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This paper studies EPDiff(S1), the Euler–Poincaré equation for
diffeomorphisms of S1, with the Weil–Petersson metric on the
coset space PSL2(R) \ Diff(S1). This coset space is known as
the universal Teichmüller space. It has another realization as
the space of smooth simple closed curves modulo translations
and scalings. EPDiff(S1) admits a class of solitonlike solutions
(teichons) in which the “momentum” m is a distribution. The
solutions of this equation can also be thought of as paths in the
space of simple closed plane curves that minimize a certain en-
ergy. In this paper we study the solution in the special case that
m is expressed as a sum of four delta functions. We prove the
existence of the solution for infinite time and find bounds on
its long-term behavior, showing that it is asymptotic to a one-
parameter subgroup in Diff(S1). We then present a series of nu-
merical experiments on solitons with more delta functions and
make some conjectures about these.

1. INTRODUCTION

Geodesic equations of groups of diffeomorphisms on a
manifold X were first studied in the groundbreaking pa-
per [Arnold 66]. Taking the tangents to such a geodesic
and translating them back to the Lie algebra, i.e., the
space of vector fields on X , we get a time-varying vector
field �u(x, t) on X from which we can recover the geodesic
by integrating. The geodesic equation now becomes a
differential equation for �u, of first order in t. Arnold
considered in particular the group of volume-preserving
diffeomorphisms of Euclidean space in its L2 metric and
found the geodesic equation for the vector field �u(�x, t) to
be Euler’s fluid flow equation (see [Arnold and Khesin
98] for a full exposition). Since then, many other exam-
ples have been looked at. For example, both the periodic
Korteweg–deVries equation (KdV) for a function u(θ, t),

ut = −3u.uθ − uθθθ,
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and the periodic Camassa–Holm equation (C-H) (see
[Camassa and Holm 93]),

mt = −2m.uθ − u.mθ − uθθθ, where m = u− uθθ,

have been found to be the geodesic equations on the Vi-
rasoro group, a central extension by S1 of the group
Diff(S1) of the diffeomorphisms of S1. These are two
completely integrable partial differential equations hav-
ing soliton solutions. More recently, Holm and collabora-
tors have found that quite generally, the geodesic equa-
tion on Diff(Rn) admits special solutions with many of
the properties of solitons: for each fixed time, they are
diffeomorphisms that are largely localized in space, and
as time varies, they retain their general shape and can
interact somewhat like solitons for KdV [Holm and Mars-
den 04]. There are not, however, infinitely many con-
served quantities, so they are not true solitons. A discus-
sion of EPDiff and solitons in the case of template match-
ing in computational anatomy can be found in [Holm et
al. 04].

This paper studies a new example closely related to
KdV and C-H. We consider the Weil–Petersson (WP)
metric on the coset space PSL2(R) \Diff(S1). This coset
space (or its completion in the WP metric or in the Teich-
müller topology) is known as the universal Teichmüller
space and is well known in many contexts: the clas-
sification of Riemann surfaces [Hubbard 06], conformal
and quasiconformal maps [Lehto 87], string theory [Bow-
ick and Rajeev 87], and most recently computer vision
[Sharon and Mumford 06]. Its completion in the WP
metric is an infinite-dimensional homogeneous complex
Kähler–Hilbert manifold [Takhtajan and Teo 06]. Again
the geodesic equation lifts to the Lie algebra, the space of
vector fields on the circle modulo the subspace spanned
by 1, cosine, and sine, but now it is an integrodifferen-
tial equation involving not only derivatives but the pe-
riodic Hilbert transform H (defined by convolution with
1
2π cot(θ/2) instead of with 1/x). The equation is

mt = −2m · uθ − u ·mθ, where m = −H(uθ + uθθθ).

Here, we may invert the relationship between m and u

and write

u(θ, t) =
∫
S1
G(θ − ξ)m(ξ, t)dξ = G ∗m.

The integral kernel, or Green’s function, G(θ) turns out
to be given in the Fourier domain by

G(θ) = 2
∞∑
n=2

cos(nθ)
(n3 − n)

.

Note that m(·, t) is always orthogonal to 1, cosine, and
sine.

It is not known whether this new equation is com-
pletely integrable, but it admits a class of solitonlike solu-
tions that we study here, namely the solutions in whichm
is a distribution. In fact, we wantm(·, t) to be a weighted
sum of delta functions for one and hence all t. Because
m is orthogonal to 1, cosine, and sine, there must be at
least four delta functions. Following a suggestion of Dar-
ryl Holm, we call these and their corresponding geodesics
in Teichmüller space teichons.

In general, solutions to the above equation integrate to
geodesics on the universal Teichmüller space PSL2(R) \
Diff(S1). As we explain in Section 2, the universal Teich-
müller space has another realization, namely as the space
of smooth simple closed curves modulo translations and
scalings. Therefore, the solutions of this equation can
also be thought of as paths in the space of simple closed
plane curves that minimize a certain energy. The soliton
property means that in a certain sense, their momentum
is concentrated at a finite set of points.

In this paper, we study the solution in the special case
that the momentum m is expressed as a sum of four delta
functions. We prove the existence of the solution for in-
finite time and find bounds on its long-term behavior,
showing that it is asymptotic to a one-parameter sub-
group in Diff(S1). We then present a series of experi-
ments on solitons with more delta functions and make
some conjectures about these.

2. SHAPES AS DIFFEOMORPHISMS OF THE CIRCLE

In this paper, shape means a simple closed smooth curve
Γ in the plane that is associated with the complex plane
C; also we need an extended complex plane (or Riemann
sphere), which is denoted by Ĉ = C ∪ {∞}. In this
section, we review how the universal Teichmüller space
is isomorphic to a space of shapes, that is,

PSL2(R) \ Diff(S1)
∼= set of shapes modulo translations and scalings.

Denote the interior of the unit disk by Dint = {z |
|z| ≤ 1} and the infinite region outside (including ∞) by
Dext = {z | |z| ≥ 1}. For every simple closed curve Γ in
C, denote by Γint its union with the region enclosed by
it, and denote by Γext its union with the infinite region
outside of Γ (including ∞).

Then by the Riemann mapping theorem, for all Γ there
exists a conformal map

φint : Dint → Γint,
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unique up to replacing φint by φint ◦ A for any Möbius
transformation A : Dint → Dint, where A is defined as

A(z) =
az + b

b̄z + ā
, |a|2 − |b|2 = 1.

This subgroup of the Möbius group of self-maps of the
circle is denoted by PSL2(R).

Similarly we obtain a conformal map of the exteriors

φext : Dext → Γext.

The map φext is also unique up to any Möbius trans-
formation as above. But in this case we normalize: we
choose a unique Möbius map A such that φext ◦ A maps
∞ to ∞ and such that its differential carries the real pos-
itive axis of the D-plane at infinity to the real positive
axis of the Γ-plane at infinity. Thus the ambiguity in the
choice of φext is eliminated for every Γ.

The goal of this construction is to define the map
called the fingerprint of the shape

ψ = φ−1
int ◦ φext ∈ PSL2(R) \ Diff(S1),

which is defined on the unit circle S1 (note that
φext(S1) = Γ, φ−1

int (Γ) = S1). The fingerprint ψ :
S1 → S1 is a real-valued orientation-preserving diffeo-
morphism. It is a uniquely identifying fingerprint of the
shape Γ. The fingerprint of the eye shape is shown in
Figure 4. From the Möbius transformation ambiguity in
the choice of φint we can see by construction that ψ is
a member of the right coset space PSL2(R) \ Diff(S1),
where PSL2(R) is a group of Möbius maps.

Note that one can equally define the fingerprint to be

φ−1
ext ◦ φint ∈ Diff(S1)/PSL2(R),

and this is just the inverse of our fingerprint. This al-
ternative version is the definition used in [Sharon and
Mumford 06]. However, in this paper, we stick to right
cosets and put the Möbius ambiguity on the left.

The inverse map from diffeomorphisms to shapes is
defined as follows: starting with ψ, construct an abstract
Riemann surface by “welding” the boundaries of Dint and
Dext via ψ. The resulting Riemann surface must be con-
formally equivalent to the Riemann sphere. Choose a
conformal map φ from the welded surface to the sphere
taking ∞ ∈ Dext to itself and having real positive deriva-
tive there. Let Γ = φ(S1) (for details, see [Sharon and
Mumford 06]).

3. WEIL–PETERSSON NORM ON THE LIE ALGEBRA
OF Diff(S1)

3.1 The Norm

The Lie algebra of the group Diff(S1) is given by the
vector space Vec(S1) of smooth periodic vector fields
v(θ)∂/∂θ on the circle.

Expanding such a v in a Fourier series v(θ) =∑∞
n=−∞ vne

inθ (where vn = v−n for the vector field to be
real), we can define the Weil–Petersson norm on Vec(S1):

‖v‖2
WP =

∑
n∈Ẑ

|n3 − n||vn|2. (3–1)

Here Ẑ = Z \ {n = 0,±1}.
The null space of this norm is given by the vector fields

whose only Fourier coefficients are v−1, v0, and v1, i.e.,
vector fields of the type (a+ b cos θ+ c sin θ)∂/∂θ. These
vector fields are exactly in the Lie algebra psl2(R) of the
Lie group PSL2(R).

The motivation for this particular definition is the fact
that for all A ∈ PSL2(R) and v ∈ Vec(S1) one can verify
that

‖AdA(v)‖WP = ‖v‖WP.

3.2 Extending the WP Metric to PSL2(R)\Diff(S1)

Consider any Lie group G and a subgroup H , and let g

and h be their corresponding Lie algebras. Quite gen-
erally, any norms ‖ · ‖ on the Lie algebra of G that
are zero on the Lie subalgebra of H and that satisfy
‖Adh(v)‖ = ‖v‖ for all h ∈ H induce a Riemannian
metric on coset spaces H \G that is invariant by all right
multiplication maps Rg : H \G→ H \G, g ∈ G.

In particular, this applies to G = Diff(S1), H =
PSL2(R), and the above WP norm on vector fields; hence
it gives the right-invariant WP-Riemannian metric on
the coset space PSL2(R) \ Diff(S1).

3.3 The WP Green’s Function

The Weil–Petersson norm can also be defined via a dif-
ferential operator L:

‖v‖2
WP = 〈Lv, v〉, L = −H(∂3

θ + ∂θ),

where H is the periodic Hilbert transform defined by con-
volution with 1

2π cot(θ/2). This is because in Fourier se-
ries, H is multiplication by −i · sgn(n), and hence

−H(∂3
θ+∂θ)e

inθ = i·sgn(n)((in)3+in)einθ = |n3−n|einθ.

For later purposes we need to find an inverse of the
operator L, i.e., its Green’s function G(θ). Using the
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FIGURE 1. Green’s function (3–2) of the Weil–Petersson op-
erator LWP. It is smooth except for a log-pole in its second
derivative at θ = 0.

representation of L in the Fourier basis (3–1), we need to
find

G(θ) =
∑
n∈Ẑ

einθ

|n3 − n| .

Using the series

∞∑
k=1

cos(kθ)
k

=
1
2

ln
1

2(1 − cos θ)
, for θ ∈ (0, 2π),

from [Gradshteyn and Ryzhik 00] and employing the de-
composition

1
n3 − n

=
1
2

1
n+ 1

+
1
2

1
n− 1

− 1
n
,

we find that the Green’s function of the WP operator L
has the form

G(θ) = (1 − cos θ) log[2(1 − cos θ)] +
3
2

cos θ − 1. (3–2)

One can easily verify that LG(θ) = δ0(θ)− 1− 2 cos θ,
the projection of δ0 onto the subspace of distributions
orthogonal to 1, cos(θ), sin(θ). The profile of the Green’s
function can be seen in Figure 1.

4. EPDiff

The EPDiff equation (Euler–Poincaré equation for dif-
feomorphisms) is a variant of Euler’s fluid-flow equation.
It describes geodesics on the group of diffeomorphisms
of R

n in any right-invariant metric given on vector fields

by ‖v‖2 =
∫

Rn〈Lv, v〉dx for some positive definite self-
adjoint operator L. The general EPDiff follows from
[Arnold 66] and has the form

∂

∂t
Lv + (v · ∇)(Lv) + divv · Lv +Dvt · Lv = 0.

It can also be derived (as in the 1998 Insitut Henri
Poincaré notes to be published in [Mumford and Des-
olneux 09]) via the first variation of energy E(ψ) of the
path ψ(x, t) ∈ Diff(Rn):

E(ψ) =
∫ 1

0

∥∥∥∥∂ψ∂t (ψ−1(x, t), t)
∥∥∥∥2

L

dt.

In our case, we have the homogeneous space PSL2(R)\
Diff(S1), which is not a group. Fortunately, Arnold’s for-
mula for geodesics on groups extends with only small
changes to equations for geodesics on homogeneous
spaces H \G:

Theorem 4.1. Let G be any Lie group and H a subgroup.
Let 〈g1, g2〉L = (L(g1), g2) be a nonnegative symmetric
inner product on g with null space h, defined by a non-
negative self-adjoint linear map L : g → g∗. Assume that
this inner product is invariant under Adh, h ∈ H. As
above, this defines a G-invariant metric on H \ G. Let
g(t) be any path in G and define u(t) = gt · g−1 to be its
tangent path in g. Then

{H ·g(t)} ⊂ H\G is a geodesic ⇐⇒ Lut = Ad∗
u(Lu) ∈ g∗,

where Ad∗
u : g∗ → g∗ is the adjoint of Adu, u ∈ g.

The proof is essentially the same as that of Arnold’s
theorem for the case H = {e}. Note that it is convenient
computationally to choose a splitting g = h ⊕W . Then
L defines an isomorphism W → W ∗, whose inverse we
may call Li. Translating W around the group G, we get
a splitting of the tangent bundle to G into the “vertical”
vectors tangent to the cosets of H and a “horizontal”
bundle W given by W . Then the above theorem can be
applied to paths for which u(t) ∈ W for all t, and these
correspond to the paths in G that are “horizontal” lifts
of paths in H \G. Then geodesics in H \G are defined
by solutions of Arnold’s equation with u(t) ∈W .

This applies to our case of PSL2(R) \ Diff(S1). On
the Lie algebra level, PSL2(R) becomes the vector
fields spanned by 1, cosine, and sine, i.e., those whose
only nonzero Fourier coefficients are those with indices
−1, 0,+1. The simplest complement W comprises the
vector fields with these coefficients zero. In fact, the
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Green’s function G has this property, so convolution
with this G is the above operator Li in this case. The
geodesic equation is therefore simply another special
case of EPDiff. Given a path ψ(θ, t) in Diff(S1), let
v(θ, t) = ∂ψ

∂t (ψ
−1(θ, t), t) be the scalar vector field it de-

fines on a circle and let L be the Weil–Petersson differ-
ential operator L = −H(∂3

θ +∂θ). Then EPDiff takes the
form

(Lv)t + v · (Lv)θ + 2vθ · Lv = 0. (4–1)

We call v(θ, t) the velocity of the path and m(θ, t) =
Lv(θ, t) the momentum. Then inversely, v(θ, t) = G ∗
m(θ, t). Note that momenta can be distributions. Both
m and v will have vanishing −1, 0,+1 Fourier coefficients.
In this article we consider an ansatz, a special form of mo-
mentum that we call a teichon (or an N -teichon), given
by a sum of N delta functions, i.e.,

m(θ, t) =
N∑
j=1

ajδ(θ − bj), v(θ, t) =
N∑
j=1

ajG(θ − bj).

Plugging these expressions into EPDiff (4–1) we get a
system of ODEs describing the evolution of ak’s and bk’s:⎧⎨⎩ ȧk = −ak

∑N
j=1 ajG

′(bk − bj),

ḃk =
∑N

j=1 ajG(bk − bj),
(4–2)

where aj, bj are functions of time t. For the problem to
be well posed, we need to require that m(θ, t) have its
zeroth and ±first Fourier coefficients zero, i.e., we have
the following constraints:

N∑
j=1

aj =
N∑
j=1

aje
ibj =

N∑
j=1

aje
−ibj = 0. (4–3)

If these constraints are satisfied at time t = 0, they will
be satisfied for all t. The minimum number N of dis-
tinct delta functions (all bk’s are different) to satisfy this
condition is four. Note that EPDiff is invariant under
the action AdA, A ∈ PSL2, so we may always normalize
teichons by the Möbius group.

5. ESTIMATES

5.1 Four-Teichon ODE

We consider the case of N = 4 deltas. Due to the
Möbius invariance, we can normalize the initial condi-
tions, giving us the following initial configuration for mo-
mentum m(θ):

m(θ, t = 0) =
4∑
j=1

ajδ(θ − bj),

where

(a1, a2, a3, a4) = (1,−1, 1,−1),

(b1, b2, b3, b4) = (2π − d0/2, d0/2, π − d0/2, π + d0/2),

a0 = 1, d0 ∈ (0, ε).

If this holds for time 0, then it is easy to check that for
all times t,

(a1, a2, a3, a4) =
(
a(t), −a(t), a(t), −a(t)),

and

(b1, b2, b3, b4)

=
(
2π − 1

2
d(t),

1
2
d(t), π − 1

2
d(t), π +

1
2
d(t)

)
,

for some functions a(t), d(t). Then the system (4–2) be-
comes a system of just two variables a(t) and d(t):

ȧ = a2[G′(−d) +G′(π − d)],

ḋ = −2a[G(0) −G(−d) +G(π) −G(π − d)].

Equivalently, if E(d) denotes G(0) − G(−d) + G(π) −
G(π − d) and prime represents differentiation in d, then
the system is {

ȧ = a2E′(d),

ḋ = −2aE(d).
(5–1)

Notice that (5–1) is a Hamiltonian system with con-
served energy H = a2E(d) = k2, for some constant k.
Therefore we can have the equation just in terms of d:

ḋ = −2k
√
E(d), where k = a0

√
E(d0). (5–2)

The other equation is a conserved quantity, which relates
a(t) and d(t):

a(t)
√
E(d(t)) = k.
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FIGURE 2. Geodesic with initial momentum m(θ) =∑4
k=1 akδ(θ − bk) up to time T=6, (a4

k=1)t=0 =
(1,−1, 1,−1), (b4k=1)t=0 = (2π − 0.1, 0.1, π − 0.1, π +
0.1). The position of the delta functions (i.e., the bk’s)
is marked by asterisks.
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FIGURE 3. Time evolution of log |ak|’s (left) and bk’s (right) for the 4-teichon: (a4
k=1)t=0 = (1,−1, 1,−1), (b4k=1)t=0 =

(2π − 0.1, 0.1, π − 0.1, π + 0.1).

A geodesic in the universal Teichmüller space with the
above initial momentum m(θ) can be seen in Figure 2
(evolution of the log |ak|’s and bk’s is shown in Figure 3).

5.2 Estimates of a(t), d(t)

For small d ∈ (0, ε) we have an expansion of E(d) =
G(0) −G(−d) +G(π) −G(π − d):

E(d) = d2

(
1
2
− log

d

2

)
− d4

(
3
48

− 1
12

log
d

2

)
+O(d6 log d).

And the basic inequality is

d2

(
1
2
− log

d

2
− γ

)
≤ E(d) ≤ d2

(
1
2
− log

d

2

)
. (5–3)

Here γ is chosen to guarantee that

−γd2 ≤ E(d) − d2

(
1
2
− log

d

2

)
,

or in other words,

γ ≥ −E(d)
d2

+
(

1
2
− log

d

2

)
.

Since the right-hand side is an increasing function of d,
and d(t) will be decreasing with t, it suffices to take any
γ ≥ −E(d0)/d2

0 +
(

1
2 − log d0

2

)
(in simulations the value

used was d0 = 0.2; hence we may take γ = 0.0102).
Based on this, we get the following inequalities for the

right-hand side of equation (5–2):

−2kd

√
1
2
− log

d

2
≤ −2k

√
E(d) ≤ −2kd

√
1
2
− log

d

2
− γ.

From the theory of ODEs we can conclude that for all
t ∈ [0,+∞), if d0 ∈ (0, ε) (note that d(t) will stay in (0, ε)

for all t), then the following estimate for d(t) is valid:

2 exp
{

1
2
− (kt+ c1)2

}
≤ d(t) (5–4)

≤ 2 exp
{

1
2
− (kt+ c2)2 − γ

}
,

where

k = a0

√
E(d0) > 0, c1 =

√
1
2
− log

d0

2
,

c2 =

√
1
2
− log

d0

2
− γ; c1 > c2.

Define the bounds

d1(t) := 2 exp
{

1
2
− (kt+ c1)2

}
,

d2(t) := 2 exp
{

1
2
− (kt+ c2)2 − γ

}
.

Using inequalities (5–3) we get the following estimates:

1√
1
2 − log d

2

≤ d√
E(d)

≤ 1√
1
2 − log d

2 − γ
.

Combining this with the estimates on d(t) and using the
fact that both bounds are increasing functions of d, we
conclude that the product ad decreases as 1/t, or specif-
ically,

k√
1
2 − log d1

2

≤ a(t)d(t) = k
d√
E(d)

≤ k√
1
2 − log d2

2 − γ
,
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or equivalently,

k

kt+ c1
≤ a(t)d(t) ≤ k

kt+ c2
. (5–5)

Finally an estimate for a(t):

k

d2

√
1
2 − log d2

2

≤ a(t) =
k√
E(d)

≤ k

d1

√
1
2 − log d1

2 − γ
,

or

k exp
{
(kt+ c2)2 − 1

2 + γ
}

2
√

(kt+ c2)2 + γ
≤ a(t) (5–6)

≤ k exp
{
(kt+ c1)2 − 1/2

}
2
√

(kt+ c1)2 − γ
.

5.3 Estimating the Velocity Field v(θ, t)

For θ ∈ I = [δ, π − δ] ∪ [π + δ, 2π − δ] (away from points
0, π, 2π, where G(θ) is only C1) we have the following
Taylor expansion:

G(θ + Δθ) = G(θ) + Δθ G′(θ) +
Δθ2

2
G′′(θ)

+
Δθ3

6
G′′′(θ) +

Δθ4

24
G

′′′′
(θ) +O(Δθ5).

Therefore, using the above we have the following expan-
sion of the velocity field v(θ, t):

v(θ, t) = a
[
G(θ + d/2) −G(θ − d/2) +G(θ + π + d/2)

−G(θ + π − d/2)
]

= ad
[
G′(θ) +G′(θ + π)

]
+
ad3

24
[
G′′′(θ) +G′′′(θ + π)

]
+O(ad5).

For derivatives of the Green’s function we get

G′(θ) +G′(θ + π) = 2 sin θ log | tan θ/2|,
G′′′(θ) +G′′′(θ + π) = −2 sin θ log | tan θ/2|+ 2 cot θ.

And applying estimates (5–4), (5–5) for ad, ad3, we
finally arrive at the following approximations.

First-order approximation:

v(θ, t) ≈ 2
k

kt+ c
sin θ log | tan θ/2|+O

(
1

te2kt2

)
, (5–7)

for some c.

Third-order approximation:

v(θ, t) ≈ 2
k

kt+ c
sin θ log | tan θ/2|

+ r(t)(cot θ − sin θ log | tan θ/2|) (5–8)

+O

(
1

t exp(4kt2)

)
,

where r(t) is such that

k

3
exp(1 − 2(kt+ c1)2)

kt+ c1

≤ r(t) ≤ k

3
exp(1 − 2(kt+ c2)2 − 2γ)

kt+ c2
.

Here the constant k is k = a0

√
E(d0) as before, and we

can choose c somewhere between c2 and c1:

c2 =

√
1
2
− log

d0

2
− γ < c1 =

√
1
2
− log

d0

2
.

Remark 5.1. Notice that ‖v(θ, t)‖WP should be constant,
but in the first-order expansion there is a t-term that
is monotonically decreasing. It is actually the case that
sin θ log | tan θ/2| has infinite WP-norm.

5.4 Estimating the Fingerprint ψ(θ, t)

The fingerprint ψ(θ, t) evolves under the action of the
velocity field v(θ, t) according to

ψt(ψ−1(θ, t), t) = v(θ, t).

Let ψi(θ, t) denote the inverse of ψ(θ, t) in the θ-variable
for each fixed t-variable. It is easy to check that ψi(θ, t)
satisfies the transport equation

ψit(θ, t) = −v(θ, t)ψiθ(θ, t). (5–9)

Remark 5.2. In this case, ψi(θ, t) is in the left coset space
Diff(S1)/PSL2(R), and we have the same setup as in
[Sharon and Mumford 06].

We are going to solve the transport equation (5–9) for
the inverse fingerprint ψi with the first-order approxima-
tion (5–7) of v.

Note that G(θ) is smooth, except for the logarithmic
pole in G′′(θ) at θ = 0. Let us write out the first-order
Taylor series with the remainder term in the integral form

G(θ + δ) = G(θ) +G′(θ)δ +R1(θ),

where

R1(θ) =
∫ θ+δ

θ

G′′(t)(θ + δ − t)dt.
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The remainder term R1(θ) for all small values of δ will
be uniformly bounded away from zero for all θ. Using
the fact that

G′′(θ) = cos θ log[2(1 − cos θ)] +
1
2

cos θ + 1,

one can easily verify that the remainder term R1(θ) at
θ = 0 satisfies

R1(0) =
∫ δ

0

G′′(t)(δ − t)dt

=
∫ δ

0

((2 − t2) log t+ 3/2 +O(t2))(δ − t)dt

= O(δ2 log δ).

Therefore the first-order estimate of v(θ, t) in (5–7) is
valid uniformly for all θ ∈ [0, 2π] and t, while the
third-order estimate (5–8) is valid uniformly away from
θ = 0, π.

From PDE theory it is known that the solution re-
mains constant along the characteristics of the equation
(5–9). The characteristic equations are

∂θ

∂s
= 2

k

kt+ c
sin θ log | tan θ/2|,

∂t

∂s
= 1.

Using the fact that
∫

dθ
sin θ = log | tan θ/2|, we get

log | tan(θ − π)/2|
log | tan(θ0 − π)/2| =

(
kt+ c

c

)2

.

Given a point (θ, t), a characteristic passes through the
point (θ0, 0), where θ0 is expressed using the previous
formula, i.e.,

θ0 = 2 arctan
[
(tan(θ − π)/2)(

c
kt+c )

2]
+ π.

Since ψi remains constant along characteristics and since
ψi(θ, t = 0) = θ, we have

ψi(θ, t) = ψi(θ0, 0) = θ0 (5–10)

= 2 arctan
[
(tan(θ − π)/2)(

c
kt+c )2]

+ π,

where tanβ = sgn(tan)| tan |β .
If we set

(
c

kt+c

)2

= β, then the above inverse finger-
print is the fingerprint of the “eye” shape with angles at
its corners απ, α = 2β/(β+1) (an example of the finger-
print appears in Figure 4; see also [Sharon and Mumford
06]). In other words, the curve starts as a circle (angles

−1.5 −1 −0.5 0 0.5 1 1.5

−1

−0.5

0

0.5

1

0 pi/2 pi 3pi/2 2pi
0

pi/2

pi

3pi/2

2pi

FIGURE 4. Example of the eye shape (top) and its
fingerprint ψ (bottom) as given by equation (5–10).

at the corners of the “eye” are π), and the angle gets
smaller with time as 2π

1+(kt/c+1)2 .
We may invert (5–10) to obtain the approximate evo-

lution of the fingerprint ψ ∈ PSL2(R) \ Diff(S1):

ψ(θ, t) = 2 arctan
[
(tan(θ − π)/2)(

kt+c
c )2]

+ π, (5–11)

where tanβ = sgn(tan)| tan |β . This fingerprint still de-
fines an eye-shaped figure (see Figure 4). One just needs
to perform welding using the fact that ψ = φ−1

int ◦ φext.
The limiting fingerprint is

ψ∞(θ) =

{
π/2, for θ ∈ (0, π),
3π/2, for θ ∈ (π, 2π).

We have proved the existence of the solution for infi-
nite time and have found bounds on its long-term behav-
ior. In the limit, the shape represented by the fingerprint
(5–11) will become an infinite slit on the plane. Note that
our soliton trajectory is asymptotic to the following one-
parameter subgroup in Diff(S1):

ψβ(θ) = 2 arctan(tan(θ/2)β),

where

tanβ = sgn(tan)| tan |β , ψβ1β2 = ψβ1 ◦ ψβ2 .
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6. NUMERICAL EXPERIMENTS

6.1 Numerical Methods

System (4–2) is in fact a Hamiltonian system with Hamil-
tonian Hab =

∑N
i,j=1 aiajG(bi − bj), and it could be

rewritten as ⎧⎪⎪⎨⎪⎪⎩
ȧk = −∂Hab

∂bk
,

ḃk =
∂Hab

∂ak
.

That is why it is reasonable to use symplectic methods
(i.e., preserving the Hamiltonian Hab) of integration of
system (4–2). Also notice in Figure 5 how the conven-
tional Runge–Kutta method (ode45 solver in Matlab)
fails to conserve energy.

We are going to describe shortly the main definitions
behind the Euler-A and Lobatto methods (mainly from
[Hairer et al. 02]).

We treat nonautonomous systems of first-order ordi-
nary differential equations

ẏ = f(t, y), y(t0) = y0.

Definition 6.1. Let βi, αij , i, j = 1, . . . , s, be real num-
bers, h a constant step size, and σi =

∑s
j=1 αij . An

s-stage Runge–Kutta method is given by

0 1 2 3 4 5 6
0.44

0.445

0.45

0.455

0.46

0.465

0.47

0.475

0.48

Explicit RK, (0.069)

Symplectic Euler−A, (−0.015)

Symplectic Lobatto, (−6.2e−006)

FIGURE 5. Evolution of the conserved Hamiltonian
Hab in numerical simulations. Case of a 4-teichon
Δt = 0.01, (a4

k=1)t=0 = (1,−1, 1,−1), (b4k=1)t=0 =
(2π − 0.1, 0.1, π − 0.1, π + 0.1). Method used: rela-
tive change of Hab.

ki = f
(
t0 + σih, y0 + h

s∑
j=1

αijkj

)
, i = 1, . . . , s

y1 = y0 + h
s∑
i=1

βiki.

Here we allow a full matrix (αij) of nonzero coeffi-
cients, thus making this an implicit integrator. If αij = 0
for i ≤ j, the method becomes an explicit Runge–Kutta
method.

It is customary to display coefficients in the following
way:

σ1 α11 . . . α1s

...
...

. . .
...

σs αs1 . . . αss
β1 . . . βs

We consider differential equations in the partitioned
form

ẏ = f(y, z), ż = g(y, z), (6–1)

where y, z may be vectors of different dimensions.
The idea is to take two different Runge–Kutta meth-

ods and to treat the y-variables with the first method
(αij , βi) and the z-variables with the second method
(α̂ij , β̂i).

Definition 6.2. Let αij , βi and α̂ij , β̂i be the coefficients of
two Runge–Kutta methods. A partitioned Runge–Kutta
method for the solution of (6–1) is given by

ki = f
(
y0 + h

s∑
j=1

αijkj , z0 + h
s∑
j=1

α̂ij lj

)
,

li = g
(
y0 + h

s∑
j=1

αijkj , z0 + h
s∑
j=1

α̂ij lj

)
,

y1 = y0 + h

s∑
i=1

βiki, z1 = z0 + h

s∑
i=1

β̂ili.

0 0 0 0
1/2 5/24 1/3 −1/24
1 1/6 2/3 1/6

1/6 2/3 1/6

0 1/6 −1/6 0
1/2 1/6 1/3 0
1 1/6 5/6 0

1/6 2/3 1/6

TABLE 1. Coefficients of the three-stage Lobatto IIIA-B pair.
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Method Explicit Runge-Kutta Euler-A Lobatto IIIA-B

Δt 10−2 10−2 10−3 10−4 10−2

Time spent 0.3 sec 2 sec 22 sec 734 sec 13 sec
Change in Hab 7.0 × 10−2 −1.5 × 10−2 −1.5 × 10−3 −1.5 × 10−4 −6.0 × 10−6

TABLE 2. Comparison of numerical methods used.

A particular example of this method is a symplectic
Euler-A method

yn+1 = yn + hf(yn, zn+1),

zn+1 = zn + hg(yn, zn+1),

or Euler-B method

yn+1 = yn + hf(yn+1, zn)

zn+1 = zn + hg(yn+1, zn).

Here the implicit Euler method with β1 = 1, α11 = 1 is
combined with the explicit Euler method with β̂1 = 1,
α̂11 = 0 (or vice versa).

Another example of the three-stage partitioned
Runge–Kutta method is the Lobatto IIIA-B method.
The coefficients of the method are given in Table 1.

In Figure 5 you can see the performance of three algo-
rithms in preserving the Hamiltonian Hab. Clearly, the
Lobatto IIIA-B method does the best job. This is due to
the fact that Lobatto IIIA-B is a fourth-order method,
while Euler-A is just a first-order method. The compar-
ison data are provided in Table 2.

6.2 Numerical Experiments with N -Teichons

The conjecture is that we can approximate any shape
with a relatively small number of teichons (around 20).
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−0.76651

−0.49363

 0.38789

  0.5793

−0.93535

 0.45668

−0.70085

FIGURE 6. Evolution of an 8-teichon from the circle
to a Donald-Duck-like shape. Positions of individual
1-teichons are marked by asterisks. The initial values
of (ak)8k=1 are given on the right.

In other words, we set an initial momentum on the circle
as a sum of 20 delta functions aiδ(θ − bi) scattered at
positions bi on the circle and satisfying conditions (4–3).
Then we solve EPDiff forward in time until time T = 1
(using the Lobatto IIIA-B scheme) and see what kind of
shapes appear.

One of the ideas is to learn the “syntax” of teichon
interaction: how they repel or attract each other and
what kind of shapes are produced as a result of these
interactions. From our experiments we can enunciate a
few certain rules of this “syntax.”

To simplify the discussion we can say that shapes basi-
cally have two sets of features: some number of extremi-
ties (or limbs) and some number of concavities (or dents).
We are going to state the conjecture on the formation of
these two features and provide figures of randomly gen-
erated shapes to support it.
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3
4
5

6
7

8

FIGURE 7. Time evolution of log |ak|’s (left) and bk’s
(right) for the solitons representing the Donald-Duck-
like shape of Figure 6.
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FIGURE 8. Evolution of a 16-teichon from the circle to the birdlike shape (left) and the bottlelike shape (right). Positions
of individual 1-teichons are marked by asterisks. Initial values of (ak)16k=1 are given on the right. (Data for the birdlike
shape is not available.)
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FIGURE 9. Evolution of a 16-teichon from the circle to the amoebalike shape (left) and the boomeranglike shape (right),
represented by a 16-teichon. Positions of individual 1-teichons are marked by asterisks. Initial values of (ak)16k=1 are given
on the right.

Extremities are obtained via “pinching,” i.e., two (or
more) close teichons are mutually attracted. The faster
they are heading (large values of aj ’s), the more pointed
is the extremity.

Concavities, or dents, are obtained via “ripping”: two
(or more) close teichons running away from each other.
The faster they are running, the more concave that part
of the shape will be.

Parts of the shape with no teichons, or with teichons
moving slowly (small values of aj), remain circular.

Let us see how these rules apply to the Donald-Duck-
like shape in Figure 6 (the evolution of ak, bk is shown
in Figure 7). It consists of the pointed end formed by

the “large” teichons 1, 2, 3 and the dull end formed by
solitons 4, 5, 6, 7. The sharper end is formed by “fast-
running” solitons 1, 2, 3. The “ripping” by teichons 1, 8
is somewhat bigger than that done by solitons 3, 4, since
teichons 1, 8 run faster away from each other than 3, 4.
The upper part of Donald’s head remains circular due to
the absence of any solitons.

One can see in Figures 8, 9, and 10 how these general
rules hold most of the time. Here there are five more fig-
ures with random shapes generated by 16-teichons. To
the right of the shape you can see the 1-teichon num-
ber j and the corresponding value of aj at the initial
time.
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FIGURE 10. Evolution of a 16-teichon from the cir-
cle to the socklike shape, represented by a 16-teichon.
Positions of individual 1-teichons are marked by aster-
isks. Initial values of (ak)16k=1 are given on the right.
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