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A fast new algorithm is used compute the zeros of 106 quadratic
character L-functions for negative fundamental discriminants
with absolute value d > 1012. These are compared to the 1-level
density, including various lower-order terms. These terms come
from, on the one hand, the explicit formula, and on the other,
the L-functions ratios conjecture. The latter give a much better
fit to the data, providing numerical evidence for the conjecture.

1. INTRODUCTION

1.1 Predictions

Standard conjectures [Katz and Sarnak 99] predict that
the low-lying zeros of quadratic Dirichlet L-functions
should be distributed according to a symplectic random
matrix model. To make this more precise, we shall intro-
duce some notation. Let χd be a real primitive character
modulo d, and suppose furthermore that χd(−1) · d is a
fundamental discriminant. Let g(τ) be a Schwartz-class
test function. Then the 1-level density for the zeros 1

2 +γd

of L(s, χd) should satisfy

1
X∗

∑
d≤X

∑
γd

g

(
γd

log X

2π

)
(1–1)

=
∫ ∞

−∞
g(τ)

(
1 − sin(2πτ)

2πτ

)
dτ + O

(
1

log X

)
,

where X∗ is the cardinality of fundamental discriminants
χd(−1) · d with d < X . This is a theorem [Özlük and
Snyder 92] if the support of the Fourier transform of g is
suitably restricted.

Recently, Conrey and Snaith [Conrey and Snaith 07]
made a precise prediction for the lower-order arithmetic
terms in the 1-level density. Their prediction is condi-
tional, assuming the L-functions ratios conjecture [Con-
rey et al. 08]. Miller [Miller 08] then proved (under
typical restrictions for the test function g(τ)) that these
lower-order terms exist and agree with the prediction in
[Conrey and Snaith 07].
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1.2 Experiments

Zeros of Dirichlet L-functions were first computed by
Davies and Haselgrove, by Spira, and by Rumley. Rubin-
stein was the first to compute, as one portion of his thesis
[Rubinstein 98], enough low-lying zeros to meaningfully
test (1–1). However, the numerical methods developed in
[Rubinstein 98] were optimized to compute L

(
1
2 + it, χd

)
for large real t rather than large d.

1.3 This Paper

The next section develops an algorithm to compute low-
lying zeros (0 ≤ t < 1) that is fast for large d. This is a
modification of the idea behind [Stopple 07]. The subse-
quent section has a discussion of the data from the com-
putation of the zeros of more than 106 quadratic char-
acter L-functions for negative fundamental discriminants
−d with d > 1012. This is followed by some implemen-
tation notes, and an appendix (Section 5) on Miller’s
“refined” 1-level density and the L-functions ratios con-
jecture.

2. ALGORITHM

We are going to compute the L-function on the critical
line by means of an approximate functional equation, an
idea that goes back to Lavrik and was first implemented
by Weinberger [Weinberger 75]. With χ a real character
modulo d, let a = (1−χ(−1))/2, and with t > 0 use s to
denote

(
1
2 + it + a

)
/2.1 Define

Z(t, χ) = ξ

(
1
2

+ it, χ

)
=
∑

n

χ(n)na2 Re(G(s, πn2/d)),

(2–1)
where

G(s, x) = x−sΓ(s, x) =
∫ ∞

1

exp(−yx)ys dy

y
.

As in [Weinberger 75], the tail of the series, the sum of
terms n > N , is bounded by d2 exp(−N2π/d)/(πN)2, so
if we want to compute to D digits of accuracy, we should
have

d2 exp(−N2π/d)
(πN)2

< 10−D. (2–2)

Certainly

N ≥ d1/2 log(d210D)1/2π−1/2 (2–3)

would suffice; later we shall see that we can do better
with any particular d.

1We are not actually assuming the generalized Riemann hypoth-
esis, but we are only looking for zeros on the critical line.

Differentiating with respect to x under the integral
defining G(s, x), we see that

d

dx
G(s, x) = −

∫ ∞

1

exp(−xy)ys+1 dy

y
= −G(s + 1, x),

(2–4)
while integration by parts, on the other hand, gives

G(s + 1, x) =
exp(−x)

x
+

s

x
G(s, x). (2–5)

Equations (2–4) and (2–5) give a nice recurrence relation
for all the derivatives G(k)(s, x) in terms of G(s, x). This,
in turn, motivates a consideration of Taylor expansions.

Suppose we compute G(s, x) by a Taylor series expan-
sion (in the second variable, centered at x0) to B terms,
where B is a parameter to be determined.

Lemma 2.1. We can bound the remainder in the Taylor
expansion by a function RB(x, x0) (defined below) that
satisfies

RB(x, x0) ≤ (x/x0 − 1)B

B!
Γ(B, x0) ≤ (x/x0 − 1)B

B
.

(2–6)

Proof: We have∣∣∣G(B)(s, x)
∣∣∣ = |G(s + B, x)| ≤

∫ ∞

1

exp(−xy)yB dy,

since s is in the critical strip. By the integral formula for
the remainder in Taylor’s theorem, we can bound that
remainder by

RB(x, x0)
def=

1
B!

∫ x

x0

∫ ∞

1

exp(−uy)yBdy (x − u)Bdu.

Change the order of integration and let t = x − u to get

=
−1
B!

∫ ∞

1

exp(−xy)
∫ 0

x−x0

exp(−ty)tBdt yBdy.

Now integrate by parts in the t integral to get

=
1
B!

∫ ∞

1

exp(−xy)(x − x0)B exp((x − x0)y)yB−1dy

− RB−1(x, x0).

Or in other words,

RB(x, x0) + RB−1(x, x0) =
(x − x0)B

B!
G(B, x0)

=

(
x
x0

− 1
)B

B!
Γ(B, x0).
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This implies the first inequality. For the second, we ob-
serve that

Γ(B, x0) =
∫ ∞

x0

exp(−y)yB dy

y

≤
∫ ∞

0

exp(−y)yB dy

y
= Γ(B) = (B − 1)!,

which completes the proof

The first inequality is stronger, so it is good for the
actual computation. The second is weaker, but simple
enough to be useful in proving the theorem.

Now we are ready to put the Taylor expansions to good
use. Similar to the method of [Stopple 07], we partition
the set {n2 | 1 ≤ n ≤ N} into intervals

Ij = [Fj , Fj+1) ,

for j = 1, . . . , T , where Fj is the jth Fibonacci number.
We then compute the function G by a Taylor expansion
in the second variable, centered at πFj/d, and truncated
to B terms:

2 Re(G(s, πn2/d)) ≈
B∑

k=0

Gj,k(t)(π/d)k · (n2 − Fj)k,

where
Gj,k(t) = 2 Re(G(k)(s, πFj/d))/k!. (2–7)

Theorem 2.2. We can compute Z(t, χ) as

Z(t, χ) =
T∑

j=1

B∑
k=0

Gj,k(t)(π/d)k
∑

n2∈Ij

χ(n)na(n2 − Fj)k

(2–8)
to D digits of accuracy, where T and B are both
O(log(d)), the implied constants depending on D.

The expression

Cjk
def=

∑
n2∈Ij

χ(n)na(n2 − Fj)k (2–9)

is a precomputation independent of s in integers that
is O(N · B) = O(d1/2 log(d)2). Subsequently, individual
evaluations of Z(t, χ) cost only O(T · B) = O(log(d)2).

Proof: Of course, the outermost sum on j ≤ T and the
innermost sum on n2 in Ij combine to give the squares
of all n ≤ N , the middle sum giving the needed Taylor
expansions. We need N2 to be in the last interval IT , so

N2 < FT+1 ≈ ΦT+1

√
5

, where Φ =
1 +

√
5

2
,

with N � d1/2+ε by (2–3). This implies that T � log(d)
suffices.

This is all well and good, but we need to show that
using Taylor expansions at points spaced in what is es-
sentially a geometric progression does not require an un-
reasonable number of terms B in each expansion in order
to compute accurately. Use |χ(n)| ≤ 1, na ≤ n, and the
rough estimate d1/2 for the L-series truncation parameter
N . Assuming that the errors we make in computing each
G(s, πn2/d) are independent with standard deviation ε,
then the standard error in the sum (2–1) is bounded by
[Dahlquist 74]

( d1/2∑
n=1

(nε)2
)1/2

� ε · d3/4,

where we have approximated a sum by an integral. We
want ε · d3/4 < 10−D, or

ε < 10−Dd−3/4,

which will determine how many terms B we need in each
Taylor expansion. We shall use the weaker inequality in
the lemma with

x0 = πFj/d, x < πFj+1/d,

which makes the error satisfy

ε <
(Fj+1/Fj − 1)B

B
< (Φ − 1)B .

Thus we want

(Φ − 1)B
< 10−Dd−3/4,

or

10Dd3/4 < (Φ − 1)−B =

(√
5 − 1
2

)B

,

and so B = O(log(d)) suffices.

For a single function evaluation (for example, deter-
mining whether Z(0, χ) > 0), this algorithm is no im-
provement over [Weinberger 75]; summing the series re-
quires O(d log(d))1/2 terms by (2–3). If one wants to do
an arbitrarily large number of function evaluations, the
improvement is spectacular, from exponential down to
polynomial (in terms of the number of digits of d, which
is approximately log(d)). This is deceptive, though, be-
cause what one really wants to do is find the all zeros
with, say, 0 ≤ t < 1. (Larger t intervals requires com-
puting G(s, x) via the methods of [Rubinstein 98], which
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FIGURE 1. Histogram of the lowest zero.

in turn necessitates redoing the precomputation.) Since
there are O(log(d)) such zeros and each can be found with
O(1) evaluations, the precomputation still dominates as
a theoretical result. But as Jan L. A. van de Snepscheut2

wrote, “In theory, there is no difference between theory
and practice. But in practice, there is.”

3. DATA

Zeros with t < 1 were computed for 1,003,089 negative
fundamental discriminants −d in the range 1012 ≤ d ≤
1012 +3.3 ·106, a total of 4,027,115 zeros. Figure 1 shows
a histogram for the imaginary part of the lowest-lying
zero, rescaled by log(1012)/(2π). The lowest zero found
was at t = 0.00242936, corresponding to the discriminant
−1,000,000,030,163.

Figure 2 shows the histogram of imaginary parts
of all the zeros, again rescaled by log(1012)/(2π) ≈
4.39761. The upper curve (dashed) is the main term
1 − sin(2πτ)/(2πτ) for the symplectic random matrix
model for the 1-level density. The lower curve (dotted)
also includes terms from (5–2) that are O(1/ log(X)).
(In the notation of the appendix, X = 1012 and ΔX =
3.3 · 106.) This version is derived from the explicit for-
mula. The fit is visibly poor for these values of X

and ΔX .

2Not Yogi Berra.

As usual, we assumed in (1–1) that supp(ĝ) ⊂
(−σ, σ) ⊂ (−1, 1), so that∫ ∞

−∞
g(τ)

(
− sin(2πτ)

2πτ

)
dτ = −g(0)

2
.

It is really the −g(0)/2 term that appears in the proof via
the explicit formula. Miller [Miller 08] derives a version of
the 1-level density in which the term −g(0)/2 is replaced
by a more complicated expression; see (5–3). This version
is graphed as a solid line in Figure 2. The fit appears to
be very good. Since (5–3) was first derived in [Conrey
and Snaith 07] from the L-functions ratios conjecture,
the data seem to provide good numerical evidence for
the conjecture. This also seems to indicate that there
is great deal of structure in the O(1/ log(X)) error in
(1–1), and the L-functions ratios conjecture captures that
structure. The data are available at http://www.math.
ucsb.edu/∼stopple/quadratic.experiment.

4. IMPLEMENTATION NOTES

4.1 Error Estimates

With D = 15 digits of accuracy and d near 1012, the
crude estimate (2–3) requires N = 5.4 · 106 terms in the
series. We can actually do a little better. Using this
as a starting estimate, Mathematica’s FindRoot uses a
variant of the secant method to determine that N = 4.3 ·
106 satisfies (2–2), for a savings of better than 20%.
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FIGURE 2. Histogram of all zeros.

The stronger inequality in the lemma determines good
values for the Taylor series truncation parameter B in
computing G(s, πn2/d). Consider the case a = 1, i.e., a
negative discriminant. Assuming that the errors (2–6) in
the terms are independent, and using |χ(n)| ≤ 1, na = n,
the standard error in the sum over all n2 in Ij is bounded
by [Dahlquist 74]

Γ(B, πFj/d)
B!

( ∑
Fj≤n2<Fj+1

n2(n2/Fj − 1)2B
)1/2

.

We can estimate the sum by an integral:

∫ √
Fj+1

√
Fj

t2(t2/Fj − 1)2Bdt

≈ F
3/2
j

∫ Φ1/2

1

u2(u2 − 1)2Bdu.

So the error from the sum over n2 in Ij is about

Γ(B, πFj/d)
B!

F
3/4
j

( ∫ Φ1/2

1

u2(u2 − 1)2Bdu
)1/2

. (4–1)

For d near 1012, we need T = 65 intervals, and it is easy
to compute (4–1) in Mathematica for various B. We see
that B = B(j) should increase linearly from 84 at j = 31
to 107 at j = 65, in order that the total of all errors be
only about 10−15. (For j < 31, the intervals Ij contain

not many more than B(j) squares n2, so the contribution
of these n, namely 1 ≤ n ≤ 1160, is computed directly.)

The case a = 0, i.e., positive discriminant, is treated
similarly. It turns out that one needs B(j) to increase
linearly from 70 at j = 31 to 78 at j = 65.

4.2 Algorithms

To find fundamental discriminants, I check the congru-
ence condition and test for divisibility by the squares of
the first 200 primes. (The 94 examples divisible by the
square of a prime larger than the 200th prime were easily
identified with Mathematica and removed from the data
by hand.)

To compute Γ(s) I use the Lanczos algorithm as in
[Press et al. 92]. Precomputed values of Γ(s) allow effi-
cient computation of incomplete gamma functions Γ(s, x)
for various x by the methods of [Press et al. 92]: series
expansion for x < 6 and continued fractions for x ≥ 6.
These algorithms compare well with those implemented
in Mathematica, giving both absolute and relative er-
ror no worse than 10−18 for the relevant range of x and
| Im(s)| < 1.

To find zeros of Z(t, χ), the computation is
stepped through values in increments of t of size
2π/ log(1012/(2π))/50, i.e., 1/50th the mean gap be-
tween zeros. When a sign change was observed, Ridder’s
method [Press et al. 92] was used to find the root. No
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effort was made to verify the generalized Riemann hy-
pothesis, or that all zeros of Z(t, χ) with t < 1 were
located. (However, the obvious check that Z(0, χ) > 0
was made.)

4.3 Hardware

Computations were done on a 3.0-GHz 8-core Mac Pro.
Both the integer arithmetic and the recursion for the
derivatives G(k)(s, x) were done with GMP 4.2.1 (ported
to the Intel Core 2 Duo 64-bit processor by Jason Worth
Martin). For the rest of the floating-point computations,
the C types long double, long double complex suf-
ficed.

4.4 Parallelization

Most of the computation consists in computing the val-
ues (n2 − Fj)k in (2–9). Since this is independent of d,
there is a gain in efficiency by computing the quantities
Cjk in (2–9) for eight discriminants at a time. Parallelism
is easily implemented using Pthreads. The contribution
of the intervals Ij is computed in T separate threads for
eight discriminants at a time. Once all the precompu-
tation is done, the zeros of Z(t, χ) for each of the eight
characters χ are computed in eight separate threads.

4.5 Testing

Accuracy of computed zeros was tested three ways:
first, by recomputing well-known examples [Watkins
00, Watkins 03, Weinberger 75] of moderate-sized dis-
criminants such as −115,147 and −175,990,483. Sec-
ond, I also implemented the method of [Weinberger 75]
directly in Mathematica and compared a few examples
for discriminants with absolute value greater than 1012,
with agreement to 15 digits. Third, I compared with
the unpublished data from Rubinstein’s thesis [Rubin-
stein 98]. This includes 3601 prime discriminants −d

with 1012 ≤ d ≤ 1012 + 2 · 105. The data were in agree-
ment with his to the ten digits of accuracy he computed.

5. APPENDIX: REFINED 1-LEVEL DENSITY

This appendix closely follows [Miller 08] to determine
the 1-level density, including lower-order terms, for the
family of quadratic Dirichlet L-functions. Instead of con-
sidering the set of all fundamental d < X , I adapted the
proof for

F(X) = {X < |d| < X + ΔX}.
Where Miller treats the case that χd is an even function,
i.e., d > 0, I instead considered χd an odd function, −d <

0. Throughout, I assumed about ΔX that

X1/2 log(X) = o(ΔX) and ΔX = o(X). (5–1)

Theorem 5.1. (Miller.) Let g be an even Schwartz test
function such that supp(ĝ) ⊂ (−σ, σ), where ĝ denotes
the Fourier transform of g. Let

A′(r) =
∑

p

log p

(p + 1)(p1+2r − 1)
.

Then

1
	F(X)

∑
d∈F(X)

∑
γd

g

(
γd

log X

2π

)
(5–2)

=
∫ ∞

−∞
g(τ)

(
1 − sin(2πτ)

2πτ

)
dτ

+
1

log X

∫ ∞

−∞
g(τ)

[
− log(π) + Re

Γ′

Γ

(
3
4

+
iπτ

log X

)

+ 2 Re
ζ′

ζ

(
1 +

4πiτ

log X

)
+ 2 ReA′

(
2πiτ

log X

)]
dτ

+ o

(
1

log X

)
+ O

(
Xσ/2 log6 X

ΔX1/2

)
.

Of course, to get the O(Xσ/2 log6 X/ΔX1/2) error to
be o(1/ log X), we would need to restrict the support of
ĝ to be a subset of

(− 1
2 , 1

2

)
.

Figure 3 shows each of the three nonconstant terms
that are absorbed in the O(1/ log(X)) error in (1–1),
all on the same scale 2πτ/ log(X) = t. The Γ′/Γ
term (dotted) is slowly increasing and very smooth,
while A′ (dashed) is small and wobbly. Observe that
when ζ

(
1
2 + iγ

)
= 0, the contribution at t = γ/2 of

ζ′/ζ(1 + 2it) (solid) is positive and large. This follows
from [Titchmarsh 86, Theorem 9.6(A)], which says that

ζ′(s)
ζ(s)

=
∑

|t−γ|≤1

1
s − ρ

+ O(log(t)),

so up to a small error, the logarithmic derivative is deter-
mined by the nearby zeros ρ. This “resurgence” of the
zeros of ζ(s) does not play much of a role in the data
(t < 1) presented here.

Since the fit of the data to even the “refined” 1-level
density is poor, we turn instead to the prediction in-
spired by the L-functions ratios conjecture. The term
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FIGURE 3. All three nonconstant O(1/ log(X)) terms. The ζ′/ζ term is the solid line, the Γ′/Γ term is dotted, and the
A′ term is dashed.
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FIGURE 4. − sin(2πτ )/(2πτ ) (dashed) v. Rest(τ, X) (solid)

− sin(2πτ)/(2πτ) is replaced by the real part of

R(τ, X) =
−2

	F(X) log X

∑
d∈F(X)

exp
(
−2πiτ

log(d/π)
log X

)

×
Γ
(

3
4 − πiτ

log X

)
Γ
(

3
4 + πiτ

log X

) ζ(2)ζ
(
1 − 4πiτ

log X

)
ζ
(
−2 − 4πiτ

log X

) . (5–3)

(We have simplified the notation from [Miller 08, (1.6)];
see also Miller’s Lemma 2.4.) Miller shows [Miller 08,
Lemma 2.1] that on the Riemann hypothesis,∫ ∞

−∞
g(τ)R(τ, X)dτ = −g(0)/2 + O(X−3/4(1−σ)+ε),

and unconditionally with a larger error. Here, as usual,
supp(ĝ) ⊂ (−σ, σ).

In order that the prediction not depend on the spe-
cific discriminants in F(X), we use summation by parts
[Miller 08, Remark 2.3] to estimate

∑
d<X

exp
(
−2πiτ

log(d/π)
log X

)

=
3X

π2

(
X

π

)−2πiτ
log(X) 1

1 − 2πiτ/ log(X)
+ O(X1/2),

and similarly with the sum over d < X + ΔX . The dif-
ference of these divided by 	F(X) = 3ΔX/π2 + O(X +
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ΔX)1/2 is used in an estimate of (5–3) and denoted by
Rest(τ, X). Figure 4 shows how Rest(τ, X) (solid) com-
pares to − sin(2πτ)/(2πτ) (dashed).

The solid graph in Figure 2 has − sin(2πτ)/(2πτ)
replaced by Rest(X), and also includes the other
O(1/ log(X)) terms.
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