On Symmetry of Flat Manifolds

Rafał Lutowski

CONTENTS

\author{

1. Introduction
 2. A Flat Manifold with Odd-Order Group of Symmetries
 3. (Outer) Automorphisms of Direct Products of Bieberbach Groups
 Acknowledgments
}

References

2000 AMS Subject Classification: Primary 20H15;
Secondary 20F34, 57S30
Keywords: Bieberbach groups, directly indecomposable groups

We give an example of a Bieberbach group Γ for which $\operatorname{Out}(\Gamma)$ is a cyclic group of order 3 . We also calculate the outer automorphism group of a direct product of n copies of a Bieberbach group with trivial center, for $n \in \mathbb{N}$. As a corollary we get that every symmetric group can be realized as an outer automorphism group of some Bieberbach group.

1. INTRODUCTION

Let X be a compact, connected, flat Riemannian manifold (flat manifold for short) and let Γ be the fundamental group of X. Then Γ is a Bieberbach group, i.e., a torsion-free group defined by a short exact sequence

$$
\begin{equation*}
0 \longrightarrow M \longrightarrow \Gamma \longrightarrow G \longrightarrow 1 \tag{1-1}
\end{equation*}
$$

where G is a finite group, called the holonomy group of Γ, and M is free abelian of finite rank and the maximal abelian subgroup of Γ.

Up to affine equivalence, X is determined by Γ (see [Charlap 86, Chapter II]). The set $\operatorname{Aff}(X)$ of affine selfequivalences of X is a Lie group. Let $\operatorname{Aff}_{0}(X)$ denote its identity component. Then $\operatorname{Aff}_{0}(X)$ is a torus whose dimension equals the first Betti number of X, and $\operatorname{Aff}(X) / \operatorname{Aff}_{0}(X)$ is isomorphic to $\operatorname{Out}(\Gamma)$, the outer automorphism group of Γ (see [Charlap 86, Chapter V]).

From the above, if $\operatorname{Aff}(X)$ is finite, then the first Betti number of X is equal to zero. Hence the center of Γ is trivial and

$$
\operatorname{Aff}(X) \cong \operatorname{Out}(\Gamma)
$$

Let H be a finite group. In this article we want to consider the following question: Does H occur as an outer automorphism group of some Bieberbach group with a trivial center (see [Szczepański 06, Problem 6])?

To give a more explicit description of $\operatorname{Out}(\Gamma)$, let N be the normalizer of G in $\operatorname{Aut}(M) \cong \mathrm{GL}_{n}(\mathbb{Z})$, and let $\delta \in H^{2}(G, M)$ be the cohomology class defining (1-1). There is a natural action of N on $H^{2}(G, M)$ (see [Charlap 86, page 168]) and a short exact sequence

$$
\begin{equation*}
0 \longrightarrow H^{1}(G, M) \longrightarrow \operatorname{Out}(\Gamma) \longrightarrow N_{\delta} / G \longrightarrow 1 \tag{1-2}
\end{equation*}
$$

where N_{δ} is the stabilizer of δ in N (see [Charlap 86, Theorem V.1.1]). Moreover, the center of Γ equals $M^{G}=\left\{m \in M \mid g \cdot m=m \forall_{g \in G}\right\}$ and Γ is torsionfree if and only if δ is special, i.e., $\operatorname{res}_{U}^{G}(\delta)$ is nonzero for every representative U of conjugacy classes of subgroups of G of prime order (see [Waldmüller 03, Section 1], with references).

There are examples of Bieberbach groups with trivial center and outer automorphism group isomorphic to the trivial group [Waldmüller 03], C_{2} (cyclic group of order 2) and $C_{2} \times\left(C_{2} \prec F\right)$, where $F \subset S_{2 k+1}$ is a cyclic group generated by the cycle $(1,2, \ldots, 2 k+1), k \geq 2$ [Hiss and Szczepański 97], $C_{2}^{k}, k \geq 2$ [Lutowski 09].

We would like to mention that an analogous problem for hyperbolic manifolds was recently solved by Belolipetsky and Lubotzky [Belolipetsky and Lubotzky 05].

In Section 2 we give an example of a flat manifold with group of affinities isomorphic to C_{3}, the cyclic group of order 3. In Section 3 we show that if Γ is a directly indecomposable Bieberbach group with trivial center, then the outer automorphism group of

$$
\Gamma^{n}=\underbrace{\Gamma \times \cdots \times \Gamma}_{n}
$$

is isomorphic to $\operatorname{Out}(\Gamma)$? S_{n}, the wreath product of Out (Γ) by S_{n}, the symmetric group on n letters. Hence, using the example from [Waldmüller 03], for every $n \in \mathbb{N}$, we get a flat manifold X with $\operatorname{Aff}(X) \cong S_{n}$.

All data needed for the calculations given in Section 2 can be found in the online supplement [Lutowski 08] to this article.

2. A FLAT MANIFOLD WITH ODD-ORDER GROUP OF SYMMETRIES

Let $G=\mathrm{M}_{11}$ be the Mathieu group on 11 letters. Then G has a presentation

$$
\begin{aligned}
G= & \langle a, b| a^{2}, b^{4},(a b)^{11},\left(a b^{2}\right)^{6} \\
& \left.a b a b a b^{-1} a b a b^{2} a b^{-1} a b a b^{-1} a b^{-1}\right\rangle .
\end{aligned}
$$

A representative of the conjugacy class of subgroups of order 2 is $\langle a\rangle$ and that of order 3 is $\left\langle\left(a b^{2}\right)^{2}\right\rangle$ (see [Wilson et al. 06, Waldmüller 03]). Since $|G|=7920=2^{4} \cdot 3^{2}$. $5 \cdot 11$, subgroups of G of orders 5 and 11 are the Sylow subgroups. Let M_{1}, M_{3}, M_{4} be integral representations of G from [Waldmüller 03] of degree respectively 20, 44, and 45 . Let M_{2} be a sublattice of index 3 of the lattice of degree 32 given in [Waldmüller 03], i.e., it is given by
the G-orbit of the vector

$$
(\underbrace{2,1, \ldots, 1}_{32})
$$

The lattices have the following properties:

1. The character afforded by M_{1} is $\chi+\bar{\chi}$, where χ is one of the two nonreal irreducible characters of G of degree 10; $H^{1}\left(G, M_{1}\right)=0$ and $H^{2}\left(G, M_{1}\right)=C_{6}$. For $\delta_{1} \in H^{2}\left(G, M_{1}\right)$ we pick one of the two cohomology classes of order 6 . We get $\operatorname{res}_{\left\langle\left(a b^{2}\right)^{2}\right\rangle}^{G} \delta_{1} \neq 0$.
2. The character afforded by M_{2} is $\chi+\bar{\chi}$, where χ is one of the two nonreal irreducible characters of G of degree 16; $H^{1}\left(G, M_{2}\right)=C_{3}$ and $H^{2}\left(G, M_{2}\right)=C_{5}$. For $\delta_{2} \in H^{2}\left(G, M_{2}\right)$ we pick any of the cohomology classes of order 5 . Restriction of δ_{2} to any subgroup of order 5 is nonzero.
3. The character afforded by M_{3} is the irreducible character of G of degree $44 ; H^{1}\left(G, M_{3}\right)=0$ and $H^{2}\left(G, M_{3}\right)=C_{6}$. For $\delta_{3} \in H^{2}\left(G, M_{3}\right)$ we pick one of the two cohomology classes of order 6 . We get $\operatorname{res}_{\langle a\rangle}^{G} \delta_{3} \neq 0$.
4. The character afforded by M_{4} is the irreducible character of G of degree $45 ; H^{1}\left(G, M_{4}\right)=0$ and $H^{2}\left(G, M_{4}\right)=C_{11}$. For $\delta_{4} \in H^{2}\left(G, M_{4}\right)$ we pick any of the cohomology classes of order 11. Restriction of δ_{4} to any subgroup of order 11 is nonzero.

Thus $\delta:=\delta_{1}+\cdots+\delta_{4} \in H^{2}(G, M)$ is a special element, where $M:=M_{1} \oplus \cdots \oplus M_{4}$. Let Γ be an extension of M by G defined by δ. Then Γ is torsion-free, and since $M^{G}=\bigoplus_{i=1}^{4} M_{i}^{G}=0$, it has trivial center. Moreover, $H^{1}(G, M)=C_{3}$.

We will show that $N_{\operatorname{Aut}(M)}(G)_{\delta}=G$. Since G is simple and $\operatorname{Out}(G)=1$, we have

$$
N_{\mathrm{Aut}(M)}(G)=C_{\mathrm{Aut}(M)}(G) \cdot G
$$

We claim that
$C_{\operatorname{Aut}(M)}(G)=C_{\operatorname{Aut}\left(M_{1}\right)}(G) \times \cdots \times C_{\operatorname{Aut}\left(M_{4}\right)}(G)=\left(\mathbb{Z}_{2}\right)^{4}$,
i.e.,

$$
C_{\operatorname{Aut}\left(M_{i}\right)}(G)=\{ \pm 1\}
$$

for $1 \leq i \leq 4$. The calculations of $C_{\operatorname{Aut}\left(M_{i}\right)}(G)$, for $i=$ $1,3,4$, can be found in [Waldmüller 03]. We have that $C_{\operatorname{Aut}\left(M_{2}\right)}(G)$ is the unit group of $\operatorname{End}_{\mathbb{Z} G}\left(M_{2}\right)$, and this ring is generated by I_{32}, the identity matrix of degree 32 , and a matrix B such that $\left(9 I_{32}+2 B\right)^{2}=-99 I_{32}$.

Hence $\operatorname{End}_{\mathbb{Z} G}\left(M_{2}\right)$ is isomorphic to $\mathbb{Z}[(3 \sqrt{-11}-1) / 2]$, and the claim follows.

Now it is obvious that $C_{\operatorname{Aut}(M)}(G)_{\delta}=1$, since none of the classes δ_{i}, for $1 \leq i \leq 4$, has order 2 . Thus $N_{\operatorname{Aut}(M)}(G)_{\delta}=C_{\operatorname{Aut}(M)}(G)_{\delta} \cdot G=G$.

Theorem 2.1. Let X be a flat manifold with fundamental group Γ. Then $\operatorname{Aff}(X) \cong \operatorname{Out}(\Gamma) \cong C_{3}$ is a group of order 3 .

The computations in this example have been performed with GAP[GAP 2007] and CARAT[Opgenorth et al. 03].

Remark 2.2. Recall the short exact sequence (1-2). In all the above examples the group N_{δ} / G has even order or is trivial. If this holds in general, then since the group $H^{1}(G, M)$ is abelian, we may suspect that any nonabelian group of odd order cannot be realized as a group of affinities of a flat manifold.

3. (OUTER) AUTOMORPHISMS OF DIRECT PRODUCTS OF BIEBERBACH GROUPS

Recall that a group is directly indecomposable if it cannot be expressed as a direct product of its nontrivial subgroups (see [Suzuki 82, page 129]). The following lemma is a corollary of [Golowin 39, Theorem 1].

Lemma 3.1. Let Γ be a directly indecomposable Bieberbach group with trivial center, $n \in \mathbb{N}$, and $\varphi \in \operatorname{Aut}\left(\Gamma^{n}\right)$. Then

$$
\exists_{\sigma \in S_{n}} \forall_{1 \leqslant i \leqslant n} \varphi\left(\Gamma_{i}\right)=\Gamma_{\sigma(i)}
$$

where $\Gamma_{i}:=\{1\}^{i-1} \times \Gamma \times\{1\}^{n-i}<\Gamma^{n}$, for $1 \leq i \leq n$.
Corollary 3.2. Let Γ be a directly indecomposable Bieberbach group with trivial center and $n \in \mathbb{N}$. Then

$$
\operatorname{Aut}\left(\Gamma^{n}\right)=\operatorname{Aut}(\Gamma) \imath S_{n}
$$

and hence

$$
\operatorname{Out}\left(\Gamma^{n}\right)=\operatorname{Out}(\Gamma) \imath S_{n}
$$

Since the holonomy group of the Bieberbach group given in [Waldmüller 03] is directly indecomposable, it follows that the Bieberbach group is directly indecomposable itself, and by Corollary 3.2 we get a family of finite groups that can be realized as groups of affinities of flat manifolds.

Corollary 3.3. For every $n \in \mathbb{N}$ there exists a flat manifold with group of affine self-equivalences isomorphic to the symmetric group S_{n}.

Using again [Golowin 39, Theorem 1], we get a generalization of Corollary 3.2.

Theorem 3.4. Let $\Gamma_{i}, i=1, \ldots, k$, be mutually nonisomorphic directly indecomposable Bieberbach groups with trivial center. Let $n_{i} \in \mathbb{N}, i=1, \ldots, k$. Then
$\operatorname{Out}\left(\Gamma_{1}^{n_{1}} \times \cdots \times \Gamma_{k}^{n_{k}}\right) \cong \operatorname{Out}\left(\Gamma_{1}\right) _S_{n_{1}} \times \cdots \times \operatorname{Out}\left(\Gamma_{k}\right)$ $S_{n_{k}}$.

ACKNOWLEDGMENTS

I would like to thank A. Szczepański and G. Hiss for their advice and the referees for helpful comments.

REFERENCES

[Belolipetsky and Lubotzky 05] M. Belolipetsky and A. Lubotzky. "Finite Groups and Hyperbolic Manifolds." Invent. math. 162 (2005), 459-472.
[Charlap 86] L. S. Charlap. Bieberbach Groups and Flat Manifolds. New York: Springer, 1986.
[GAP 2007] The GAP Group, GAP - Groups, Algorithms, and Programming, Version 4.4.10, http://www.gap-system. org, 2007.
[Golowin 39] O. N. Golowin. "On Factors without Centres in Direct Decompositions of Groups." Mat. Sbornik 6 (1939), 423-426.
[Hiss and Szczepański 97] G. Hiss, and A. Szczepański. "Flat Manifolds with Only Finitely Many Affinities." Bull. Polish Acad. Sci. Math. 45:4 (1997), 349-357.
[Lutowski 08] R. Lutowski. Appendix to this paper. Available online (http://math.univ.gda.pl/~rlutowsk/osofm/ appendix.tar.gz).
[Lutowski 09] R. Lutowski. PhD thesis, University of Gdańsk. In preparation, 2009.
[Opgenorth et al. 03] J. Opgenorth, W. Plesken, and T. Schulz. CARAT - Crystallographic Algorithms and Tables, Version 2.0, http://wwwb.math.rwth-aachen.de/ carat, 2003.
[Suzuki 82] M. Suzuki. Group Theory I. New York: SpringerVerlag, 1982.
[Szczepański 06] A. Szczepański. "Problems on Bieberbach Groups and Flat Manifolds." Geom. Dedicata 120 (2006), 111-118.
[Waldmüller 03] R. Waldmüller. "A Flat Manifold with No Symmetries." Experiment. Math. 12:1 (2003), 71-77.
[Wilson et al. 06] R. Wilson, P. Walsh, J. Tripp, I. Suleiman, R. Parker, S. Norton, S. Nickerson, S. Linton, J. Bray, and R. Abbott, "ATLAS of Finite Group Representations, Version 3." Available online (http://brauer.maths.qmul.ac.uk/ Atlas/v3/), 2006.

Rafał Lutowski, Institute of Mathematics, University of Gdańsk, ul. Wita Stwosza 57, 80-952 Gdańsk, Poland (rlutowsk@math.univ.gda.pl)

Received March 26, 2008; accepted in revised form August 7, 2008.

