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This paper provides a proof of a p-adic character formula by
means of motivic integration. We use motivic integration to
produce virtual Chow motives that control the values of the
characters of all depth-zero supercuspidal representations on all
topologically unipotent elements of p-adic SL(2); likewise, we
find motives for the values of the Fourier transform of all reg-
ular elliptic orbital integrals having minimal nonnegative depth
in their own Cartan subalgebra, on all topologically nilpotent
elements of p-adic sl(2). We then find identities in the ring of
virtual Chow motives over Q that relate these two classes of mo-
tives. These identities provide explicit expressions for the val-
ues of characters of all depth-zero supercuspidal representations
of p-adic SL(2) as linear combinations of Fourier transforms of
semisimple orbital integrals, thus providing a proof of a p-adic
character formula.

1. INTRODUCTION

The representation theory of groups over finite fields is
stated entirely in terms of algebraic geometry through
the work of Deligne and Lusztig [Deligne and Lusztig
76, Lusztig 85]. Naturally, it is desirable to “lift” the ge-
ometric constructions to the p-adic groups. Motivic in-
tegration offers an approach to this problem that is very
different from all previous ones; although it is not aiming
at a complete understanding of the geometry underlying
various objects of representation theory, it could in prin-
ciple provide an algorithm for computing them in each
individual case. This paper is essentially an experiment
illustrating this point.

In this paper we work with the group SL(2) over a p-
adic field for the simple reason that the geometric objects
that arise as a result of computing the “motivic” volumes
turn out to be easily computable by hand; in fact, all
the ones that are nontrivial turn out to be conics. For
bigger groups, both the algorithms and the results are
of course much more complicated, but we believe that
still there are computable geometric objects responsible
for the character values in general, and this will be the
subject of a future article.
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There is already substantial evidence that the objects
arising in harmonic analysis on reductive p-adic groups
are “motivic” (in particular, computable). The most
spectacular result in this direction appears in a very re-
cent article [Cluckers et al. 07] that shows that the orbital
integrals arising in the fundamental lemma are motivic.
Earlier papers on this topic include [Cunningham and
Hales 04], which provides an explicit description of a cer-
tain class of semisimple orbital integrals, and [Gordon
04], where it is proved that the values of characters of
depth-zero representations are motivic near the identity.

The virtual Chow motives we calculate appear in the
context of the following expansion for the character of any
depth-zero supercuspidal representation of p-adic SL(2).
(The precise statement is Theorem 2.5.) Let p be an odd
prime, let K be a p-adic field with residue field Fq (so q is
a power of p), and let G = SL(2,K). We use the modified
Cayley transform cay(Y ) = (1+Y/2)(1−Y/2)−1 to pass
between the topologically nilpotent elements in the Lie
algebra and the topologically unipotent elements in the
group. We show that there is a finite set of regular elliptic
orbits represented by the elements Xz in the Lie algebra
g := sl(2,K), each having minimal nonnegative depth in
its Cartan subalgebra, with the following property. Let π
be an arbitrary depth-zero supercuspidal representation
of G and let Θπ be the distribution character of π in
the sense of Harish-Chandra. Then there are rational
numbers cz(π) such that

Θπ (cay(Y )) =
∑

z

cz(π) μ̂Xz (Y ), (1–1)

for all regular topologically nilpotent elements Y of g.
(Here μ̂Xz denotes the generalized function on g corre-
sponding to the Fourier transform of the orbital integral
at Xz.) The coefficients cz(π) are given in Table 4, from
which one sees that up to sign (given by a quadratic
character at −1), cz(π) is in fact a rational function in
q (the cardinality of the residue field of K) with integer
coefficients that are independent of q; of course, this is a
meaningful observation only if one clarifies in what sense
the left- and right-hand sides of equation (1–1) may be
viewed as functions in q, as we shall do later in the pa-
per. We shall refer to equation (1–1) as a semisimple
character expansion. The question of uniqueness of the
coefficients is discussed in Section 6.

It is fair to say that the existence of a semisimple char-
acter expansion is well known in one form or another, as
is the fact that it extends, mutatis mutandis, to a much
larger class of representations and groups. The novelty of
this paper lies in our proof. We use motivic integration

to “separate” the character and each of the orbital inte-
grals into a linear combination of the values of the cor-
responding function defined over the residue field, with
coefficients that are virtual Chow motives. Then we can
see directly that on each side of the semisimple character
expansion we have the combination of the same values
with the same coefficients. This approach clearly shows
two ways in which algebraic geometry appears in the val-
ues of the characters and orbital integrals: the finite field
function is in fact the characteristic function of a char-
acter sheaf; and the “motivic” coefficients come from the
process of inflation and induction that connects our rep-
resentation with the representation of the group over the
finite field.

As a consequence of this perspective, we find much
more than the coefficients cz(π) promised above. In fact,
we produce expressions for the values of the characters of
all depth-zero supercuspidal representations on all topo-
logically unipotent elements of G. Likewise, we produce
expressions for the values of the Fourier transforms of
all regular elliptic orbital integrals having minimal non-
negative depth in their own Cartan subalgebra, on all
topologically nilpotent elements of g. Comparing these
leads to Table 4 and the proof of equation (1–1). The
character tables for SL(2,K) were computed by Sally and
Shalika in [Sally and Shalika 68]. Since they use a differ-
ent construction of the supercuspidal representations of
SL(2) from that of induction from a compact subgroup
used here, it is difficult to match our calculations with
their classical calculation before we see the result. How-
ever, once we have the character values, it becomes easy
to find them in the character tables computed by Sally
and Shalika. This can, in fact, be used to match the rep-
resentations of depth zero obtained by the modern con-
struction with the equivalent representations appearing
in those classical tables.

2. BASIC NOTIONS

Throughout this paper, K denotes a p-adic field; by
this we mean that K is a field equipped with a nonar-
chimedean valuation such that it is complete and locally
compact with respect to the topology determined by the
norm, and such that the residue field (which is neces-
sarily finite) has characteristic p. Notice that we do not
put any condition on the characteristic of K. As is well
known, any such K is a finite extension of Qp or of Fp((t)),
where t is transcendental over Fp. The ring of integers of
K will be denoted by OK, and the maximal ideal in OK

will be denoted by pK. The residue field will be denoted
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by Fq. We reserve q for the cardinality of Fq, and p for
the characteristic of Fq, so that q is a power of p.

Next, we fix a prime � different from p and an algebraic
closure Q̄� of Q�. We will shortly assume p �= 2. Hence-
forth, by “representation” we mean a representation in a
vector space over Q̄�.

In Sections 2.1 and 4.1 we make brief reference to the
Bruhat–Tits building and Moy–Prasad filtrations for G
(see [Moy and Prasad 94]). In those sections of the paper,
we will use the notation of Moy–Prasad. In particular, for
each pair (x, r), where x is a point and r is a nonnegative
real number as above, Gx,r is a compact open subgroup
of G; when r = 0, this is often abbreviated to Gx. For
each pair (x, r) as above, let Gx,r be the smooth integral
model for GK introduced in [Yu 02]; the set of integral
points in Gx,r coincides with Gx,r. We write Ḡx,r for the
reductive quotient of the special fiber of Gx,r. Analogous
notions apply to the Lie algebra g: for any point x and
any real number r, gx,r denotes the Moy–Prasad lattice
in g, and g

x,r
denotes the corresponding integral model

for gK, while ḡx,r denotes the corresponding Lie algebra
scheme over Fq. When we use gx,r and Gx,r, we will often
write these down explicitly, with the hope that readers
unfamiliar with Moy–Prasad filtrations will have little
difficulty with the essential features of this paper.

Note that we have not yet chosen a uniformizer for K,
and that none of the constructions above require such a
choice.

2.1 Depth-Zero Representations

In this section we remind the reader how to construct
all depth-zero supercuspidal irreducible representations
of G, up to equivalence.

Let (π, V ) be a representation of G. For each point
x in the Bruhat–Tits building for G, let Vx denote the
subspace consisting of those v ∈ V such that π(k)v =
v for each k ∈ Gx,0+ . Then Gx,0 acts on Vx, and the
resulting representation is denoted by πx. By definition,
the representation π has depth zero if Vx is nontrivial for
some point x in the Bruhat–Tits building for G.

The canonical map OK → Fq will be denoted by x �→
x̄, and with x and r as above, we write ρx,r : gx,r → ḡx,r

for the quotient map with kernel equal to the pronilpo-
tent radical gx,r+ of gx,r.

For each depth-zero π and each point x in the Bruhat–
Tits building forG, the representation πx factors through
ρx,0 : Gx,0 → Ḡx,0. Let π̄x denote the representation
of Ḡx,0 on Vx such that πx(k) = (π̄x ◦ ρx,0)(k) for all
k ∈ Gx; then π̄x is called the representation of Ḡx,0

obtained by compact restriction and is also denoted by
cResG

Gx,0
(π, V ).

From the other direction, let x be a point in the
Bruhat–Tits building for G and let (σ,W ) be a repre-
sentation of Ḡx, and let (ρ∗x,0σ,W ) be the representa-
tion of Gx defined by (ρ∗x,0σ)(k) = σ(ρx,0(k)), for each
k ∈ Gx. The right-regular representation of G on the
space of compactly supported functions f : G→W such
that f(kg) = (ρ∗x,0σ)(k)f(g) for all g ∈ G and all k ∈ Gx

is called the representation of G obtained from (σ,W )
(or (ρ∗x,0σ,W )) by compact induction and denoted by
cIndG

Gx
(σ,W ).

Although
(
cResG

Gx
, cIndG

Gx

)
is an adjoint pair of func-

tors (see [Vigneras 03]), one must be careful: even if σ
is a cuspidal irreducible representation of Ḡx, it does not
follow in general that cIndG

Gx
σ is an admissible repre-

sentation of G, let alone a supercuspidal representation.
To clarify matters somewhat, we have the following re-
sult, which we paraphrase from independent results by
Lawrence Morris and Moy–Prasad. For each point x in
the Bruhat–Tits building for G, the compact restriction
functor cResG

Gx
restricts to a surjection from supercus-

pidal irreducible representations of G to cuspidal irre-
ducible representations of Ḡx. Moreover, if π is a depth-
zero supercuspidal representation of G, then there is a
vertex x in the Bruhat–Tits building for G such that
cIndG

Gx
(cResG

Gx
π) is equivalent to π.

There are exactly two G-orbits of vertices in the
Bruhat–Tits building for G; let (0) and (1) be the ad-
jacent vertices corresponding to the following maximal
compact subgroups:

G(0):=
{(

a b
c d

) ∣∣∣ a, b, c, d ∈ OK; ad− bc = 1
}
,

G(1):=
{(

a b
c d

) ∣∣∣ a, d ∈ OK, b ∈ p−1
K , c ∈ p1

K; ad− bc = 1
}
.

(2–1)
The special fibers of the integral models G(0) and G(1)

are both SL(2)Fq ; it follows that Ḡ(0) and Ḡ(1) are both
SL(2,Fq). Therefore, up to equivalence, all depth-zero
supercuspidal irreducible representations of G are pro-
duced by compact induction from cuspidal irreducible
representations of SL(2,Fq). Accordingly, to enumerate
all depth-zero supercuspidal irreducible representations
of G, it is necessary to recall the construction of cuspidal
irreducible representations of SL(2,Fq). This we will do
in Section 2.3. In the meantime, we record the result:
each depth-zero supercuspidal irreducible representation
of G is equivalent to one in Table 1, where all terms are
defined in Section 2.3.



14 Experimental Mathematics, Vol. 18 (2009), No. 1

π(0, θ) := cIndG
G(0)

(σθ) π(1, θ) := cIndG
G(1)

(σθ)

π(0, +) := cIndG
G(0)

(σ+) π(1, +) := cIndG
G(1)

(σ+)

π(0,−) := cIndG
G(0)

(σ−) π(1,−) := cIndG
G(1)

(σ−)

TABLE 1. The representations π appearing in Theorem 2.5.

2.2 Gauss Sums

Before moving on to a review of the cuspidal irreducible
representations of SL(2,Fq), we say a few words about
Gauss sums, which are the prototype for much that fol-
lows. Let sgn : Fq → Q̄� be the quadratic character of
F×

q extended by zero to Fq. Arbitrarily but irrevocably,
we fix an additive character ψ̄ : Fq → Q̄�. Let ŝgn de-
note the Fourier transform of sgn with respect to ψ̄ in
the following sense:

ŝgn(a) =
∑

x∈A1(Fq)

sgn(x)ψ̄(ax).

(Note that this Fourier transform is not unitary.) Con-
sider the Gauss sums γ± : Fq → Q̄� defined by

γ+(a) :=
∑

{x∈A1(Fq) | sgn(x)=+1}
ψ̄(xa),

γ−(a) :=
∑

{x∈A1(Fq) | sgn(x)=−1}
ψ̄(xa).

(2–2)

Then γ+ − γ− = ŝgn. Elementary arguments show that
γ+ + γ− = −1 and (γ+ − γ−)2 = q sgn(−1). Fix a square
root

√
q of q in Q̄�. Then there is a unique square root

ζ ∈ Q̄� of sgn(−1) (determined by ψ̄) such that

ŝgn =
√
qζ sgn. (2–3)

Observe that sgn is an eigenvector for the Fourier trans-
form with eigenvalue

√
qζ.

Remark 2.1. We wish to emphasize here that ζ ∈ Q̄� is
determined by two choices: the square root

√
q of q in Q̄�

and the additive character ψ̄ : Fq → Q̄�. Also, although
ζ is a fourth root of unity, it is not necessarily a primitive
fourth root of unity; indeed, ζ2 = sgn(−1).

2.3 Cuspidal Representations of SL(2, Fq)

Let T denote the anisotropic torus of SL(2)Fq with Fq-
rational points

T (Fq) =
{[

x y
εy x

]
∈ SL(2,Fq) |x2 − y2ε = 1

}
, (2–4)

where ε is a nonsquare in F×
q .

Let RG
T denote the Deligne–Lusztig induction functor

of [Deligne and Lusztig 76]; this takes virtual representa-
tions of T (Fq) to virtual representations of SL(2,Fq). If
θ is nontrivial and the order of θ is not 2 (so θ is in “gen-
eral position”) then (−1)RG

T (θ) is an irreducible cuspidal
representation of SL(2,Fq), which we henceforth denote
by σθ; in other words, as virtual representations,

RG
T (θ) = −σθ. (2–5)

Let QT denote the restriction of traceRG
T (θ) to the set

of unipotent elements of SL(2,Fq), where θ is in general
position; as the notation suggests, QT is independent of
θ. This is the (classical) Green’s polynomial for SL(2,Fq).
For future reference,

QT (g) =

⎧⎪⎨⎪⎩
1, g �= [ 1 0

0 1 ] ∧ trace g = 2,
1 − q, g = [ 1 0

0 1 ],
0, otherwise.

(2–6)

(See, for example, the appendix to [Digne and Michel
91].)

If θ0 is the quadratic character of T (Fq), then the
Deligne–Lusztig virtual representation RG

T (θ0) contains
two irreducible cuspidal representations, which form the
Lusztig series for (T, θ0). It is well known that the differ-
ence between the characters of these two representations
is supported by the set of regular unipotent elements of
SL(2,Fq) (see Remark 2.3). We label the representations
in the Lusztig series for (T, θ0) by σ+ and σ− and define

QG := traceσ+ − traceσ− (2–7)

in such a way that

QG

([
1 1
0 1

])
=

√
qζ3. (2–8)

Then,

QG

([
a b
c d

])
=

⎧⎪⎨⎪⎩
√
qζ3sgn(b), a+ d = 2 ∧ b �= 0,√
qζsgn(c), a+ d = 2 ∧ c �= 0,

0, otherwise.
(2–9)

In particular, QG is supported by regular unipotent ele-
ments. (For this calculation we refer readers to the lovely
table from the appendix to [Digne and Michel 91] with
the caveat that what they denote by

√
q sgn(−1) is here

denoted by
√
qζ3.)

For a variety of reasons, it is the characters σ+ and
σ− that are the most interesting.
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aQ(σ) Q = QT Q = QG

σ = σθ −1 0

σ = σ± − 1
2

∓ 1
2

TABLE 2. χσ =
∑

Q aQ(σ)Q.

Since QG and QT are supported by unipotent ele-
ments, for all primes p except 2, we can and shall often
abuse notation by considering these as functions on the
nilpotent elements of sl(2,Fq) by composing them with
the modified Cayley transform cay(X) = (1+(X/2))(1−
(X/2))−1. We then have

QG ([ 0 1
0 0 ]) =

√
qζ3,

QG

(
[ 0 −1
0 0 ]

)
=

√
qζ,

QG ([ 0 0
0 0 ]) = 0,

and
QT ([ 0 1

0 0 ]) = 1,

QT

(
[ 0 −1
0 0 ]

)
= 1,

QT ([ 0 0
0 0 ]) = 1 − q.

Remark 2.2. We wish to emphasize that the choice of
√
q

and ψ̄ determined ζ, and that we labeled the representa-
tions in the Lusztig series {σ+, σ−} for (T, θ0) precisely
so that equation (2–8) would be true.

We close this section by recalling one small conse-
quence of Lusztig’s celebrated work on character sheaves
and representations of finite groups of Lie type (see
[Lusztig 85]). Let σ be any cuspidal representation of
SL(2,Fq) and let χσ denote the restriction of traceσ to
unipotent elements. Then there are unique aQ(σ) ∈ Q̄�

such that
χσ =

∑
Q

aQ(σ)Q,

where the sum is taken over the set {QT , QG} of (gen-
eralized) Green’s polynomials. The values of aQ(σ) are
given in Table 2; they will play a role in the calculations
for the coefficients cz(π) appearing in Table 4.

Remark 2.3. The characters of the representations σθ

and σ+ and σ− introduced above are perhaps best un-
derstood in terms of characteristic functions of charac-
ter sheaves. Let θ be any character of T (Fq) and let
Lθ be the corresponding Frobenius-stable Kummer local
system on the étale site of TF̄q

; in this case, the charac-
teristic function χLθ

: T (Fq) → Q̄� of Lθ coincides with θ

(see [Lusztig 85, 8.4] for the definition of “characteristic
function”). Let indG

T denote the cohomological induction
functor of [Lusztig 85]; this takes Frobenius-stable char-
acter sheaves for TF̄q

to Frobenius-stable perverse sheaves
for GF̄q

. If θ is nontrivial and not quadratic (i.e., in gen-
eral position for SL(2)), then indG

T Lθ[1] is a Frobenius-
stable character sheaf and the characteristic function of
this perverse sheaf is the character of RG

T (θ); in other
words,

traceRG
T (θ) = χindG

T Lθ [1]

when θ is in general position. (Note that indG
T Lθ[1] is

not a cuspidal character sheaf, even though traceRG
T (θ)

is a cuspidal function.) On the other hand, indG
T Lθ0 [1]

is not a character sheaf; rather, it is a direct sum of
character sheaves. The algebraic group GF̄q

admits two
cuspidal character sheaves: one, denoted by C0, is unipo-
tent (i.e., supported by the unipotent cone in SL(2, F̄q)),
while the other, denoted by C1, is supported by −1 times
the unipotent cone. Comparing with the notation above,
we have QG = χC0 . In this paper we are chiefly con-
cerned with the characters of cuspidal representations
of SL(2,Fq) when restricted to unipotent elements in
SL(2,Fq); the vector space spanned by characters of cus-
pidal representations restricted to unipotent elements is
two-dimensional, and a basis for this space is given by
QG (the restriction of χC0 to the unipotent cone) and
QT (the restriction of χCθ

to the unipotent cone), where
θ is any fixed character in general position.

2.4 The Elements Xz

Before specifying the orbits appearing in equation (1–1)
we say a few words about Cartan subalgebras of g, or
equivalently, about conjugacy classes of forms of GL(1)K

in SL(2)K. (These are the proper twisted-Levi subgroups
of G.) This is precisely the kernel C(K) of the map in
Galois cohomology αK : H1(K, N) → H1(K, G) that
is induced by the inclusion N → G, where N denotes
the normalizer of the split torus of diagonal matrices
in G. To study this kernel, it is useful to first pass to
the unramified closure Knr of K in K̄ and observe that
C(Knr) = kerαKnr contains exactly one nontrivial ele-
ment and this element corresponds to the conjugacy class
of forms that split over a (totally ramified) quadratic ex-
tension of Knr. Let τ0 be the trivial element in C(Knr)
and let τ1 be the nontrivial element in C(Knr). The in-
clusion Gal(K̄/Knr) → Gal(K̄/K) induces a surjection in
Galois cohomology, which in turn restricts to a surjection
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C(K) → C(Knr), as pictured below:

H1(K, G) �� �� H1(Knr, G)

H1(K, N)

αK

��

�� �� H1(Knr, N)

αKnr

��

C(K)

��

�� C(Knr)

��

1

��

�� 1

��

The fiber above τ0 consists of three classes in H1(K, N),
and the fiber above τ1 consists of four classes inH1(K, N)
if sgn(−1) = 1 and two classes in H1(K, N) if sgn(−1) =
−1, where sgn : K → Q̄� is the quadratic character of O∗

K

extended by zero to all K.
We now return to the orbits appearing in equation

(1–1). In order to define these orbits, we now pick a
uniformizer � for K and a nonsquare unit ε in OK. For
reasons that will be apparent later, we also now introduce
a new parameter, v, taking values in O∗

K and defineXz(v)
in Table 3. Representatives for the orbits appearing in
equation (1–1) are given by Xz :=Xz(1). Notice that
each Xz(v) ∈ g above is good, in the sense of [Adler 98,
Section 2.2].

Each of the Xz(v) determines a compact Cartan
subalgebra g (independent of v ∈ O∗

K), and therefore
a cocycle representing a class in kerαK. Thus, the
summation set in equation (1–1) is the set of cocy-
cles {s1, s2, t0, t1, t2, t3} ⊂ Z1(K, N). However, some of
these cocycles represent the same cohomology class in
H1(K, N), depending on the sign of −1 in K; specifi-
cally, if sgn(−1) = −1, then t0 and t1 represent the same
cohomology class, and t2 and t3 also represent the same
class in H1(K, N).

Remark 2.4. Observe that picking � and ε is exactly
equivalent to picking representative cocycles for the co-
homology classes in kerαK. In fact, our choice for s1
corresponds to our choice of ε, and our choice for t0 cor-
responds to our choice of �.

2.5 Normalization of the Measures

We choose the Haar measure on SL(2,K) that coincides
with the Serre–Oesterlé measure on SL(2,OK); that is,
our Haar measure for G is normalized so that the volume
of the maximal compact subgroup SL(2,OK) is the cardi-
nality of SL(2,Fq), which is q(q2 − 1). In this setting, all

the fibers of the projection SL(2,OK) → SL(2,Fq) have
volume 1. We denote this measure on G by m. This
choice determines a Haar measure on g such that the
volume of of the kernel of the map sl(2,OK) → sl(2,Fq)
is also 1; i.e., the volume of sl(2,OK) equals the cardi-
nality of sl(2,Fq). We denote this measure on g by vol.
Observe that the volume of sl(2,OK) is q2

q2−1 times that
of SL(2,OK).

With these choices, the formal degree of a representa-
tion π produced by compact induction from a cuspidal
irreducible representation σ on the finite reductive quo-
tient of a maximal parahoric subgroup of G coincides
with the dimension traceσ(1) of σ.

2.6 Statement of the Character Formula

We now state the character formula appearing in the in-
troduction more carefully. Fix measures for G and g as
specified in Section 2.5.

For any smooth representation π of G, let Θπ denote
the generalized function corresponding to the distribu-
tion character π with respect to the Haar measure on
G above. For any regular semisimple X in g and any
locally constant compactly supported f : g → Q̄�, let
μX(f) denote the orbital integral of f at X . Fix an ad-
ditive character ψ of K with conductor OK such that the
induced additive character of the residue field Fq is ψ̄
(see Section 2.2). For any f as above, let f̂ denote the
Fourier transform of f taken with respect to the Killing
form 〈Y, Z〉 := trace (Y Z), character ψ, and Haar mea-
sure on g specified in Section 2.5; thus

f̂(Y ) =
∫

g

f(Z)ψ(〈Y, Z〉) dZ.

Let μ̂X(f) denote the orbital integral of f̂ at X .

Theorem 2.5. Let K be a p-adic field with p �= 2. For
each depth-zero supercuspidal representation π of G and
for each cocycle z ∈ {s1, s2, t0, t1, t2, t3} (see Section 2.4),
there is a regular elliptic Xz ∈ g and cz(π) ∈ Q such that

Θπ(cay∗f) =
∑

z∈{s1,s2,t0,t1,t2,t3}
cz(π)μ̂Xz (f) (2–10)

for all Schwartz functions f supported by topologically
nilpotent elements in g. The coefficients cz(π) are all
rational numbers. The coefficients cz(π) are given in Ta-
ble 4.

This paper is devoted to understanding Theorem 2.5
from the motivic perspective. To that end, we present a
brief review of motivic integration in Section 2.7.
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z s1 s2 t0 t1 t2 t3

Xz(v)

[
0 v
εv 0

] [
0 �−1v

ε�v 0

] [
0 v

�v 0

] [
0 εv

�ε−1v 0

] [
0 v

�εv 0

] [
0 εv

�v 0

]

TABLE 3. Elements Xz(v). Orbits Xz := Xz(1) appear in Theorem 2.5.

cz(π) z = s1 z = s2 z = t0 z = t1 z = t2 z = t3

π = π(0, θ) q − 1 0 0 0 0 0

π = π(1, θ) 0 q − 1 0 0 0 0

π = π(0, +) q−1
2

0 − q2−1
23q

ζ2 + q2−1
23q

ζ2 − q2−1
23q

ζ2 + q2−1
23q

ζ2

π = π(0,−) q−1
2

0 + q2−1
23q

ζ2 − q2−1
23q

ζ2 + q2−1
23q

ζ2 − q2−1
23q

ζ2

π = π(1, +) 0 q−1
2

− q2−1
23q

ζ2 + q2−1
23q

ζ2 + q2−1
23q

ζ2 − q2−1
23q

ζ2

π = π(1,−) 0 q−1
2

+ q2−1
23q

ζ2 − q2−1
23q

ζ2 − q2−1
23q

ζ2 + q2−1
23q

ζ2

TABLE 4. The coefficients cz(π) appearing in Theorem 2.5. (Here we write ζ2 for sgn(−1) in order to save space.)

Our proof of Theorem 2.5 is sketched in Section 2.8
and executed in Section 5; we will calculate the coeffi-
cients cz(π) for each depth-zero supercuspidal π, up to
equivalence.

Remark 2.6. More properties of the coefficients cz(π) are
given in Section 6. We show there that each coefficient
may be interpreted as a virtual Chow motive. The is-
sue of uniqueness of the coefficients is also addressed in
Section 6.

2.7 Motivic Integration

The goal of arithmetic motivic integration is essentially
to reduce the calculation of p-adic volumes to the com-
putation of the number of points on varieties over finite
fields. In particular, suppose we are talking about subsets
of an affine space defined over a p-adic field. Consider the
measurable subsets that can be described in a language
(of logic) that depends neither on p nor on the choice
of the uniformizer of the valuation (one such language is
the language of Denef–Pas that is described in the next
subsection). Once a set is described by a logical formula
in such a language, it is possible to associate a geometric
object defined over Q with it, in such a way that for al-

most all primes p, the volume of our set can be recovered
from the number of points of the reduction of this object
over Fq, where q = pr is the cardinality of the residue
field of the given local field.

Motivic integration is based on the algorithm of elim-
ination of quantifiers (there is also a more recent version
[Cluckers and Loeser 08], where in some parts quantifier
elimination is replaced with cell decomposition, also an
algorithmic procedure). Since at present, motivic inte-
gration as an algorithm is not implemented, it has not
previously been used for computing examples; neverthe-
less, it can be used to prove general existence results for
the required geometric objects (which already has im-
plications, as explored in [Hales 05a, Cunningham and
Hales 04, Gordon 04]).

We refer to the original papers [Denef and Loeser 01,
Cluckers and Loeser 08] and to the beautiful exposition
[Hales 05b] for the detailed description the concept of
motivic integration and the statements of “comparison
theorems” that relate the classical p-adic volumes with
the motivic volumes. In the next few subsections we just
give a list of the techniques we use.

2.7.1 The Language of Rings and the Language of
Denef–Pas. The language of rings is the language of
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logic such that its formulas can be interpreted in any ring
with identity; thus, any such ring is a structure for this
language. The language of rings has symbols for 0 and 1,
symbols for countably many variables, and the symbols
for the operations of addition + and multiplication ×. A
formula is a syntactically correct expression built from
finitely many of these symbols, and also parentheses ( );
quantifiers ∃, ∀; and symbols of conjunction ∧, disjunc-
tion ∨, and negation ¬. We will usually use this language
to work with the residue field of our valued field.

There is also a first-order language that is perfectly
suited for defining subsets of nonarchimedean-valued
fields: it is the language of Denef–Pas. Formulas in this
language have variables of three sorts: the valued field
sort, the residue field sort, and the value sort. There
also are symbols for the function ord(·), which takes vari-
ables of the valued field sort to the variables of the value
sort, and the function ac(·) that takes the variables of
the valued field sort to the variables of the residue field
sort. The formulas are built using algebraic operations
on variables of the same sort; the symbols ord(·) and
ac(·) (which can be applied to variables of the valued
field sort); quantifiers; and the symbols for the logical
operations of conjunction, disjunction, and negation.

Every valued field with a choice of a uniformizer
(K, �) is a structure for the language of Denef–Pas; then
the functions ord and ac match the usual valuation and
“angular component” maps, where the “angular compo-
nent” ac(x) equals the first nonzero coefficient of the p-
adic expansion of x, i.e., if x is a unit, ac(x) = xmod (�);
if x is not a unit, ac(x) = x�−ord(x)mod (�).

A subset of an affine space over a local field K is called
definable if it can be defined by a formula in the language
of Denef–Pas. For a formula Φ with m free variables of
the residue field sort and no other free variables, given a
local field with the ring of integers OK and a choice of
the uniformizer, we will denote by Z(Φ,OK) the subset
of OK

⊕m defined by the formula Φ.

2.7.2 The Ring of Virtual Chow Motives. In all ver-
sions of motivic integration, the motivic volume takes val-
ues in some ring built from the Grothendieck ring of the
category of algebraic varieties over the base field, which
is Q in our case.

Strictly speaking, the so-called ring of virtual Chow
motives is a natural choice of the ring of values for
the arithmetic motivic volume, for reasons described in
[Hales 05b]. We will not define Chow motives here (see
[Scholl 94] for a good introduction). As a first approxi-
mation, it is possible to think just of formal linear combi-

nations of isomorphism classes of varieties with rational
coefficients.

The motivic volume takes values in the ring Mot,
which we will now define. Let MotQ be the category
of Chow motives over Q. We take its Grothendieck ring
K0(MotQ), i.e., the ring of formal linear combinations of
the isomorphism classes of the Chow motives, with nat-
ural relations (see [Scholl 94]), and the product coming
from tensor product. This ring has a unit 1. For every
smooth projective variety V there is a Chow motive that
corresponds to V in a natural way. It is a deep theorem
that this map from varieties to motives extends to all
(not just smooth projective) varieties, and induces a ho-
momorphism from the Grothendieck ring of the category
of varieties K0(VarQ) to K0(MotQ). Let us denote the
image of this map by K0(Mot)v. The image of the class
of the affine line under this map is usually denoted by L

(called the Lefschetz motive); the point maps to 1. Note
that naturally, in K0(MotQ) we have L+1 = [P1], where
[P1] is the class of the Chow motive corresponding to the
projective line.

The ring Mot is obtained from K0(Mot)v ⊗Z Q by
localizing at L followed by localizing further at the set
{L−i − 1 | i > 0} (i.e., all these elements can be formally
inverted). Note that the localization at {L−i − 1 | i > 0}
(which is equivalent to adding in the sums of geometric
series with quotient Li) replaces the completion that was
done in the original version [Denef and Loeser 01].

Let us also adopt the following convention: for a poly-
nomial F (q) ∈ Z[q], we will denote by [F (L)] the class of
F (L) in the ring Mot.

For every prime power q, there is an action of TrFrobq

on the elements of Mot that comes from the Frobenius
action on the Chow motives. It can be thought of as a
generalization of counting points on a variety over Fq.
The trace of the Frobenius operator on a Chow motive
is the alternating sum of the traces of Frobenius acting
on its �-adic cohomology groups, and it is a priori an
element of Q̄� (see [Denef and Loeser 01, Section 3.3]),
but in fact, this number lies in Q for all elements of Mot
that arise from the motivic volumes (in particular, for
us the choice of � doesn’t matter). It is the trace of the
Frobenius action that allows us to relate the values of
the motivic measure (elements of Mot) to the usual p-
adic volumes (rational numbers).

2.7.3 The Motivic Volume. We cannot describe the
construction of the motivic volume here, but we need only
very simple examples in this paper, so we list just a few
main principles and introduce the notation. Following
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the pattern of [Hales 05b], we start by declaring that
there is a map from formulas in the language of rings
to the ring Mot defined above. We denote the image
of a formula φ under this map by [φ]. We will use two
properties of this map:

• The motivic volume of a formula in the language
of rings with no quantifiers that defines a smooth
algebraic variety is the class of that variety.

• If φ1 and φ2 are equivalent ring formulas, then they
have equal motivic volumes. If φ1 is an n-fold cover
of φ2 (both the equivalence and the term “cover” are
understood in the sense of [Hales 05b]), then

[φ2] =
1
n

[φ1].

Now let us say a few words about the construction of
the motivic volume for definable sets that is compatible
with the classical volume of p-adic sets. First, we need
to talk about sets in a way that does not depend on the
field—and that is done by considering definable sets, as
described above. In order to pass back and forth between
sets and formulas defining them, it is very convenient to
use the notion of a definable subassignment introduced in
[Denef and Loeser 01].

Let hAm be the functor of points of the affine space
that takes fields to sets (K �→ Am(K)). A subassign-
ment of hAm is simply a collection of subsets of Am(K),
one for each field K. A formula Φ in the language of
Denef–Pas with m free variables naturally defines a sub-
assignment of hAm on a suitable category of local fields
(e.g., the category of all nonarchimedean completions of a
given global field): for each local field K, take the subset
of Am(K) on which the formula takes the value “true.”
Such subassignments are called definable.

The motivic volume is defined on definable subassign-
ments and takes values in the ring Mot of virtual Chow
motives. We denote the motivic volume by μ, so that
μ(Φ) denotes the motivic volume of the subassignment
defined by the formula Φ. Sometimes, if we have a de-
finable set H (defined by some formula Φ), we will write
μ(H), meaning μ(Φ).

The strategy of motivic integration is to replace the
formula that defines our subassignment with an equiva-
lent formula that has no quantifiers ranging over the val-
ued field (the language of Denef–Pas admits quantifier
elimination). The next step is to “approximate” the new
formula by the formulas in the language of rings whose
variables range only over the finite field. Finally, ring

formulas can be mapped to the ring Mot defined above,
as mentioned in the beginning of this subsection.

The main result that makes motivic integration rele-
vant for us is the comparison theorem [Denef and Loeser
01, Theorems 8.3.1, 8.3.2]. Let Φ be a formula in the
language of Denef–Pas. The comparison theorems (one
of which deals with the fields of characteristic zero, and
the other one with function fields) state that for all but
finitely many primes p, for any local field K with the
ring of integers OK and the residue field Fq of cardinality
q = pr, the volume of the set Z(Φ,OK) equals the trace
of the Frobenius action on μ(Φ) (which is an element
of Mot).

In fact, it is possible to some extent to keep track of
the “bad primes” where the comparison theorem fails,
and we will do this as we compute the motivic volumes
in our examples.

2.7.4 Motivic Integration with Parameters. Here we
quote one more technical notation from [Cluckers and
Loeser 08] that will be used only in the proof of Lemma
3.3. Cluckers and Loeser [Cluckers and Loeser 08] have
a more general construction of the motivic volume: they
define motivic volume on definable subassignments of the
functor of points of Am

K × An
k × Zr, which is denoted by

h[m,n, r] (here K stands for the valued field, and k for
its residue field), which corresponds to considering fami-
lies of definable subassignments of hAm

K
with parameters

in k and in Zr .

2.8 Outline of the Proof of Theorem 2.5

Since the rest of the paper is devoted to the proof of
Theorem 2.5, we describe the strategy before we get into
the technicalities.

We need to prove an equality of two distributions rep-
resented by locally constant locally integrable functions
on the set of regular topologically unipotent elements
in the group G. Each of these functions takes count-
ably many values. We prove the equality by partitioning
the domain into sets on which both sides are constant,
and showing equality on each of these sets. Moreover,
the problem is in fact not just countable, it is in some
sense finite. Each of the two functions is obtained by a
Frobenius-like formula from a function that takes finitely
many values (explicitly, three distinct values for the func-
tion on the left-hand side and five distinct values for the
function on the right-hand side). Motivic integration al-
lows us to isolate these values and the coefficients at each
one of them that are acquired in the Frobenius formula.
Those latter coefficients also turn out to be computable.
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It is in this sense that the proof is better suited for a
computer than for a human, and that is in fact the point
of this paper.

In order to be more precise, we must first say a few
words about regular topologically unipotent elements of
G. To do this, we start by studying regular topologically
nilpotent elements in the Lie algebra g; we will then in-
voke our assumption that p is odd, in which case these
correspond exactly, via the modified Cayley transform
cay(X) = (1 + (X/2))(1 − (X/2))−1, to regular topolog-
ically unipotent elements of G. (In fact, cay establishes
a bijection from topologically nilpotent elements of g to
topologically unipotent elements of G.)

What we need, ideally, is a partition of the set of reg-
ular topologically unipotent elements into definable sets
such that all the functions involved (the characters and
Fourier transforms of the orbital integrals) will be con-
stant on them. We will not explicitly use any local con-
stancy results (except in Section 6); instead, we will first
make the partition, and then see that it is the right one.

Recall that at the moment, ε (a nonsquare unit) and
� (the uniformizer of the valuation) are fixed. One of the
points of the motivic integration approach is to do the
calculation independently of these choices, but that re-
quires some tricks (discussed below), since they are both
very deeply ingrained in all the definitions: ε is linked
with the cocycles z, and � plays a role in the construc-
tion of our representations. For now, we write down ex-
plicitly seven Cartan subalgebras of g (one noncompact
and six compact):

hs0 =
{[
x 0
0 −x

] ∣∣∣ x ∈ K

}
,

hs1 =
{[

0 x
xε 0

] ∣∣∣ x ∈ K

}
,

hs2 =
{[

0 x�−1

xε� 0

] ∣∣∣ x ∈ K

}
, ,

ht0 =
{[

0 x
x� 0

] ∣∣∣ x ∈ K

}
, ,

ht1 =
{[

0 xε
x�ε−1 0

] ∣∣∣ x ∈ K

}
,

ht2 =
{[

0 x
x�ε 0

] ∣∣∣ x ∈ K

}
,

ht3 =
{[

0 xε
x� 0

] ∣∣∣ x ∈ K

}
.

We have labeled our Cartan subalgebras by cocycles
z ∈ {s0, s1, s2, t0, t1, t2, t3}, one from each cohomology
class in C(K) (see Section 2.4) in the case sgn(−1) = 1. In
the case sgn(−1) = −1, the Cartan subalgebras labeled

by t0 and t1 are conjugate; and those labeled by t2 and
t3 are conjugate (which means that the corresponding
cocycles represent the same cohomology class). We will
always consider each one of these subalgebras separately,
which means that we are doing one-third more work than
necessary half the time.

Our Cartan subalgebras are filtered by an index n

that is closely related to the depth. To write the fil-
tration lattices explicitly, in Table 5 we define, for each
z ∈ {s0, s1, s2, t0, t1, t2, t3}, integer n, and unit u in OK,
an element Yz,n(u) ∈ hz . Let hz,n := {Yz,n(u) |u ∈ O∗

K}.
If z is s0, s1, or s2, then hz,n is the set of elements of hz

with depth n; however, if z is t0, t1, t2, or t3 then hz,n is
the set of elements of hz with depth 1

2 + n.
In this paper we are particularly interested in under-

standing our distributions on topologically nilpotent el-
ements of g. In anticipation of the correct partition of
regular topologically nilpotent elements of g, we now de-
fine

hz,n,+ := {Yz,n(u) |u ∈ O∗
K ∧ sgn(u) = +1} ,

and

hz,n,− := {Yz,n(u) |u ∈ O∗
K ∧ sgn(u) = −1} ,

and denote by Ghz,n,± the corresponding G-invariant
sets. If z = s0, s1, or s2, then Ghz,n,± consists of topolog-
ically nilpotent elements if and only if n ≥ 1; if z = t0, t1,
t2, or t3 then Ghz,n,± consists of topologically nilpotent
elements if and only if n ≥ 0.

Further, let Ghz,n (respectively Ghz,n,+, Ghz,n,−) de-
note the smallest G-invariant set containing hz,n, where
G acts on g by adjoint action. The disjoint union of all
the sets Ghz,n (as z ranges over the fixed set of rep-
resentatives for C(K) and n ranges over all nonnegative
integers, with the exception of n = 0 in Ghs0,n, Ghs1,n,
and Ghs1,n) coincides with the set of regular topologically
nilpotent elements in g.

In fact, conjugation by G removes the ambiguity
caused by the choice of specific cocycles (and therefore
the choice of ε): different representatives of the same co-
homology class correspond to different, but conjugate,
Cartan subalgebras. Hence, it would be more appropri-
ate to label the sets Ghz,n by the cohomology classes, and
call them Ghτ,n, where τ is the cohomology class repre-
sented by z. We would like to stress that this produces a
partition of the topologically nilpotent set that depends
only on sgn(−1) (because the number of the distinct co-
homology classes depends on this sign), and not on any
choices. However, we do need the specific representatives
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z s0 s1 s2

Yz,n(u)
[

�nu 0
0 −�nu

] [
0 �nu

ε�nu 0

] [
0 �n−1u

ε�n+1u 0

]

z t0 t1 t2 t3

Yz,n(u)
[

0 �nu
�n+1u 0

] [
0 ε�nu

ε−1�n+1u 0

] [
0 �nu

ε�n+1u 0

] [
0 ε�nu

�n+1u 0

]
TABLE 5. Elements Yz,n(u).

Yz,n(u) of each one of the sets Ghτ,n in order to carry out
our calculations. Our choice of these representatives de-
pends on ε and �. The strategy is to carry out all the
explicit calculations first, get to the level of logical for-
mulas, and at that stage � would disappear entirely. To
remove the dependence of ε, in Section 3.3 we turn it into
a parameter ranging over the residue field, and then av-
erage over it, also showing that in fact we are averaging
a constant function.

Note that with the way we defined our subalgebras, in
the case sgn(−1) = −1 when two pairs of them become
conjugate, this conjugation switches the ± sign: Ght0,n,+

corresponds to Ght1,n,−, and Ght3,n,+ corresponds to
Ght2,n,− (we will see that this is reflected in our char-
acter table).

On the group side, we write Γz,n (respectively Γz,n,+,
Γz,n,−) for the image of hz,n (respectively hz,n,+, hz,n,−)
under the modified Cayley transform cay, when defined;
we denote the corresponding G-invariant sets by GΓz,n

(respectively GΓz,n,+, GΓz,n,−). The characteristic func-
tions of the sets GΓz,n,± will be denoted by fz,n,±, and
the characteristic functions of the sets Ghz,n,± will be
denoted by f̃z,n,± throughout the paper.

Given a depth-zero representation π induced from a
maximal compact subgroup Gx, in Section 3 we associate
three virtual Chow motives (denoted by Mx,0

z,n,±, Mx,1
z,n,±,

and Mx,ε
z,n,±) with each triple (z, n,±) as above, so that

the value of the distribution character of π at fz,n,± can
be recovered from this triple of virtual Chow motives for
almost all residual characteristics p (in fact, for all p �= 2).
Moreover, we will see that the only way in which these
motives depend on π is through the compact subgroup on
which π has nontrivial compact restriction (i.e., through
the choice of the vertex in the building x = (0) or x = (1);
see Section 2.1).

In Section 4, we also associate with each (z, n,±) five
virtual Chow motives, so that all orbital integrals that

appear on the right-hand side of the semisimple character
expansion can be recovered from these motives.

In Section 4.4, we put together all the results about
groups over the finite fields that are crucial for our un-
derstanding of the p-adic “lifts.”

Since both sides of the semisimple character expansion
are invariant under conjugation by G, all we have to do
is check the equality on each of the sets Γz,n. This is
done in Section 5. Due to the very mechanical nature of
this proof, we do not include all the details. In all proofs,
we include all the details in one “unramified” case z = s1
and one “ramified” case z = t2; in the other cases we just
indicate the differences and summarize the results in the
tables.

3. MOTIVES CORRESPONDING TO OUR
CHARACTERS

Throughout Section 3, x denotes either the standard ver-
tex (0) or the vertex (1) in the Bruhat–Tits building for
G (see equation (2–1)); we also reserve the symbol y for
the barycenter of the facet with boundary {(0), (1)}.

3.1 Consequences of the Frobenius Formula
for the Character

This section follows the method of expressing the char-
acter as a sum over conjugacy classes in the reductive
quotient that was used in [Gordon 04].

Let π be a supercuspidal depth-zero representation of
G and let Θπ be its distribution character in the sense of
Harish-Chandra. Let f be a test function supported on
some compact subset H of the set of regular topologically
unipotent elements in G. We can assume that f = fH is
the characteristic function of such a set without loss of
generality. Let χ be the character of the representation
of the finite group Ḡx that gave rise to π (see Section
2.1). Since Gx is a maximal compact subgroup of G, the
Frobenius formula gives the following expression for the
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character:

Θπ(fH) =
∫

G

∫
G

fH(ghg−1)χx,0(h) dh dg

=
∫

G

∫
H

χx,0(g−1hg) dh dg

=
∫

G/Gx

∫
Gx

∫
H

χx,0(k−1g−1hgk) dh dk dg

= m(Gx)
∫

G/Gx

∫
H

χx,0(g−1hg) dh dg.

(3–1)
(Recall from Section 2.5 that the formal degree d(π) of π
is exactly χx,0(1).) The real work is to prove that these
integrals converge. Of course, Harish-Chandra did this
long ago when the characteristic of K is 0. This is also
done in the proof of [Bushnell and Henniart 96, Theorem
A.14(ii)]. We will see the convergence when we do the
calculations by hand.

The next step is to rewrite the outside integral in
equation (3–1) as a sum using the Cartan decomposi-
tion G = GxAGx, where A is the set of elements of the
form aλ :=diag(�λ, �−λ) with λ a nonnegative integer.
This is also done in [Bushnell and Henniart 96, Theorem
A.14(ii)]; see equation (3–3) below. We will also take
this formula one step further by collecting the terms cor-
responding to each value of the character of SL2(Fq) at
unipotent elements.

Before we can carry out this plan, we need to intro-
duce some more notation. Recall that there are three
unipotent conjugacy classes in SL(2,Fq): the class U0 of
the identity (one element), the class U1 of the element
[ 1 1
0 1 ], and the class Uε of the element [ 1 ε

0 1 ], where ε is
a nonsquare in Fq. Suppose U is a unipotent conjugacy
class in SL(2,Fq), λ is a nonnegative integer, and x is a
vertex in the Bruhat–Tits building for G. For any regular
topologically unipotent element h of G, let Nx

U,λ(h) de-
note the number of right Gx-cosets gGx inside the double
coset GxaλGx that satisfy the following condition:

g−1hg ∈ Gx ∧ ρx,0(g−1hg) ∈ U.

Proposition 3.1. Let π be a supercuspidal depth-zero rep-
resentation of G and let Θπ be its distribution character
in the sense of Harish-Chandra. Let H be a compact
set of regular topologically unipotent elements in G and
let fH be the characteristic function of H. Let χ be the
character of the representation of the finite group Ḡx that
gave rise to π (see Section 2.1). Then

Θπ(fH) =
∑

λ

∑
U

χ(U)
∫

H

Nx
U,λ(h) dh, (3–2)

where U runs over unipotent conjugacy classes in
SL(2,Fq) and λ runs over nonnegative integers. The sum
over λ has only finitely many nonzero terms.

Proof: Consider a fixed double coset GxaλGx. We ob-
serve that if g1, g2 ∈ Gx and g1aλGx = g2aλGx, then
χx,0(g−1

1 hg1) = χx,0(g−1
2 hg2). Hence, using Cartan de-

composition, the double integral from the formula (3–1)
can be rewritten as a double sum, and we obtain the for-
mula (cf. [Bushnell and Henniart 96, Theorem A.14(ii)])

Θπ(fH)

= m(Gx)
∑

a∈Gx\G/Gx

∑
g∈GxaGx/Gx

∫
H

χx,0(g−1hg) dh,

(3–3)
where the summation index in the outside sum runs over
the set of representatives of the double cosets, that is,
over A, and the summation index in the inner sum runs
over the set of representatives of the left Gx-cosets in-
side the given double coset. We refer to [Bushnell and
Henniart 96, Theorem A.14(ii)] for the proof that there
are only finitely many values of λ that give nonzero sum-
mands.

Now consider the contribution of the double coset

Gx

[
�λ 0
0 �−λ

]
Gx

to the sum on the right-hand side of equation (3–3). The
following two observations make the calculation of the
character fairly simple. First, the function χx,0 vanishes
outside the maximal compact subgroup Gx, while on Gx,
the value χx,0(g) depends only on ρx,0(g). Second, the
setH is contained in the set of topologically unipotent el-
ements, so for every h in H , the element ρx,0(g−1hg) is a
unipotent element in Ḡx, provided that g−1hg lies in Gx.
Using these observations, it is possible to rewrite the for-
mula for the character (equation (3–3)) in the following
form:

Θπ(fH) =
∑

λ

∑
U

χ(U)
∫

H

Nx
U,λ(h) dh. (3–4)

That completes the proof.

In the next section, we will see that the numbers
Nx

U,λ(h) give rise to geometric objects. Note that these
numbers essentially depend only on the group; they de-
pend on the representation only through the choice of
the vertex x that indexes the maximal compact subgroup
from which our representation is induced.
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3.2 Almost Definable Sets W x
U,λ(h)

In this section we begin the process of finding Chow mo-
tives related to the numbers Nx

U,λ(h) introduced in Sec-
tion 3.1 by expressing these numbers as p-adic volumes of
some sets W x

U,λ(h); we will then use the comparison the-
orem of Denef and Loeser (see Section 2.7.3) to recover
these p-adic volumes from the motivic volumes. But first
we need to introduce yet more notation.

Suppose U is a unipotent conjugacy class in Ḡx, λ is a
nonnegative integer, and x is a vertex in the Bruhat–Tits
building for G as before. For any regular topologically
unipotent element h of G, define

W x
U,λ(h) := {y ∈ Gx | a−1

λ y−1hyaλ

∈ Gx ∧ ρx,0((yaλ)−1h(yaλ)) ∈ U}.
(3–5)

Lemma 3.2. With notation as above,

Nx
U,λ(h) = (q + 1)q2λ−1

m(W x
U,λ(h))

m(Gx)
, (3–6)

for all regular topologically unipotent h ∈ G.

Proof: Let aλ denote the element diag(�λ, �−λ), as be-
fore. For each λ ∈ N ∪ {0}, we say that two elements
y1 and y2 in Gx are λ-equivalent if y1aλ and y2aλ are
in the same left Gx-coset, that is, if a−1

λ y−1
1 y2aλ ∈ Gx.

The λ-equivalence class of an element y is denoted by
[y]λ. Each set W x

U,λ(h) is a finite disjoint union of λ-
equivalence classes (see [Gordon 04]), and if it contains
an element y, it contains the whole class [y]λ. With this
notation, the number Nx

U,λ(h) equals the number of λ-
equivalence classes in the set W x

U,λ(h).
Now, for λ > 0, the cardinality of GxaλGx/Gx is

(q + 1)q2λ−1, as can be shown using the affine Bruhat
decomposition for G (see [Bruhat and Tits 96], for ex-
ample). Since all equivalence classes have equal volumes
(see [Gordon 04, Lemma 4]), it follows that

Nx
U,λ(h) = (q + 1)q2λ−1

m(W x
U,λ(h))

m(Gx)
, (3–7)

as claimed.

The sets W x
U,λ(h) are almost definable, but they de-

pend on the parameter h, which cannot be specified
within the language. Still, it is possible to use motivic
integration to calculate their volumes, using the version
of motivic integration that allows parameters.

3.3 Motivic Volumes of the Sets W x
U,λ(h)

In this section, we write down the formulas defining the
sets W x

U,λ(h) of the previous section, and then calculate
their motivic volumes. This is done case by case in z.
We start with the most interesting case z = s1. We in-
clude the details only for x = (0). Before we start the
calculation, two remarks are due.

First, recall that we had to fix a nonsquare unit ε
and a uniformizer �, as discussed in Section 2.8. In this
section, we introduce a variable δ that will be allowed to
range over nonsquare units. As discussed in Section 2.7.1,
a p-adic field together with the choice of the uniformizer
is a structure for the language of Denef–Pas (i.e., such a
choice provides an interpretation of all the formulas). If
we choose a nonsquare unit ε in the given field, carry out
all the constructions that have appeared so far, and then
plug in the value of ε for δ in our formulas, we will get
the corresponding sets W x

U,λ(h). We will see, however,
that their motivic volumes (and therefore, also p-adic
volumes) are independent of the choice of ε.

Second, the comparison theorem relates the motivic
volumes to p-adic volumes for all but finitely many primes
p. There are two sources of “bad” primes in this state-
ment: singularities of the varieties that come up, and
quantifier elimination. Since we are doing all the calcu-
lations by hand, and our cases are very simple, we will
see that the only prime that needs to be excluded is 2.

3.3.1 The Logical Formulas for W (0)
U,λ(h) for h ∈ Γs1,n.

Recall that all the elements of the set Γs1,n have the form

h = (1 + ∗)
[
1 + ∗ u�n

εu�n 1 + ∗
]
, (3–8)

where u ∈ O∗
K, and ∗ stands for elements of order at

least 2n. We write y = [ a b
c d ] ∈ G(0) and use the entries

a, b, c, d as free variables in our formulas. We begin by
fixing U and h as above and finding explicit conditions
on a, b, c, d and λ that ensure that y ∈W

(0)
U,λ(h). A direct

computation gives

y−1hy = (1 + ∗)
[

1+h.o.t u(d2−b2ε)�n+h.o.t

u(a2ε−c2)�n+h.o.t 1+h.o.t

]
,

(3–9)
where h.o.t means “higher-order terms,” which refers to
the terms with valuation greater than that of the leading
term.

As we see from equation (3–5), we must now conjugate
this element by aλ. Conjugation by aλ induces multipli-
cation of the entry in the upper right-hand corner by
�−2λ, and multiplication of the entry in the lower left-
hand corner by �2λ. It follows that a−1

λ y−1hyaλ ∈ G(0)
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if and only if

− 2λ+ ord(u(d2 − b2ε)�n)) ≥ 0

∧ 2λ+ ord(u(a2ε− c2)�n)) ≥ 0.
(3–10)

Consequently, we have the following list of cases:

Case 1. 2λ < n. In this case, for any y ∈ G(0) the ele-
ment a−1

λ y−1hyaλ lies in G(0) and projects to the identity
under the reduction mod �.

Case 2. 2λ > n. We observe that ord(d2 − b2ε) = 0:
indeed, either both a and d or b and c have to be units
because ad − bc = 1, and ρ(0),0(d2 − b2ε) �= 0, since ε is
a nonsquare. Similarly, ord(a2ε − c2) = 0. This implies
that if 2λ > n, the set of y satisfying the conditions is
empty.

Case 3. 2λ = n. (This case corresponds to the inter-
esting situations.) In this case the image of a−1

λ y−1hyaλ

under ρ(0),0 is an element of the form [ 1 β
0 1

], where β =
ac(d2 − b2ε)ac(u) ∈ Fq. Then for h ∈ Γs1,n,+, the reduc-
tion ρ(0),0(a−1

λ y−1hyaλ) falls into U1 if ac(d2 − b2ε) is a
square and into Uε otherwise.

Notice that when λ is fixed and h is fixed, the condi-
tion y ∈ W

(0)
U,λ(h) does not depend on u, as long as h is

confined to one of the sets Γs1,n,+ and Γs1,n,−.

We now reformulate what we have found concerning
the character in terms of formulas in Pas’s language. We
start by observing that the maximal compact subgroup
G(0) is defined by the formula

ad− bc = 1 ∧ ord(a) ≥ 0 ∧ ord(b) ≥ 0 ∧ ord(c) ≥ 0

∧ ord(d) ≥ 0.

For the cases 2λ < n and 2λ > n, no other calcula-
tions are needed. Indeed, if 2λ < n, then we are within
Case 1, and therefore both setsW (0)

U1,ε,λ(h) are empty, and

W
(0)
U0,λ(h) = G(0). If 2λ > n, then we are within Case 2,

and the set of y satisfying the conditions is also empty.
Let us now consider the case n even, and 2λ = n. Let

ψ(b, d, δ) be the formula (in Pas’s language)

ψ(b, d, δ) = ∃x(d2 − b2δ = x2).

Since we will often pass back and forth between the
valued field and the finite field, let us introduce an ab-
breviation for the “reduction mod �” map: let

x̄ =

{
ac(x), ord(x) = 0,
0, ord(x) > 0.

If we know that δ is a nonsquare unit, then by
Hensel’s lemma, to check whether the triple (b, d, δ) with

(b̄, d̄) �= (0, 0) satisfies the formula ψ, it is enough to know
whether its reduction mod (�) satisfies the same formula
(where now the variables are interpreted as residue-field
variables). Hensel’s lemma is applicable because d̄2− b̄2δ̄
cannot be 0 when we assume that δ̄ is a nonsquare and
b̄, d̄ are not simultaneously zero.

Let us consider the family of formulas depending on a
parameter η that ranges over the set of nonsquares in Fq

(note that this is a definable set):

φη(a, b, c, d) =
[
ad− bc = 1∧∃ξ(b̄2− d̄2η = ξ2)

]
. (3–11)

For every value of η ∈ Fq
∗ \ Fq

∗2, if we let all the
variables range over OK, the formula φη(a, b, c, d) defines
the set W (0)

U1,λ(h) for any h ∈ Γs1,n,+ if the unit ε that was
fixed in order to define the sets Γs1,n,± has the property
ε̄ = η. The same formula also defines the set W (0)

Uε,λ(h)
with h ∈ Γs1,n,−. In the next subsection we find the
motivic volumes of these sets.

3.3.2 The Motivic Volumes of W (0)
U,λ(h), h ∈ Γs1,n,±.

The calculation of these volumes is very simple. Re-
call that our Haar measure on G is normalized in such
a way that the fibers of the projection G → G(Fq)
have volume 1. The formula φη imposes a condition
on the variables b, d that apparently depends only on
b̄, d̄. This means that either a whole fiber over a point
(ā, b̄, c̄, d̄) ∈ SL(2,Fq) satisfies this condition, or the
whole fiber does not satisfy it. Hence, to calculate the
volume of the set W (0)

U1,λ(h), all we need to do is count
the number of points in

[
ā b̄
c̄ d̄

] ∈ SL(2,Fq) that satisfy the
condition ∃ξ : b̄2 − d̄2η = ξ2, where η is a parameter that
is a quadratic residue in Fq. This calculation is carried
out carefully in [Gordon 09]. Here we state the result as
a lemma.

In fact, this is the only place in the present paper
where interesting geometric objects arise from p-adic vol-
umes. Indeed, as we see from the argument above, the
p-adic volumes of the sets W (0)

U,λ(h) with the “borderline”
value of λ = n/2 (for n even) are connected with the
number of points of a conic over the finite field.

Lemma 3.3. Suppose h ∈ Γs1,n. If n is even and λ =
n/2, then the motivic volumes of the sets W (0)

U1,λ(h) and

W
(0)
Uε,λ(h) both equal 1

2L(L−1)(L+1), which is half of the
motivic volume of the maximal compact subgroup G(0);
otherwise, the motivic volumes of the sets W (0)

U1,λ(h) and

W
(0)
Uε,λ(h) both equal 0.
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Proof: The statement follows from the calculation of the
motivic volume of the formula

Φ(a, b, c, d, η)

=
[
ad− bc = 1 ∧ ∃ξ �= 0(d̄2 − b̄2η = ξ2) ∧ �β(η = β2)

]
,

(3–12)
which is carried out in [Gordon 09]. Note that the cal-
culation ultimately boils down to computing the class of
the “hyperbola” x2 − y2 = 1, which is L − 1. This is the
reason that we get an answer that is polynomial in L.

3.3.3 The Motivic Volumes of W (0)
U,λ(h) for h ∈ Γs2,n.

In the case z = s2, the answer is essentially the same as in
the case z = s1, but the calculation is slightly more com-
plicated. Here we sketch the calculation of the motivic
volume of the sets W (0)

U,λ(h) for h ∈ Γs2,n,±, indicating
the differences with the case z = s1.

Exactly as before, we consider the element
a−1

λ y−1γs2,nyaλ, and use the entries of the matrix
y =

[
a b
c d

] ∈ G(0) as free variables in our logical formulas.
The conditions (3–10) are now replaced with

−2λ+ ord(d2u�n−1 − b2uε�n+1)) ≥ 0,

2λ+ ord(a2uε�n+1 − c2u�n−1) ≥ 0.
(3–13)

The second condition is satisfied automatically if λ ≥ 0,
so we need to focus only on the first one. Similarly to the
case z = s1, this condition implies that when λ > n+1

2 ,
the element a−1

λ y−1hyaλ is outside G(0); if λ < n−1
2 , this

element is in G(0) and projects to U0.
Suppose for now that n is odd. Unlike the case

z = s1, now there are two interesting cases: λ =
n−1

2 and λ = n+1
2 . If λ = n−1

2 and ord(d) =
0, then ρ(0),0(a−1

λ y−1hyaλ) ∈ U1 if sgn(u) = 1 and
ρ(0),0(a−1

λ y−1hyaλ) ∈ Uε if sgn(u) = 1. If ord(d) > 0,
then ρ(0),0(a−1

λ y−1hyaλ) ∈ U0. If λ = n+1
2 , then

a−1
λ y−1hyaλ is in G(0) only if ord(d) > 0. In this case,

the projection of the element a−1
λ y−1hyaλ depends on

the sign of ac(d2 − b2ε) and on sgn(u), which is similar
to the case z = s1. The only difference is that here there
is an additional condition ord(b) = 0 (if ord(d) > 0 then
the determinant condition forces ord(b) = 0).

One finds that the motivic volume of the subset of
G defined by the formula ∃ξ �= 0(ac(d2 − b2ε) = ξ2) ∧
(ord(b) = 0)∧(ord(d) > 0) equals 1

2 (L−1)2. The motivic
volume of its complement, i.e., the set defined by the for-
mula �ξ �= 0(ac(d2 − b2ε) = ξ2)∧(ord(b) = 0)∧(ord(d) >
0), equals L(L2 − 1) − 1

2 (L − 1)2 = 1
2L2 − 1

2 . The last
two sentences are of course an abbreviation. In truth,
we have to replace ε with a variable δ and do everything
exactly the same way as was done in the previous case.

For simplicity, suppose that sgn(u) = 1. Putting all
these calculations together, we get

μ
(
Wn+1

2 ,Uε

)
=

1
2

L2 − 1
2
,

μ
(
Wn−1

2 ,Uε

)
= 0,

μ
(
Wn−1

2 ,U1

)
= L2(L − 1),

μ
(
Wn+1

2 ,U1

)
=

1
2
(L − 1)2.

(3–14)

The case n even and the calculation of μ(Wλ,U0)(0)(h)
are similar to the case z = s1.

3.3.4 The Ramified Cases. We have the following
lemma.

Lemma 3.4. Let x be a vertex in the Bruhat–Tits building
for G. Suppose h ∈ Γz,n,±, with z ∈ {t0, t1, t2, t3}. Then
the sets W x

U,λ(h) are definable for all nonnegative integers
λ; their motivic volumes are independent of h and the
choice of ε, and can be explicitly computed.

Proof: We prove this lemma only for x = (0). The proof
in the case x = (1) is very similar; the results of these
calculations become part of the expressions for M (1),0

z,n,±,

M
(1),1
z,n,±, and M

(1),ε
z,n,± appearing in Tables 8 and 9. So

everywhere in this proof x = (0), and we drop the super-
script x from the notation W x

U,λ(h).
The argument is very similar to that in the unramified

case; the only difference is that the actual calculation of
the motivic volumes of the corresponding sets WU,λ(h) is
simpler. Here we carry out the proof for the case z = t2.
The other three ramified cases are almost identical to it.
First, as in the previous subsection, we write the elements
h of the set Γt2,n explicitly as

h = (1 + ∗)
[

1 + ∗ u�n

εu�n+1 1 + ∗
]
, (3–15)

where u ∈ O∗
K and ∗ denotes the terms of order at least

2n, as before.
As in the proof of the previous lemma, we let y =

[
a b
c d

]
be a variable running over G(0) (so that the symbols for
its entries a, b, c, d will become the formal variables in
Pas’s language formulas defining the sets W (0)

U,λ(h)).
As before, we compute y−1hy, which leads to the fol-

lowing conditions on y, λ for the element a−1
λ y−1hyaλ to

be in G(0):

−2λ+ ord(ud2�n − b2εu�n+1) ≥ 0,

2λ+ ord(ua2ε�n+1 − c2u�n) ≥ 0.
(3–16)
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As before, it is convenient to consider the cases n even
and n odd separately.

Suppose n is even. Looking at the left-hand side of
the inequalities (3–16), we see that if λ < n/2, then the
set WU0,λ(h) coincides with the whole of G(0), and the
sets WU1,λ(h), WUε,λ(h) are empty.

If λ > n/2, then, since n is even and λ is an integer,
2λ is at least n+2, which forces the element a−1

λ y−1hyaλ

outside G(0), and all three sets are empty.
Finally, in the case λ = n/2, the outcome depends

on the entry d: If ord(d) = 0, then the term d2u�n

in the expression d2u�n − b2εu�n+1 dominates, and
therefore ρ(0),0(a

−1
λ y−1hyaλ) ∈ U1 if sgn(u) = 1, and

ρ(0),0(a−1
λ y−1hyaλ) ∈ Uε if sgn(u) = −1. If ord(d) > 0,

then ρ(0),0(a−1
λ y−1hyaλ) ∈ U0.

Hence, for h ∈ Γt2,n,±, the set WU0,n/2(h) is defined
by the formula ord(d) > 0 in conjunction with the for-
mulas defining G(0). Note that the volume of this set
is the same as that of G(01), i.e., equals L(L − 1). The
sets WU1,n/2(h), WUε,n/2(h) are defined by the formula
ord(d) = 0 in conjunction with the formulas defining G(0)

for h ∈ Γt2,n,+ and h ∈ Γt2,n,−, respectively, and are re-
spectively empty for h ∈ Γt2,n,− and h ∈ Γt2,n,+.

The case n odd is very similar. If λ = n+1
2 (the most

interesting case) and ord(d) = 0, then the second of
the conditions (3–16) is not satisfied, so all three sets
WU, n+1

2
(h) are empty. If ord(d) > 0, then automati-

cally ord(b) = 0, and the leading term in the expression
d2u�n − b2εu�n+1 is −b2uε�n+1, which has sign oppo-
site to sgn(−1)sgn(u).

We obtain that if λ ≤ (n− 1)/2, then

WU0,λ = G(0) and WU1,λ(h) = WUε,λ(h) = ∅,

for any h ∈ Γt2,n; if λ > (n+1)/2, then all three sets are
empty; if λ = (n+ 1)/2, we have

WU1, n+1
2

(h) = G(0) ∩ {ord(d) > 0},WUε, n+1
2

(h) = ∅,

if h ∈ Γt2,n,sgn(−1);

WUε, n+1
2

(h) = G(0) ∩ {ord(d) > 0},WU1, n+1
2

(h) = ∅,

if h ∈ Γt2,n,−sgn(−1).
(3–17)

It follows that μ(WU1, n+1
2

(h)) equals 0 or equals
μ(G(01)) = L(L − 1) depending on whether h ∈
Γt2,n,sgn(−1) or h ∈ Γt2,n,−sgn(−1); the same is true for
μ(WUε, n+1

2
(h)).

As we see from this proof, a different choice of ε could
not have affected the motivic volumes of these sets; also,
clearly no “bad” primes were acquired.

3.3.5 The Case x = (1). In all the proofs in the
present section we have been assuming that x = (0).
The only major difference in the case x = (1) is that
the element y =

[
a b
c d

]
now belongs to G(1), not G(0).

The requirement is that the element a−1
λ y−1hyaλ belong

to G(1) and that the reduction map applied to this ele-
ment be ρ(1),0 instead of ρ(0),0. Therefore, all the cases
look slightly different, but no new varieties appear in the
calculations of the motivic volumes of the new sets.

3.4 Motives Corresponding to the Distribution
Characters

Proposition 3.5. The Harish-Chandra character of each
depth-zero supercuspidal representation is constant on
each set GΓz,n,±. Moreover, there exist virtual mo-
tives Mx,0

z,n,ν, M
x,1
z,n,ν , and Mx,ε

z,n,ν (where z is any co-
cycle defined in Section 2.8, n is a positive integer
for z ∈ {s0, s1, s2} and a nonnegative integer for z ∈
{t0, t1, t2, t3}, the sign ν is ±, and x is a vertex (0) or
(1)) such that

1
m(GΓz,n,ν)

Θπ(fz,n,ν)

= χ|U0TrFrobMx,0
z,n,ν + χ|U1TrFrobMx,1

z,n,ν

+ χ|UεTrFrobMx,ε
z,n,ν .

(3–18)

The virtual motives Mx,0
z,n,ν, Mx,1

z,n,ν, and Mx,ε
z,n,ν are ex-

plicitly given in Tables 6 and 7 in the case x = (0), and
in Tables 8 and 9 in the case x = (1).

Proof: We will show the details of the proof of this propo-
sition in the case x = (0) only. The results of the similar
calculations in the case x = (1) are summarized in the
tables.

Let us apply Proposition 3.1 to the test functions fz,n,ν

(so that the set H in that Proposition is GΓz,n,ν). Note
that in G, for all z but s0, hz is elliptic, i.e., it is a com-
pact Cartan subalgebra. We consider the elliptic cases
first. As we will explicitly see below, the sum over λ that
appears in the expression (3–2) has only finitely many
terms in these cases, so we can permute the two sums,
and obtain

Θπ(fz,n,ν) =
∑
U

χ(U)
∑

λ

∫
GΓz,n,ν

Nx
U,λ(h) dh, (3–19)

where the index U runs over U0, U1, and Uε. That is,
the character is already expressed as a linear combination
of the values χ|U0 , χ|U1 , and χ|Uε . All we need to do
is “evaluate” the coefficients

∑
λ

∫
GΓz,n,ν

Nx
U,λ(h). We
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z M
(0),0
z,n,ν M

(0),1
z,n,ν M

(0),ε
z,n,ν

s0
Ln−1−1

L−1
Ln Ln

s1

Ln−1
L−1

, n odd
Ln−1−1

L−1
, n even

0, n odd
1
2
(L + 1)Ln−1, n even

0, n odd
1
2
(L + 1)Ln−1, n even

s2

Ln−1
L−1

, n odd
Ln−1−1

L−1
, n even

0, n odd
1
2
(L + 1)Ln−1, n even

0, n odd
1
2
(L + 1)Ln−1, n even

TABLE 6. Virtual motives for the characters of π(0, θ), π(0, +), and π(0,−) at Yz,n(u) for z ∈ {s0, s1, s2}.

z M
(0),0
z,n,ν M

(0),1
z,n,ν M

(0),ε
z,n,ν

t0
Ln−1
L−1

Ln, ζ2n = ν
0, otherwise

0, ζ2n = ν
Ln, otherwise

t1
Ln−1
L−1

Ln, ζ2n = −ν
0, otherwise

0, ζ2n = −ν
Ln, otherwise

t2
Ln−1
L−1

Ln, ζ2n = (−1)nν
0, otherwise

0, ζ2n = (−1)nν
Ln, otherwise

t3
Ln−1
L−1

Ln, ζ2n = (−1)n+1ν
0, otherwise

0, ζ2n = (−1)n+1ν
Ln, otherwise

TABLE 7. Virtual motives for the characters of π(0, θ), π(0, +), and π(0,−) at Yz,n(u) for z ∈ {t0, t1, t2, t3}. (Recall that
ζ2 = sgn(−1).)

recall Lemma 3.2, which relates the numbers Nx
U,λ(h) to

the volumes of the sets W x
U,λ(h). Then we evaluate their

motivic volumes for h in each of the sets GΓz,n,ν and sum
them over λ with coefficients that come from Lemma 3.2.

We start with z = s1. Let h be an element of Γs1,n,±,
and let λ be a nonnegative integer. By the comparison
theorem, the equality (3–7) of Lemma 3.2 can be written
in a “motivic” form: for all primes p �= 2 (recall that q is
a power of p), we have Nx

U,λ(h) = TrFrobqM
x
U,λ, where

Mx
U,λ =

[
(q + 1)q2λ−1

] μ(W x
U,λ)(h)

μ(Gx)

= (L + 1)L2λ−1
μ(W x

U,λ)(h)
μ(Gx)

.

For now, let x = (0). Note that a priori, the right-hand
side depends on the element h. However, by Lemma 3.3,
for all h ∈ Γs1,n,±, and for every U , the motivic volume

of W x
U,λ(h) does not depend on h and equals⎧⎪⎨⎪⎩
1
2L(L2 − 1), if λ = n/2, n even, U = U1 or Uε,

L(L2 − 1), if λ < n/2, U = U0,

0, otherwise.

Let us define the virtual Chow motive M (0),0
s1,n,± that

corresponds to the conjugacy class U0 by the formulas

M
(0),0
s1,n,±

=

{
1 + (L + 1)

∑n/2−1
λ=1 L2λ−1 = Ln−1−1

L−1 , n even,
1 + (L + 1)

∑(n−1)/2
λ=1 L2λ−1 = Ln−1

L−1 , n odd.
(3–20)

Also let

M
(0),1
s1,n,± = M

(0),ε
s1,n,± =

{
1
2 (L + 1)Ln−1, n even,
0, n odd,

(3–21)
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z M
(1),0
z,n,ν M

(1),1
z,n,ν M

(1),ε
z,n,ν

s0
Ln−1−1

L−1
Ln Ln

s1

Ln−1
L−1

, n even
Ln−1−1

L−1
, n odd

0, n even
1
2
(L + 1)Ln−1, n odd

0, n even
1
2
(L + 1)Ln−1, n odd

s2

Ln−1
L−1

, n even
Ln−1−1

L−1
, n odd

0, n even
1
2
(L + 1)Ln−1, n odd

0, n even
1
2
(L + 1)Ln−1, n odd

TABLE 8. Virtual motives for the characters of π(1, θ), π(1, +) and π(1,−) at Yz,n(u) for z ∈ {s0, s1, s2}.

z M
(1),0
z,n,ν M

(1),1
z,n,ν M

(1),ε
z,n,ν

t0
Ln−1
L−1

Ln, ζ2n+2 = ν
0, otherwise

0, ζ2n+2 = ν
Ln, otherwise

t1
Ln−1
L−1

Ln, ζ2n = −ν
0, otherwise

0, ζ2n = −ν
Ln, otherwise

t2
Ln−1
L−1

Ln, ζ2n+2 = (−1)n+1ν
0, otherwise

0, ζ2n+2 = (−1)n+1ν
Ln, otherwise

t3
Ln−1
L−1

Ln, ζ2n+2 = (−1)nν
0, otherwise

0, ζ2n+2 = (−1)nν
Ln, otherwise

TABLE 9. Virtual motives for the characters of π(1, θ), π(1, +), and π(1,−) at Yz,n(u) for z ∈ {t0, t1, t2, t3}.

Then, combining the equations above, we obtain, for
p �= 2,

Θπ(fs1,n,ν)
m(GΓs1,n,ν)

= Θπ(h)

= χ|U0TrFrobM (0),0
s1,n,ν + χ|U1TrFrobM (0),1

s1,n,ν

+ χ|UεTrFrobM (0),ε
s1,n,ν ,

(3–22)
where we write Θπ both for the distribution character
and for the locally integrable function on the regular set
that represents it. Note that there is no difference in
the formulas for Θπ(fs1,n,+) and Θπ(fs1,n,−), because
M

(0),1
s1,n,± in any case coincides with M

(0),ε
s1,n,±. The propo-

sition in the case z = s1 is proved.
In the case z = s2, the calculation is very similar to

the case z = s1, except that when n is odd, the expres-
sions for M (0),1

s2,n,ν and M
(0),ε
s2,n,ν contain one or two terms

depending on ν, yet the final answer is the same in both

cases. Using equation (3–14), we get

M
(0),1
s2,n,+ = M

(0),ε
s2,n,−

=
1
2

(L − 1)2

L(L2 − 1)
L2 n+1

2 −1(L + 1)

+
L

L + 1
L2 n−1

2 −1(L + 1)

=
1
2

Ln−1(L + 1),

M
(0),1
s2,n,− = M

(0),ε
s2,n,+ =

1
2

(L2 − 1)
L(L2 − 1)

L2 n+1
2 −1(L + 1)

=
1
2

Ln−1(L + 1).

The values of M (0),0
s2,n,ν are computed similarly to the case

z = s1.
Let us now prove the proposition for the ramified ele-

ments. All ramified cases are very similar to each other.
We show the details for the case z = t2. The argument
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is exactly the same as in the case z = s1, but we have
to use Lemma 3.4 instead of Lemma 3.3. In the case n
even, we get

M
(0),0
t2,n,± = 1 +

n/2−1∑
λ=1

L2λ−1 +
μ(G(01))
μ(G(0))

L2 n
2 −1(L + 1)

=
Ln−1 − 1

L − 1
+

1
L + 1

L2 n
2 −1(L + 1) =

Ln − 1
L − 1

;

M
(0),1
t2,n,+ = M

(0),ε
t2,n,− =

μ(G(0)) − μ(G(01))
μ(G(0))

L2 n
2 −1(L + 1)

=
L

L + 1
L2 n

2 −1(L + 1) = Ln;

M
(0),1
t2,n,− = M

(0),ε
t2,n,+ = 0.

(3–23)
If n is odd, a similar calculation yields

M
(0),0
t2,n,± = 1 + (L + 1)

n−1
2∑

λ=1

L2λ−1(L + 1)

=
Ln − 1
L − 1

,

M
(0),1
t2,n,sgn(−1) = M

(0),ε
t2,n,−sgn(−1) =

L

L + 1
L2 n+1

2 −1(L + 1)

= Ln,

M
(0),1
t2,n,−sgn(−1) = M

(0),ε
t2,n,sgn(−1) = 0.

(3–24)
The Proposition for z = t2 follows.

Finally, let us address the case s = s0. The elements
of the set Γs0,n have the form h =

[
1+u�n 0

0 (1+u�n)−1

]
,

where u is a unit. Following the pattern of the previ-
ous section, we take y =

[
a b
c d

] ∈ G(0), and write down
the conditions ensuring that the element a−1

λ y−1hyaλ be-
longs to G(0) and projects to a given conjugacy class
under the map ρ(0),0. As before, we see that this de-
pends on the entry in the right-hand corner of the ma-
trix a−1

λ y−1hyaλ, which equals �−2λbd((1+u�n)− (1+
u�n)−1). We have (when p �= 2)

ord(�−2λbd((1 + u�n) − (1 + u�n)−1))

= −2λ+ n+ ord(bd),

ac(�−2λbd((1 + u�n) − (1 + u�n)−1))

= 2ac(bd)ac(u).

(3–25)

Here the situation is quite different from the elliptic cases,
because the valuation of bd can be arbitrarily large, and
therefore there are infinitely many values of λ such that
a−1

λ y−1hyaλ belongs to G(0). We know, of course, that
the sum in equation (3–2) has to be finite anyway. Here
we will see explicitly that it happens because both for

χ = QT and χ = QG (and therefore, for any linear com-
bination of these two functions as well), for large values
of λ the sum of three terms

∑
U χ|UN (0)

U,λ(h) vanishes. In-
deed, if χ = QG, it is easy to see that this sum is always
zero, because QG vanishes on the class U0 and takes op-
posite values on U1 and Uε. Suppose χ = QT . Then
for each positive integer k, we will need the volumes of
the subsets of G(0) defined by the formulas {ord(b) ≥ k}
and {ord(d) ≥ k}. Note that these sets are disjoint and
have equal volumes. From the point of view of motivic
integration, it is easy to see that these sets are stable
at level k in the language of [Denef and Loeser 01], and
their motivic volumes equal (L − 1)L−(k−2). The only
varieties appearing in this calculation are affine spaces,
so we acquire no bad primes. Now it is easy to see that
when 2λ > n, the value χ|U0 appears with the coefficient
(L − 1)L−(k−2), and the values χ|U1 , χ|Uε each appear
with the coefficient 1

2 (L− 1)2L−(k−1), which leads to the
cancellation in the case χ = QT . Finally, we are again in
a situation similar to all the previous cases, in which we
need to sum only over all λ not exceeding n/2. We omit
the details of getting the answers that appear in the first
rows of Tables 6 and 8. This ends the proof of Proposi-
tion 3.5.

4. MOTIVES FOR THE FOURIER TRANSFORMS OF
OUR ORBITAL INTEGRALS

In this section we use the notation of [Cunningham and
Hales 04].

4.1 The Fourier Transform of Good Orbital Integrals

For any rational number s, let gs denote the union of
the Moy–Prasad lattices gx,s as x ranges over all points
in the extended Bruhat–Tits building I(G,K) for G (see
[Moy and Prasad 94] for the definition of gx,s). Let H(g)
denote the Hecke algebra of locally constant, compactly
supported functions f : g → Q̄�. As in [Cunningham and
Hales 04, Section 1.3], for any pair of rational numbers
s ≤ r, we write H(g)s

r for the Q̄�-vector space of elements
of H(g) such that f is supported by gs and f̂ is supported
by g−r. (Recall that the Fourier transform is taken with
respect to an additive character of K with conductor OK.)
Then the Fourier transform defines an isomorphism of
Q̄�-vector spaces

H(g)s
r → H(g)−r

−s,

f �→ f̂ .

Again following [Cunningham and Hales 04, Section 1.3],
we write H(g)s for the union of the spaces H(g)s

r with
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s ≤ r, and H(g)r for the union of the spaces H(g)s
r with

s ≤ r.
For any ϕ : ḡx,r → Q̄�, we write ϕx,r for the element

of H(g)r
r such that ϕx,r(Y ) = (ϕ ◦ ρx,r)(Y ) if Y ∈ gx,r

and ϕx,r(Y ) = 0 otherwise. As explained in [Cunning-
ham and Hales 04, Section 1], on the level of reductive
quotients we have another Fourier transform taking func-
tions on ḡx,r to functions on ḡx,−r. With respect to these
definitions we have

ϕ̂x,r = vol(gx,r)ϕ̂x,−r, (4–1)

where vol refers to the measure on g. For elaboration and
proofs, the reader is referred to [Cunningham and Hales
04, Section 1].

Before stating the next proposition, we remind the
reader that if X is regular elliptic, then there is a unique
point x in the Bruhat–Tits building for G corresponding
to the centralizer X in G, since G has compact center.
Moreover, in this case, the depth of X in g is the unique
real number r (rational number, actually) such that X ∈
gx,r and X �∈gx,r+.

Proposition 4.1. Suppose X is a regular elliptic good ele-
ment of g. Let x be the point in the Bruhat–Tits building
for G corresponding to the centralizer of X in G and let
r be the depth of X. Let X̄ denote the image of X under
ρx,r : gx,r → ḡx,r and let ϕ : ḡx,r → Q denote the char-
acteristic function of the Ḡx-orbit of X̄ ∈ ḡx,r divided by
the cardinality of that orbit. If f ∈ H(g)−r then

μ̂X(f) =
∫
G

∫
g

f(Ad(g)Y )ϕ̂x,−r(Y ) dY dg. (4–2)

Proof: Suppose f ∈ H(g)−r. Then f ∈ H(g)−s
−r for some

−r ≤ −s. Thus, f̂ ∈ H(g)s
r, so f̂ ∈ H(g)r. Now, by [Cun-

ningham and Hales 04, Proposition 1.22] and elementary
properties of the Fourier transform,

μ̂X(f)

= μX(f̂)

= vol(gx,r)
−1

∫
G

∫
g

f̂(Ad(g)Y )ϕx,r(Y ) dY dg

= vol(gx,r)
−1

∫
G

∫
g

f(Ad(g)Y )ϕ̂x,r(Y ) dY dg.

(4–3)

By [Cunningham and Hales 04, Proposition 1.13],

ϕ̂x,r(Y ) = vol(gx,r)ϕ̂x,−r(Y ),

so

μ̂X(f) =
∫
G

∫
g

f(Ad(g)Y )ϕ̂x,−r(Y ) dY dg, (4–4)

as claimed.

Remark 4.2. We will sometimes write ϕX̄ (respectively
ϕ̂X̄) for the function ϕ (respectively ϕ̂) appearing in
Proposition 4.1 above; in that case, ϕx,r becomes (ϕX̄)x,r

and ϕ̂x,−r becomes (ϕ̂X̄)x,−r.

4.2 Application to Our Orbital Integrals

In order to apply [Cunningham and Hales 04, Proposi-
tion 1.22] to the Lie algebra g and the orbital integrals
appearing in Theorem 2.5, we must find the function
(ϕ̂X̄z

)xz,−rz for eachXz appearing in Theorem 2.5, where
xz is the point in the Bruhat–Tits building for Xz and
rz is the depth of Xz in g.

4.2.1 Case: z = s1. Recall (from Section 2.4) that

Xs1(v) :=
[

0 v
εv 0

]
.

Here we will assume that v is a unit. The point xs1 is the
standard vertex of the Bruhat–Tits building for G and
the depth rs1 of Xs1(v) is 0; in other words, xs1 = (0)
and rs1 = 0. Thus,

gxs1 ,rs1
= g(0),0 =

{[
z x
y −z

]
|x, y, z ∈ OK

}
.

The reduction map ρxs1 ,rs1
is given by[

z x
y −z

]
�→

[
z̄ x̄
ȳ −z̄

]
,

where x̄, ȳ, and z̄ denote the images of x, y, and z re-
spectively under OK → Fq. Let X̄s1(v) denote the image
of Xs1(v) under ρxs1 ,rs1

. The Ḡxs1
(Fq)-orbit of X̄s1(v)

in ḡxs1 ,rs1
is{[
z x
y −z

]
∈ sl(2,Fq)

∣∣∣xy + z2 = ε̄v̄2

}
,

which has cardinality q(q−1). Thus, ϕȲs1(v) : ḡxs1 ,rs1
→

Q̄� is given by

ϕX̄s1 (v)

([
z x
y −z

])
=

{
1

q(q−1) xy + z2 = ε̄v̄2,

0 otherwise.
(4–5)

In order to find the (relative) Fourier transform of this
function (in the sense of [Cunningham and Hales 04]) we
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observe that the Killing form 〈X,Y 〉 := trace (XY ) gives
a pairing between lattices

gxs1 ,rs1
× gxs1 ,−rs1

→ OK,([
z x
y −z

]
,

[
c a
b −c

])
�→ xb+ ya+ 2zc,

which in turn gives a bilinear form ḡxs1 ,rs1
× ḡxs1 ,−rs1

→
Fq. The relative Fourier transform is taken with respect
to this form. The image of the set of topologically nilpo-
tent elements in gxs1 ,−rs1

under ρxs1 ,−rs1
is the cone{[

c a
b −c

]
∈ sl(2,Fq)

∣∣∣ab+ c2 = 0
}
.

In Section 4.4 we will see that if ab+ c2 = 0, then

QT

([
c a
b −c

])
= (1 − q)ϕ̂X̄s1 (v)

([
c a
b −c

])
, (4–6)

where QT is given in equation (2–6). This completes our
description of the relevant properties of ϕ̂X̄s1 (v).

4.2.2 Case: z = s2. Since this case is very similar
to the case above, we only summarize the results here.
Recall (from Section 2.4) that

Xs2(v) :=
[

0 v�
εv�−1 0

]
,

where v, as above, is assumed to be a unit. The point
xs2 is the vertex (1) of the Bruhat–Tits building for G
(see Section 2.3), and the depth rs2 of Xs2(v) is 0. Thus,

gxs2 ,rs2
= g(1),0 =

{[
z x�

y�−1 −z
]
|x, y, z ∈ OK

}
.

The reduction map ρxs2 ,rs2
is given by[

z x�
y�−1 −z

]
�→

[
z̄ x̄
ȳ −z̄

]
.

The function ϕX̄s2 (v) : ḡxs2 ,rs2
→ Q̄� is exactly as in the

preceding case, so

QT

([
c a
b −c

])
= (1 − q)ϕ̂X̄s2 (v)

([
c a
b −c

])
, (4–7)

as above. This completes our description of the relevant
properties of ϕ̂X̄s2 (v).

4.2.3 Case: z ∈ {t0, t1, t2, t3}. Then the point xz is
(01), and the depth rz is 1

2 . Thus,

gxz,rz = g(01), 12
=

{[
z� x
y� −z�

] ∣∣ x, y, z ∈ OK

}
.

Thus, ḡxz,rz = A2(Fq), and the reduction map ρxz,rz :
gxz,rz → A2(Fq) is given by[

z� x
y� −z�

]
�→ (x̄, ȳ).

The reduction map on Gxz → GL(1,Fq) is given by[
a b
�c d

]
�→ ā.

Thus, the action of Ḡxz on ḡxz,rz corresponds to
the action of GL(1,Fq) on A2(Fq) given by t ·
(x, y) := (t2x, t−2y). It follows immediately from the def-
initions above that

ϕX̄t0 (v)(x, y) =

{
2

q−1 xy = v̄2 ∧ sgn(x) = sgn(v),
0 otherwise,

ϕX̄t1 (v)(x, y) =

{
2

q−1 xy = v̄2 ∧ sgn(x) = sgn(εv),
0 otherwise,

ϕX̄t2 (v)(x, y) =

{
2

q−1 xy = ε̄v̄2 ∧ sgn(x) = sgn(v),
0 otherwise,

ϕX̄t3 (v)(x, y) =

{
2

q−1 xy = ε̄v̄2 ∧ sgn(x) = sgn(εv),
0 otherwise.

4.3 Two Functions on A2(Fq)

In this section we introduce two functions that play a
crucial role in our proof of Theorem 2.5. Using notation
from the preceding subsection, define

ϕ(0) :=
(
ϕX̄t0

− ϕX̄t1

)
+

(
ϕX̄t2

− ϕX̄t3

)
,

ϕ(1) :=
(
ϕX̄t0

− ϕX̄t1

)
−

(
ϕX̄t2

− ϕX̄t3

)
.

(4–8)

To find the Fourier transform of these functions (in the
sense of [Cunningham and Hales 04]), observe that the
Killing form 〈X,Y 〉 := trace (XY ) gives a pairing be-
tween lattices

gxz,rz × gxz,−rz → OK,([
z� x
y� −z�

]
,

[
c a�−1

b −c
])

�→ xb+ ya+ 2�zc,

which in turn gives the bilinear form

ḡxz,rz × ḡxz,−rz → Fq,

((x, y), (a, b)) �→ xb+ ya.

The relative Fourier transform is taken with respect to
this form. The image of the set of topologically nilpotent
elements in gxz,−rz under ρxz,−rz is the normal crossing{

(a, b) ∈ A2(Fq) | ab = 0
}
.
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In Section 4.4 we will see that

ϕ̂(0)(a, 0) = 0,

ϕ̂(0)(0, b) =
22

q − 1
√
qζ3sgn(b),

ϕ̂(1)(a, 0) =
22

q − 1
√
qζsgn(a),

ϕ̂(1)(0, b) = 0.

(4–9)

4.4 Some Finite-Field Calculations

In this section we defend equations (4–6), (4–7), and
(4–9).

Recall the definition of the function γ± : A2(Fq) → Q̄�

from equation (2–2). Recall also that we equip A2(Fq)
with the bilinear form 〈(x, y), (a, b)〉 = xb + ya, as ex-
plained in Section 4.2. Finally, recall the definition of
ϕX̄z(v) for z ∈ {t0, t1, t2, t3}. Then

ϕ̂X̄t0 (v)(a, b) =
∑

(x,y)∈A2(Fq)

ψ̄〈(x, y), (a, b)〉 ϕX̄t0 (v)(x, y),

=
2

q − 1

∑
xy=v̄2

sgn(x)=sgn(v)

ψ̄(xb)ψ̄(ya),

=
2

q − 1

∑
sgn(x)=sgn(v)

ψ̄(xb)ψ̄(v̄2x−1a).

Thus,

ϕ̂X̄t0 (v)(a, 0) =
2

q − 1

∑
sgn(x)=sgn(v)

ψ̄(0)ψ̄(v̄2x−1a),

=
2

q − 1

∑
sgn(t)=sgn(v)

ψ̄(ta),

=
2

q − 1
γsgn(v)(a),

and

ϕ̂X̄t0 (v)(0, b) =
2

q − 1

∑
sgn(x)=sgn(v)

ψ̄(xb)ψ̄(0),

=
2

q − 1
γsgn(v)(b).

Similar arguments show that

ϕ̂X̄t1 (v)(a, 0) =
2

q − 1
γsgn(εv)(a),

ϕ̂X̄t1 (v)(0, b) =
2

q − 1
γsgn(εv)(b),

and

ϕ̂X̄t2 (v)(a, 0) =
2

q − 1
γsgn(εv)(a),

ϕ̂X̄t2 (v)(0, b) =
2

q − 1
γsgn(v)(b),

and

ϕ̂X̄t3 (v)(a, 0) =
2

q − 1
γsgn(v)(a),

ϕ̂X̄t3 (v)(0, b) =
2

q − 1
γsgn(εv)(b).

Thus,(
ϕ̂X̄t0 (v) − ϕ̂X̄t1 (v) + ϕ̂X̄t2 (v) − ϕ̂X̄t3 (v)

)
(a, 0)

=
2

q − 1
(
γsgn(v) − γsgn(εv) + γsgn(εv) − γsgn(v)

)
(a)

= 0,

and(
ϕ̂X̄t0 (v) − ϕ̂X̄t1 (v) + ϕ̂X̄t2 (v) − ϕ̂X̄t3 (v)

)
(0, b)

=
2

q − 1
(
γsgn(v) − γsgn(εv) + γsgn(v) − γsgn(εv)

)
(b)

=
22

q − 1
(γsgn(v) − γsgn(εv))(b)

=
22

q − 1
sgn(v)ŝgn(b)

=
22

q − 1
sgn(v)

√
qζ3sgn(b).

Letting v = 1, we recover the first two parts of equation
(4–9). Likewise,(

ϕ̂X̄t0 (v) − ϕ̂X̄t1 (v) − ϕ̂X̄t2 (v) + ϕ̂X̄t3 (v)

)
(a, 0)

=
2

q − 1
(
γsgn(v) − γsgn(εv) − γsgn(εv) + γsgn(v)

)
(a)

=
22

q − 1
(γsgn(v) − γsgn(εv))(a)

=
22

q − 1
sgn(v)ŝgn(a)

=
22

q − 1
sgn(v)

√
qζ1sgn(a),

and(
ϕ̂X̄t0 (v) − ϕ̂X̄t1 (v) − ϕ̂X̄t2 (v) + ϕ̂X̄t3 (v)

)
(0, b)

=
2

q − 1
(
γsgn(v) − γsgn(εv) − γsgn(v) + γsgn(εv)

)
(b)

= 0.

Letting v = 1, we recover the last two parts of equation
(4–9).

Equation (4–6) (and therefore equation (4–7) also) is
exactly Springer’s hypothesis in our context. In fact, it
is quite easy to verify this equality by direct calculation
of the relevant Fourier transforms, but since this paper
is already long, we omit the details.
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4.5 Motives for the Fourier Transforms of Orbital
Integrals

As we see from Section 4.2, for our purposes, there are
exactly three important points in the Bruhat–Tits build-
ing: (0), (01), and (1). For the remainder of this section,
the symbol x is reserved for the vertices (0) and (1), while
y = (01).

Let f be a test function supported on the topologically
nilpotent elements in g(K). All we need to know in order
to find μ̂Xz (f) is the values of the corresponding function
ϕ̂Xz on the corresponding reductive quotient, and the
information about the projections of the elements of the
form h−1Y h for the elements Y in the support of f .

Recall the notation hz,n = {Yz,n(u) | u ∈ O∗
K} ⊂ g and

f̃z,n,± = cay∗fz,n,± (the characteristic function of the set
Ghz,n,±, where G acts by adjoint action).

Proposition 4.3. Suppose z ∈ {s0, s1, s2, t0, t1, t2, t3}. Let
f̃z,n,± be the characteristic function of the set Ghz,n,±
and let u0, u1, and uε denote the nilpotent orbits in
sl(2,Fq) corresponding to the unipotent conjugacy classes
U0, U1, and Uε respectively. Let κ be an arbitrary linear
combination of the functions QT and QG viewed as func-
tions on sl(2,Fq) (see Section 4.4 for their definition).
Then∫

G

∫
g

f̃z,n,±(gY g−1)κx,0(Y )dY dg

= κ|u0TrFrobMx,0
z,n,± + κ|u1TrFrobMx,1

z,n,±
+ κ|uεTrFrobMx,ε

z,n,±,

(4–10)

where Mx,0
z,n,±, Mx,1

z,n,±, and Mx,ε
z,n,± are defined in Tables

6 and 7 in the case x = (0) and Tables 8 and 9 in the
case x = (1).

Proof: This proposition essentially follows from Proposi-
tion 3.5. We have∫

G

∫
g

f̃z,n,±(gY g−1)κx,0(Y )dY dg

=
∫

G

∫
g

f̃z,n,±(Y )κx,0(g−1Y g)dY dg

=
∫

G

∫
GΓz,n,±

(κx,0 ◦ cay∗)(g−1γg)dγdg.

Note that in the above integral, the function κx,0◦cay∗ is
evaluated only at topologically unipotent elements. The
modified Cayley transform cay is measure-preserving on
this set, and that is why the integral can be rewritten as
a double integral over the group G. This is exactly the
expression that appears in equation (3–1), and therefore
by Proposition 3.5 it has the required form.

Corollary 4.4. Suppose z ∈ {s1, s2} and z′ ∈
{s0, s1, s2, t0, t1, t2, t3}. For each n ∈ N, the Fourier
transform μ̂Xz of the orbital integral at Xz is constant
on the set Ghz′,n,±, and

μ̂Xz (f̃z′,n,±)

= ϕ̂X̄z
|u0TrFrobMx,0

z′,n,± + ϕ̂X̄z
|u1TrFrobMx,1

z′,n,±
+ ϕ̂X̄z

|uεTrFrobMx,ε
z′,n,±,

where x = (0) if z = s1 and x = (1) if z = s2. See
Remark 4.2 for the definition of ϕX̄z

.

Proof: From Section 4.2 we see that our elements Xz

correspond to vertices x in the building, and their depths
are all r = 0. First, recall that by Proposition 4.1, we
have

Φ(Xz, f̃z′,n,±) =
∫

G

∫
g

f̃z′,n,±(gY g−1)(ϕ̂X̄z
)x,0(Y ).

Now we can plug in κ = ϕ̂X̄z
in Proposition 4.3. By

Springer’s hypothesis (see Section 4.4), the function ϕ̂X̄z

restricted to the set of nilpotent elements is a constant
multiple of the Green’s polynomial QT (thought of as a
function on the Lie algebra), so the assumptions of the
proposition are satisfied.

Let us now consider the elements Xz of the ramified
elliptic tori, that is, z = t0, t1, t2, or t3. Then (see Sec-
tion 4.2) y = (01) and r = 1

2 , and ḡy,−r(Fq) = A2(Fq);
in the rest of this section we write y for (01) and r for
1
2 . The image of the set of topologically nilpotent ele-
ments in gy,−1/2 under ρy,−r is contained in {(x, y) ∈
A2(Fq) |xy = 0}. This set is the union of the following
five orbits of the action of GL(1,Fq) on A2(Fq):

V 0 := {(0, 0)},
V 1,+ := {(0, x) | sgn(x) = 1},
V 1,− := {(0, x) | sgn(x) = −1},
V 2,+ := {(x, 0) | sgn(x) = 1},
V 2,− := {(x, 0) | sgn(x) = −1}.

(4–11)

Proposition 4.5. Let κ be a GL(1)-invariant function
defined on A2(Fq) with respect to the action defined in
Section 4.4. Then, for each z ∈ {s1, s2, t0, t1, t2, t3},
each ν = ±, and each nonnegative integer n in the case
z ∈ {t0, t1, t2, t3}, and each positive integer n in the case
z ∈ {s1, s2}, there exist virtual Chow motives N 0

z,n,ν ,
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N 1,±
z,n,ν , and N 2,±

z,n,ν such that∫
G(K)

∫
g(K)

f̃z,n,ν(Ad(g)Y )κy,−r(Y ) dY dg

= κ|V0TrFrobN 0
z,n,ν +

∑
α=±

κ|V 1,αTrFrobN 1,α
z,n,ν

+
∑
α=±

κ|V 2,αTrFrobN 2,α
z,n,ν .

Moreover, N 0
z,n,ν and N 1,±

z,n,ν and N 2,±
z,n,ν are rational

functions of L. The virtual Chow motives N 1,±
z,n,ν and

N 2,±
z,n,ν are given in Tables 10 and 11.

Proof: We rewrite the left-hand side as the sum over
the nilpotent orbits in the reductive quotient, as we did
with the character in Section 3.1. In order to do this, we
make the following definition. Suppose V is one of the
GL(1,Fq)-orbits in A2(Fq) appearing in equation (4–11).
Let n be an integer and recall that y denotes the point
(01) in the Bruhat–Tits building for G. For any regular
topologically nilpotent element Y of g, let NV,λ(Y ) de-
note the number ofGy-cosets gGy inside the double-coset
Gx\G/Gy that satisfy the following condition:

g−1Y g ∈ gy,−r ∧ ρy,−r(g−1Y g) ∈ V.

Let Ã be the set of diagonal matrices of the form
diag(�λ, �−λ), where λ is an arbitrary integer. Then G
has the decomposition G = GxÃGy (note the difference
with Cartan decomposition, where λ is nonnegative). Us-
ing the Gy-invariance of the function κy,−r, we obtain,
for an arbitrary test function f ,∫

G

∫
g

f(Y )κy,−r(g−1Y g) dY dg

=
∫

G/Gy

∫
Gy

∫
g

f(Y )κy,−r(y−1h−1Y hy) dY dy dh

= m(Gy)
∑

a

∑
h

∫
g

f(Y )κy,−r(h−1Y h) dY,

(4–12)
where the outside summation is over a ∈ Gx\G/Gy, and
the inside summation is over h ∈ GxaGy/Gy. Note that
the summation index in the outside sum in fact runs over
Z. As with the case of the character, the sum in fact
contains only finitely many nonzero terms, since at the
moment we are considering only the elliptic elements Y .

The rest of the argument follows the pattern of the
proof of Proposition 3.5, taking equation (4–12) as the
starting point. It also proceeds case by case. Here we
carry out the proof for the test functions f̃z,n,± with z =
s1 and z = t2. The other cases are very similar; the

results of these calculations are recorded in Tables 10
and 11.

As in Section 3.1, we can continue the chain of equal-
ities (4–12) by writing the integral inside the sum as a
sum over GL(1,Fq)-orbits V :

m(Gy)
∑

a

∑
h

∫
g

f̃z,n,±(Y )κy,−r(h−1Y h) dY

=
∑

a

∑
V

κ|V
∫

Ghz,n,±
NV,λ(Y )dY

=
∑
V

κ|V
∞∑

λ=−∞

∫
Ghz,n,±

NV,λ(Y )dY,

where the summations over a and h are as in equa-
tion (4–12).

Note that since there are, in fact, only finitely many
nonzero terms, the permutation of the two sums is valid.

Now it remains to “calculate” the numbers NV,λ(Y ),
i.e., to express them in terms of motivic volumes of some
definable sets. This is done by brute force, in a manner
similar to the calculation of the character. Our calcu-
lation will make it transparent that these numbers are
constant on each of the sets Ghz,n,±.

We will need the formula for the number of Gy-cosets
inside each double coset GxaλGy (λ ∈ Z): the cardi-
nality #GxaλGy/Gy equals q2λ−1 if λ > 0, and q2|λ| if
λ ≤ 0, as can be shown using the affine Bruhat decom-
position for G (see [Bruhat and Tits 96], for example).
Recall that with the notation of Section 2.7.2, we can
write [GxaλGy/Gy] = L2λ−1 when λ is a positive inte-
ger, [GxaλGy/Gy] = L−2λ when λ ≤ 0.

Let haλ be a representative of a coset GxaλGy/Gy;
write h =

[
a b
c d

] ∈ Gx.
A statement completely analogous to Lemma 3.2 re-

lates the numbers NV,λ to the motivic volumes of the
sets {h | ρy,−r(a−1

λ h−1Yz,n(u)haλ) = (x, 0)} and {h |
ρy,−r(a−1

λ h−1Yz,n(u)haλ) = (0, x)}, with x square or
nonsquare, respectively (of course, we also need to show
that these four sets are definable). Then to obtain the
virtual motives N 1,±

z,n,ν and N 2,±
z,n,ν , we need to sum these

motivic volumes over all values of λ.
The following is the list of possibilities for the element

ρy,−r(a−1
λ h−1Yz,n(u)haλ) of A2(Fq) in the two cases z =

t2 and z = s1:

Case z = t2: The conditions on a, b, c, d, and λ for
a−1

λ h−1Yz,n(u)haλ to be in Gy,−r are

−2λ+ ord(d2u�n − b2εu�n+1) ≥ −1,

2λ+ ord(−c2u�n + a2εu�n+1) ≥ 0.
(4–13)
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z N 1,±
z,n,ν N 2,±

z,n,ν

s1

N 1,+
z,n,ν = N 1,−

z,n,ν =
1

2
Ln n odd

N 1,+
z,n,ν = N 1,−

z,n,ν = 0 n even

N 2,+
z,n,ν = N 2,− = 0 n odd

N 2,+
z,n,ν = N 2,−

z,n,ν =
1

2
Ln n even

s2

N 1,+
z,n,ν = N 1,− = 0 n odd

N 1,+
z,n,ν = N 1,−

z,n,ν =
1

2
Ln n even

N 2,+
z,n,ν = N 2,−

z,n,ν =
1

2
Ln n odd

N 2,+
z,n,ν = N 2,−

z,n,ν = 0 n even

TABLE 10. The virtual motives for the Fourier transform of orbital integrals at elements Yz,n(u), for z ∈ {s1, s2}. Here
ν = sgn(u).

z N 1,±
z,n,ν N 2,±

z,n,ν

t0

N 1,+
z,n,ν =

Ln+1

L + 1
and N 1,−

z,n,ν = 0,

if ζ2n+2 = ν

N 1,+
z,n,ν = 0 and N 1,−

z,n,ν =
Ln+1

L + 1

otherwise

N 2,+
z,n,ν =

Ln+1

L + 1
and N 2,−

z,n,ν = 0

if ζ2n+2 = ν

N 2,+
z,n,ν = 0 and N 2,−

z,n,ν =
Ln+1

L + 1

otherwise

t1

N 1,+
z,n,ν =

Ln+1

L + 1
and N 1,−

z,n,ν = 0,

if ζ2n+2 = −ν

N 1,+
z,n,ν = 0 and N 1,−

z,n,ν =
Ln+1

L + 1

otherwise

N 2,+
z,n,ν =

Ln+1

L + 1
and N 2,−

z,n,ν = 0,

if ζ2n+2 = −ν

N 2,+
z,n,ν = 0 and N 2,−

z,n,ν =
Ln+1

L + 1

otherwise

t2

N 1,+
z,n,ν =

Ln+1

L + 1
and N 1,−

z,n,ν = 0,

if ζ2n+2 = (−1)n+1ν

N 1,+
z,n,ν = 0 and N 1,−

z,n,ν =
Ln+1

L + 1

otherwise

N 2,+
z,n,ν =

Ln+1

L + 1
and N 2,−

z,n,ν = 0,

if ζ2n+2 = (−1)nν

N 2,+
z,n,ν = 0 and N 2,−

z,n,ν =
Ln+1

L + 1

otherwise

t3

N 1,+
z,n,ν =

Ln+1

L + 1
and N 1,−

z,n,ν = 0,

if ζ2n+2 = (−1)nν

N 1,+
z,n,ν = 0 and N 1,−

z,n,ν =
Ln+1

L + 1

otherwise

N 2,+
z,n,ν =

Ln+1

L + 1
and N 2,−

z,n,ν = 0,

if ζ2n+2 = (−1)n+1ν

N 2,+
z,n,ν = 0 and N 2,−

z,n,ν =
Ln+1

L + 1

otherwise

TABLE 11. The virtual motives for the Fourier transform of orbital integrals at elements Yz,n(u), for z ∈ {t0, t1, t2, t3}.
(Recall that ζ2 = sgn(−1) and ν = sgn(u).)



36 Experimental Mathematics, Vol. 18 (2009), No. 1

Applying the reduction map ρy,−r to a−1
λ h−1Yz,n(u)haλ,

we see that there are a few possibilities:

1. n is even: Recall the notation ν = sgn(u).

(a) If −n/2 < λ ≤ n/2, then we have
ρy,−r(a−1

λ h−1Yz,n(u)haλ) = (0, 0).

(b) Suppose λ = n/2 + 1. If ord(d) > 0, then

ρy,−r(a−1
λ h−1Yz,n(u)haλ) = (x, 0)

with sgn(x) = sgn(−εu) = −sgn(−u) =
−ζ2sgn(u); on the other hand, if ord(d) = 0,
we have a−1

λ h−1Yz,n(u)haλ /∈ Gy,−r.

(c) Suppose λ = −n/2. If ord(c) > 0, then

ρy,−r(a−1
λ h−1Yz,n(u)haλ) = (0, 0);

on the other hand, if ord(c) = 0, then

ρy,−r(a−1
λ h−1Yz,n(u)haλ) = (0, y),

with sgn(y) = sgn(−u) = ζ2ν.

Case (b) allows us to calculate the virtual motives
responsible for the two orbits of the form (x, 0):
the virtual Chow motive N 1,+

t2,n,ν corresponding to
the orbit of (1, 0) equals 0 if ζ2ν = 1, and equals
μ(Gy)
μ(Gx) [Gxan

2 +1Gy/Gy] = 1
L+1Ln+1 if ζ2ν = −1. For

the orbit of (ε, 0), the answer is the reverse: N 1,−
t2,n,ν

equals 0 if ζ2ν = −1, and equals 1
L+1Ln+1 if ζ2ν = 1.

From case (c), we get the motives corre-
sponding to the other two orbits: N 2,+

t2,n,ν =
μ(Gx)−μ(Gy)

μ(Gx) [Gxa−n
2
Gy/Gy] = L

L+1Ln if ζ2ν = 1,

and 0 if ζ2ν = −1, and for N 2,−
t2,n,ν these answers

are reversed.

2. n is odd:

(a) If −(n + 1)/2 < λ < (n + 1)/2, then
ρy,−r(a−1

λ h−1Yz,n(u)haλ) = (0, 0).

(b) If λ = (n + 1)/2, there are two possibilities: if
ord(d) = 0, then we have

ρy,−r(a−1
λ h−1Yz,n(u)haλ) = (x, 0)

with sgn(x) = sgn(u); on the other hand, if
ord(d) > 0, then

ρy,−r(a−1
λ h−1Yz,n(u)haλ) = (0, 0).

(c) Suppose λ = −(n+1)/2. If ord(c) = 0, we have
a−1

λ h−1Yz,n(u)haλ /∈ Gy,−r; if ord(c) > 0, then

ρy,−r(a−1
λ h−1Yz,n(u)haλ) = (0, y),

with sgn(y) = −sgn(u).

As before, from the calculations in case (b), we see
that the virtual Chow motive N 1,+

t2,n,ν that corre-
sponds to the orbit of (1, 0) equals 0 if ν = −1, and
equals μ(Gx)−μ(Gy)

μ(Gx) [Gxan+1
2
Gy/Gy] = L

L+1Ln+1−1 =
1

L+1Ln if ν = 1. For the orbit of (ε, 0), the an-
swer is the reverse. Case (c) yields N 2,+

t2,n,ν =
μ(Gy)
μ(Gx) [Gxa−n+1

2
Gy/Gy] = 1

L+1Ln+1 if ν = −1, and
0 if ν = 1.

Case z = s1: In this case, the conditions (4–13) are
replaced with

−2λ+ ord(d2�n − b2εu�n) ≥ −1,

2λ+ ord(−c2u�n + a2εu�n) ≥ 0.
(4–14)

1. Suppose n is even. Then we obtain the following:

(a) If −n/2 < λ ≤ n/2, then

ρy,−r(a−1
λ h−1Yz,n(u)haλ) = (0, 0).

(b) If λ = −n/2, then

ρy,−r(a−1
λ h−1Yz,n(u)haλ) = (0, y)

with sgn(y) = sgn(u)sgn(ac(−c2 + a2ε)).

We see that N 1,±
s1,n,ν are both zero when n is even,

for any value of ν. In order to find N 2,±
s1,n,ν , we need

to calculate the ratio of the volume of the subset of
Gx defined by the formula �η �= 0, ac(−c2 + a2ε) =
η2 to the total volume of Gx. Note that −c2 +
a2ε = −(c2 − a2ε). (This formula should be un-
derstood as an abbreviation. We should first con-
sider the formula with an extra free variable δ:
�η �= 0, ac(−c2 + a2δ) = η2, do the motivic calcula-
tion, then plug in our value of ε, and the calculation
is very similar to the one in Lemma 3.3, carried out
in [Gordon 09].) Note that the expression c2 − a2ε

is a square of a nonzero element for exactly half of
the elements of Gx. Then this ratio is 1

2 . Therefore,
in both cases ν = 1 and ν = −1, the answer is the
same:

N 2,±
s1,n,ν =

1
2
[Gxan/2Gy/Gy] =

1
2

L2|−n/2| =
1
2

Ln.
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2. Suppose n is odd. In this case, we have the following:

(a) If −(n+ 1)/2 < λ < (n+ 1)/2, then

ρy,−1/2(a−1
λ h−1Yz,n(u)haλ) = (0, 0).

(b) If λ = −(n + 1)/2, then the element
a−1

λ h−1Yz,n(u)haλ is not in Gx for any h.

(c) If λ = (n+ 1)/2, then

ρy,−r(a−1
λ h−1Yz,n(u)haλ) = (x, 0),

with sgn(x) = sgn(u)sgn(ac(d2 − εb2)).

Similarly to the previous case, we get N 2,±
s1,n,ν = 0;

N 1,±
s1,n,ν = 1

2Ln (again using Lemma 3.3 to show that
the volume of the subset of Gx defined by the for-
mula �η �= 0, ac(d2 − b2ε) = η2 equals half of the
volume of Gx.

The calculation in the case z = s2 follows the pattern
of the case z = s1, except that there are the same addi-
tional complications as we saw in the case of the charac-
ter. Not surprisingly, the answer is still the same as in
the case of s1, except that the roles of the cases n even
and n odd are switched. The results of similar calcula-
tions for the remaining ramified cases are summarized in
Tables 10 and 11.

The virtual Chow motives N 0
z,n,ν can be computed

following arguments as above. However, since they do not
appear in any of our further calculations (all the functions
κ in which we are interested vanish at the origin), we omit
this calculation.

Corollary 4.6. Let hz be ramified elliptic (so z ∈
{t0, t1, t2, t3}). For each n ∈ N, the Fourier transform
μ̂Xz of the orbital integral at Xz is constant on the set
Ghz′,n,ν for ν = ±, z′ ∈ {s1, s2, t0, t1, t2, t3} and a posi-
tive (respectively nonnegative if z′ ∈ {t0,t1, t2, t3}) inte-
ger n, and we have

μ̂Xz (f̃z′,n,ν)

= ϕ̂Xz |V0TrFrobN 0
z′,n,ν +

∑
α=±

ϕ̂Xz |V 1,ν TrFrobN 1,α
z′,n,ν

+
∑
α=±

ϕ̂Xz |V 2,ν TrFrobN 2,α
z′,n,ν .

Proof: From Section 4.2, we see that our elements Xz

correspond to the point y = (01) in the building, and
their depth is r = 1

2 . First, recall that by Proposition
4.1, we have

μXz (f̃z′,n,±) =
∫

G

∫
g

f̃z′,n,±(gY g−1)(ϕ̂X̄z
)y,−r(Y ).

Note that the support of the functions f̃z,n,± for all z
and all n > 0 is contained in hy,−r, so Proposition 4.1
is applicable. Now it remains to plug in the function
κ = ϕ̂X̄z

, which is now a GL(1,Fq)-invariant function on
A2(Fq), in Proposition 4.5 to complete the proof.

5. MOTIVIC PROOF OF THE CHARACTER FORMULA

Now we are ready to prove Theorem 2.5, and to calcu-
late the coefficients that appear in Table 4 in the pro-
cess. Recall that semisimple character expansion is an
equality of two distributions on the topologically nilpo-
tent regular set in the Lie algebra. These distributions
are represented by locally integrable functions, which are
constant on the sets Ghz,n,±; see Proposition 3.5, Corol-
lary 4.4, and Corollary 4.6. We prove the semisimple
character expansion by checking the equality on each of
these sets.

Let π be a representation as in Section 2.1. We start
with the case that π is obtained from a Deligne–Lusztig
representation, where the proof is straightforward and
requires no consideration of separate cases. If π is of the
type π(x, θ) with x = (0) or x = (1), then by Proposition
3.5, we have, for each z′ ∈ {s0, s1, s2, t0, t1, t2, t3},

1
m(GΓz′,n,ν)

Θπ(x,θ)(fz′,n,ν) = −
∑
U

QT |UTrFrobMx,U
z′,n,ν .

On the other hand, for z = s1 or s2, by Corollary 4.4,

μ̂Xz (f̃z′,n,±) =
∑
U

ϕX̄z
TrFrobMx,U

z′,n,±,

where x = (0) if z = s1, and x = (1) if z = s2. As shown
in Sections 4.2.1 and 4.2.2,

QT = (1 − q)ϕ̂X̄s1
= (1 − q)ϕ̂X̄s2

.

It follows immediately that

1
m(Ghz′,n,ν)

Θπ(f̃z′,n,ν ◦ cay)

=

{
(1 − q)μ̂Xs1

(f̃z′,n,ν) if π = π(0, θ),
(1 − q)μ̂Xs2

(f̃z′,n,ν) if π = π(1, θ).

(5–1)

This proves the theorem in the case that π comes from a
Deligne–Lusztig representation.

Let us now turn to the non-Deligne–Lusztig case. Let
π = π(x,+), where x = (0) or x = (1) (the other two
cases can be obtained by changing the sign in front of



38 Experimental Mathematics, Vol. 18 (2009), No. 1

QG everywhere below). Then

1
m(Ghz′,n,ν)

Θπ(f̃z′,n,ν ◦ cay)

= −1
2

∑
U

QT (U)TrFrobMx,U
z′,n,ν

− 1
2

∑
U

QG(U)TrFrobMx,U
z′,n,ν .

(5–2)

As we have seen in equation (5–1), the first term (i.e.,
the part of the character that comes from inflating QT )
is a multiple of μ̂Xs1

(f̃z′,n,ν) in the case π = π(0,+),
and of μ̂Xs2

(f̃z′,n,ν) in the case π = π(1,+). The co-
efficient is q−1

2 , since on the left, QT appears with the
coefficient − 1

2 .
It remains to express the second term,

− 1
2

∑
U QG(U)TrFrobMx,U

z′,n,ν , as a linear combina-
tion of the Fourier transforms of orbital integrals. In
order to do that, recall the functions ϕ(0) and ϕ(1)

defined in Section 4.3. By Corollary 4.6, if z′ is elliptic,
we have∑

l=1,2
α=±

ϕ̂(0)|V l,αTrFrobN l,α
z′,n,ν

= μ̂Xt0
(fz′,n,ν) − μ̂Xt1

(fz′,n,ν) + μ̂Xt2
(fz′,n,ν)

− μ̂Xt3
(fz′,n,ν)

(5–3)

and∑
l=1,2
α=±

ϕ̂(1)|V l,αTrFrobN l,α
z′,n,ν

= μ̂Xt0
(fz′,n,ν) − μ̂Xt1

(fz′,n,ν) − μ̂Xt2
(fz′,n,ν)

+ μ̂Xt3
(fz′,n,ν).

(5–4)

Also, if z′ = s0, then, since the both functions ϕ̂(0) and
ϕ̂(1) vanish at the origin and take opposite values on the
orbits V 1,+, V 1,− and V 2,+, V 2,−, it is easy to see in a
way that mimics the proof of Proposition 3.5 in the case
z = s0 that the right-hand sides of equations (5–3) and
(5–4) vanish on hs0,n for n > 0.

We claim that for any z and any positive (respectively
nonnegative) n,

− 1
2

∑
U

QG(U)TrFrobMx,U
z′,n,ν

= c
∑
l=1,2
α=±

ϕ̂x|V l,αTrFrobN l,α
z,n,ν ,

(5–5)

with some constant c that we will calculate below (we
will see that c = − q2−1

23q ). Note that the left-hand side

depends on the choice of the vertex x. On the right, it
is the constant c and the function ϕx that depend on x.
This equation could be called the motivic version of our
character formula. It is the core of the proof; here we
are comparing the inflation of two functions that live on
different reductive quotients. Note that once we prove
this claim, Theorem 2.5 will follow immediately. On the
other hand, the proof of the claim is automatic: all we
need to do is plug in the values of the functions ϕx from
Section 4.3, the values of QG from Section 2.3, and the
motivic coefficients from Tables 6 and 7 if x = (0) and
Tables 8 and 9 if x = (1) on the left, and from Tables 10
and 11 on the right.

The equality (5–5) has to be checked on each of the
sets hz′,n,ν (recall that ν = ±).

Observe that the function ϕ̂(0) vanishes at V 1,±, and
the function ϕ̂(1) vanishes at V 2,±, so that the right-hand
side in any case has only two nonzero terms. On the left,
since QG vanishes at the identity, there are also only two
nonzero terms.

For z′ = s0 the equality we want to prove is trivial,
since both sides vanish, as discussed above. For z′ = s1
and z = s2, the equality also turns out to be trivial. On
the right, the two nonzero opposite values of the function
ϕ̂(0) or ϕ̂(1) appear with the same coefficient, so the right-
hand side equals zero. On the left, the function QG takes
opposite values on U1 and Uε, and they also appear on
the left-hand side with equal coefficients, so the left-hand
side of equation (5–5) is also zero. This, however, gives
no information about the constant c.

For z′ ∈ {t0, t1, t2, t3}, we see from Tables 10 and 11
that only one of the nonzero values of ϕ̂x appears with a
nonzero coefficient, and we see from Tables 6, 7, 8, and 9
that also only one nonzero term appears on the left. The
left-hand side of equation (5–5) equals − 1

2

√
qζ3qnsign1,

where sign1 = 1 if the coefficient Mx,U1
z′,n,ν is nonzero, and

sign1 = −1 if Mx,Uε

z′,n,ν is nonzero.
The right-hand side equals

c
22

q − 1
√
qζ3 q

n+1

q + 1
sign2 if x = (0),

c
22

q − 1
√
qζ
qn+1

q + 1
sign2 if x = (1),

where sign2 is the sign that depends on which one of
the virtual Chow motives N 1,2,±

z′,n,ν is nonzero. Let c =

− q2−1
23q ζ

2, which is the constant that appears in Table 4.
Then, to finish the proof of the theorem it remains to
show that on every set hz′,n,ν with z′ ∈ {t0, . . . , t3}, we
have the identity sign1 = ζ2sign2 in the case x = (1),
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and sign1 = sign2 in the case x = (0). Here is the
comparison of the two SIGNs in the case x = (0):

z = t0 : sign1 = νζ2n, sign2 = ζ2(n+1).

z = t1 : sign1 = −νζ2n, sign2 = −νζ2(n+1).

z = t2 : sign1 = νζ2n(−1)n, sign2 = νζ2(n+1)(−1)n.

z = t3 : sign1 = νζ2n(−1)n+1, sign2 = νζ2(n+1)(−1)n+1.

We see that in all cases, sign1 = ζ2sign2, which com-
pletes the proof in the case x = (0).

The case x = (1) is identical, except that we need to
use Tables 8 and 9 instead of Tables 6 and 7 to calculate
sign1, and the first column of Tables 10 and 11 instead
of the second column to calculate sign2.

6. FINAL COMMENTS

6.1 Theorem 2.5 and Our Choices

Let us begin by reviewing all the choices made in this
paper before the proof of Theorem 2.5.

First, in the preamble to Section 2, we began with an
odd prime p, a p-adic field K, a prime � different from p

(e.g.,, � = 2), and an algebraic closure Q̄� of Q�.
Next, in Section 2.2 we fixed an additive character ψ̄ :

Fq → Q̄� and a square root
√
q of q in Q̄�. These choices

(via Gauss sums) determined a fourth root of unity ζ ∈
Q̄� such that ζ2 = sgn(−1) (see Remark 2.1). This, in
turn, determined how we labeled the two representations
σ+ and σ− in the Lusztig series for (T, θ0) and therefore
our definition of QG (see Section 2.3), and therefore our
definition of π(0,+), π(0,−), π(1,+), and π(1,−) (see
Remark 2.2).

Independently, we fixed cocycles {s1, s2, t0, t1, t2, t3}
in Z1(K, N) such that their cohomology classes lay in
the kernel of the map H1(K, N) → H1(K, G) induced by
inclusion N → G. This choice determined a uniformizer
� for K and a nonsquare unit ε in OK (see Remark 2.4).
We remind the reader that if sgn(−1) = −1, then the
cohomology class for t0 equals the cohomology class for
t1, and the cohomology class for t2 equals the cohomology
class for t3.

Finally, for each z ∈ {s1, s2, t0, t1, t2, t3} we chose an
element Xz ∈ g with minimal nonnegative depth in its
Cartan subalgebra; these are listed in Table 3. This last
step amounted to the choice of a unit v in OK (see Sec-
tion 2.8).

Also, the Fourier transform of the orbital integral μXz

is taken with respect to an additive character ψ : K →
Q̄� with conductor OK such that the induced additive

character of Fq is ψ̄. Also, we must use compatible Killing
forms, and the correct measures everywhere, as we did.

With all these choices that we made, the values of the
coefficients cz(π) in our semisimple character expansion
are presented in Table 4. From that table we make three
observations.

1. If π is induced from a Deligne–Lusztig representa-
tion, then for each cocycle z, cz(π) is a rational func-
tion of q with integer coefficients.

2. If the cocycle z is unramified (by which we mean
that the Cartan Tz is unramified) then cz(π) is a
rational function in q with integer coefficients for
every depth-zero supercuspidal irreducible represen-
tation π.

3. If π is a depth-zero supercuspidal irreducible rep-
resentation but π is not induced from a Deligne–
Lusztig representation and if the cocycle z is rami-
fied (by which we mean that the Cartan Tz is ram-
ified), then cz(π) is a rational number for every p,
but it is not a rational function of q. Instead, in
this case, cz(π) is a rational function of q multiplied
by sgnq(−1). Observe that sgnq(−1) cannot be ex-
pressed as a rational function in q.

It is reasonable to ask whether these properties would
continue to hold had we made different choices above.
The answer is affirmative. To see why, we say a few
words about how the semisimple character expansion
would change if the definition of the Xz’s were modi-
fied. Since we have gathered complete information about
the Fourier transforms of all regular elliptic orbital in-
tegrals μ̂X (when X has minimal nonnegative depth in
its Cartan subalgebra) evaluated at topologically nilpo-
tent elements Y , we can explore the dependence of the
coefficients in the semisimple character expansion of the
orbits we chose. (Of course, each Xz can be replaced by
any element in the same adjoint orbit as Xz, since the
distributions μ̂Xz and Θπ are invariant under the group
action.)

To begin, consider the local constancy of X �→ μ̂X(f)
for a fixed Schwartz function f supported by topologi-
cally nilpotent elements. Using equations (4–6) and (3–1)
we see that∫

G

∫
g

f(Ad(g)Y ) (QT )(0),0(Y ) dY dg = (1−q)μ̂Xs1 (v)(f).

(6–1)
Moreover, since QT (see Section 2.3) does not depend on
v ∈ O∗

K, it follows that μ̂Xs1 (v)(f) is independent of v;
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thus, for any f as above,∫
O∗

K

μ̂Xs1(v)(f) dv = (q − 1)μ̂Xs1
(f), (6–2)

where the Haar measure on O∗
K is chosen such that O∗

K

has measure q − 1.
From our point of view, it would have been more nat-

ural to rewrite equation (6–1) (and therefore the first line
in Table 4) in the form

Θπ(0,θ)(f) =
∫
O∗

K

μ̂Xs1 (v)(f) dv, (6–3)

from which we see that our choice for v was completely
unimportant here. (See Sections 2.1 and 2.3 for the def-
inition of π(0, θ).) Similarly, we can rewrite the last line
of Table 4 in the form

Θπ(1,θ)(f) =
∫
O∗

K

μ̂Xs2 (v)(f) dv. (6–4)

These expressions depend on our choice for the cocycles
s1 and s2 only. Therefore, once the cocycle s1 is chosen,
the element Xs1 may be replaced by any element in the
Cartan subalgebra uniquely determined by the cocycle s1
as long as that element has minimal nonnegative depth
in that Cartan subalgebra; likewise for the cocycle s2.

Regarding the totally ramified Cartan subgroups,
things are a bit more subtle. From Table 4 we see that
if f is a Schwartz function supported by topologically
nilpotent elements, then∫

G

∫
g

f(Ad(g)Y ) (QG)(01), 1
2
(Y ) dY dg

=
q2 − 1
22q

(
μ̂Xt0

(f) − μ̂Xt1
(f) + μ̂Xt2

(f) − μ̂Xt3
(f)

)
.

Invoking the local constancy of X �→ μ̂X(f), we may
rewrite the equation above in the form

2q
q + 1

∫
G

∫
g

f(Ad(g)Y ) (QG)(0),0(Y ) dY dg

=
∫

{sgn(v)=+1}

μ̂Xt0 (v)(f) dv

−
∫

{sgn(v)=+1}

μ̂Xt1 (v)(f) dv

+
∫

{sgn(v)=+1}

μ̂Xt2 (v)(f) dv

−
∫

{sgn(v)=+1}

μ̂Xt3 (v)(f) dv.

Similar observations apply to representations induced
from G(1). In this way we see that only sgn(v) was im-
portant in our definition of the ramified orbits appearing
in Theorem 2.5. More precisely, once the cocycle t0 is
chosen, the element Xt0 may be replaced by Xt0(v) as
long as sgn(v) = 1; likewise for the cocycles t1, t2, and
t3. However, if sgn(v) = −1 and z ∈ {t0, t1, t2, t3}, then
μ̂Xz is not equal to μ̂Xt1 (v)(Y ), even when restricted to
functions supported by topologically nilpotent elements
of g.

Having dealt with v, we return to our choice of non-
square unit ε. From the local constancy of the Fourier
transform of the orbital integrals we have the following
immediate consequence. For any Schwartz function f

supported by topologically nilpotent elements of g,∫
{sgn(δ)=−1}

μ̂[ 0 1
δ� 0 ](f) dδ =

q − 1
2

μ̂Xt2
(f). (6–5)

Similar observations hold for all our orbits. Motivated by
the motivic integration view of things, we might have re-
placed each of our orbital integrals with an integral over
v and δ (ε is a particular value of δ). In fact, that is
exactly what we did when we used motivic integration
with parameters in Section 3.3.2 and allowed the param-
eter to vary over the set of all nonsquares in the residue
field. The result is easily related back to orbital integrals
appearing in representation theory because of relations
of the following form:∫

{sgn(δ)=−1}

∫
{sgn(v)=+1}

μ̂[ 0 v
δ�v 0 ](f) dv dδ

=
(q − 1)2

22
μ̂Xt2

(f).

(6–6)

Similar observations hold for all our orbital integrals.
Consequently, replacing any of our orbital integrals with
these “smeared” orbital integrals would have the effect
of changing the coefficients in the semisimple character
expansion in very simple ways.

In summary, we have shown in this section that the
three observations made above concerning the rationality
of cz(π) are completely independent of all our choices.

Also, since we have been switching freely between
polynomials in q and virtual Chow motives, we notice
that the coefficients cz(π) can always be interpreted as
elements of the ring Mot, as we do in Table 12. Indeed,
if we replace the polynomials in q with the corresponding
elements of the ring Mot as we have been doing so far,
we can see that the denominators of cz(π) are invertible
in the ring Mot. Moreover, a motivic expression for ζ2 is
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cz(π) z = s1 z = s2 z = t0 z = t1 z = t2 z = t3

π = π(0, θ) L − 1 0 0 0 0 0

π = π(1, θ) 0 L − 1 0 0 0 0

π = π(0, +) L−1
2

0 + M

23L
− M

23L
+ M

23L
− M

23L

π = π(0,−) L−1
2

0 − M

23L
+ M

23L
− M

23L
+ M

23L

π = π(1, +) 0 L−1
2

+ M

23L
− M

23L
− M

23L
+ M

23L

π = π(1,−) 0 L−1
2

− M

23L
+ M

23L
+ M

23L
− M

23L

TABLE 12. Motives for the coefficients cz(π) appearing in Theorem 2.5. Here we write M for (L2 − 1)(1 − S) in order to
save space.

found by considering the 0-dimensional variety defined by
the equation x2 = −1 (this variety appears for the same
purpose in [Hales 05b]): if S denotes the class of x2 = −1
in the ring Mot, then ζ2 = −TrFrob(1− S). Note, more-
over, that this motive appears exactly when we study
depth-zero supercuspidal representations π that are not
induced from Deligne–Lusztig representations and when
we consider cocycles z for which the corresponding Car-
tan Tz is ramified. We will have more to say about this
phenomenon in Section 6.2.

6.2 Theorem 2.5 and Endoscopy

This paper has focused on the motivic nature of the val-
ues of characters of depth-zero supercuspidal represen-
tations of p-adic SL(2), on the motivic nature of the
Fourier transform of some associated orbital integrals,
and on the relations between the associated motives in
the Chow ring. In particular, the techniques used in the
paper make it clear that once these motives are deter-
mined, the character formula of Theorem 2.5 admits a
proof that could easily be automated. While it is seems
promising to illustrate a strategy showing that certain
results from local harmonic analysis can be proved algo-
rithmically, this method of proof does not explain some
of the striking patterns in Table 4. In this section we
explain these patterns.

First, one must note that although Table 4 is a 6 × 6
matrix, the rank of this matrix is 4. It is easy to under-
stand why the rank of the matrix is at most 5: it fol-
lows immediately from the nilpotent characters expan-
sion that characters of depth-zero supercuspidal repre-

sentations of SL(2,K) span a space of dimension at most
5, since that is the number of nilpotent orbits in sl(2,K)
when the residual characteristic of K is odd.

But why is the rank of Table 4 exactly 4? Going
back to Section 2.3, observe that characters of cuspi-
dal representations of SL(2,Fq) are linearly dependent
when restricted to unipotent elements. In fact, the set
{traceσθ, traceσ+, traceσ−} admits exactly one linear
relation on unipotent elements: if g ∈ sl(2,Fq) is unipo-
tent, then

traceσ+(g) + traceσ−(g) = traceσθ(g). (6–7)

(This relation is best understood through Lusztig’s work,
but this would take us too far afield.) Two linear relations
involving characters of depth-zero supercuspidal repre-
sentations on topologically nilpotent elements of sl(2,K)
follow directly from this observation: if f is supported
by topologically nilpotent elements, then

Θπ(0,+)(cay∗f) + Θπ(0,−)(cay∗f) = Θπ(0,θ)(cay∗f)
(6–8)

and

Θπ(1,+)(cay∗f) + Θπ(1,−)(cay∗f) = Θπ(1,θ)(cay∗f).
(6–9)

Together with the fact that the Fourier transform of our
orbital integrals are linearly independent on functions
supported by topologically nilpotent elements (which can
be seen using the techniques of [Cunningham and Hales
04, Section 1]), this explains why the rank of Table 4 is
exactly 4.
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But a deeper understanding of Table 4 begins with the
following observation: if f is supported by topologically
nilpotent elements, then

Θπ(0,θ)(cay∗(f)) + Θπ(1,θ)(cay∗f)

= (q − 1)
(
μ̂Xs1

(f) + μ̂Xs2
(f)

)
;

(6–10)

moreover, the right-hand side is the Fourier transform of
the stable distribution

μst
Xs1

:=μXs1
+ μXs2

, (6–11)

and so it follows from the work of Waldspurger that μ̂st
Xs1

is a stable distribution. Thus, the sum of characters on
the left-hand side is a stable distribution on the set of
topologically nilpotent elements. In fact,

{π(0, θ), π(1, θ)}
is an L-packet (see [Labesse and Langlands 79, Section
12]). Likewise, from Table 4 we see that if f is supported
by topologically nilpotent elements, then

Θπ(0,+)(cay∗f) + Θπ(1,+)(cay∗f) + Θπ(1,+)(cay∗f)

+ Θπ(1,−)(cay∗f) = (q − 1)μ̂st
Xs1

(f),
(6–12)

which is the same stable distribution appearing above.
In fact,

{π(0,+), π(0,−), π(1,+), π(1,−)}
is an L-packet (see [Labesse and Langlands 79, Section
12]). Thus, if π is a depth-zero supercuspidal irreducible
representation of SL(2,K), then the L-packet containing
π has cardinality two if π is induced from a Deligne–
Lusztig representation; otherwise, the L-packet contain-
ing π has cardinality four.

Now we are ready to understand the pattern seen in
Table 4 through the theory of endoscopy. There are ex-
actly five endoscopic groups H for G; four elliptic en-
doscopic groups, and one nonelliptic endoscopic group.
The elliptic endoscopic groups are SL(2) itself, and three
copies of U(1), one for each quadratic extension of K.
In Table 13 we write Uε(1) for the special unitary group
splitting over K(

√
ε), U�(1) for the special unitary group

splitting over K(
√
�), and Uε�(1) for the special unitary

group splitting over K(
√
ε�). The nonelliptic endoscopic

group for G is GL(1), which plays the role of a Levi
subgroup of SL(2); had we considered nonsupercuspidal
depth-zero representations in this paper, it would have
played an important part.

In Table 13 we pick one good elliptic element YH from
the Lie algebra h of each elliptic endoscopic group for G.

H SL(2) Uε(1) U�(1) Uε�(1)

YH [ 0 1
ε 0 ]

√
ε

√
�

√
ε�

XH Xs1 Xs1 Xt0 Xt2

μG,H
YH

μst
Xs1

μsgn
Xs1

μsgn
Xt0

μsgn
Xt2

TABLE 13. Elliptic endoscopic groups H for SL(2) over
K; one SL(2)-regular element YH from each h = LieH ;
an image XH ∈ sl(2, K) under the Langlands–Shelstad
map; and the κ-orbital integral determined by YH .

Each YH ∈ h is g-regular; for each YH we choose an image
XH = Xz in g from the list of elements appearing in
Theorem 2.5 such that Δg,h(XH , YH) = 1, where Δg,h is
the Langlands–Shelstad transfer factor for the pair (g, h).
Each YH ∈ h thus determines a κ-orbital integral on g

according to the formula

μG,H
YH

=
∑
X′

Δg,h(X ′, YH)μX′ , (6–13)

where the sum is taken over adjoint orbits in g. In our
cases the results are

μ
G,SL(2)
YSL(2)

= μXs1
+ μXs2

= μst
Xs1

,

μ
G,Uε(1)
YUε(1)

= μXs1
− μXs2

= μsgn
Xs1

,

μ
G,U�(1)
YU�(1)

= μXt0
− μXt1

= μsgn
Xs1

,

μ
G,Uε�(1)
YUε�(1)

= μXt2
− μXt3

= μsgn
Xt2

,

as recorded in Table 13. It is now clear from Table 4
that when restricted to Schwartz functions supported
by topologically nilpotent elements, the Fourier trans-
forms of these four distributions span exactly the same
space spanned by the characters of depth-zero supercus-
pidal representations of G (on the pullback by the Cayley
transform of the same space of functions). In fact, the
distributions

{μ̂st
Xs1

, μ̂sgn
Xs1

, μ̂sgn
Xs1

, μ̂sgn
Xt2

}

are linearly independent on the set of Schwartz functions
supported by topologically nilpotent elements, and they
provide a natural basis for the characters of depth-zero
supercuspidal representations of G (on the pullback by
the Cayley transform of the same space of functions).
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H = SL(2) H = Uε(1) H = U�(1) H = Uε�(1)

π = π(0, θ) + L−1
2

+ L−1
2

0 0

π = π(1, θ) + L−1
2

− L−1
2

0 0

π = π(0, +) + L−1
22 + L−1

22 + L2−1
23L

(1 − S) + L2−1
23L

(1 − S)

π = π(0,−) + L−1
22 + L−1

22 − L2−1
23L

(1 − S) − L2−1
23L

(1 − S)

π = π(1, +) + L−1
22 − L−1

22 + L2−1
23L

(1 − S) − L2−1
23L

(1 − S)

π = π(1,−) + L−1
22 − L−1

22 − L2−1
23L

(1 − S) + L2−1
23L

(1 − S)

TABLE 14. Motives for the unique coefficients cH(π) appearing in Theorem 6.1.

The result is Theorem 6.1, which enjoys one advantage
over Theorem 2.5: the coefficients are unique with the
choices made above. Moreover, regarding these choices,
the techniques of Section 6.1 apply here too, as do all
other techniques from this paper.

Theorem 6.1. Let K be a p-adic field with p �= 2. For
each depth-zero supercuspidal representation π of G and
for each elliptic endoscopic group H for G there is a good
elliptic YH ∈ LieH with minimal nonnegative depth in
LieH and a unique rational number cH(π) such that

Θπ(cay∗f) =
∑
H

cH(π)μ̂G,H
YH

(f) (6–14)

for all Schwartz functions f supported by topologically
nilpotent elements in g. Moreover, the coefficients are
motivic, in the sense explained in this paper. Motives for
the coefficients cH(π) are given in Table 14.
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