
Experimental Mathematics, 20(1):1–14, 2011
Copyright C© Taylor & Francis Group, LLC
ISSN: 1058-6458 print
DOI: 10.1080/10586458.2011.544556

w-Invariants and the Fintushel–Stern Invariants for
Plumbed Homology 3-Spheres
Yoshihiro Fukumoto

CONTENTS

1. Introduction
2. w-Invariant of Homology 3-Spheres
3. Plumbed Homology 3-Spheres and V-Plumbing
4. The Virtual Dimension of the Seiberg–Witten Moduli Space
5. Fintushel–Stern Invariants
6. Computations
Acknowledgments
References

2000 AMS Subject Classification: Primary 57R90; Secondary 55-04
Keywords: Homology cobordism, Donaldson theory,
Seiberg-Witten theory

In this paper, we present numerical computations of the w-
invariants and the Fintushel–Stern invariants for plumbed ho-
mology 3-spheres and use the results to test a conjecture of
Witten suggesting that the invariants carry equivalent informa-
tion. While the two invariants give nearly the same information
for some homology 3-spheres, we present numerous examples
in which the information carried by the two invariants is quite
different.

1. INTRODUCTION

In this paper, we investigate a conjecture of Witten on
the equivalence in gauge theory between Donaldson the-
ory and Seiberg–Witten theory by comparing computa-
tions of two invariants of homology spheres arising from
these two theories. The first is the Fintushel–Stern in-
variant, which is defined for Seifert-fibered homology 3-
spheres Σ as the virtual dimension of the moduli space
of self-dual V -connections on the closed V -manifold con-
structed as the disk V -bundle associated to the Seifert
fibration. The second is the w-invariant, which is an
integral lift of the Rohlin invariant and is defined in
[Fukumoto and Furuta 00] as the Seiberg–Witten ana-
logue of the Fintushel–Stern invariant.

This invariant turns out to be a homology cobordism
invariant for a certain class of homology 3-spheres using
the 10/8-inequality. Under the assumption that Seifert
homology 3-spheres bound positive definite 4-manifolds,
the w-invariant essentially gives the information of the
virtual dimension of the moduli space of the Seiberg–
Witten monopoles on a closed V -manifold. A numeri-
cal computation indicates that these two invariants give
almost the same information. However, there certainly
exist some homology spheres such that the w-invariants
give obstructions to bounding positive definite (or neg-
ative definite) manifolds, while the Fintushel–Stern in-
variant does not, and vice versa. Our goal in this paper
is to explore the difference between the Fintushel–Stern
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invariants and the w-invariants in the context of plumbed
homology 3-spheres, and use our results to shed light on
Witten’s conjecture.

In [Fukumoto and Furuta 00], the authors applied a
V -manifold version of the 10/8-inequality to define a ho-
mology cobordism invariant for certain classes of homol-
ogy 3-spheres, and we briefly recall the construction here.
For a triple (Σ,X, c) consisting of a homology 3-sphere Σ,
a 4-V -manifold X with boundary Σ, and a V -spinc struc-
ture c on X, we define a Z-valued invariant w(Σ,X, c),

w(Σ,X, c) := indV D(X ∪Σ W ) +
1
8

sign (W ) ,

where W is a spin 4-manifold with ∂W ∼= −Σ. When the
V -spinc structure c on X comes from a V -spin struc-
ture, this invariant w(Σ,X, c) is an integral lift of the
Rochlin invariant µ (Σ), since the Dirac operator corre-
sponding to a V -spin structure is quaternionic linear. If
Σ = Σ (Γ) is a plumbed homology 3-sphere associated to
a plumbing tree graph Γ, then Σ (Γ) bounds the plumbed
4-manifold P (Γ), and W. Neumann and L. Siebenmann
defined an integral lift µ̄(Σ) of the Rohlin invariant us-
ing the data of Γ, where µ̄ (Σ) does not depend on the
choice of Γ. N. Saveliev [Saveliev 02] (and partially the
author in a joint work with M. Furuta and M. Ue) proved
that the µ̄-invariant µ̄ (Σ) is equal to the w-invariant
w(Σ(Γ), P (Γ̂), c), where P (Γ̂) is the plumbed V -manifold
associated to a decorated plumbing graph Γ̂ in the sense
of Saveliev. Let S(k+ , k−) be the set of homology 3-
spheres Σ such that there exists a spin 4-V -manifold X

satisfying b±2 (X) ≤ k±. If we assume k+ + k− ≤ 2, then
we see that w(Σ,X, c) does not depend on the pair (X, c)
of a spin 4-V -manifold X with boundary Σ satisfying
b±2 (X) ≤ k± and a V -spin structure c, and furthermore,
we see that the map

S(k+ , k−) � Σ �−→ w(Σ,X, c) ∈ Z

gives a homology cobordism invariant. This means that
the µ̄-invariant is in fact a homology cobordism invariant
for plumbed homology spheres in the class S(k+ , k−) with
k+ + k− ≤ 2.

Let Γ = (V,E, ω, ε) be a graph with (unnormalized)
Seifert invariants

ω (k) = {(ak1 , bk1) , . . . , (aknk
, bknk

)}
of the rational Euler number

∑nk

i=1 bki/aki on each vertex
k ∈ V and signs ε (e) on each edge e ∈ E. Let P (Γ) be
the 4-V -manifold obtained by plumbing according to Γ.
Then the boundary Σ (Γ) of P (Γ) is a homology 3-sphere
if and only if Γ satisfies Condition HS, which is given in
Section 3.

Let AΓ be the intersection matrix over Q with respect
to the standard basis of H2(P (Γ) ; Q). Let k+(Γ) (respec-
tively k−(Γ)) be the number of positive (negative) eigen-
values of the matrix AΓ. Take �m = (m1 , . . . ,m#V ) ∈
Z#V to be any #V -tuple of integers that parameterizes
V -spinc structures c(�m) on P (Γ). The following definition
is in fact the explicit formula of the invariant of plumbed
homology 3-spheres.

Definition 1.1. Suppose Γ satisfies Condition HS. Then
we define

w (Γ, �m) :=
1
8

[
t�sAΓ�s − (

k+ (Γ) − k− (Γ)
)

−
∑
k∈V

nk∑
i=1

1
aki

ak i −1∑
�=1

{
cot

(
π�

aki

)
cot

(
πbki�

aki

)

+ 2 cos
(

π (1 + (2mk + 1) bki) �

aki

)
csc

(
π�

aki

)

× csc
(

πbki�

aki

)}]
,

where �s = A−1
Γ (�χ + �e) + 2�m ∈ Z#V for �m = (mk )k∈V

and �χ,�e ∈ Q#V are defined by

χk = 2 −
nk∑
i=1

(
1 − 1

aki

)
, ek =

nk∑
i=1

bki

aki
.

Remark 1.2. The canonical line V -bundle K can be writ-
ten as

K =
⊗
k∈V

L̃
−(A−1

Γ (�χ+�e))
k

k ,

where L̃k is the line V -bundle over P (Γ) obtained in
Section 3 by trivial extension of the pullback of the line
V -bundle Lk → Zk corresponding to the vertex k ∈ V by
its projection map Lk → Zk .

Combining this formula with several properties of the
invariant, we obtain the following theorem.

Theorem 1.3. Suppose Γ satisfies Condition HS, and
k+(Γ) = 0. If w(Γ, �m) > 0 for some �m ∈ Z#V , then the
connected sum of any number of copies of the plumbed ho-
mology 3-spheres Σ(Γ) cannot be the boundary of a posi-
tive definite 4-manifold.

Remark 1.4. If k−(Γ) ≤ 2 and the associated V -
plumbing P (Γ) admits a V -spin structure �m = �mspin ,
then by a V -manifold version of the 10/8-inequality,
if w(Γ, �m) 	= 0, then the plumbed homology 3-sphere
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Σ(Γ) cannot be the boundary of an acyclic 4-manifold
[Fukumoto and Furuta 00, Fukumoto 00].

On the other hand, we calculate the Fintushel–Stern
invariant for the plumbed homology 3-spheres Σ (Γ)
as follows. Set ak = lcm(aki), bk = akek . Let Γ̄ be the
plumbing graph with P

(
Γ̄
)

= −P (Γ), and define b̄ki =
−bki , b̄k = −bk , ēk = −ek , m̄i

k = mk b̄ki , and m̄k = mk b̄k .

Definition 1.5. Suppose Γ satisfies Condition HS, and
k+(Γ) = 0. Then we define

R(Γ; �m)
:= 2t �mAΓ̄ �m − 3

+
∑
k∈V

nk∑
i=1

2
aki

ak i −1∑
�=1

sin2 πm̄i
k �

aki
cot

π�

aki
cot

πb̄ki�

aki

+ #
{
(k, i)

∣∣m̄i
k 	≡ 0 mod aki, k ∈ V

}
.

We extend the argument of [Lawson 88] for Seifert-
fibered homology 3-spheres to the case of plumbed ho-
mology 3-spheres Σ (Γ). Let �m = (mk )k∈V be an element
in the lattice Z#V . Then we call �m odd if m̄k is odd for
some k ∈ V . Let µ (Γ, �m) be the number defined by

µ (Γ, �m) = #
{

�m′ ∈ Z#V
∣∣ t �mAΓ̄ �m = t �m′AΓ̄ �m′,

m̄k ≡ m̄′
k mod 2 for any k ∈ V,

m̄i
k ≡ m̄′i

k mod aki for any k ∈ V,

i ∈ {1, . . . , nki}
}

.

Then we have the following result (cf. [Lawson 88]).

Theorem 1.6. Let Γ be a graph with Seifert invariants
satisfying Condition HS and k+(Γ) = 0. Suppose there
exists an odd element �m ∈ Z#V such that

1. t �mAΓ̄ �m < 4 (< 2 if some aki is even),

2. R(Γ; �m) > 0,

3. µ (Γ, �m) is odd, and

4. for any odd �m′ such that m̄k ≡ m̄′
k mod 2 for any

k ∈ V , t �m′AΓ̄ �m′ < t �mAΓ̄ �m, and m̄i
k ≡ m̄′i

k mod 2
for aki even, one of the following does not hold:
(P) t �mAΓ̄ �m − t �m′AΓ̄ �m′ =

∑
k∈V

∑
i p1(m̄′i

k , m̄i
k ),

(I) Ieq(m̄′i
k , m̄i

k ) ≥ 0 for p1(m̄′i
k , m̄i

k ) < 4 (< 2 if aki

even),

(E) If p1(m̄′i
k , m̄i

k ) = 4/aki, then 1 + b̄ki ≡
±m̄i

k mod aki and −1 + b̄ki ≡ ±m̄′i
k mod aki,

where p1(m̄′i
k , m̄i

k ) and Ieq(m̄′i
k , m̄i

k ) are defined as
follows:

p1(m̄′i
k , m̄i

k )

=
4

aki
min

{
b ∈ Z+

∣∣ b ≡ b̄∗ki

((
m̄i

k

)2 − (
m̄′i

k

)2

4

)

mod āki

}
,

where āki = aki if aki is odd and āki = aki/2 if aki

is even, m̄i
k ≡ m̄′i

k mod 2 if aki is even, b∗ denotes
the inverse of b mod aki if it exists, and if aki is
odd the division by 4 is to be interpreted as multi-
plication by 4∗, and

Ieq(m̄′i
k , m̄i

k ) = 2p1
(
m̄′i

k , m̄i
k

)− 3

+ δ
(
aki, 1, b̄ki , m̄

i
k

)− δ
(
aki, 1, b̄ki , m̄

′i
k

)
+ #{p ∈ {m̄i

k , m̄′i
k } | p 	≡ 0 mod aki},

where

δ (a, r, s, p)

=
2
a

a−1∑
k=1

cot
(

πrk

a

)
cot

(
πsk

a

)
sin2

(
πpk

a

)
.

Then the plumbed homology 3-sphere Σ(Γ) cannot be
the boundary of a positive definite 4-manifold with no 2-
torsion in the first homology.

Remark 1.7. Theorem 1.6 concerns only the bubbling phe-
nomena on cone points [Lawson 88]. As pointed out by
T. Lawson, we can also consider the bubbling on ordinary
points and may obtain stronger conditions in principle.

This paper is organized as follows. In Section 2, we
review several facts concerning the invariant studied in
[Fukumoto and Furuta 00]. In Section 3, we recall a gen-
eralization of the notion of the plumbing to the 4-V -
manifold category to apply this invariant to homology
3-spheres of plumbing type, and we describe the set of
all V -spinc structures on the plumbed 4-V -manifold in
terms of the plumbing data. In Section 4, we consider
the problem of negative definite cobordisms of plumbed
homology 3-spheres and calculate the virtual dimension
of the Seiberg–Witten moduli space over V -manifolds.
In Section 5, we recall the definition of the Fintushel–
Stern invariant in the case of plumbed V -manifolds and
then apply the argument of [Lawson 88]. In Section 6,
we give an explicit computation for plumbed homology
3-spheres to compare the Fintushel–Stern invariant and
w-invariants.
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The numerical values of the invariants and graphs and
scatter plots of Brieskorn homology 3-spheres were ob-
tained using the software Mathematica.

2. w-INVARIANT OF HOMOLOGY 3-SPHERES

Let X be an oriented 4-V -manifold with boundary Σ and
with only isolated singular points in its interior. We as-
sume that a neighborhood of each singular point is of
the form of a cone on the quotient of the 3-sphere by
a finite group action. Suppose X admits a spinc struc-
ture c, has first Betti number b1(X) = 0, and has bound-
ary Σ, a homology 3-sphere. Let W be a spin 4-manifold
with boundary −Σ. Then we can patch them together to
get the closed 4-V -manifold X ∪Σ W . Since the normal
neighborhood of the boundary Σ × [0, 1] admits a unique
spinc structure, we can glue the spinc structures on X

and W along the boundary Σ to get a spinc structure
on X ∪Σ W . Since H1(Σ; Z) = 0, there is a unique ho-
motopy class of automorphisms of the spinc structure on
Σ × [1, 0], and so we can patch them in a unique way up
to homotopy.

In [Fukumoto and Furuta 00], we studied the follow-
ing invariant for (Σ,X, c):

w(Σ,X, c) := indV D(X ∪Σ W ) +
1
8

sign (W ) .

Here D(X ∪Σ W ) is the Dirac operator on the closed
V -manifold X ∪Σ W associated to the spinc structure
c on X ∪Σ W , and b+

2 (W ) (respectively b−2 (W )) is the
maximal dimension of positive (negative) definite sub-
space of H2(W,∂W ; R) ∼= H2(W ; R) with respect to
the quadratic form defined by the cup product. Note
that each term of the right-hand side is an integer.
The invariant w(Σ,X, c) satisfies the following property
[Fukumoto and Furuta 00]:

w(Σ0#Σ1 ,X0 	 X1 , c0 	 c1)
= w(Σ0 ,X0 , c0) + w(Σ1 ,X1 , c1),

where Σ0#Σ1 is the connected sum of Σ0 and Σ1, and
X0 	 X1 is the boundary connected sum of X0 and X1 .

3. PLUMBED HOMOLOGY 3-SPHERES AND
V -PLUMBING

In this section, we recall the generalization of the notion
of plumbing [Neumann 81] to the 4-V -manifold category
and consider the case that the boundary is a homology 3-
sphere. In this paper, we consider plumbing only among
smooth points. It is possible to consider plumbing among

V -singular points, but it requires a more complicated
treatment.

First we define a graph with Seifert data Γ =
(V,E, ω, ε) as follows: (1) (V,E) is a one-dimensional sim-
plicial complex consisting of a set of vertices k ∈ V and
a set of edges e ∈ E. (2) Each vertex k ∈ V is assigned
an unnormalized Seifert invariant:

ω(k) = {gk ; (ak1 , bk1), . . . , (aknk
, bknk

)}, k ∈ V,

where bk , gk are integers, and (aki, bki) are coprime inte-
gers. (3) Each edge e ∈ E has a sign ε (e) = ±. The Euler
number for the line V -bundle associated to the Seifert fi-
bration is

ek =
nk∑
i=1

bki

aki
.

A plumbed 4-V -manifold P (Γ) is constructed from a
graph with Seifert data Γ as follows. For each vertex
k ∈ V , let Lk be the line V -bundle over a Riemannian
V -surface Zk of genus gk whose associated S1-V -bundle
S (Lk ) is the Seifert-fibered space with Seifert invariant
ω(k). Let D (Lk ) be the associated disk V -bundle. If two
vertices k, k′ are connected by an edge e = (k, k′) ∈ E

with sign ε (e) = ±, then we choose a local trivialization
of each disk V -bundle D(Lk )|Dk k ′

∼= Dkk ′ × D2 and glue
them by the orientation-preserving map

φ
ε(e)
kk ′ : D(Lk )|Dk k ′

∼= Dkk ′ × D2 � (z, w)

�−→
{

(w, z) (ε (e) = +)
(w̄, z̄) (ε (e) = −)

∈ Dk ′k × D2

∼= D(Lk ′)|Dk ′k .

The plumbed 4-V -manifold P (Γ) has singularities in the
form of a cone on the lens space. In the following discus-
sion, we assume that the graph (V,E) is a tree and that
all genera gk are zero. If we denote by AΓ the intersection
matrix of P (Γ), then the (k, k′)-entry of AΓ is

(AΓ)k,k ′ =

⎧⎪⎪⎨
⎪⎪⎩

ek k = k′,

1, (k, k′) ∈ E,

0, otherwise.

Let Γ̄ =
(
V̄ , Ē, ω̄, ε̄

)
be the graph with Seifert invariants

such that

V̄ = V, Ē = E,

ω̄ (k) = {gk ;
(
ak1 , b̄k1

)
, . . . , (aknk

, b̄knk
)},

ε̄ (e) = −ε (e) ,
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where b̄ki = −bki , so that

ēk =
nk i∑
i=1

b̄ki

aki
= −

nk∑
i=1

bki

aki
= −ek .

Then P
(
Γ̄
)

= −P (Γ) and AΓ̄ = −AΓ. In fact, the
orientation of D (Lk ) in P (Γ) is induced by that
of the base space Zk and the fiber D2 ⊂ C, and if
we define an orientation-reversing diffeomorphism
ιk : D (Lk ) → D

(
L̄k

)
as the complex conjugates of

the fibers, then the orientation-preserving gluing map
φ+

kk ′ : Dkk ′ × D2 → Dk ′k × D2 given by φ+
kk ′ (z, w) =

(w, z) induces the orientation-preserving gluing map
φ−

k ′k =
(
ιk ′ |Dk ′k ×D 2

) ◦ φ+
k ′k ◦ (

ιk |Dk k ′×D 2

)−1 given by
φ−

kk ′ (z, w) =
(
ιk ′ |Dk ′k ×D 2

) ◦ φ+
k ′k (z, w̄) = ιk ′ (w̄, z) =

(w̄, z̄). Let us denote the boundary of the plumbing
P (Γ) by Σ(Γ). Note also that Σ

(
Γ̄
)

= −Σ(Γ). Now we
see that Σ(Γ) is a homology 3-sphere if and only if the
following conditions are satisfied:

Condition HS

1. Γ is a tree graph.

2. gk = 0 for k ∈ V .

3. det AΓ = ± 1
Πk ∈V ak

, ak :=
∏

i aki .

From now on we assume that Γ satisfies Condition HS,
and we omit gk from the notation of the Seifert invariants
ω(k). Then P (Γ) is V -spin if and only if one of the fol-
lowing conditions holds for each vertex k ∈ V . Note that
if P (Γ) has a V -spin structure, then it is unique:

1. One of the aki is even.

2. All aki are odd and akek is even.

Let L̃k be the line V -bundle over P (Γ) defined by ex-
tending trivially the pullback p∗kLk of the line V -bundle
pk : Lk → Zk . Then the tautological section of p∗kLk on
D(Lk ) ⊂ P (Γ) can be extended trivially to L̃k on P (Γ),
and its zero set intersects Zk with intersection number ek .
We fix a V -complex structure and a V -Hermitian metric
on P (Γ) that comes from the base Riemannian V -surfaces
Zk and the fibers C corresponding to each vertex in Γ.

Then we have the canonical V -spinc structure on P (Γ)
whose associated line V -bundle is the canonical line V -
bundle K. Let S±

can be the spinor V -bundle associated
with the canonical V -spinc structure. Since the set of
all V -spinc structures on P (Γ) is the affine space over
Pict

V (P (Γ)), we take the canonical V -spinc structure as
a reference point, and we have the following theorem.

Theorem 3.1. Suppose Γ = (V,E, ω) satisfies Condition
HS. Then there is a one-to-one correspondence between
the set of all V -spinc structures on P (Γ) and the lattice
Z#V , and �m = (m1 , . . . ,m#V ) ∈ Z#V corresponds to the
V -spinc structure whose associated spinor V -bundle is

S±
can ⊗

⊗
k∈V

L̃mk

k .

Remark 3.2. The line V -bundle associated to the V -spinc

structure on P (Γ) that corresponds to �m ∈ Z#V is the
determinant line V -bundle of S±

can ⊗⊗
k∈V L̃mk

k :

K−1 ⊗
⊗
k∈V

L̃2mk

k ,

where K is the canonical line V -bundle of P (Γ).

4. THE VIRTUAL DIMENSION OF THE
SEIBERG–WITTEN MODULI SPACE

Let Γ = (V,E, ω) be a graph with Seifert data and let
P (Γ) be the 4-V -manifold obtained by plumbing ac-
cording to Γ. We assume that Γ satisfies Condition
HS. Then the boundary Σ(Γ) = ∂P (Γ) is a homology
3-sphere. We take a V -spinc structure c(�m) (�m ∈ Z#V )
on P (Γ) whose associated spinor V -bundle over P (Γ) is
S±

c( �m ) = S±
can ⊗⊗

k∈V L̃mk

k and the associated spinc line

V -bundle over P (Γ) is L̃c( �m ) = K−1 ⊗⊗
k∈V L̃−2mk

k . Let
k+(Γ) (respectively k−(Γ)) be the number of positive
(negative) eigenvalues of the intersection matrix AΓ.

Theorem 4.1. Let Γ be a graph with Seifert invariants sat-
isfying Condition HS and such that k+ (Γ) = 0. Suppose
the homology 3-sphere Σ(Γ) bounds a positive definite
4-manifold W . Then the virtual dimension of the mod-
uli space MSW

c( �m ) (Z) of Seiberg–Witten monopoles on the
negative definite closed 4-V -manifold Z = P (Γ) ∪Σ(Γ)

(−W ) with spinc structure c (�m) for some �m ∈ Z#V is
given by

vir dimMSW
c( �m ) (Z)

= 2w (Σ (Γ) , P (Γ) , c (�m)) +
b+
2 (W )

4
− 1

=
1
4

[
t�sAΓ�s − k+(Γ) + b+

2 (W )

−
∑
k∈V

nk∑
i=1

1
aki

ak i −1∑
�=1

{
cot

(
π�

aki

)
cot

(
πbki�

aki

)

+ 2 cos
(

π(1 + (2mk + 1)bki)�
aki

)
csc

(
π�

aki

)

× csc
(

πbki�

aki

)}]
− 1.
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Proof: The result follows from the fact that

vir dimR MSW
c( �m ) (Z)

= indR

V

[(
d∗ ⊕ d+)

(Z) ⊕ DA (Z) : Ω1 (iR) ⊕ Γ
(
S+)

→ Ω0 (iR) ⊕ Ω2
+ (iR) ⊕ Γ

(
S−)] ,

where the V -indices of the operators (d∗ ⊕ d+) (Z) and
DA (Z) over the negative definite closed 4-V -manifold Z

are given by

indR

V

(
d∗ ⊕ d+)

(Z) = b1 (Z) − (
b0 (Z) + b+

2 (Z)
)

= 0 − (1 + 0) = −1

and

1
2

indR

V DA (Z) =
1
2

indR

V DA (P (Γ) ∪Σ(Γ) (−W ))

= w (Σ (Γ) , P (Γ) , c (�m)) − sign (−W )
8

= w (Σ (Γ) , P (Γ) , c (�m)) +
sign (W )

8
.

The explicit formula is calculated in [Fukumoto 00] using
the V -index formula of [Kawasaki 81]:

indV

[
DA : Γ

(
S+ ⊗ L

) → Γ
(
S− ⊗ L

)]
=

∫
Z

Â (TZ) ch(K−1/2)ch (L)

+
∑
k∈V

nk∑
i=1

1
aki

∑
γ∈Z/ak i

γ 	=1

chγ (S+ − S−) chγ (L)
chγ ∧−1 (Nγ ⊗ C)

[pki ]

=
∫

Z

(
−p1

24
+

1
8
c1

(
K−1 ⊗ L2)2

)

+
∑
k∈V

nk∑
i=1

1
aki

×
∑

ζk i ∈Z/ak i

ζk i 	=1

ζ
1/2
ki ζ

bk i /2
ki(

ζ
1/2
ki − ζ

−1/2
ki

)(
ζ

bk i /2
ki − ζ

−bk i /2
ki

) · ζm
ki .

By the V -spin theorem,

sign (Z)

=
∫

Z

p1

3
+

∑
k∈V

nk∑
i=1

1
aki

×
∑

ζk i ∈Z/ak i

ζk i 	=1

ζ
1/2
ki + ζ

−1/2
ki

ζ
1/2
ki − ζ

−1/2
ki

ζ
bk i /2
ki + ζ

−bk i /2
ki

ζ
bk i /2
ki − ζ

−bk i /2
ki

,

we have

indV

[
DA : Γ

(
S+ ⊗ L

) → Γ
(
S− ⊗ L

)]
=

1
8

∫
Z

c1
(
K−1 ⊗ L2)2

− 1
8

sign (Z)

+
1
8

∑
k∈V

nk∑
i=1

1
aki

×
∑

ζk i ∈Z/ak i

ζk i 	=1

ζ
1/2
ki + ζ

−1/2
ki

ζ
1/2
ki − ζ

−1/2
ki

ζ
bk i /2
ki + ζ

−bk i /2
ki

ζ
bk i /2
ki − ζ

−bk i /2
ki

+
∑
k∈V

nk∑
i=1

1
aki

×
∑

ζk i ∈Z/ak i

ζk i 	=1

ζ
(1+bk i +2m )/2
ki(

ζ
1/2
ki − ζ

−1/2
ki

)(
ζ

bk i /2
ki − ζ

−bk i /2
ki

) .

Theorem 4.2. Let X be a closed 4-V -manifold with
b1(X) = 0, b+

2 (X) = 0. Let c be a V -spinc structure
on X. Then the virtual dimension of the moduli space
MSW

c (X) of the Seiberg–Witten monopoles on X with
V -spinc structure c is nonpositive: vir dimMSW

c (X) ≤ 0.

Proof: Note that the Dirac operator DA associated to
the V -connection A on the determinant line-V -bundle
L = det S± → X is C-linear, and hence indV DA is even.
Hence if b1 (X) = 0, b+

2 (X) = 0, then the virtual di-
mension is odd and there is only one reducible solution
modulo gauge equivalence by the Hodge theory on V -
manifolds. Now suppose that the virtual dimension is
positive: 2d + 1, d ≥ 0. By perturbing the equation if nec-
essary, we make the moduli space MSW

c (X) a smooth
compact orientable (2d + 1)-dimensional manifold except
for the unique singularity whose neighborhood N has
the form of a cone over the complex projective space
CPd . The base-point fibration L gives the S1-bundle
on M0 := MSW

c (X) −N whose restriction to the link
∂M0 ∼= CPd is isomorphic to the Hopf bundle H → CPd .
Since M0 is a compact oriented smooth manifold with
boundary, it follows that

0 = c1 (L)d [∂M0 ] = c1 (H)d [
CPd

]
= 1,

which is a contradiction.

Remark 4.3. This argument is applicable even for cer-
tain noncompact smooth 4-manifolds as long as the
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monopole moduli space is compact; see the argument in
[Froyshov 96].

Then we have the following theorem.

Theorem 4.4. [Fukumoto and Furuta 00, Theorem 5]
Suppose Γ satisfies Condition HS and k+(Γ) = 0. If the
plumbed homology 3-sphere Σ(Γ) bounds a positive defi-
nite 4-manifold, then we have

w(Σ(Γ), P (Γ), c(�m)) ≤ 0

for any �m ∈ Z#V (Γ).

Proof: Suppose that Σ (Γ) bounds a positive definite 4-
manifold W . Using surgery to cut out the free part of
H1 (W ; Z) if necessary, we may assume that b1 (W ) = 0.
Note that the plumbed 4-V -manifold P (Γ) is negative
definite, b+

2 (P (Γ)) = 0. Then the closed V -manifold Z =
P (Γ) ∪Σ(Γ) (−W ) satisfies b1 (X) = 0 and b+

2 (X) = 0.
Then the virtual dimension of the moduli space MSW

c( �m )
is nonpositive,

vir dimMSW
c( �m ) (Z)

= 2w (Σ (Γ) , P (Γ) , c (�m)) +
b+
2 (W )

4
− 1 ≤ 0,

which means that

w (Σ (Γ) , P (Γ) , c (�m)) ≤ 1
2
− b+

2 (W )
8

≤ 1
2
.

By the additivity under connected sums of the w-
invariant, we have the following theorem.

Theorem 4.5. Suppose Γ1 , . . . ,Γs all satisfy Condition
HS and k+(Γi) = 0 (i = 1, . . . , s). If the connected sum
Σ(Γ1)# · · ·#Σ(Γs) bounds a positive definite 4-manifold,
then we have

s∑
i=1

w(Σ(Γi), P (Γi), c( �mi)) ≤ 0

for any �mi ∈ Z#V (Γ i ).

In particular, we have the following corollary.

Corollary 4.6. Suppose Γ satisfies Condition HS and
k−(Γ) = 0. If the connected sum of any number of
copies of Σ(Γ) bounds a positive definite 4-manifold, then
w(Σ(Γ), P (Γ), c(�m)) ≤ 0 for any �m ∈ Z#V (Γ).

5. FINTUSHEL–STERN INVARIANTS

The argument of R. Fintushel and R. Stern for Seifert ho-
mology 3-spheres can be extended to the case of plumbed
homology 3-spheres. First we compute the Fintushel–
Stern invariant of plumbed homology 3-spheres.

Let Γ be a graph with Seifert invariants satisfying
Condition HS and k+ (Γ) = 0. Let P (Γ) be the neg-
ative definite 4-V -manifold with boundary Σ (Γ) ob-
tained by plumbing according to Γ. Suppose that Σ (Γ)
bounds a positive definite 4-manifold W . Let MD

�m be
the moduli space of self-dual V -connections on the posi-
tive definite closed 4-V -manifold Z = W ∪Σ(Γ) (−P (Γ))
with SO(3)-V -bundle E = L̃ (�m) ⊕ ε, where L̃ (�m) :=⊗

k∈V L̃mk

k and ε is the trivial R-line V -bundle over Z.
Then we have the following theorem.

Theorem 5.1.

vir dimMD
�m (Z) = R(Γ; �m).

Proof: Note that the Pontryagin number p1(E) of the
SO(3)-V -bundle E = L̃ (�m) ⊕ ε over W ∪Σ(Γ) (−P (Γ)) is
calculated to be

c1

(
L̃ (�m)

)2 [
W ∪Σ(Γ) (−P (Γ))

]
= t �mAΓ̄ �m,

where AΓ̄ is the intersection matrix of P
(
Γ̄
)
. Then

this formula is obtained by the V -index formula of
[Kawasaki 81] in the same way as the calculation in
[Fintushel and Stern 85].

Let Z be the closed V -manifold Z = W ∪Σ(Γ)

(−P (Γ)). The virtual dimension of the moduli space
MD

�m (Z) of the self-dual V -connection over Z associated
to the SO(3)-V -bundle E = L ⊕ ε, L = L̃ (�m) is given by
the V -index of the elliptic operator d∗A ⊕ d−A ,

vir dimMD
�m (Z)

= indV

[
d∗A ⊕ d−A : Ω1 (gE ) → Ω0 (gE ) ⊕ Ω2

− (gE )
]
,

where gE = PE ×Ad so (3) is the adjoint bundle as-
sociated to the SO(3)-bundle E. The V -index is
equal to that of the twisted Dirac operator DS + ⊗gE

:
Γ (S+ ⊗ S− ⊗ gE ) → Γ (S− ⊗ S− ⊗ gE ) and is calculated
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using Kawasaki’s V -index formula:

indV

[
d∗A ⊕ d−A : Ω1 (gE ) → Ω0 (gE ) ⊕ Ω2

− (gE )
]

= indV

[
DS−⊗gE

: Γ
(
S+ ⊗ S− ⊗ gE

)
→ Γ

(
S− ⊗ S− ⊗ gE

)]
=

∫
Z

Â (Z) ch
(
S−) ch (gE ⊗ C)

+
∑
k∈V

nk∑
i=1

1
aki

×
∑

γ∈Z/ak i

γ 	=1

chγ (S+ − S−) chγ (S−)
chγ ∧−1 (Nγ ⊗ C)

chγ (gE ⊗ C) [pki ] ,

where pki is the ith cone point on P (Γ) corresponding to
the vertex k ∈ V . The first term is calculated as follows:

∫
Z

Â (Z) ch
(
S−) ch (gE ⊗ C)

= 2
∫

Z

p1 (gE ) + 3
∫

Z

Â (Z) ch
(
S−)

= 2
∫

Z

c1 (L)2 + 3
∫

Z

Â (Z) ch
(
S−) ,

where for the last equality the adjoint bundle gE =
PE ×Ad so(3) is isomorphic to L ⊕ ε, and hence p1 (gE ) =
p1 (L ⊕ ε) = p1 (L) = c1 (L)2 . On the other hand, the V -
index of the operator d∗ ⊕ d− : Ω1 → Ω0 ⊕ Ω2

− on the de
Rham cohomology is calculated to be

indV

(
d∗ ⊕ d−

)
= indV (DS−)

=
∫

Z

Â (Z) ch
(
S−)

+
∑
k∈V

nk∑
i=1

1
aki

∑
γ∈Z/ak i

γ 	=1

χ (pki, γ) [pki ]

= b1 (Z) − (
b0 (Z) + b−2 (Z)

)
= −χ − σ

2
,

where we define

χ (pki, γ) :=
chγ (S+ − S−) chγ (S−)

chγ ∧−1 (Nγ ⊗ C)
[pki ] .

If µ is the weight of the action γ ∈ Z/aki on the fiber,
then the residual Chern character of gE ⊗ C is given by

chγ (gE ⊗ C) = chγ

(
L ⊕ L̄ ⊕ C

)
= chγ (L) + chγ

(
L̄
)

+ 1
= µ + µ−1 + 1.

Therefore

indV

[
d∗A ⊕ d−A : Ω1 (gE ) → Ω0 (gE ) ⊕ Ω2

− (gE )
]

= 2
∫

Z

c1 (L)2 + 3
∫

Z

Â (Z) ch
(
S−)

+
∑
k∈V

nk∑
i=1

1
aki

∑
γ∈Z/ak i

γ 	=1

χ (pki, γ)
(
µ + µ−1 + 1

)

= 2
∫

Z

c1 (L)2 − 3
(

χ − σ

2

)

+
∑
k∈V

nk∑
i=1

1
aki

∑
γ∈Z/ak i

γ 	=1

χ (pki, γ)
(
µ + µ−1 − 2

)
.

The last term is calculated [Fintushel and Stern 85] to
be

∑
k∈V

nk∑
i=1

1
aki

∑
γ∈Z/ak i

γ 	=1

χ (pki, γ)
(
µ + µ−1 − 2

)

=
∑
k∈V

nk∑
i=1

2
aki

ak i −1∑
�=1

cot
π�

aki
cot

πb̄ki�

aki
sin2 πm̄i

k �

aki

+ #{(k, i) | m̄i
k 	≡ 0 mod aki, k ∈ V }.

Hence the assertion follows.

We extend the argument of [Lawson 88] for Seifert
fibered homology 3-spheres to the case of plumbed ho-
mology 3-spheres Σ (Γ). Let Meq(m̄′i

k , m̄i
k ) be the virtual

dimension of the moduli space of equivariant instantons
of the SO(3)-bundle over S4 determined by representa-
tions of Z/aki in SO(3) corresponding to m̄i

k , m̄′i
k , and

let Ieq(m̄′i
k , m̄i

k ) be its virtual dimension. Let p1(m̄′i
k , m̄i

k )
be the first Pontryagin number of the associated SO(3)-
bundle. Then we have the following proposition.

Proposition 5.2. Let L and L′ be two line V -bundles over
Z. Then L ⊕ ε and L′ ⊕ ε are isomorphic as SO(3)-V -
bundles over Z if and only if

1. e2 = e′2 ∈ Q;

2. e ≡ e′ mod 2 ∈ H2 (Z0 ; Z/2);

3. i∗ (e) = i∗ (e′) ∈ H2 (∂Z0 ; Z) , i : ∂Z0 ↪→ Z0 .

Proof: Suppose L ⊕ ε and L′ ⊕ ε are isomorphic. Then
p1 (L ⊕ ε) = p1 (L′ ⊕ ε) ∈ H4 (Z; Q) and w2 (L ⊕ ε|Z0 ) =
w2 (L′ ⊕ ε|Z0 ) ∈ H2 (Z0 ; Z/2). Hence

e2 = e (L)2 [Z] = p1 (L ⊕ ε) [Z] = p1 (L′ ⊕ ε) [Z]

= e (L′)2 [Z] = e′2



Fukumoto: w-Invariants and the Fintushel–Stern Invariants for Plumbed Homology 3-Spheres 9

and

e = e (L|Z0 ) = w2 (L ⊕ ε|Z0 ) = w2 (L′ ⊕ ε|Z0 )
= e (L′|Z0 ) = e′.

Let V = ∪iVi be a disjoint union of the neighbor-
hoods Vi of the singularities pi , which are cones Vi =
(Di × C) / (Z/ai) over lens spaces. Since L ⊕ ε|Vi

are iso-
morphic to the V -bundle (Di × C)× (C × R) / (Z/ai) →
Vi for some Z/ai-action on (Di × C) × (C × R), ζi ·
(z, w, u, t) = (ζiz, ζbi

i w, ζki
i u, t), and also for L′ ⊕ ε|Vi

,
we have some Z/ai-action on (Di × C) × (C × R),
ζi · (z, w, u, t) = (ζiz, ζbi

i w, ζ
k ′

i
i u, t). Hence the isomor-

phism between L ⊕ ε|Vi
and L′ ⊕ ε|Vi

induces one
of corresponding Z/ai-actions on (Di × C) × (C × R),
and therefore ki ≡ k′

i mod ai . The weights ki deter-
mine the Euler classes of the line bundles L|∂Vi

∼=
(∂ (Di × C)×C) / (Z/ai) → ∂Vi and vice versa, and
hence i∗ (e) = i∗ (e′) ∈ H2 (∂Z0 ; Z).

Conversely, assume that items 1–3 hold. Then by
the condition i∗ (e) = i∗ (e′), we have an isomorphism
of the line V -bundles L|V ∼= L′|V , and hence L ⊕ ε and
L′ ⊕ ε are isomorphic over V . There are two obstruc-
tions to extending this isomorphism L ⊕ ε|∂V

∼= L′ ⊕
ε|∂V as a usual SO(3)-bundle over all of Z0 that lie
in H2 (Z0 , ∂Z0 ; Z/2) and H4 (Z0 , ∂Z0 ; Z). The first ob-
struction vanishes because e ≡ e′ mod 2. For the second
obstruction, although p1 (L ⊕ ε|Z0 ), p1 (L ⊕ ε|Z0 ) belong
to H4 (Z0 ; Z), the difference p1 (L ⊕ ε|Z0 ) − p1 (L ⊕ ε|Z0 )
lies in H4 (Z0 , ∂Z0 ; Z), since L ⊕ ε|V ∼= L′ ⊕ ε|V , and
therefore

(p1 (L ⊕ ε|Z0 ) − p1 (L ⊕ ε|Z0 )) [Z0 , ∂Z0 ]
= p1 (L ⊕ ε) [Z] − p1 (L ⊕ ε) [Z] = 0,

and the second obstruction vanishes.

We have the following result.

Theorem 5.3. Let Γ be a graph with Seifert invariants
satisfying Condition HS and k+(Γ) = 0. Suppose there
exists an odd element �m ∈ Z#V such that

1. t �mAΓ̄ �m < 4 (< 2 if some aki is even);

2. R(Γ; �m) > 0;

3. µ (Γ, �m) is odd;

4. for any odd �m′ such that m̄k ≡ m̄′
k mod 2 for any

k ∈ V , t �m′AΓ̄ �m′ < t �mAΓ̄ �m, and m̄i
k ≡ m̄′i

k mod 2
for aki even, one of the following does not hold:
(P) t �mAΓ̄ �m − t �m′AΓ̄ �m′ =

∑
k∈V

∑
i p1(m̄′i

k , m̄i
k ).

(I) Ieq(m̄′i
k , m̄i

k ) ≥ 0 for p1(m̄′i
k , m̄i

k ) < 4 (< 2 if aki

even).

(E) If p1(m̄′i
k , m̄i

k ) = 4/aki, then Meq(m̄′i
k , m̄i

k ) 	=
∅.

Then the plumbed homology 3-sphere Σ(Γ) cannot be
the boundary of a positive definite 4-manifold with no 2-
torsion in the first homology.

Remark 5.4. The above conditions can be written explic-
itly using the data of Γ. Let E be the reducible SO(3)-
V -bundle E = L ⊕ ε over S4/ (Z/a) determined by the
representations (a, r, s, l) (where (r, s) describes the Z/a-
action on the disk B4 , and l describes the action on the
fiber of L) and (a,−r, s;m). Then:

1. The first Pontryagin number p1(E) of E is given by

p1(E) =
4
a

deg (a, r, s, l,m)

and

deg (a, r, s, l,m) ≡ r∗s∗
(

l2 − m2

4

)
mod ā,

where ā = a if a is odd and ā = a/2 if a is even,
l ≡ m mod 2 if a is even, b∗ denotes the inverse of
b mod a if it exists, and if a is odd, then the division
by 4 is to be interpreted as multiplication by 4∗

[Fintushel and Lawson 86, Lawson 88].

2. The virtual dimension Ieq(E) of the moduli space
Meq(E) of self-dual V -connections on the SO(3)-
V -bundle E over S4/ (Z/a) is given by

Ieq(E) = 2p1 (E) − 3 + δ (a, r, s, l) − δ (a, r, s,m)
+ #{p ∈ {l,m}|p 	≡ 0 mod a},

where

δ (a, r, s, p)

=
2
a

a−1∑
k=1

cot
(

πrk

a

)
cot

(
πsk

a

)
sin2

(
πpk

a

)
.

3. The moduli space Meq(E) is nonempty if and
only if r + s ≡ ±l mod a and −r + s ≡ ±m mod a,
[Lawson 88].

Proof: Suppose that the plumbed homology 3-sphere
Σ (Γ) is the boundary of a positive definite 4-manifold
W with no 2-torsion in the first homology. By condi-
tion 1, the bubbling phenomena of instantons can occur
only at the cone points in Z = W ∪Σ(Γ) (−P (Γ)). By Uh-
lenbeck’s removable singularity theorem [Uhlenbeck 82a,
Uhlenbeck 82b], for a sequence of gauge equivalence
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classes {[Ai ]} with no convergent subsequence on E =
L̃ (�m) ⊕ ε, there exist finite points {x1 , . . . , xn} on Z and
a subsequence converging to [A∞] over Z − {x1 , . . . , xn},
and [A∞] extends to a self-dual V -connection on a lower
SO(3)-V -bundle E ′ over Z.

The lower V -bundle E ′ is obtained by regluing the
fibration over the neighborhood of the cone points gen-
erating equivariant instantons on S4 with charge con-
servation. Note that the set of all line V -bundles on
P (Γ) is generated by L̃k ’s, and Z is positive defi-
nite. Hence if the bubbling occurred at a cone point
of P (Γ) on E = L̃ (�m) ⊕ ε, then the limiting bundle
would be of the form E ′ = L̃ (�m′) ⊕ ε of lower Euler
number c1

(
L̃ (�m′)

)
= t �m′AΓ̄ �m′ < t �mAΓ̄ �m = c1

(
L̃ (�m)

)
for some �m′ ∈ Z#V . Note also that the second Stiefel–
Whitney class w2 (E) is nontrivial if and only if �m is
odd, i.e., some m̄k = mk b̄k is odd, where ak = lcm(aki),
b̄k = ak ēk . In fact, w2 (E)

[
Σ̃k

]
≡ 1 mod 2 for the closed

smooth oriented surface Σ̃k with Σ̃2
k = ak b̄k in P (Γ) away

from the singularities corresponding to the vertex k ∈ V

if and only if m̄k is odd. In fact, the first Chern number
evaluated on the surface Σ̃k is

c1 (L(�m)) [Σ̃k ] = c1(L̃mk

k )[Σ̃k ] = mkc1(L̃k )[Σ̃k ]

= lcm (aki)mkc1(L̃k )[Σk ] = akmk
b̄k

ak

= mk b̄k = m̄k ,

and hence

w2 (E) [Σ̃k ] = w2(L(�m) ⊕ ε)[Σ̃k ] ≡ c1(L(�m))[Σ̃k ]
= mk b̄k = m̄k ≡ 1 mod 2.

Note that w2 (E) = w2 (E ′) if and only if

w2 (L (�m))
[
Σ̃k

]
≡ mk b̄k = m′

k b̄k

≡ w2 (L (�m′))
[
Σ̃k

]
mod 2

for any k ∈ V . Hence we have m̄k ≡ m̄′
k mod 2 for any

k ∈ V . By the condition that µ (Γ, �m) is odd, the number
of reductions of the SO(3)-V -bundle, the number of sin-
gularities of the moduli space is odd. Now [Lawson 88,
Theorems 2 and 5] shows that by cutting the mod-
uli space MD

�m (Z) and using dimension-counting argu-
ments, we obtain a compact 1-dimensional manifold with
an odd number of boundary components, which is a
contradiction.

6. COMPUTATIONS

6.1. Behaviors of the Fintushel–Stern invariants and
w-invariants

Let Γ be the graph with Seifert invariants

ω = {{(2,−1) , (3, 1) , (5, 1)}, {(2, 59) , (3, 1) , (5, 1)}},
V = {1, 2}, E = {(1, 2)},
Γ = (V,E, ω) .

The behavior of the Fintushel–Stern invariant and w-
invariant of the plumbed homology 3-sphere Σ (Γ) under
varying instanton numbers or spinc structure is as fol-
lows:

1. Fintushel–Stern invariants R(Γ;m) for the instanton
numbers tmAΓm. Numerical computation shows that

R (Γ, (177,−6)) = 5

with the no-bubbling condition true; see Figure 1. Hence
we see that the plumbed homology 3-sphere Σ (Γ) cannot
be the boundary of any positive definite 4-manifold with
no 2-torsion. The shape of the graph is nearly a lower
convex paraboloid, so that we have more chance of ob-
struction by R (m) for large values of m, but at the same

FIGURE 1. The graph of R(Γ; m) for −213 ≤ m1 ≤ 207,
−7 ≤ m2 ≤ 7 with scaling 20 times in the direction of
m2 .
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FIGURE 2. The graph of w(Γ̄, m) for 13287 ≤ m1 ≤
13713, 443 ≤ m2 ≤ 457 with scaling 20 times in the di-
rection of m2 .

time, it will be hard for a no-bubbling condition to hold,
and the moduli space tends to be noncompact.

2. w-invariants w(Γ,m) for spinc structure m.
Numerical computation shows that

w (Γ, (13320, 444)) = 1;

see Figure 2. Hence we see that the plumbed homol-
ogy 3-sphere Σ (Γ) cannot be the boundary of any
positive-definite 4-manifold. Since the moduli space of
the Seiberg–Witten monopoles on closed 4-V -manifold
is compact for any V -spinc structures, any integers m

are available for obstruction using the w-invariant. How-
ever, the shape of the graph is nearly an upper convex
paraboloid, so that for large values of m the moduli space
tends to be empty.

6.2. Comparison of the Fintushel–Stern invariants and
w-Invariants

6.2.1. Brieskorn Homology 3-Spheres

Table 1 shows the total number of Brieskorn homol-
ogy 3-spheres that are obstructions to the boundary of
positive definite 4-manifolds using the Fintushel–Stern
invariant R (m), w-invariant with varying V -spinc struc-
tures, and w-invariant for V -spin structure. For exam-

Pattern R(m) w(m) w(spin) Total

(1) 1 1 1 16676

(2) 1 1 17373

(3) 1 1 0

(4) 1 0

(5) 1 1 132

(6) 1 65

(7) 1 4627

(8) 5269

Total 34049 34246 21435 44142

TABLE 1. Table of the number of Seifert homology 3-
spheres Σ(a1 , a2 , a3 ), 2 ≤ a1 < a2 < a3 ≤ 100, detected
using the invariants R(m), w(m), w(spin). (1: detected,
blank: not detected).

ple, the row corresponding to pattern (5) in the table
means that the total number of Brieskorn homology 3-
spheres Σ(a1 , a2 , a3), 2 ≤ a1 < a2 < a3 ≤ 100, that are
obstructed by R(m) and w(spin) but are not obstructed
by w(m) is 72. Here w(spin) is the w-invariant w(mspin)
corresponding to the V -spin structure mspin ; see Re-
mark 1.4.

Note that there are no Brieskorn homology 3-
spheres Σ(a1 , a2 , a3), 2 ≤ a1 < a2 < a3 ≤ 100, that are
obstructed by R(m) and w(spin) but are not obstructed
by w(m). Figures 3, 4, and 5 show scatter plots of all of
the Brieskorn homology 3-spheres Σ(a1 , a2 , a3), 2 ≤ a1 <

a2 < a3 ≤ 100, that (i) are obstructed using R(m) and
w(m) and so cannot be the boundary of any positive def-
inite 4-manifold, (ii) are not obstructed by R(m), w(m),
and w(spin) and so it is undetermined whether they
can be the boundary of any positive definite 4-manifold
(without 2-torsion), (iii) are obstructed by w (m) and not
by R (m) and hence cannot be the boundary of any pos-
itive definite 4-manifold.

For the Brieskorn homology 3-sphere Σ (7, 9, 43), the
value of the Fintushel–Stern invariant is

R (Σ (7, 9, 43) , 45) = 1

with the no-bubbling condition false, and in fact,
any integer m with m2/(7 · 9 · 43) < 4 such that
R (Σ (7, 9, 43) ,m) > 0 does not satisfy the no-bubbling
condition (Figure 6). So we can say nothing about
Σ (7, 9, 43) using the Fintushel–Stern invariant.

On the other hand, the value of the w-invariant is

w (Σ (7, 9, 43) , 979) = 1
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FIGURE 3. Σ(a1 , a2 , a3 ), 2 ≤ a1 < a2 < a3 ≤ 100, that
are obstructed by R (m) and w (m) and so cannot be the
boundary of any positive definite 4-manifold (without
2-torsion).

FIGURE 4. Σ(a1 , a2 , a3 ), 2 ≤ a1 < a2 < a3 ≤ 100, that
are not obstructed by R(m), w(m), and w(spin), and
hence we cannot determine whether they can be the
boundary of any positive definite 4-manifold (without
2-torsion).

FIGURE 5. Σ(a1 , a2 , a3 ), 2 ≤ a1 < a2 < a3 ≤ 100, that
are obstructed by w (m) and not by R (m).

(see Figure 7), so we see that Σ (7, 9, 43) cannot be the
boundary of any positive definite 4-manifold. Note that
R may possibly give an obstruction if we take into con-
sideration the bubbling phenomena on usual points; see
Remark 1.7.

For the Brieskorn homology 3-sphere Σ (67, 69, 73), the
value of the Fintushel–Stern invariant is

R (Σ (67, 69, 73) , 561) = 1

FIGURE 6. The graph of R(7, 9, 43; m).
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FIGURE 7. The graph of w(7, 9, 43; m).

with no-bubbling condition false, and in fact, any
integer m with m2/(67 · 69 · 73) < 4 such that
R (Σ (67, 69, 73) ,m) > 0 does not satisfy the no-
bubbling condition (Figure 8). Hence we cannot say that
Σ (67, 69, 73) is the boundary of any positive definite
4-manifold without 2-torsion in the first homology.

On the other hand, the value of the w-invariant is

w (Σ (67, 69, 73) , 161464)
= 0 = max{w (Σ (67, 69, 73) ,m) |m ∈ Z}

(Figure 9), so we cannot say that Σ (67, 69, 73) cannot
be the boundary of any positive definite 4-manifold from
the w-invariant.

FIGURE 8. The graph of R(67, 69, 73; m).

FIGURE 9. The graph of w(67, 69, 73; m).

6.2.2. Plumbed Homology 3-Spheres

For the plumbing graphs Γ,

ω = {{(a11 , b11), (a12 , b12), (a13 , b13)},
{(a21 , b21), (a22 , b22), (a23 , b23)}},

V = {1, 2}, E = {(1, 2)},
Γ = (V,E, ω) ,

with 2 ≤ a11 < a12 < a13 ≤ 7 and 2 ≤ a21 < a22 < a23 ≤
7 and with (a11 , a12 , a13) ≤ (a21 , a22 , a23) in alphabet-
ical order. We see that the Fintushel–Stern invariants
obstruct all 36 of the corresponding plumbed homol-
ogy 3-spheres Σ (Γ) from bounding a positive definite 4-
manifold with no 2-torsion in the first homology. On the
other hand, the w-invariant obstructs them except for
the plumbed homology 3-spheres Σ (Γ) corresponding to
the graph with Seifert invariants as given in Table 2.

For example, let Γ be the graph with Seifert invariants
in the first row

ω = {{(2,−3), (3, 2), (7, 6)}, {(2, 81), (3, 2), (7, 6)}},
V = {1, 2}, E = {(1, 2)},
Γ = (V,E, ω).

The Fintushel–Stern invariant and the w-invariant of the
corresponding plumbed homology 3-sphere Σ (Γ) are cal-
culated as follows:

R (Γ, (251,−6)) = 1

with no-bubbling condition true. So this example means
that this plumbed homology 3-sphere Σ (Γ) cannot be
the boundary of any positive definite 4-manifold with no
2-torsion in the first homology. On the other hand,

w (Γ, (38636, 920)) = 0 = max{w (Γ, �m) |�m ∈ Z2},
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{{(2,−3), (3, 2), (7, 6)}, {(2, 81), (3, 2), (7, 6)}}, {{(2,−3) , (3, 2) , (7, 6)}, {(2, 81) , (5, 4) , (7, 5)}},
{{(2,−3) , (3, 2) , (7, 6)}, {(3, 122) , (4, 3) , (5, 3)}}, {{(2,−3) , (3, 2) , (7, 6)}, {(4, 163) , (5, 2) , (7, 6)}},
{{(2,−3) , (3, 2) , (7, 6)}, {(5, 203) , (6, 5) , (7, 4)}}, {{(2,−3) , (5, 4) , (7, 5)}, {(2, 137) , (5, 4) , (7, 5)}},
{{(2,−3) , (5, 4) , (7, 5)}, {(3, 206) , (4, 3) , (5, 3)}}, {{(2,−3) , (5, 4) , (7, 5)}, {(4, 275) , (5, 2) , (7, 6)}},
{{(2,−3) , (5, 4) , (7, 5)}, {(5, 343) , (6, 5) , (7, 4)}}, {{(3,−4) , (4, 3) , (5, 3)}, {(3, 176) , (4, 3) , (5, 3)}},
{{(3,−4) , (4, 3) , (5, 3)}, {(4, 235) , (5, 2) , (7, 6)}}, {{(3,−4) , (4, 3) , (5, 3)}, {(5, 293) , (6, 5) , (7, 4)}},
{{(4,−5) , (5, 2) , (7, 6)}, {(4, 555) , (5, 2) , (7, 6)}}, {{(4,−5) , (5, 2) , (7, 6)}, {(5, 693) , (6, 5) , (7, 4)}},
{{(5,−7) , (6, 5) , (7, 4)}, {(5, 1043) , (6, 5) , (7, 4)}}

TABLE 2. A list of plumbed homology spheres such that the Fintushel-Stern invariant give obstructions to
bounding positive definite (or negative definite) manifolds, while the w-invariants does not.

so the w-invariant does not give an obstruction for Σ (Γ)
to be the boundary of positive definite 4-manifolds in this
case.
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