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We develop algorithms for computations of Green’s function
and its Fourier coefficients, Fn(z; s), on Fuchsian groups with
one cusp. An analogue of a Rankin–Selberg bound for Fn(z; s)

is presented.

1. INTRODUCTION

The possibility of proving the Riemann hypothesis by
finding a self-adjoint operator on a Hilbert space whose
eigenvalues are precisely the imaginary parts of the non-
trivial zeros of the Riemann zeta function was suggested
independently by Pólya and Hilbert around 1910. Appar-
ently, neither of them had any specific space or operator
in mind; see, for example, [Conrey 03, Odlyzko 09].

In 1977, an experiment conducted by Hartmut Haas
seemed to produce numerical evidence that the Hilbert–
Pólya operator had been discovered. Indeed, the first few
zeros of the Riemann zeta function seemed to appear in
Haas’s attempt to compute eigenvalues of the Laplacian
on PSL(2,Z) \ H, where H is the Poincaré upper half-
plane.

However, the true circumstances were revealed when
Dennis Hejhal investigated the matter more closely
[Hejhal 81]. He found that Haas had forgotten to take
necessary precautions to rule out the possibility of sin-
gularities. The eigenfunctions corresponding to the re-
markable eigenvalues all had logarithmic singularities at
1/2 + i

√
3/2.

These events triggered Hejhal’s interest in cusp forms
with logarithmic singularities, which he named pseudo
cusp forms. Elaborating on Haas’s somewhat accidental
method of computing them, Hejhal was able find many
more eigenvalues of pseudo cusp forms. However, several
open questions still remain to be explored; see [Hejhal 81,
Hejhal 92].
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A pseudo cusp form is a special case of Green’s func-
tion. In the present paper we develop a method for nu-
merical computation of Green’s function (i.e., the resol-
vent kernel of the Laplacian) on Fuchsian groups. Our
method, which builds on Hejhal’s algorithm for cusp
forms, is designed for eigenfunctions with logarithmic
singularities. The primary computational challenges are
that multiple layers of singularities have to be dealt with,
and that the Fourier coefficients increase very rapidly in
magnitude.

Green’s function is important in the spectral theory
on hyperbolic manifolds, e.g., in the theory of the Sel-
berg trace formula; cf. [Hejhal 83, Niebur 73, Fay 77].
Moreover, both Green’s function and its Fourier coef-
ficients, Fn(z; s), are important objects in the study
of the singular theta correspondence; see, for example,
[Borcherds 98, Brunier 02, Barnard 03].

It is well known that the Fourier coefficients them-
selves can be written as Fourier expansions and that in
some sense, Fn(z; s) is a kind of generalized Eisenstein
series. In Section 3 we show how the algorithm for com-
puting Eisenstein series described in [Avelin 07] may be
adapted to the Fourier coefficients of Green’s function.
The algorithm for Gs(z;w) is described in Section 4.

Eigenfunctions of the Laplacian usually involve Bessel
functions. Here it is the modified Bessel function of the
second kind, Kν(x), and the modified Bessel function of
the first kind, Iν(x), that appear, and we compute them
for ν = iR, R ∈ R, with power series expansions and
asymptotic expansions. In Section 5 we give a detailed
description of our techniques for these computations.

After presenting the main ideas of our algorithms, we
discuss some specifics of the computations in Section 6,
and finally, we devote Section 7 to numerical results and
tests of the algorithms for Re s = 1/2. In [Avelin 10], we
use the algorithms for various statistical tests of Gs(z;w)
and Fn(z; s).

We will begin by providing the necessary theoretical
background.

2. PRELIMINARIES

Let Γ be a cofinite Fuchsian group acting on the Poincaré
upper half-plane H = {x+ iy : y > 0} equipped with the
hyperbolic metric ds2 = y−2(dx2+dy2) and area measure
dμ(x+ iy) = y−2dx dy. The functions that we study are
eigenfunctions of the Laplace–Beltrami operator on Γ\H:

Δ = y2

(
∂2

∂x2
+

∂2

∂y2

)
.

Let Kν(x) and Iν(x) denote the K-Bessel and the
I-Bessel functions respectively. These will play an im-
portant role in the present paper, so it will be convenient
to have some estimates at hand. As x→ ∞ we have the
following asymptotic series expansions:

Kν(x) ∼
√
πe−x√
2x

∞∑
m=0

Am(ν)
xm

, (2–1)

Iν(x) ∼ ex√
2πx

∞∑
m=0

(−1)mAm(ν)
xm

, (2–2)

with

A0(ν) = 1,

Am(ν) =
(4ν2 − 1)(4ν2 − 32) · · · (4ν2 − (2m− 1)2)

m! 8m
;

cf. [Abramowitz and Stegun 64, pp. 377–378] or [Olver 74,
pp. 132, 269].

Throughout this paper we assume that Γ has only one
cusp, situated at i∞, and is normalized so that Γ∞ = [S],
where Sz = z+1 for z ∈ H. Let F denote a fundamental
geodesic polygon of Γ such that for y larger than some
B0 > 1, F consists of only the vertical strip {x + iy ∈
H : −1/2 ≤ x ≤ 1/2, y > B0}.

We define the point-pair invariant ks(z;w), for z, w ∈
H, z �= w, s ∈ C, by

ks(z;w) = − Γ(s)2

4πΓ(2s)

(
1 −

∣∣∣∣z − w

z − w̄

∣∣∣∣
2
)s

× F

(
s, s; 2s; 1 −

∣∣∣∣z − w

z − w̄

∣∣∣∣
2
)
,

where F (a, b; c; d) is the hypergeometric function (cf.
[Hejhal 83, pp. 31, 602ff.] or [Abramowitz and Ste-
gun 64, p. 556]). Note that ks(z;w) is a meromor-
phic function of s ∈ C with no poles outside the
set s ∈ {0,−1,−2,−3, . . .}. By [Hejhal 83, Sec-
tion 6.4, especially (4.1), (4.2)] we know that for s ∈
C \ {0,−1,−2,−3, . . .}, ks(z;w) satisfies the differential
equation Δzf + s(1 − s)f = 0 when z �= w, and that
ks(z;w) = 1

2π ln |z − w| +O(1) for z near w.
The automorphic Green’s function is defined by

adding over group elements T ∈ Γ:

Gs(z;w) =
∑
T∈Γ

ks(Tz;w). (2–3)

This sum is convergent whenever z �= w mod Γ and
Re s > 1. One proves that Gs(z;w) = Gs(w; z);
that Gs(z;w) is automorphic in both variables, i.e.,
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Gs(Tz;Uw) = Gs(z;w) when T, U ∈ Γ; and that
Gs(z;w) satisfies Δzf + s(1 − s)f = 0 when z �= w

mod Γ; cf. [Hejhal 83, p. 33, Proposition 6.5].
The function Gs(z;w) has a meromorphic continua-

tion to all of s ∈ C, and for s not a pole the following
Fourier series representation holds for z = x + iy with
y > ImTw for all T ∈ Γ (cf. [Hejhal 83, pp. 39–42, 250]
and Lemma 2.1 (a) below):

Gs(z;w) =
E(w; s)y1−s

1 − 2s
(2–4)

−
∑
n�=0

F−n(w; s)y1/2Ks− 1
2
(2π|n|y)e2πinx.

The Fourier coefficients of (2–4) are given by (for n �=0
and Re s > 1), cf. [Hejhal 83, p. 41 (6.7)],

Fn(z; s) (2–5)

=
∑

W0∈Γ∞\Γ
(ImW0z)1/2Is− 1

2
(2π|n| ImW0z)e2πinReW0z,

and F0(z; s) = E(z; s), i.e., the Eisenstein series. Each
Fn(z; s) has a Fourier series

Fn(z; s) =

{
y1/2Is− 1

2
(2π|n|y)e2πinx, n �= 0,

ys, n = 0,
(2–6)

+ ϕn0 (s)
y1−s

2s− 1

+
∑
m �=0

ϕnm(s)y1/2Ks− 1
2
(2π|m|y)e2πimx,

valid for s ∈ C \ { 1
2}, s not a pole; cf. [Hejhal 83, pp.

56ff., 254ff.].
In the next lemma we gather some symmetry relations

for Gs(z;w), Fn(z; s), and ϕnm(s). Let R be the reflection
Rz = −z.

Lemma 2.1. The following relations hold for s ∈ C and
z, w ∈ H when s is not a pole and w /∈ Γz.

(a) Gs̄(z;w) = Gs(z;w), Fn(z; s̄) = F−n(z; s), n ∈ Z.

(b) Fn(z; s)−Fn(z; 1− s) = ϕ0−n(s)E(z; 1− s)/(2s− 1),
n �= 0.

Assume that ΓR = RΓ. Then

(c) Gs(Rz;Rw) = Gs(z;w).

(d) If Rw = Tw for some T ∈ Γ, then Gs(x + iy;w) is
even in x.

(e) Fn(z; s) = F−n(Rz; s), n ∈ Z.

(f) ϕnm(s) = ϕ−n
−m(s), n,m ∈ Z.

(g) ϕnm(s) = ϕmn (s), n,m ∈ Z.

(h) Assume s = 1/2 + iR. Then for m,n �= 0, m �=
±n, Imϕnm(s) = Imϕn−m(s). For n �= 0, Imϕnn(s) −
Imϕn−n(s) = 1

π sinh(πR).

Proof. (a) The first part is [Hejhal 83, p. 33, Proposi-
tion 6.5 (a), p. 250, Theorem 3.5 (b)], and the second re-
lation follows directly from (2–5) for n �= 0 and Re s > 1,
and via meromorphic continuation to all s ∈ C. For
n = 0 one uses the second part of [Hejhal 83, p. 41 (6.7)]
in place of (2–5).

(b) This is [Niebur 73, p. 142, Theorem 5] (see also
[Hejhal 83, p. 255, Theorem 4.3 (v)]).

(c) We use ΓR = RΓ and the fact that ks(z;w) de-
pends only on the hyperbolic distance between z and w

(so ks(Rz;Rw) = ks(z;w)) and obtain, for Re s > 1,

Gs(Rz;Rw) =
∑
T∈Γ

ks(TRz;Rw) =
∑
T∈Γ

ks(RTz;Rw)

=
∑
T∈Γ

ks(Tz;w) = Gs(z;w).

Finally, apply meromorphic continuation.
(d) This follows from (c) and the automorphy of

Gs(z;w).
(e) This follows from (c) and (2–4).
(f) This follows from (e) and (2–6).
(g) Applied to (2–6), (a) implies ϕ−n

−m(s) = ϕnm(s̄).
The desired result now follows from (f) and [Hejhal 83,
p. 258, Theorem 5.3 (iv), Proposition 5.5 (ii)].

(h) From above, ϕnm(s) = ϕnm(s̄), which together with
[Hejhal 83, p. 258, Theorem 5.3 (iii)] gives, for s = 1/2+
iR,

ϕnm(s) − ϕnm(s) (2–7)

=
2
π
δmn sin(πiR) +

1
2s− 1

ϕ0
n(1 − s)ϕ0

m(1 − s).

When m �= ±n, the right-hand side remains unchanged
if m is replaced by −m. Thus the same holds for the left-
hand side, which is just 2i Imϕnm(s), and the first part of
the claim follows.

Now we use m = n and m = −n in (2–7) and subtract,
which yields the second part of the claim.

We now present an analogue of a Rankin–Selberg
bound for Fn(z; s); cf., for example, [Iwaniec 02, The-
orem 3.2], [Iwaniec 97, Theorem 5.1]. It will be useful for
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computational purposes to know that the Fourier coeffi-
cients of Fn(z; s) do not grow too rapidly. Define

cΓ = min
{|c| :

(
a b
c d

) ∈ Γ \ Γ∞
}
. (2–8)

By Shimizu’s lemma [Shimizu 63, p. 42], we know that
cΓ ≥ 1.

Theorem 2.2. Let Γ be a cofinite Fuchsian group with one
normalized cusp at i∞. Let s ∈ C \ { 1

2}, s not a pole of
Fn(z; s), and suppose n �= 0. Then we have

∑
1≤|m|≤N

|ϕnm(s)|2 = O
(
Ne8πc

−1
Γ

√
|n|N

)

as N → ∞. The implied constant depends on Γ, n, and s.

Proof. The method of proof is as in [Marklof and Ström-
bergsson 03, Lemma 2.7]. Let B0 > 1 and let F be as in
the third paragraph of this section and keep 0 < Y < H .
We study the following integral over D = (−1/2, 1/2)×
(Y,H):

J =
∫
D
|Fn(z; s)|2 dμ(z).

As in [Marklof and Strömbergsson 03], we tessellate D
as D = ∪T∈Γ(D ∩ T (F)) and find that D is covered by
translates of FB = F \ [−1/2, 1/2] × [B,∞) with B =
max(B0, H, (c2ΓY )−1). (Any image Tz with T ∈ Γ \ Γ∞,
z ∈ D will necessarily have ImTz < (c2ΓY )−1; cf. (2–8).)
We obtain

J = O(1 + Y −1)
∫
FB

|Fn(z; s)|2 dμ(z).

We decompose FB as the union of FB0 and
[−1/2, 1/2] × [B0, B] and note that the above integral
taken over FB0 is just a constant. The Bessel asymp-
totics (2–1) and (2–2) together with (2–6) (cf. [Hejhal 83,
pp. 56, 255]) leads to, for y > B0 and s fixed,

Fn(z; s) = O(e2π|n|y). (2–9)

To find the analogue of [Marklof and Strömbergsson 03,
2.27] we estimate

∫ B

B0

e4π|n|y
dy

y2
≤ (B −B0)e4π|n|B

1
B2

≤ e4π|n|B

B

(since the integrand is an increasing function for y > 1).
Thus

J = O(1 + Y −1)
e4π|n|B

B
. (2–10)

On the other hand, we may use Parseval’s formula
exactly as in the proof of [Strömbergsson 04, Proposition
4.1] with Fn(z; s) in place of E(z; s) to get

J ≥
∑

m/∈{0,n}
|ϕnm(s)|2

∫ 2π|m|H

2π|m|Y

∣∣∣Ks− 1
2
(y)
∣∣∣2 dy

y
.

We now use K-Bessel asymptotics to estimate the inte-
gral above. It follows from (2–1) that for large y and s

fixed, there is a constant c > 0 such that |Ks−1/2(y)| >
cy−1/2e−y. Thus for |m|Y large enough,

∫ 2π|m|H

2π|m|Y

∣∣∣Ks− 1
2
(y)
∣∣∣2 dy

y
> c ·

∫ 2π|m|H

2π|m|Y
e−2y dy

y2

≥ c
2π|m|(H − Y )e−4π|m|H

(2π|m|H)2
.

Choosing Y = c−1
Γ

√|n|/N and H = c−1
Γ

√|n|/N + 1/N ,
we get

∫ 2π|m|H

2π|m|Y

∣∣∣Ks− 1
2
(y)
∣∣∣2 dy

y
> c

e
−4π|m|

(
c−1
Γ

√
|n|
N + 1

N

)

2πN |m|
(
c−1
Γ

√
|n|
N + 1

N

)2 .

Consequently, there is a constant c′ > 0 (independent of
N) such that for N/2 ≤ |m| ≤ N and N large enough we
have∫ 2π|m|H

2π|m|Y
|Ks− 1

2
(y)|2 dy

y
> c′N−1e−4πc−1

Γ

√
|n|N .

Hence ∑
N/2≤|m|≤N

|ϕnm(s)|2 ≤ J ·O
(
Ne4πc

−1
Γ

√
|n|N

)
.

Combining this with (2–10) and noticing that B =
(c2ΓY )−1 = c−1

Γ

√
N/|n| for N large enough, we get

∑
N/2≤|m|≤N

|ϕnm(s)|2 = O
(
Ne8πc

−1
Γ

√
|n|N

)
.

The theorem now follows by standard dyadic decompo-
sition (using the trivial bound |ϕnm(s)|2 = O(1) for each
m that is not large enough).

As a consequence (for each fixed n �= 0), we have

ϕnm(s) = O
(√

|m|e4πc−1
Γ

√
|nm|

)
as |m| → ∞. (2–11)

Compare [Hejhal 83, pp. 61–62] in the case Re(s) > 1.
The next theorem shows that the exponent in Theo-

rem 2.2 is the best possible.
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Theorem 2.3. Let Γ be a cofinite Fuchsian group with
one normalized cusp at i∞. Fix any n �= 0 and s ∈
C \ { 1

2} not a pole of Fn(z; s). Then for any constants
0 < δ < 4πc−1

Γ

√|n| and C > 0 there exist infinitely many
numbers m ∈ Z such that

|ϕnm(s)| > Ceδ
√

|m|.

Proof. Suppose that the claim is false, i.e., suppose that
for some fixed n �= 0 and some fixed s as in the statement
of the theorem, there exist some fixed constants 0 < δ <

4πc−1
Γ

√|n| and C > 0 such that

|ϕnm(s)| ≤ Ceδ
√

|m| (2–12)

holds for all but finitely many numbers m ∈ Z. By
increasing C we will assume that (2–12) holds for all
m ∈ Z, and we will show that this leads to a contradic-
tion. We will assume n > 0 (this means simply that we
omit absolute value signs for n throughout this proof).

Keep y ∈ (0, 1/10). Recall (2–8), take
(
a b
c d

) ∈ Γ with
c = cΓ, and note that

(
a b
c d

)
(i∞) = a/c. Using automor-

phy and the same reasoning that led to (2–9), we get for
some constant k �= 0 (as y → 0),

Fn

(a
c

+ iy; s
)

= Fn

((
a b
c d

)−1 (a
c

+ iy
)

; s

)
(2–13)

= Fn

(
− d

cΓ
+

i

c2Γy
; s
)

∼ ke2πn/(c
2
Γy).

On the other hand we have from (2–6) and (5–1) in Sec-
tion 5.1 that

Fn

(a
c

+ iy; s
)

= O(yRe s) +O(y1−Re s)

+O
( ∑
m �=0

∣∣∣ϕnm(s)y1/2Ks− 1
2
(2π|m|y)

∣∣∣ ).
Hence, using (2–12) and the bound |Ks−1/2(Y )| < B ·
max(Y −A, Y −1/2)e−Y for some constants B > 0 and A ≥
1/2, uniformly over all Y > 0 (cf. (2–1), (5–1), (5–5)),
we obtain

Fn

(a
c

+ iy; s
)

= O(yRe s) + O(y1−Re s)

+O
(
y1/2−A ∑

m �=0

eδ
√

|m|−2π|m|y
)
.

We now study the exponent in the sum above as a
function of m; i.e., let f(m) = δ

√|m| − 2π|m|y. By
differentiating we find that f(m)≤ δ2/(8πy) for allm∈ Z.

And furthermore, f(m) < −y|m| when |m| > (δ/y)2. We
obtain

Fn

(a
c

+ iy; s
)

= O(yRe s) +O(y1−Re s)

+O

⎛
⎝y1/2−A

(
δ

y

)2

eδ
2/(8πy)

+y1/2−A ∑
m>(δ/y)2

e−ym

⎞
⎠

= O
(
y−3/2−Aeδ

2/(8πy)
)

as y → 0.

Since our assumption 0 < δ < 4πc−1
Γ

√
n implies that

δ2/(8π) < 2πc−2
Γ n, this contradicts (2–13).

3. COMPUTATIONS OF Fn(z; s)

We will base our computations of Fn(z; s) and Gs(z;w)
on the algorithm developed by Hejhal for computations of
cusp forms; cf. [Hejhal 99]. It was adapted for the Eisen-
stein series in [Avelin 07], and considering (2–6) (and the
fact that F0(z; s) = E(z; s)), it should also be possible
to adjust it to Fn(z; s) without much effort. Regarding
the algorithm itself, this is true. However, while pre-
vious computations of cusp forms and Eisenstein series
have already prodded the development of a stable routine
for the K-Bessel function, cf. [Hejhal 92, Avelin 07], the
I-Bessel function introduces a new computational diffi-
culty for Fn(z; s). Computations of Bessel functions will
be discussed further in Section 5.

To present the main ideas of the algorithm (which will
be useful to have in mind when Gs(z;w) is treated in Sec-
tion 4) we will repeat parts of [Avelin 07, Section 4.1]
for the more general functions Fn(z; s), n ∈ Z (with
χ = 1).

In principle, a bound like Theorem 2.2 enables us to
truncate the Fourier series at some m = M(y) (a mono-
tonically decreasing function) with an error RM(y) whose
absolute value is less than some prescribed small number:

Fn(z; s) = αn(z)+
M(y)∑

m=−M(y)

cm(y)e2πimx+RM(y). (3–1)

Here we use

αn(z) =

{
An(y)e2πinx = y1/2Is− 1

2
(2π|n|y)e2πinx, n �= 0,

A0(y) = ys, n = 0,

cm(y) = ϕnm(s)km(y), k0(y) =
y1−s

2s− 1
,

km(y) = y1/2Ks− 1
2
(2π|m|y), for m �= 0.
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Let Ymin = min{Im(z) : z ∈ F} (cf. Section 2), set
M0 = M(Ymin), and choose any Y < Ymin. We then take
Q ≥M(Y ) + 1 and 2Q equally spaced points

zj = xj + iY, where xj =
j − 1/2

2Q
, j = 1 −Q, . . . , Q.

(3–2)
These points are used in a finite Fourier transform to
solve for ϕnm(s) for −M0 ≤ m ≤M0 (from this point the
error term is neglected):

1
2Q

Q∑
j=1−Q

Fn(zj ; s)e−2πimxj = δmnAn(Y ) + cm(Y ).

(3–3)
To dissolve the above tautology we use automorphy:

Fn(zj ; s) = Fn(z∗j ; s), where z∗j denotes the image of zj
in F . This leads to

δmnAn(Y ) + cm(Y ) =
1

2Q

Q∑
j=1−Q

Fn(z∗j ; s)e
−2πimxj

=
1

2Q

Q∑
j=1−Q

(
An(y∗j )e

2πinx∗
j

+
M0∑

k=−M0

ck(y∗j )e
2πikx∗

j

)
e−2πimxj

=
1

2Q

Q∑
j=1−Q

An(y∗j )e
2πinx∗

j e−2πimxj

+
1

2Q

M0∑
�=−M0

ϕn� (s)
Q∑

j=1−Q
k�(y∗j )e

2πi�x∗
j e−2πimxj .

The final system of equations is, for m = −M0, . . . ,M0,

M0∑
�=−M0

ϕn� (s)Ṽm� = −Ãmn,

where

Ãmn =
1

2Q

Q∑
j=1−Q

An(y∗j )e
2πinx∗

j e−2πimxj − δmnAn(Y ),

Ṽm� =
1

2Q

Q∑
j=1−Q

k�(y∗j )e
2πi�x∗

j e−2πimxj − δm�km(Y ).

Each permitted choice of Y andM0 should yield the same
result.

Just as in [Hejhal 99, Avelin 07], it is convenient to
use a rescaled version of Ks−1/2(x), and likewise with
Is−1/2(x). More precisely, motivated by (2–4) above, we

actually work with

e−Rπ/2Fn(z; s) (3–4)

= y1/2Îs− 1
2
(2π|n|y)e2πinx + e−Rπ/2ϕn0 (s)

y1−s

2s− 1

+
∑
m �=0

e−Rπϕnm(s)y1/2K̂s− 1
2
(2π|m|y)e2πimx,

where R = Im s and

Îs− 1
2
(x) = e−Rπ/2Is− 1

2
(x), K̂s− 1

2
(x) = eRπ/2Ks− 1

2
(x).

(3–5)
We assume herein that Im s ≥ 0.

4. COMPUTATIONS OF Gs(z; w)

Because Gs(z;w) is automorphic and Γ is normalized to
have Γ∞ = [S], we can choose w = u+ iv such that

v = max{ImTw : T ∈ Γ} (4–1)

and −1/2 < u ≤ 1/2. We will assume that this has
been done and regard w as fixed. Write Gs(z;w) with
z = x+ iy as

Gs(z;w) (4–2)

=
E(w; s)y1−s

1 − 2s
+
∑
m �=0

fmy
1/2K̂s− 1

2
(2π|m|y)e2πimx

with
fm = −e−Rπ/2F−m(w; s). (4–3)

This Fourier development is convergent whenever y > v,
and it diverges otherwise (cf. [Hejhal 83, Section 6.6]).
This is certainly a problem if one would like to use the
algorithm described in Section 3. Actually, this algo-
rithm relies on the fact that the same Fourier expansion
is valid below the fundamental region as well as inside the
fundamental region. Therefore, some additional work is
necessary before the algorithm is applicable.

Let Γw be the stabilizer of w. Near z = w we have

Gs(z;w) =
μ

2π
ln |z − w| +O(1),

where μ = #Γw; cf. [Hejhal 83, p. 34]. The idea is to
subtract off from Gs(z;w) the bad behavior at z = w

to get a function that has a Fourier expansion valid in a
larger region. In view of (2–3) one would like to take, for
Re s > 1,

G̃s(z;w) = Gs(z;w) − μ
∑
n∈Z

ks(z;w + n). (4–4)
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What we have done here is essentially to have subtracted
off the entire row of singularities w + n, n ∈ Z. Then
G̃s(z;w) is not automorphic, but it is an eigenfunction of
Δ with the same eigenvalue as Gs(z;w) and it is bounded
near z = w + n. It will have a Fourier expansion valid
for y > v1, where v1 = sup{Im(Tw) : T ∈ Γ \ Γ∞}.
This will be sufficient as long as we can find a suitable
Y > v1. Otherwise, additional levels of singularities must
be subtracted off.

We will now explain this procedure in detail. Let
Dw = {w + n : n ∈ Z} and define

Ps(z;w) =
∑
n∈Z

ks(z;w + n), (4–5)

for z /∈ Dw. From [Hejhal 83, p. 31, Proposition 6.2] we
know this sum to be nicely convergent for Re s>1. But it
is actually clear from the proof of [Hejhal 83, Proposition
6.2] that it is convergent for Re s > 1/2 if we use instead
of [Hejhal 83, Proposition 5.1] the fact that our sum is
only over T ∈ Γ∞.

Fourier coefficients for
∑
n∈Z

ks(z;w+n) are found in
[Hejhal 83, p. 35]. We have, for Re s > 1/2,

Ps(z;w) (4–6)

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

vsy1−s

1−2s −∑m �=0 e
−2πimuv1/2Îs− 1

2
(2π|m|v)

×y1/2K̂s− 1
2
(2π|m|y)e2πimx for y > v,

ysv1−s

1−2s −∑m �=0 e
−2πimuy1/2Îs− 1

2
(2π|m|y)

×v1/2K̂s− 1
2
(2π|m|v)e2πimx for y < v.

(Note that the two versions are symmetric with respect
to y and v.)

We will now make some remarks about the conver-
gence of the sums in (4–6). Fix ε > 0 and keep
|z − (w + n)| > ε for all n ∈ Z, and Im z > ε. Assuming
|m| large enough, (2–1) and (2–2) give (recall (3–5))

v1/2y1/2Îs− 1
2
(2π|m|v)K̂s− 1

2
(2π|m|y)

=
1

4π|m|e
−2π|m|(y−v)

(
1 +O

(
1
|m|

))
,

and so the first sum in (4–6) is

C ·
∑
m �=0

1
|m|e

−2π|m|(y−v)
(

1 +O

(
1
|m|

))
e2πim(x−u),

for some constant C. This is absolutely convergent when
y > v, conditionally convergent when y = v, and the con-
vergence is uniform over our set of z-values. Moreover,
when y is near v, the sum above is essentially bounded

(up to a constant) by

1 +
∫ ∞

1

x−1e−2πx(y−v) dx (4–7)

= 1 +
∫ ∞

2π(y−v)
t−1e−t dt =

∫ A

2π(y−v)
t−1e−t dt+ C1

<

∫ A

2π(y−v)
t−1 dt+ C1 = − ln (2π(y − v)) + C2,

where C1, C2, A are some positive numbers. By sym-
metry, we conclude that both series (4–6) are uniformly
convergent when |z−(w+n)| > ε for all n ∈ Z and y > ε,
and that they have a logarithmic bound when y is near v.

After these considerations it seems likely that the key
to realizing (4–4) for general s ∈ C is the Fourier expan-
sions (4–6). In the following lemma we redefine Ps(z;w)
and show that it has the right properties.

Lemma 4.1. Let w ∈ H be fixed, z ∈ H, and s ∈ C \
{ 1

2 , 0,−1,−2,−3, . . .}. Take (4–6) as the definition of
Ps(z;w). Then Ps(z;w), regarded as a function of z, is
C∞ whenever z /∈ Dw; it satisfies Δzf + s(1 − s)f = 0;
and

Ps(z;w) =
1
2π

ln |z − w| +O(1)

near z = w.

Proof. A hyperbolic open disk with radius ε and center
z will be denoted by Nε(z).

First fix z0 /∈ Dw and choose ε > 0 such that N2ε(z0)∩
Dw = ∅. We will show that Ps(z;w) is C∞ and satisfies
Δzf + s(1 − s)f = 0 for z ∈ Nε(z0).

Let Φ
(

|ζ−z|2
Im ζ Im z

)
be a smooth bump function that is

nonzero only when ζ ∈ Nε(z) (note that Φ is a function
of the hyperbolic distance between z and ζ).

For a moment take Re s > 1/2 (then Ps(z;w) satisfies
(4–5) and Δzf + s(1− s)f = 0) and use [Hejhal 76, p. 8,
Proposition 3.1] to find that∫

H
Φ
(

|ζ−z|2
Im ζ Im z

)
Ps(ζ;w) dμ(ζ) = Λ(s(1 − s))Ps(z;w)

(4–8)

holds for all z ∈ Nε(z0) with Λ depending only on s

and Φ. For any given compact set K ⊂ C we may choose
Φ in such a way that Λ(s(1−s)) is nonzero for all s ∈ K;
cf., for example, [Iwaniec 02, pp. 99ff.]. From (4–6), each
side of (4–8) is analytic in s for all s ∈ C \ { 1

2}, and so
by analytic continuation, the equality holds for all s ∈
C \ { 1

2}.
The left-hand side of (4–8) is clearly C∞ for all z ∈

Nε(z0). We have ΔzΦ
(

|ζ−z|2
Im ζ Im z

)
= Φ1

(
|ζ−z|2

Im ζ Im z

)
, where
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Φ1 is another smooth function that is nonzero only when
ζ ∈ Nε(z), for which a relation analogous to (4–8) is true
with a function Λ1 in place of Λ; cf. [Selberg 56, p. 52].
Moreover, it follows from

ΔζΦ
(

|ζ−z|2
Im ζ Im z

)
= ΔzΦ

(
|ζ−z|2

Im ζ Im z

)
,

cf. [Selberg 56, p. 52], that

Λ1(s(1 − s)) = −s(1 − s)Λ(s(1 − s)).

Now the desired properties of Ps(z;w) for z ∈ Nε(z0)
follow: we obtain that Ps(z;w) is C∞ in z for all z ∈
Nε(z0), and

ΔzPs(z;w) = −s(1 − s)Ps(z;w).

It remains to prove the logarithmic bound. Take ε

such that N2ε(w) ∩ Dw = {w}. We will show that
Ps(z;w) − ks(z;w) is bounded when z is near w. Take
z ∈ Nε(w) \ {w}. Again let Φ

(
|ζ−z|2

Im ζ Im z

)
be a smooth

bump function that is nonzero only in Nε(z), and find
exactly as above that for Re s > 1/2,∫

H
Φ
(

|ζ−z|2
Im ζ Im z

)
(Ps(ζ;w) − ks(ζ;w)) dμ(ζ) (4–9)

= Λ(s(1 − s)) (Ps(z;w) − ks(z;w))

holds for all z ∈ Nε(w) \ {w}.
Recall from (4–7) that |Ps(ζ;w)| ≤ O(− ln | Im ζ − v|)

for Im ζ near v, and one checks that this holds uniformly
for s in compact subsets of C \ {1/2}. The same bound
holds for ks(ζ;w), for s ∈ C \ {0,−1,−2,−3, . . .}; cf.
Section 2.

Therefore the integral on the left-hand side of (4–9) is
analytic in s for s ∈ C\{ 1

2 , 0,−1,−2,−3, . . .}. The right-
hand side is analytic for the same set of s-values. Thus
we may once more use analytic continuation and conclude
that (4–9) holds for s ∈ C \ { 1

2 , 0,−1,−2,−3, . . .}. The
left-hand side of (4–9) is bounded if z approaches w, and
it follows that so is the right-hand side.

We will now show a more general version of (4–4). Let
v0 = Imw, and define, for k = 0, 1, 2, . . .,

vk+1 = max{ImTw : T ∈ Γ, ImTw < vk},
Hvk

=
{
Tw : T ∈ Γ, ImTw = vk, − 1

2 < ReTw ≤ 1
2

}
.

Note that v0 = v and recall (4–1). Define, for s ∈ C \
{ 1

2 , 0,−1,−2,−3, . . .}, r ∈ Z
+,

Grs(z;w) = Gs(z;w) − μ
r∑

k=0

∑
w′∈Hvk

Ps(z;w′). (4–10)

Note that by (4–6) we have for y > v0 (with w′ = u′ +
ivk),

Grs(z;w) =

(
E(w; s) − μ

∑r
k=0

∑
w′∈Hvk

vsk

)
y1−s

1 − 2s

+
∑
m �=0

⎛
⎝fm + μ

r∑
k=0

∑
w′∈Hvk

e−2πimu′
v
1/2
k Îs− 1

2
(2π|m|vk)

⎞
⎠

× y1/2K̂s− 1
2
(2π|m|y)e2πimx. (4–11)

However, by its definition, (4–10), and using Lemma 4.1,
Grs(z;w) is in fact a C∞ function of z, and it satisfies
Δzf +s(1−s)f = 0 in the entire region y > vr+1. Hence
by [Hejhal 83, p. 23, Proposition 4.10], the above Fourier
expansion (4–11) is valid for all y > vr+1.

We introduce some simplifying notation and write
(4–11) as

Grs(z;w) = Ψr(y) +
∑
m �=0

f rmy
1/2K̂s− 1

2
(2π|m|y)e2πimx.

Our preparations are now finished. We will proceed
with the algorithm presented in Section 3 applied to
the function Grs(z;w). We begin by truncating. Using
[Hejhal 83, p. 23, Proposition 4.10] (with A = vr+1), we
have for a fixed, small ε > 0,

f rm = O

(
e2π|m|(vr+1+ε)√|m|

)
. (4–12)

This bound leads us to expect to find a reasonable M(y)
for all y sufficiently separated from vr+1 such that

Grs(z;w) = Ψr(y) +
M(y)∑

m=−M(y)
m �=0

cm(y)e2πimx + SM(y),

(4–13)
with cm(y) = f rmy

1/2K̂s−1/2(2π|m|y) and sufficiently
small error term SM(y). For 1 ≤ |n| ≤ M0 (with
zj = xj + iY as in (3–2)), the analogue of (3–3) is

1
2Q

Q∑
j=1−Q

⎛
⎜⎜⎝Ψr(Y ) +

M(Y )∑
m=−M(Y )

m �=0

cm(Y )e2πmxj

⎞
⎟⎟⎠ e−2πnxj

= cn(Y ). (4–14)

The next step is to use automorphy. Recall that
Grs(z;w) is unfortunately not automorphic. However,
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Gs(z;w) is automorphic in z, which is equivalent to

Grs(zj ;w) + μ
r∑

k=0

∑
w′∈Hvk

Ps(zj ;w′)

= Grs(z
∗
j ;w) + μ

r∑
k=0

∑
w′∈Hvk

Ps(z∗j ;w
′).

Substituting this in (4–14), we obtain

1
2Q

Q∑
j=1−Q

⎛
⎝Ψr(y∗j )

+μ
r∑

k=0

∑
w′∈Hvk

(
Ps(z∗j ;w

′) − Ps(zj ;w′)
)⎞⎠ e−2πnxj

+
1

2Q

M0∑
m=−M0
m �=0

Q∑
j=1−Q

cm(y∗j )e
2πmx∗

j e−2πnxj = cn(Y ).

We choose the appropriate Fourier representation for
each Ps(· ;w′); cf. (4–6). Introducing the notation Arn
for the first line in the equation above, we get

Arn +
M0∑

m=−M0
m �=0

f rm
1

2Q

Q∑
j=1−Q

y∗j
1/2K̂s− 1

2
(2π|m|y∗j )

× e2πmx
∗
j e−2πnxj = cn(Y ).

We may thus compute Fourier coefficients of Gs(z;w)
through the following linear system of equations for 1 ≤
|n| ≤M0:

Arn +
M0∑

m=−M0
m �=0

f rmṼnm = 0

with

Ṽnm =
1

2Q

Q∑
j=1−Q

y∗j
1/2K̂s− 1

2
(2π|m|y∗j )e2πmx

∗
j e−2πnxj

− δnmY
1/2K̂s− 1

2
(2π|m|Y ).

The value of the Eisenstein series E(w; s) (incorpo-
rated in Arn) may be computed on general one-cusp
groups with the algorithm in [Avelin 07].

5. COMPUTATIONS OF BESSEL FUNCTIONS OF
IMAGINARY ORDER

Our algorithms for computing Gs(z;w) and Fn(z;w) rely
on the ability to compute the K- and I-Bessel functions
accurately. The implementation of our algorithms was

done with the programming language and program li-
brary PARI/GP, and we used the built-in K-Bessel rou-
tine.1

Computations of Bessel functions of complex order are
more technical than computations of Bessel functions of
purely imaginary order; see, for example, [Avelin 07, Sec-
tion 4.3] and Section 5.1. For our present purposes it
is sufficient to consider s-values with Re s = 1/2 and
Bessel functions with purely imaginary order. We com-
pute IiR(x) for small x > 0 with a power series expansion
combined with KiR(x)-values. For large x, both IiR(x)
and KiR(x) are computed using asymptotic expansions.
Here we will explain our computations in greater detail.
(See [Gil et al. 02, Gil et al. 03, Gil et al. 04a] for more dis-
cussion on methods for computing IiR(x) and KiR(x).)

5.1 Method 1: Power Series

The function Iν(x) has a power series expansion around
the point x = 0:

Iν(x) = xν
∞∑
n=0

(x2/4)n

2νn!Γ(ν + n+ 1)
, (5–1)

where Γ(a) denotes the Γ-function. To simplify compu-
tations, (5–1) is rewritten for ν = iR (note that it follows
from Stirling’s formula, cf. [Abramowitz and Stegun 64,
p. 257], that e−Rπ/2

Γ(1+iR) ∼ (2πR)−1/2 as R → ∞) as

ÎiR(x) =
(x

2

)iR e−Rπ/2

Γ(1 + iR)

∞∑
n=0

β(n) (5–2)

with

β(0) = 1, β(n) =
(x/2)2

n(n+ iR)
β(n− 1). (5–3)

Recall (3–5) for ÎiR(x). We recursively generate β(n)
until |β(n)| < ε (for some appropriate ε; cf. Section 5.3).

Unfortunately, the power series (5–2) suffers catas-
trophic cancellation in the imaginary part, so it may be
used only for computing Re IiR(x); Im IiR(x) will simply
not have enough accuracy (unless we use extremely high
precision). The fact that Im IiR(x) is in general much
smaller than Re IiR(x) can be seen from (5–1) and from
(5–4) below.

However, we may compute Im IiR(x) via KiR(x) (for
R ∈ R) using

Im IiR(x) = − 1
π

sinh(πR)KiR(x), (5–4)

1Samples of our code may be downloaded from http://www
.math.uu.se/research/archive/avelin/.
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which follows from the relation (using ν = iR and
Iν(x) = Iν(x))

Kν(x) =
π(I−ν(x) − Iν(x))

2 sin(πν)
; (5–5)

cf. [Abramowitz and Stegun 64, p. 375]. Assuming that
we are able to compute KiR(x) accurately, the imaginary
part of IiR(x) is no longer a problem.

5.2 Method 2: Asymptotic Expansion

The expansions (2–1) and (2–2) are sometimes suitable
for numerical computations when x is large. In (2–2) we
write (and similarly with (2–1))

∞∑
n=0

(−1)nAn(ν)
xn

=
∞∑
n=0

α(n)

with

α(0) = 1, α(n) = −ν
2 − (n− 1/2)2

2nx
α(n− 1). (5–6)

Since (2–2) is an asymptotic expansion, we know that
for each fixed N the error E(x,N) is

E(x,N) =

∣∣∣∣∣Iν(x) − ex√
2πx

N∑
n=0

(−1)nAn(ν)
xn

∣∣∣∣∣
= O

(
x−N−3/2

)
, as x→ ∞,

and similarly for Kν(x). But for fixed x, E(x,N) does
not approach zero as N → ∞. In fact, it diverges. The
same is true for Kν(x). Still, (2–1) and (2–2) provide
useful approximations as long as x is large enough and
we use optimal truncation; cf. Section 5.3.

5.3 Computational Details

Here we will discuss in what ranges methods 1 and 2 may
be used for ν = iR and where to truncate the infinite
sums in these methods for R ≤ 200. To some extent,
it will depend on what precision we are working with.
(With PARI/GP we are able to choose the precision. It
is also possible to temporarily raise the precision for a
part of the computation.) Denote by P the working pre-
cision and let ε denote a positive number that is small in
relation to P . We use ε = 10−P .

First note that (2–2) is a real approximation of IiR(x),
so method 2 should not be used unless Im IiR(x) is
sufficiently small. We will not use method 2 unless
x > P log 10 + Rπ

2 (then it turns out that | Im ÎiR(x)|
does not exceed ε by much; cf. (5–4) and (2–1)).

We now study the recurrence relations (5–3) and
(5–6), and we write them as β(n) = d(n)β(n − 1),
α(n) = c(n)α(n− 1). The function

c(n) =
R2 + (n− 1/2)2

2nx
,

for n ≥ 1, is positive, and c(n) < 1 holds if and only if

1
2

+ x−
√
x2 −R2 + x < n <

1
2

+ x+
√
x2 −R2 + x.

Hence the function |α(n)| (for n ∈ Z
+) reaches a min-

imum as n passes the point 1
2 + x +

√
x2 −R2 + x; for

larger n the function |α(n)| is increasing, and tends to ∞
as n→ ∞.

The typical behavior of a divergent asymptotic series
is that the error decreases with the number of terms,
N , until a certain optimal Nopt is reached, and then the
error increases as more terms are added. This optimal
truncation is usually just before the absolute value of the
terms reaches a minimum, and this seems to be true also
with our series; see, for example, [Boyd 05, p. 557] and
[Bender and Orszag 99, pp. 94, 122].

Therefore we truncate at the nearest integer N less
than 1

2 + x +
√
x2 −R2 + x, or when |α(n)| < ε if that

happens for n < N . The crucial point here is that there
is an upper limit to the accuracy of our approximations
of KiR(x) and IiR(x) depending on x and R.

We need to make certain that the error caused by this
upper limit does not exceed ε by too much. Test runs
seem to suggest that this can be ensured by imposing
the extra condition x > 6R + 24, at least for moderate
P . Hence, we take as our switching condition

X = max
{

6R+ 24, P log 10 +
Rπ

2

}
,

method 1 if x ≤ X,

method 2 if x > X.

The routines have been tested using spot checks
against Maple computations (which are slow but known
to be accurate) to rule out any intrinsic errors, and then,
more extensively, we performed internal PARI/GP tests
against higher precision. These suggest that IiR(x) for
x > X , R ≤ 200, is computed with at least P − 5 correct
significant digits; KiR(x) is computed with at least P −6
correct significant digits for x > X , R ≤ 100, and with at
least P−13 correct significant digits for x > X , R ≤ 200.
(These numbers are based on tests with 150,000 x-values
for each one of five different R-values, and this was re-
peated in precisions P = 19, 38, 57.) Better accuracy for
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IiR(x) than for KiR(x) was to be expected; cf. [Gil et
al. 02, Gil et al. 04b].

We now turn to method 1, the power series approx-
imation. We find that |d(n)| = x2/(4n|n + iR|) is de-
creasing as n increases and |d(1)| ≈ x2/(4R). If |d(1)| is
greater than 1, then |β(n)| will reach a maximum value
(when |d(n)| is near 1) before decreasing to 0. If the
maximum value of |β(n)| is large compared to the fi-
nal result, then some significant digits will be lost. A
quick fix is to raise the precision compared to the work-
ing precision in computing the power series approxima-
tion. The larger the value of R, the higher the precision
that is needed. This is because maxx≤X x2

4R grows with
R, and because a large |d(1)| will cause max |β(n)| to be
large.

In our implementation, we choose to truncate the se-
ries at the point where |β(n)| has passed a possible max-
imum value and |β(n)| < ε.

The same tests as with the asymptotic expansions sug-
gest that for x ≤ X , we obtain Re IiR(x) to at least P −6
correct significant digits when R ≤ 50, at least P−11 cor-
rect significant digits when R ≤ 100, and at least P − 23
correct significant digits when R ≤ 200.

With Im IiR(x), we depend on the accuracy of the
PARI-routine besselk. The same tests show that this
is a weak link in our overall accuracy. In fact, we will
always call besselk with precision P +19, which ensures
that IiR(x) will never lose accuracy due to besselk when
R ≤ 200.

Finally we tested these Bessel functions in our appli-
cation (4–11). We compared values of

Îs−1/2(2π|m|vk)K̂s−1/2(2π|m|y)

computed with precisions P and P + 19 as they were
generated by typical runs of the Gs(z;w)-algorithm for
nine different R-values between 1 and 200. The results
are consistent with the individual I-Bessel and K-Bessel
tests: the numbers of correct significant digits obtained
are P − 5 for R ≤ 50, P − 11 for R ≤ 100, and P − 23
for R ≤ 200.

6. NUMERICS

Recall the truncated Fourier series (3–1) used to compute
Fn(z; s) in Section 3. In order to estimate the error RN
for |n| ≥ 1 we use (2–11) and (2–1). By adding the
absolute bounds for fixed Γ, s, and n �= 0, we find for

0 < y < 1 and N ≥ 4|n|/(c2Γy2) that

|RN | ≤ O(1)
∑
m≥N

e4πc
−1
Γ

√
|n|m−2πmy

≤ O(1)e4πc
−1
Γ

√
|n|N−2πNy

∑
m≥N

e−πy(m−N).

The geometric series above is O(1/y), and so we have
uniformly for all 0 < y < 1 and all N ≥ 4|n|/(c2Γy2),

RN = O
(
y−1e4πc

−1
Γ

√
|n|N−2πNy

)
. (6–1)

The implied constant depends on s, n, and Γ. This sort
of estimate may be used, combined with trial and error,
to decide on an appropriate M0-value. With R ≈ 14 our
numerics suggest that the implied constant in (6–1) is
roughly eRπ/2 for 1 ≤ |n| ≤ 10 and y near 0.8 (recall
here (4–3)), but with R ≈ 100 it seems to be quite a bit
larger.

We now turn to the tail SN of the Fourier series of
Grs(z;w) truncated at m = N (cf. (4–13)):

SN =
∑

|m|≥N+1

f rmy
1/2K̂s− 1

2
(2π|m|y)e2πimx. (6–2)

Let ε > 0 be fixed. From the bound (4–12) together with
(2–1) it follows that

SN = O

⎛
⎝ ∑

|m|≥N+1

1
|m|e

−2π|m|(y−vr+1−ε)

⎞
⎠ (6–3)

< O

(
1
N
e−2πN(y−vr+1−ε)

)

holds for y > vr+1 + 2ε. Thus the accuracy in the
Grs(z;w)-computations will depend on r.

With some heuristics we can make the SN -estimate
more useful. Recall that

f rm = fm + μ
r∑

k=0

∑
w′∈Hvk

v
1/2
k Îs− 1

2
(2π|m|vk)e−2πimu′

(6–4)
with fm = −e−Rπ/2F−m(w; s), and that Hvk

for k =
0, 1, 2, . . . was defined in such a way that all w′ ∈ Hvk

have Imw′ = vk, and v0 > v1 > v2 > · · ·; cf. Section 4.
Assuming N large enough we may write (2–5), for |m| ≥
N + 1 and Re s > 1, as leading terms plus a remainder

e−Rπ/2F−m(w; s) (6–5)

= μ

r+1∑
k=0

∑
w′∈Hvk

v
1/2
k Îs− 1

2
(2π|m|vk)e−2πimu′

+ ξ,
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with
ξ = O

(
v
1/2
r+2 Îs− 1

2
(2π|m|vr+2)

)
.

We now assume that (6–5) holds also for Re s = 1/2. For
s = 1/2 + iR we then obtain

|SN | ≤ O(1) · μ · #Hvr+1

×
∑

m≥N+1

1
2πm

e−2πmy+
√

(2πmvr+1)2+R2

< O(1) · μ · #Hvr+1

2π(N + 1)
e−2πNy+

√
(2πNvr+1)2+R2

.

Here we have used (2–1) and estimated IiR(x) as
(2πx)−1/2e

√
x2+R2 (this seems to be suggested by

[Olver 54] and [Erdélyi et al. 53, p. 87], but we have
not found it in the literature). The tail estimate (6–6)
has proven to be very useful for predicting a suitable
truncation in our actual Grs(z;w)-runs.

7. RESULTS

We present several statistical tests of Gs(z;w) and
Fn(z; s) in [Avelin 10]. Here we show some results and
a number of tests validating the Fn(z; s) and Gs(z;w)
algorithms.

Let Γ be the modular group PSL(2,Z). Then Γ has
one cusp, i∞, and RΓ = ΓR holds (R was defined in
Section 2). We take the fundamental polygon as F =
{z ∈ H : −1/2 ≤ Re z ≤ 1/2, |z| ≥ 1}. The lower right-
hand corner of F is

ρ =
1
2

+ i

√
3

2
.

If s is a zero of the Riemann zeta function or a zero
of the Dirichlet L-function L

(
s,
(−3

·
))

, then Gs(z; ρ) is
a pseudo cusp form; cf. [Hejhal 81, p. 99, 104–105].

Recall that (4–11) is valid for y > vr+1 and that we
need to be able to find a suitable Y > vr+1 to proceed
with (4–14). Moreover, from (6–3) we know that r has to
be adapted to the specific precision we choose. For the
purposes of the present paper we can always stay above
height 1/3, i.e., we can keep r so small that vr > 1/3.
In this case, to find vk and Hvk

for k = 0, . . . , r, we only
have to consider the points −1/(w+a) for a ∈ {−1, 0, 1},
and (if w ∈ ∂F) some of the S-translates of these points;
every other point in Γw will necessarily have imaginary
part less than or equal to 1/3. (This is proved by studying
the tessellation of H by the images TF , T ∈ Γ.)

There are quite a few relations suitable for testing our
algorithms for Fn(z; s) and Gs(z;w); see, for example,
Lemma 2.1. Here we will exploit five of them (as natural
“insurance devices”):

(a) The computed Fourier coefficients are independent
of the choice of Y .

(b) Coefficient relation: ϕnm(s) = ϕmn (s).

(c) Automorphy.

(d) Fn(z; s)−Fn(z; 1− s) = ϕ0−n(s)E(z; 1− s)/(2s− 1).

(e) Fn(w; s) is a Fourier coefficient of Gs(z;w); cf. (2–4).

With Re s = 1/2, (d) becomes Fn(z; s) − Fn(z; s̄) =
ϕ0−n(s)E(z; s̄)/(2iR), and using E(z; s̄) = E(z; s) to-
gether with Fn(z; s̄) = F−n(z; s) and ϕ0−n(s) = ϕ0

n(s),
cf. Lemma 2.1 and the remark following (2–5), we obtain

Fn(z; s) − F−n(z; s) =
ϕ0
n(s)E(z; s)

2iR
. (7–1)

If Rw = Tw for some T ∈ Γ, then Gs(z;w) is even
and Fn(w; s) = F−n(w; s); cf. Lemma 2.1(d), (e). Then
(7–1) becomes

ImFn(w; s) = −ϕ
0
n(s)E(w; s)

4R
. (7–2)

For example, this means that if ζ(s) = 0, then
Fn(ρ; s) ∈ R and Gs(z; ρ) ∈ R; cf. [Hejhal 81,
p. 105]. The coefficients ϕ0

n(s) of the Eisenstein series
on PSL(2,Z) may be computed via [Hejhal 83, p. 76].

The testing of output data was built up as follows:
Tests (a) and (b) for Fn(z; s)-coefficients, (c) and (d) for
Fn(z; s)-values, and then finally, (a) and (e) as tests for
Gs(z;w)-coefficients.

In the following few pages we will discuss as an ex-
ample the first Riemann zero, i.e., s = 1/2 + iR with
R = 14.134725 . . ., and working precision P = 38. A
number of tests were performed with R ≤ 98.831194 . . .,
1 ≤ |n| ≤ 10, and P ≤ 57. (Note that R = 98.831194 . . .
also corresponds to a Riemann zero.) The overall picture
was the same as described below in all cases, as well as
the explicit “P −m”-type results.

The truncation of the Fourier series for Fn(z; s) (cf.
(3–1)) for our example may be decided using (6–1) (more
precisely, its counterpart for (3–4)); cf. Section 6. We
choose M0 as the smallest positive integer such that
Ks−1/2(2π|m|Y ) decays exponentially as |m| ≥ M0 in-
creases, and

e4π
√

|M0n|−2π|M0|Y−Rπ/2 < 10−P .

(We used Y = 0.85 or Y = 0.86 and M0-values 30, 31, 38,
44, 50, 56, 62, 68, 74, 79 for |n| = 1, . . . , 10.)

Examples of the tests (a) and (b) are presented in
Tables 1 and 2.
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n m e−Rπϕn
m(s) (b) (a)

1 0 0.6363033313251248455 - 0.34893959844819293002 i 3E-37 3E-38

1 1 0.1522935306982800404 + 0.14984028066408378613 i - 8E-37

1 -1 -0.2934371142810432546 - 0.00931466242781154964 i - 5E-37

1 2 -0.1878701251370421943 + 0.01735060114265149564 i 1E-36 5E-38

1 -2 -0.08209516517515990832 + 0.01735060114265149564 i 1E-36 3E-37

1 3 0.1133719416917023190 + 0.01833040629870669329 i 3E-35 1E-36

1 -3 -0.2288270016347127611 + 0.01833040629870669329 i 2E-35 4E-37

1 4 -0.3454996504239681168 - 0.02300463656390817151 i 1E-33 2E-36

1 -4 0.09351644845644996581 - 0.02300463656390817151 i 4E-33 3E-36

1 5 †-0.3262149786472086677 + 0.01353122930133739777 i 1E-30 7E-35

1 -5 ‡0.4458721693009334992 + 0.01353122930133739777 i 7E-31 2E-35

1 6 -0.03298516237881328331 - 0.03414440093094493948 i 9E-28 5E-32

1 -6 0.4909254746752517213 - 0.03414440093094493948 i 1E-28 7E-33

1 7 -0.1320743969307616161 + 0.01338159684868249107 i 1E-25 4E-31

1 -7 1.34103063072489491 + 0.01338159684868249107 i 3E-26 3E-31

1 8 0.09163133101247650488 + 0.02550057854801231049 i 9E-22 7E-28

1 -8 3.93755307502619889 + 0.02550057854801231049 i 3E-23 2E-29

1 9 -0.01763591827357110023 - 0.02675790570653457503 i 2E-18 2E-25

1 -9 14.9294661703475675 - 0.02675790570653457503 i 8E-21 4E-28

1 10 -0.0729070547389021093 - 0.02520488148623370828 i 2E-16 4E-23

1 -10 55.488453466882473 - 0.02520488148623370828 i 7E-19 1E-26

TABLE 1. Fourier coefficients computed with the Fn(z; s)-algorithm and estimated relative errors, for s = 1/2 +
i 14.134725 . . ., n = 1, and precision P = 38. Concerning the factor e−Rπ, see (3–4).

n m e−Rπϕn
m(s) (b) (a)

5 0 -0.9243454980888676213 + 0.50689778137546680617 i 1E-31 1E-31

5 1 †-0.3262149786472086677 + 0.01353122930133739777 i 1E-31 1E-30

5 -1 ‡0.4458721693009334992 + 0.01353122930133739777 i 1E-31 1E-30

5 2 -0.07290705473890210931 - 0.02520488148623370828 i 6E-31 1E-30

5 -2 55.48845346688247383 - 0.02520488148623370828 i 7E-34 2E-34

5 3 -0.2712539339231707466 - 0.02662822541737072424 i 1E-31 1E-30

5 -3 43177.92568424207870 - 0.02662822541737072424 i 1E-36 8E-36

5 4 0.20663575107822840348 + 0.03341838899182806006 i 2E-29 7E-30

5 -4 21916908.345622582336 + 0.03341838899182806006 i 1E-37 2E-37

5 5 0.3825060743644429903 + 0.13949838894145263907 i - 2E-28

5 -5 6964160617.220798386 - 0.01965655415044269670 i - 5E-38

5 6 0.11208007498730239125 + 0.04960090845310034638 i 6E-25 1E-25

5 -6 1478576045205.8738879 + 0.04960090845310034638 i 3E-37 4E-38

5 7 0.19127124173693323782 - 0.01943918599099660566 i 3E-22 1E-23

5 -7 223832024724515.27314 - 0.01943918599099660566 i 1E-36 4E-38

5 8 -0.19347852196781997140 - 0.03704419546323692509 i 2E-19 1E-21

5 -8 25471921532847243.610 - 0.03704419546323692509 i 6E-36 1E-37

5 9 0.18140776376700638375 + 0.03887069022035942775 i 4E-16 1E-19

5 -9 2271845180732047467.2 + 0.03887069022035942770 i 1E-34 7E-38

5 10 -0.14834699089805970912 + 0.03661464208138688354 i 6E-13 5E-17

5 -10 164141060422096157650 + 0.03661464208138687450 i 1E-34 1E-37

TABLE 2. Fourier coefficients computed with the Fn(z; s)-algorithm and estimated relative errors, for s = 1/2 +
i 14.134725 . . ., n = 5, and precision P = 38. Concerning the factor e−Rπ; see (3–4).
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n z z∗ (c) (d)z (d)z∗

1 ρ - - 8E-38 -

1 0.49 +
√
1− 0.492 i - - 8E-38 -

1 0.4 + 0.8 i 0.5 + 1.0 i 3E-34 3E-35 8E-39

1 0.2 + 0.85 i -0.2622950820 + 1.114754098 i 4E-38 1E-36 9E-37

1 0 + 0.87 i 0 + 1.149425287 i 8E-38 9E-39 1E-37

1 0 + 0.9 i 0 + 1.111111111 i 4E-38 3E-38 9E-38

1 -0.4 + 0.9 i 0.4123711341 + 0.927835051 i 9E-37 1E-36 2E-36

5 ρ - - 1E-35 -

5 0.49 +
√
1− 0.492 i - - 1E-35 -

5 0.4 + 0.8 i 0.5 + 1.0 i 5E-30 4E-30 1E-37

5 0.2 + 0.85 i -0.2622950820 + 1.114754098 i 7E-37 2E-37 1E-37

5 0 + 0.87 i 0 + 1.149425287 i 3E-38 1E-38 4E-39

5 0 + 0.9 i 0 + 1.111111111 i 3E-37 1E-38 1E-38

5 -0.4 + 0.9 i 0.4123711341 + 0.927835051 i 1E-35 2E-36 3E-36

10 ρ - - 2E-31 -

10 0.49 +
√
1− 0.492 i - - 1E-31 -

10 0.4 + 0.8 i 0.5 + 1.0 i 1E-22 1E-23 1E-34

10 0.2 + 0.85 i -0.2622950820 + 1.114754098 i 5E-36 5E-37 9E-38

10 0 + 0.87 i 0 + 1.149425287 i 1E-37 2E-38 1E-38

10 0 + 0.9 i 0 + 1.111111111 i 3E-37 1E-37 9E-38

10 -0.4 + 0.9 i 0.4123711341 + 0.927835051 i 2E-33 5E-33 6E-33

TABLE 3. Estimated accuracy of Fn(z; s)-values for s = 1/2 + i 14.134725 . . . with precision P = 38.

n fn (a) (e)

1 0.1235571424212640662462323300904779518 1E-36 1E-36

2 0.5596998544549825388708785270788401870 7E-36 7E-36

3 0.9842653921361874364144161469066487430 4E-35 4E-35

4 -21.2118402111191571768351437598366002122 5E-34 5E-34

5 1495.2634314255648996494000184233186794846 6E-32 5E-32

6 -159357.5971037973419533555408670690353972527 1E-29 1E-29

7 21220217.7779904655339084525264672439636772917 6E-27 5E-27

8 -3232778831.6108074346436944272250611603987909810 3E-25 2E-25

9 538008642234.8093221305756252886064623889331697296 9E-24 8E-24

10 -95218023964901.9252028793820595301380072713199342494 4E-22 4E-22

TABLE 4. Values of Fourier coefficients fn of Gs(z; w) for w = ρ, s = 1/2 + i 14.134725 . . ., and relative error estimates
for the corresponding fr

n. Precision P = 38. Cf. (4–2) and (4–3) à propos fn.

These tables include values of e−Rπϕnm(s) computed
using Y = 0.86 for n = 1, 5 and |m| ≤ 10. For each ϕnm(s),
errors estimated with the tests (a) and (b) are presented.
These are computed as the relative difference between
ϕnm(s) and the appropriate ϕ|m|

±n (s) (where we use Lemma
2.1(f) and the fact that computations of F−m(z; s) are
entirely similar to computations of Fm(z; s)) for (b); and
between ϕnm(s) and the same ϕnm(s) computed with a
different Y -value (namely, Y = 0.85) for (a).

Coefficients corresponding to each other by the rela-
tions in Lemma 2.1(f) and (g) are marked with † and ‡.

For Re s > 1 there is a formula for ϕnm(s) involving
Kloosterman sums and J- or I-Bessel functions for nm
positive or negative, respectively; cf. [Hejhal 83, p. 62] or
[Niebur 73, pp. 134, 135]. Both these Bessel factors grow

with
√|nm|, but the I-Bessel factor grows significantly

faster than the J-Bessel counterpart; see, for example,
[Watson 44, pp. 202–203]. The effect is that ϕnm(s) for
(say) n,m ≥ 1 is several orders of magnitude smaller
than ϕn−m(s) already for moderate values of m. We ex-
pect the same behavior for Re s < 1; it seems likely that a
rigorous statement along these lines should be possible to
prove using the techniques involved in the Bruggeman–
Kuznetsov formula; see, for example, [Iwaniec 02, Chap-
ter 9, especially p. 126]. We then also expect a loss of
accuracy in the smaller of the two “twin coefficients”
ϕn±m(s) due to cancellation. The number of significant
digits lost should be about the difference in size between
the two “twin coefficients.” See, for example, m = ±10
in Table 2.
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n fn (a) (e)

1 -0.125612706297120441197377827995215897 2E-36 2E-36

+0.104016854037173288045865304745288921*I

2 0.062850063635789652855553590939931039 3E-37 3E-37

+0.165676016580456187957735506454237166*I

3 12.838493976890135235372284633892315642 1E-36 1E-36

-9.253727669489156067384615977985770957*I

4 -2200.661437827674338619554451320423209849 6E-36 6E-36

-6780.169555693669003112475390886578135093*I

5 -5829928.467676691382258185366552113255828156 5E-34 5E-34

+104.197776966256971515268573968829457292*I

6 -1936025897.335963641306854092013713923135551514 6E-32 3E-32

+5958473213.369427376325439802783488677683140604*I

7 6346429009684.523154705376644544581380321464415495 2E-30 5E-31

+4610951345790.268048863674111374708151972068419770*I

8 8739138277785946.432686483186214146720899151324876617 8E-30 7E-29

-6349355705849713.129078460537539316482359036200260629*I

9 -4898292916234117542.591509156906049227562052640091720612 4E-27 3E-27

-15075395471564365969.056335541002096201826922782201807132*I

10 -24326462439647508260569.5995007293335530184865743622561718 1E-25 1E-25

-905138289572.893220513362613203976239879656387896*I

TABLE 5. Values of Fourier coefficients fn of Gs(z; w) for w = 0.2 + 1.2 i, s = 1/2 + i 14.134725 . . ., and relative error
estimates for the corresponding fr

n. Precision P = 38. Cf. Cf. (4–2) and (4–3) à propos fn.

n [Hejhal 92] fn/f1
2 4.5300 4.5298866863293426919271769474038512688
3 7.967 7.9660744239322606909165900956187083269
4 -1.717E2 -171.6763579623594445335087109705928922
5 1.211E4 12101.79680529930652299605780712641026514
6 -1.291E6 -1289748.1600899508310111788873067778738
7 1.719E8 171744161.13995920897912219514475210879
8 -2.62E10 -26164240838.370581190895242569506670557
9 4.37E12 4354330568770.2481897011772183388222484
10 -7.75E14 -770639576951846.00017592241755471420797

TABLE 6. A comparison between Fourier coefficients of Gs(z; ρ) with s = 1/2 + i 14.134725 . . . from [Hejhal 92, p. 56] and
the same coefficients computed with the Gs(z; w)-algorithm. Here the coefficients are normalized by f1.

Usually with these types of algorithms the leading
Fourier coefficients are produced with high accuracy and
the accuracy decreases as the significance of the terms in
the Fourier expansion decreases. In (2–6), the leading
terms are those ϕnm(s)y1/2Ks−1/2(2π|m|y)e2πimx with
|m| ≈ |n|/(c2Γy2); cf. (2–11) and (2–1). Therefore it is
natural to expect less accuracy for coefficients with |m|
significantly smaller than |n|/(c2Γy2) than for coefficients
with |m| near |n|/(c2Γy2). This effect is visible for n = 5
in Table 2 (where |n|/(c2Γy2) ≈ 6.7) in comparing, for
example, m = −1 with m = −7.

When Fourier coefficients ϕnm(s) of Fn(z; s) are com-
puted for −M0 ≤ m ≤ M0, we found, for this particu-
lar example, that (3–1) will produce Fn(z; s)-values with
good result when truncated at M = M0 − 2 if y ≥ 0.85.

The tests (c) and (d) for Fn(z; s)-values are consis-
tent. They both indicate that the accuracy is, in general,
decreasing with increasing |n| for z fixed, and that the
poorest (relative) accuracy is for |z| near 1. (It seems
that |Fn(z; s)| is particularly small for |z| = 1. We hope
to discuss the magnitude of Fn(z; s) in a forthcoming pa-
per.)

Some sample data are presented in Table 3. All error
estimates are relative. As in Section 3, z∗ denotes the
image of z in F . Note that the value z = 0.4 + 0.8 i
has imaginary part smaller than is optimal for our M -
value; that is, the tail |RM | is greater than 10−38, which
is reflected in the accuracy of Fn(z; s). The relative dif-
ference between Fn(z; s) and Fn(z∗; s) is in the column
marked (c); the difference between the left-hand side and
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FIGURE 1. Pictures of Gs(z; w). The first two pictures show pseudo cusp forms with w = ρ; and s = 1/2 + i 14.13 . . .
and s = 1/2 + i 98.83 . . ., on the left- and right-hand sides, respectively. The next two rows show the real and imaginary
parts of Gs(z; w) for perturbations of the location of the pole and fixed s = 1/2 + i 14.13 . . . . These are not pseudo cusp
forms because E(w; s) �= 0. Minimum and maximum values are given in parentheses.
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the right-hand side of (7–1) divided by |Fn(z; s)| is in the
column marked (d)z, and correspondingly for (7–1) ap-
plied to z∗.

At this point we are confident that our code produces
Fn(z; s)-values to at least P − 7 places for 1 ≤ |n| ≤ 10,
|m| ≤ 10. Thus test (e) will reveal the accuracy of our
algorithm for Gs(z;w)-coefficients. Tests were performed
for several w-values, and Tables 4 and 5 show our results
for w = ρ and w = 0.2 + 1.2 i respectively. These tables
include values of fn computed as Fourier coefficients of
Gs(z;w) via Grs(z;w); cf. (4–2), (4–11), with Y = 0.86,
M0 = 24, s = 1/2 + i 14.134725 . . ., P = 38. The third
column is the relative error in f rn estimated with test (a)
and Y = 0.85, 0.86. The fourth column is the relative
difference between f rn and

− e−Rπ/2F−n(z; s)

+ μ

r∑
k=0

∑
w′∈Hvk

v
1/2
k Îs−1/2(2π|m|vk)e−2πimu′

,

where F−n(z; s) is computed with our Fn(z; s)-algorithm
using precision P + 19 (which ensures at least P correct
significant digits); cf. (6–4) and test (e).

It appears that the Gs(z;w)-algorithm produces f rn-
values with at least P − 16 correct significant digits for
1 ≤ |n| ≤ 10. The accuracy in the corresponding fn de-
pends on the size and accuracy of the computed value of
μ
∑r
k=0

∑
w′∈Hvk

v
1/2
k Îs−1/2(2π|m|vk)e−2πimu′

. In Ta-
ble 4, all fn actually have about 36 significant digits.
(Also recall (7–2) and the paragraph following it.)

In [Hejhal 92], the author computed Gs(z; ρ) with
s = 1/2 + i 14.1347 . . . by diminishing the sharpness of
his cusp form algorithm enough to pick up some pseudo
cusp forms as well. Table 6 repeats some of his findings
and compares them to our data. (Note that his compu-
tation yielded a slightly perturbed 14.134739 instead of
14.134725, while we have used 14.134725.)

We conclude by showing some pictures of Gs(x+iy;w)
on PSL(2,Z) with −0.75 < x < 0.75, 0.75 < y < 2.25,
and w = ρ, 0.48 + 0.88 i, 0.46 + 0.9 i. (Recall that
Gs(z; ρ) ∈ R by Lemma 2.1; cf. the discussion near
(7–2).) We have computed values at 500 × 500 points
and given them colors ranging through blue, green, yel-
low, and red as the values pass from their minimum to
their maximum, except for points very near the singular-
ities, which have been given the value 0 and therefore are
green; cf. Figure 1.
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