part of Lemma 1.1. �

We now prove the claim.

Proof of Claim 2.1: To do so, we use the formula

(W−1)(l) = −W−1
l∑

m=1

(
l

m

)
W (m )(W−1)(l−m ) , (2–12)

which can be easily deduced by differentiating the iden-
tity WW−1 = I.

We proceed by induction on l . For l = k, formula (2–5)
just reduces to l = k in (1–7).

We now assume that (2–5) holds for k, k − 1, . . . , l and
prove it for l − 1. Using (2–12), we can write

k∑
j= l−1

(
j

l − 1

)
(W−1)j−l+1Fj

= W−1Fl−1 − W−1
k∑

j= l

(
j

l − 1

) j−l+1∑
m=1

(
j − l + 1

m

)

× W (m )(W−1)(j−l+1−m )Fj .

Taking into account that(
j − l + 1

m

)(
j

l − 1

)
=
(

j

l + m − 1

)(
l + m − 1

m

)
,

(2–13)

we have
k∑

j= l−1

(
j

l − 1

)
(W−1)j−l+1Fj

= W−1Fl−1

− W−1
k−l+1∑
m=1

(
l + m − 1

m

)
W (m )

×
k∑

j= l+m−1

(
j

l + m − 1

)
(W−1)(j−l+1−m )Fj ,

which using the induction hypothesis can be written in
the form

k∑
j= l−1

(
j

l − 1

)
(W−1)j−l+1Fj

= W−1Fl−1 (2–14)

− W−1
k−l+1∑
m=1

(
l + m − 1

m

)
W (m )

×
k∑

j= l+m−1

(−1)j

(
j

l + m − 1

)
(F ∗

j )(j−l+1−m )W−1 .

On the other hand, we can rewrite equation (1–7), for
l − 1, as follows:

FlW =
k∑

j= l−1

(−1)j

(
j

l − 1

)
(WF ∗

j )(j−l+1)

=
k∑

j= l−1

(−1)j

(
j

l − 1

) j−l+1∑
m=0

(
j − l + 1

m

)
W (m )

× (F ∗
j )(j−l+1−m )

=
k−l+1∑
m=0

W (m )
k∑

j= l+m−1

(−1)j

(
j

l − 1

)(
j − l + 1

m

)

× (F ∗
j )(j−l+1−m ) .

Using (2–13), this gives

FlW − W
k∑

j= l−1

(−1)j

(
j

l − 1

)
(F ∗

j )(j−l+1)

=
k−l+1∑
m=1

(
l + m − 1

m

)
W (m )

k∑
j= l+m−1

(−1)j

(
j

l + m − 1

)

× (F ∗
j )(j−l+1−m ) .
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Inserting this formula into (2–14), we have

k∑
j= l−1

(
j

l − 1

)
(W−1)j−l+1Fj

= W−1Fl−1 − W−1Fl +
k∑

j= l−1

(−1)j

(
j

l − 1

)

× (F ∗
j )(j−l+1)W−1

=
k∑

j= l−1

(−1)j

(
j

l − 1

)
(F ∗

j )(j−l+1)W−1 ,

and the proof of the claim is finished. �

3. EXAMPLES

We now use Lemma 1.1 to find Rodrigues’s formulas for
some examples of orthogonal matrix polynomials satisfy-
ing higher-order differential equations of the form (1–5).

Our strategy of using Lemma 1.1 to find Rodrigues’s
formulas is as follows: We assume that we have a weight
matrix of the form ρZ, with ρ a scalar classical weight
(Hermite, Laguerre, or Jacobi), satisfying equations (1–7)
for certain coefficients Fj , j = 0, . . . , k. Under the bound-
ary conditions (1–6), we have that any sequence (Pn )n

of orthogonal polynomials with respect to W satisfies a
higher-order differential equation like (1–5) for a suitable
choice of eigenvalues (Λn )n . The sequence of eigenvalues
(Λn )n corresponding to the sequence (P̂n )n of monic or-
thogonal polynomials is

Λn =
k∑

j=0

(
n

j

)
(Fj )(j ) .

Of course, we can choose another sequence of eigenvalues;
to do so, it is enough to take into account that for any
sequence of nonsingular matrices (Nn )n , the polynomials
Pn = NnP̂n , n ≥ 0, are also orthogonal with respect to
W , and the sequence (Λn )n of eigenvalues corresponding
to (Pn )n is then

Λn = Nn

⎛
⎝ k∑

j=0

(
n

j

)
(Fj )(j )

⎞
⎠N−1

n .

Assume also that Z can be factored as Z = TDT ∗, where
T is a matrix polynomial and D is a diagonal matrix
whose diagonal entries are integer powers of t . We then
look for solutions Rn , n ≥ 1, of the differential equa-
tions (1–9) of the form Rn = ρfn

2 ξnT ∗, where f2 = 1
for ρ = e−t2

, f2 = t for ρ = tαe−t , and f2 = t(1 − t) for
ρ = tα (1 − t)β . The illustrative examples we display in

this section show that the functions ξn , n ≥ 1, likely can
be chosen to be polynomials of degree independent of n.

We display three examples corresponding to weight
matrices supported in the compact interval (0, 1), the
half-line (0,+∞), and the whole real line R, respectively.

Example 3.1. We first consider the weight matrix W de-
fined by (1–11). The weight matrix W does not satisfy
any differential equation of the form (2–4) for any sets
of coefficients F2 , F1 , F0 . Moreover, if we take any se-
quence of polynomials (Pn )n orthogonal with respect to
this weight matrix W , they do not satisfy any second-
order differential equation like (1–1).

On the other hand, the weight matrix W satisfies the
set of equations

4∑
j= l

(−1)j

(
j

l

)
(FjW )(j−l) = WF ∗

l , l = 0, . . . , 4,

where Fi , i = 0, 1, 2, 3, 4, are given by (1–13). Actually,
there is another set of coefficients Gi , i = 0, 1, 2, 3, 4 (Fi

and Gi linearly independent) such that W satisfies
4∑

j= l

(−1)j

(
j

l

)
(GjW )(j−l) = WG∗

l , l = 0, . . . , 4,

namely

G4 =
1 − t

4

(
0 9t2(1 − 2t)
0 18t2(1 − t)

)
,

G3=
1
4

(
2(−1 + 2t)(−1 + t) −1 + 40t − 220t2 + 208t3

4(−1 + t)2 2(−1 + t)(1 − 38t + 108t2)

)
,

G2 =
1
18

(
−80 + 114t − 16t2 121 − 1772t + 2740t2

−106(1 − t) 215 − 2322t + 3052t2

)
,

G1 =
1
9

(
68 − 40t −264 + 948t

52 −324 + 1244t

)
,

G0 =
1
9

(
−160 40

0 0

)
.

Since the boundary conditions (1–6) are satisfied, we
have that the monic orthogonal polynomials (P̂n )n with
respect to W satisfy the fourth-order differential equa-
tion

4∑
j=0

P̂ (j )
n (t)Fj (t) = Γn P̂n (t),

where Γn =
∑4

j=0

(
n
j

)
F

(j )
j (t). This gives

Γn =
1
9

(
9n4 +72n3 +203n2 +236n+64 −18n3 −80n2 −94n−16

0 n(9n3 +54n2 +115n+102)

)
.

(3–1)
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To simplify the computations, we normalize these eigen-
values using the matrix

Nn =

(
n + 2 0

0 9n3 + 40n2 + 47n + 8

)
.

Hence, we define

Λn = NnΓnN−1
n

=
1
9

(
9n4 +72n3 +203n2 +236n+64 −2n−4

0 n(9n3 +54n2 +115n+102)
)
.

(3–2)

We now solve the associated fourth-order differential
equation

4∑
j=0

(−1)j

⎛
⎝Rn

k∑
m=j

(
n

m − j

)
(F ∗

m )(m−j )

⎞
⎠

(j )

= ΛnRn .

(3–3)

Taking into account our strategy, we look for solutions
Rn of the form

Rn (t) = tn (1 − t)n (C0,n + C1,n t + C2,n t2)T ∗,

where T is the polynomial defined by (1–12). In doing
so, we find the matrices Cj,n , j = 0, 1, 2, given by (1–
14). The polynomial Rn defined by these matrices then
satisfies the differential equation (3–3).

Using Lemma 1.1, we deduce that the matrix functions
defined by

Pn = R(n)
n W−1 , n ≥ 1, (3–4)

satisfy the fourth-order differential equation

4∑
j=0

P(j )
n (t)Fj (t) = ΛnPn (t). (3–5)

Once we have found the functions Rn , we have to
prove that (3–4) defines a sequence of orthogonal matrix
polynomials with respect to W .

First of all, we prove that the function Pn , n ≥ 1, is
a polynomial of degree n. This can be done in differ-
ent ways. One can just proceed by performing a direct
computation (in a similar way to the proof of [Durán
and Grünbaum 05a, Theorem 3.1 ] or [Durán and López-
Rodŕıguez 07, Theorems 2.1 and 2.2 ]).

But we can also prove that Pn is a polynomial of degree
n using the differential equation (3–5). Indeed, since

W−1(t) =
1
t3

⎛
⎜⎜⎝

1
8

− −1+2t
16(−1+t)

− −1 + 2t
16(−1 + t)

1 − 4t + 4t2 + 8t3

32(1 − t)2

⎞
⎟⎟⎠ ,

we deduce that (see (3–4))

Pn (t) =
n+1∑
j=−3

Djt
j +

E−1

1 − t
+

E−2

(1 − t)2 .

We have to prove that D−3 = D−2 = D−1 = Dn+1 =
E−1 = E−2 = 0.

To do so, we proceed by reductio ad absurdum. As-
sume first that Pn has a pole at t = 0 of order r > 0.
This means that D−r 	= 0, 0 < r ≤ 3. If we compare the
coefficient of 1/tr on both sides of (3–5), we find that

D−rΓ−r − ΛnD−r = 0. (3–6)

The matrices Γn and Λn (see (3–1) and (3–2)) have the
same eigenvalues, namely

λn,1 = n4 + 8n3 +
203n2 + 236n + 64

9
,

λn,2 = n

(
n3 + 6n3 +

115n + 102
9

)
.

It is easy to see that

λ−r,i ≤ 0 < λn,i , r = 1, 2, 3, n ≥ 1, and i = 1, 2,

(3–7)

and

0 < λn,2 < λn,1 < λn+1,2 , for n ≥ 1. (3–8)

Then (3.7) shows that the matrices Γ−r , 0 < r ≤ 3, and
Λn , n ≥ 1, have no common eigenvalue. We then deduce
from (3–6) that D−r = 0 (see [Gantmacher 60, p. 225]),
which is a contradiction. Hence Pn has no pole at t = 0.

In the same way, it can be proved that Pn has no pole
at t = 1, and that it is a polynomial of degree at most n
(using (3–8)).

Once we have proved that Pn is a polynomial of degree
at most n, integration by parts shows that∫ 1

0
Pn (t)W (t)tkdt = 0, k = 0, . . . , n − 1.

In particular, this implies that Pn has degree n, and that
Pn = CP̂n , where P̂n is the nth monic orthogonal poly-
nomial and C the leading coefficient of Pn . Since∫ 1

0
Pn (t)W (t)tndt = C

∫ 1

0
P̂n (t)W (t)P̂n (t)dt,

and
∫ 1

0 P̂n (t)W (t)P̂n (t)dt is positive definite, it follows
that C is nonsingular if and only if

∫ 1
0 Pn (t)W (t)tndt is

nonsingular. Integration by parts gives∫ 1

0
Pn (t)W (t)tndt = (−1)nn!

∫ 1

0
Rn (t)dt.
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A direct calculation shows that

det
(∫ 1

0
Rn (t)dt

)

= − (n + 1)!2π(n+3)(9n2 + 37n + 36)(9n2 + 27n + 16)
64(16)nΓ2(n + 5/2)

	= 0,

from which we deduce that
∫ 1

0 Pn (t)W (t)tndt is nonsin-
gular.

We have then proved that the function Pn defined
by (3–4) is a polynomial of degree n with nonsingular
leading coefficient and orthogonal to tk , k = 0, . . . , n − 1,
with respect to W . Hence (Pn )n , defined by (3–4), is a
sequence of orthogonal polynomials with respect to W .

Example 3.2. We now consider the weight matrix

W (t) = e−t2
eAteA ∗t , (3–9)

where A is the 3 × 3 nilpotent matrix

A =

⎛
⎜⎝

0 a c

0 0 b

0 0 0

⎞
⎟⎠ , (3–10)

and a, b, and c are real numbers. Since A is nilpotent of
order at most 3, the matrix function eAt is actually a ma-
trix polynomial of degree at most 3. An easy calculation
shows that W (t) = e−t2

Z(t), where Z is the following
matrix polynomial:

Z(t) =

⎛
⎝ 1+a2 t2 +c2 t2 +abct3 + a 2 b 2 t 4

4 at+bct2 + a b 2 t 3
2 ct+ a b t 2

2

at+bct2 + a b 2 t 3
2 1+b2 t2 bt

ct+ a b t 2
2 bt 1

⎞
⎠ .

(3–11)

It was proved in [Durán and Grünbaum 04] that for
c = 0, this weight matrix satisfies equations (2–2), (2–3),
and (2–4) for

F2 = I, F1 = 2A − 2tI, F0 =

⎛
⎜⎝
−4 0 ab

0 −2 0
0 0 0

⎞
⎟⎠ ,

and then any sequence of polynomials (Pn )n orthogonal
with respect to this weight matrix W satisfies the second-
order differential equations (1–1).

But when c 	= 0, the weight matrix W does not satisfy
any differential equation of the form (2–4) for any sets of
coefficients F2 , F1 , F0 .

On the other hand, the weight matrix W satisfies the
set of equations

4∑
j= l

(−1)j

(
j

l

)
(FjW )(j−l) = WF ∗

l , l = 0, . . . , 4,

(3–12)

for certain coefficients Fi , i = 0, 1, 2, 3, 4 (actually, there
are five linearly independent sets of coefficients satisfying
(3–12)).

For concreteness we display a set of coefficients F4 ,
F3 , F2 , F1 , and F0 for the particular values a = 1, b = 2,
c = −1:

F4(t) =
( 7 −t 2t

0 6 −2t
0 0 5

)
,

F3(t) =
(

−24t 20−2t+2t2 −20−2t
4 −24t 38+4t+4t2

0 2 −24t

)
,

F2(t) =
1
3

( −334−8t+60t2 −26−70t+4t2 162+40t−28t2

−8−24t −252−24t+72t2 −16−156t+32t2

0 −16−12t −158+32t+84t2

)
,

F1(t) =
1
3

( −16+472t −348+88t 284−172t
−136 −64+432t −540+56t

0 −80 416t

)
,

F0(t) =
1
3

(
384 128 −224
64 208 64
0 32 0

)
.

We can apply our strategy to W (as in the previous
example) and find that a sequence of orthogonal polyno-
mials (Pn )n with respect to the weight matrix W can be
defined using the following Rodrigues’s formula:

Pn (t) =
(
e−t2

(C0,n + C1,n t + C2,n t2)T ∗
)(n)

W−1 ,

(3–13)

n = 1, 2, 3, . . . , where

T (t) = eAt ,

and C0,n , C1,n , and C2,n are the matrices:

C0,n =

⎛
⎝

n a 2 b 2 (n + 1 )
1 6 + n (a 2 + c 2 )

2 +1 n b c (n a 2 −2 a 2 + 8 )
4 (n a 2 + 4 )

0

nbc/2 n b 2 [a 2 (n −1 )+ 8 ]+ 1 6
4 (n a 2 + 4 )

0

0 −n a c
n a 2 + 4

1

⎞
⎠,

C1,n =
1
4

(
cabn (nb2 +4)a 4c

0 0 4b

0 0 0

)
,

C2,n =
1
2

(
0 0 ab
0 0 0
0 0 0

)
.

The case in which c = 0 and a and b satisfy

a2b2 − 4b2 + 4a2 = 0

is especially interesting. The weight matrix W then sat-
isfies equations (2–2), (2–3), and (2–4) for linearly inde-
pendent sets of coefficients F2 , F1 , and F0 (see [Durán
09]), and the Rodrigues’s formula (3–13) can be written
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in a rather compact form:

Pn (t) =
(
e−t2

TDnT ∗
)(n)

W−1 , n = 1, 2, 3, . . . ,

where Dn is the diagonal matrix

⎛
⎜⎜⎜⎜⎝

(
1 +

nb2

4 + b2

)(
1 +

nb2

4

)
0 0

0
(

1 +
nb2

4

)
0

0 0 1

⎞
⎟⎟⎟⎟⎠ .

(See [Durán 10] for an extension of this Rodrigues’s for-
mula to arbitrary size N × N .)

This example, together with other symbolic computa-
tional evidence, allows us to conjecture the following ex-
ample of arbitrary size. Let A be an N × N nilpotent ma-
trix and consider the weight matrix WA (t) = e−t2

eAteA ∗t .
Only when A is unitarily equivalent to the nilpotent ma-
trix ⎛

⎜⎜⎜⎜⎜⎜⎜⎝

0 v1 0 · · · 0
0 0 v2 · · · 0
...

...
...

. . .
...

0 0 0 · · · vN −1

0 0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

do the orthogonal polynomials with respect to WA

satisfy a second-order differential equation like (1–1)
with F2 = I (see [Durán and Grünbaum 04] and [Durán
and Grünbaum 05c]). Our conjecture is that when A is
nilpotent, the orthogonal polynomials with respect to
WA satisfy differential equations like (1–5) with order k ,
k ≤ 2N −1 .

Example 3.3. Our last example is the weight matrix

W (t) = e−t

⎛
⎜⎝

2t3 + t4 t2 + 2t3 t2

t2 + 2t3 t + 4t2 2t

t2 2t 1

⎞
⎟⎠ , t ≥ 0.

As in the previous examples, the weight matrix W does
not satisfy any differential equation of the form (2–4) for
any sets of coefficients F2 , F1 , F0 , but it does satisfy the
set of equations

4∑
j= l

(−1)j

(
j

l

)
(FjW )(j−l) = WF ∗

l , l = 0, . . . , 4,

(3–14)

where

F4(t) =
1

1578

(
−2856t2 1428t3 0
−977t 526t2 −75t3

0 0 0

)
,

F3(t) =
1

4734

×
(

−79818t+8596t2 31116t2 −4298t3 30396t3

−11724−11263t 3606t+5519t2 8737t2 +225t3

−8585 4360t −135t2

)
,

F2(t) =
1

4734

×
( −147912+60924t 9924t−37924t2 234904t2

−40389+14250t −8118+1068t−7125t2 33136t+51080t2

8631 −8450−4383t 27527t+135t2

)
,

F1(t) =
1

4734

( 79620+2072t −86580−78184t 369940t
35228 −44178−26147t 8450+141833t
−18 −6523+9t 10627+2419t

)
,

F0(t) =
1

4734

( 1849 −31976 59960
−70 −13936 27823

0 −21 0

)
.

(Actually, there are two linearly independent sets of co-
efficients satisfying (3–14).)

This weight matrix can be factored in the form
W (t) = T (t)

(
t−1 0 0
0 t−1 0
0 0 1

)
T ∗(t), where

T (t) =

⎛
⎜⎝

t2 t2 t2

0 t 2 t

0 0 1

⎞
⎟⎠ .

We can then apply our strategy to W and find that a
sequence of orthogonal polynomials (Pn )n with respect to
the weight matrix W can be defined using the following
Rodrigues’s formula:

Pn (t) =
(
e−t tn (C0,n + C1,n t + C2,n t2)T ∗)(n)

W−1 ,

n = 1, 2, 3, . . . , where C0,n , C1,n , and C2,n are the ma-
trices

C0,n =( −n(13n+3) 13n2 +41n−6 −12n−12

2(5n2 +13n+2)n −18n3 −50n2 −44n−8 4(2n+3)(n+1)n

(n−1)n n(2n+1)(n−1) −2(n+1)(n2 +n+1)

)
,

C1,n =

(
29 58n+29 −12n−12

0 0 −2(23n3 +63n2 +46n+8)/(4n+1)

0 0 n2 −n

)
,

C2,n =
(

0 0 29
0 0 0
0 0 0

)
.
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“Structural Formulas for Orthogonal Matrix Polynomials
Satisfying Second Order Differential Equations, I.” Con-
str. Approx. 22 (2005), 255–271.
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