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To study embeddings of tangles in knots, we use quandle cocy-
cle invariants. Computations are carried out for tables of knots
and tangles to investigate which tangles may or may not embed
in knots in the tables.

1. INTRODUCTION

A tangle is a pair (B,A), where A is a set of properly
embedded arcs in a 3-ball B. A tangle will have four
endpoints throughout this article unless otherwise spec-
ified. A tangle T is embedded in a link (or a knot) L if
there is an embedded ball B in 3-space such that T is
equivalent to the pair (B,B ∩L). All maps are assumed
to be smooth. Tangles are represented by diagrams in a
manner similar to knot diagrams.

Tangle embeddings have been studied by several au-
thors recently. In [Krebes 99], the determinant was
used in relation to evaluations of the Jones polynomial,
which have been further investigated in [Chung and Lin
06, Krebes et al. 00, Przytycki et al. 05]. Topological
interpretations of the results in [Krebes 99] were consid-
ered in [Przytycki et al. 05, Ruberman 00]. Tangles have
also been used to study DNA recombinations [Ernst and
Sumners 90].

In this article, we present a method of using quandle
cocycle invariants as obstructions to embedding oriented
tangles into oriented knots (see Remark 4.5 for more
on orientation), and examine their effectiveness as ob-
structions by looking at the table of tangles presented
in [Kanenobu et al. 03] and the knot table in [Cha and
Livingston 08]. Quandles are self-distributive sets with
additional properties (see below for details). They have
been used in the study of knots since the 1980s. A coho-
mology theory of quandles has been developed, and their
cocycles have been used as state-sum invariants of knots
and knotted surfaces [Carter et al. 03]. Quandles were
also used to investigate tangles in [Darcy and Navarra-
Madsen 06, Niebrzydowski 06].
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Krebes proved in [Krebes 99] that if a tangle T can be
embedded in a link L, then the greatest common divisor
of the determinant of the numerator N(T ) and the de-
nominator D(T ) (which we denote by Kr(T )) divides the
determinant of L. The method we present in this paper
gives stronger obstructions than Krebes’s method. For
example, while the tangle T (63) in the table of tangles
in Figure 6 has Krebes’s invariant Kr(T (63)) = 1, which
does not give any obstructions, the quandle cocycle in-
variants are able to completely determine whether the
tangle T (63) embeds in the knots in the table up to nine
crossings (see Proposition 4.4).

We focus on the effectiveness of quandle cocycle in-
variants as obstructions. For each tangle, we first find
Alexander quandles that color the given tangle. Using a
3-cocycle of this quandle, we calculate the cocycle invari-
ant of the tangle. This invariant is then compared to the
cocycle invariant of knots to detect the knots that do not
embed the given tangle. We also used both 2-cocycles
and 3-cocycles for embedding of disjoint tangles. It will
be shown that the invariants often provide effective ob-
structions when a given tangle has nontrivial colorings
by quandles.

This paper is organized as follows. After a review
of preliminary material in Section 2, colorings of tan-
gles are defined in Section 3, and the tangles in Figure 6
that have nontrivial colorings by Alexander quandles are
listed. The main theorem is presented in Section 4. For
tangles listed in Section 3, it is examined which tangles
may or may not embed in knots from the knot table. In
Section 5, embeddings of multiple disjoint copies of tan-
gles are discussed. Part of the results are based on the
work in Kheira Ameur’s [Ameur 07] doctoral dissertation.

2. PRELIMINARIES

2.1 Tangles and Their Operations

The conventions described in this subsection are com-
monly found in the literature (see, for example, [Adams
94, Murasugi 96]).

The four endpoints of a given tangle diagram T are
located at four corners of a circle in a plane at angles π/4,
3π/4, 5π/4, and 7π/4 when the circle is placed with the
origin as its center. These endpoints are labeled NE, NW,
SW, and SE, respectively, representing the directions of
a compass.

The addition T1 + T2 of two tangles T1, T2 is another
tangle defined from the original two as depicted in Figure
1. There are two ways of closing the endpoints of a tangle,

1
T
2

T1 T2+

T

FIGURE 1. Addition of tangles.

D(T)

T T

N(T)

FIGURE 2. Closures (numerator N(T ) and denomina-
tor D(T )) of tangles.

called closures: the numerator N(T ) and denominator
D(T ) of a tangle T , defined as depicted in Figure 2.

There is a family of “trivial” or “rational” tangles,
some of which are depicted in Figure 3. These tangles are
obtained from the trivial tangle of two vertical straight
arcs by successively twisting endpoints vertically and hor-
izontally. The notation R(n1, n2, . . . , nk) indicates that
the tangle is obtained from R(0) by first performing n1

half-twists about the vertical axis, then n2 twists hori-
zontally, and repeating this process k times according to
a given sequence of integers n1, . . . , nk. See again [Adams
94] or [Murasugi 96] for more details.

In [Kanenobu et al. 03], prime tangles (with crossing
number at most seven) are classified, and a table of their
diagrams is given. A prime tangle is a tangle that satisfies
two conditions: (1) any 2-sphere in the 3-ball B intersect-
ing T transversely in two points bounds a ball with an
unknotted arc as the intersection with T , (2) there is no
properly embedded disk in B that separates T . The ta-
ble consists of a single 5-crossing tangle followed by four
6-crossing tangles, and 18 tangles of 7 crossings. Some
multiple-component tangles were also classified in [Ka-
nenobu et al. 03]. The tangles are named in a scheme
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FIGURE 3. Some rational tangles.

similar to knots by integers with subscripts. Some of the
tangles are presented in Figure 6.

2.2 Quandles, Colorings, and Cocycle Invariants

A quandle X is a set with a binary operation (a, b) �→ a∗b
such that

(I) For any a ∈ X , a ∗ a = a.

(II) For any a, b ∈ X , there is a unique c ∈ X such
that a = c ∗ b.

(III) For any a, b, c ∈ X , we have (a∗b)∗c = (a∗c)∗(b∗c).
A rack is a set with a binary operation that satisfies

(II) and (III). Racks and quandles have been studied in,
for example, [Brieskorn 88, Fenn and Rourke 92, Joyce
82, Matveev 82].

The following are typical examples of quandles. A
group G with conjugation as the quandle operation, a ∗
b = bab−1, is a quandle. Any Z[t, t−1]-module M is a
quandle with a ∗ b = ta + (1 − t)b, a, b ∈ M , which is
called an Alexander quandle. Let n be a positive integer
and for elements i, j ∈ Zn, define i ∗ j ≡ 2j − i (mod n).
Then ∗ defines a quandle structure called the dihedral
quandle Rn.

Let X be a fixed quandle. Let K be a given oriented
classical knot or link diagram, and let R be the set of
(over-)arcs. The normals (normal vectors) are given in
such a way that the ordered pair (tangent, normal) agrees

c=a   b*) =

(α) = a bβ( ) =

( γ

C

C

C

FIGURE 4. Quandle relation at a crossing, and signs
of crossings.

with the orientation of the plane; see Figure 4 (left). A
(quandle) coloring C is a map C : R → X such that at
every crossing, the relation depicted in Figure 4 holds.
Specifically, let β be the over-arc at a crossing, and let
α and γ be the under-arcs, such that the normal of the
over-arc points from α to γ. Then C(α) ∗ C(β) = C(γ)
holds. The (ordered) colors (C(α), C(β)) are called source
colors. Let ColX(K) denote the set of colorings of a knot
diagram K by a quandle X .

Let K be a knot diagram in the plane. Let X be a
finite quandle and A an abelian group. Let φ : X ×X →
A be a quandle 2-cocycle, which can be regarded as a
function satisfying the 2-cocycle condition

φ(x, y) − φ(x, z) + φ(x ∗ y, z) − φ(x ∗ z, y ∗ z) = 0,

∀x, y, z ∈ X and φ(x, x) = 0 ∀x ∈ X . Let C be a coloring
of a given knot diagram K by X .

The Boltzmann weight B(C, τ) = Bφ(C, τ) at a cross-
ing τ of K is then defined by B(C, τ) = ε(τ)φ(xτ , yτ ),
where the pair (xτ , yτ ) consists of the source colors at τ
and ε(τ) is the sign (±1) of τ . The signs at a crossing are
depicted in Figure 4 (right). Then the 2-cocycle invariant
Φ(K) = Φφ(K) in a multiset form is defined by

Φφ(K) =
{∑

τ

B(C, τ) ∣∣ C ∈ ColX(K)
}
.

Definition 2.1. A multiset is a pair (S,m), where S is a
set and m is a function that assigns to each element a in
S a positive integer (called the multiplicity, meaning the
number of occurrences) of a.

For example, {0, 0, 1, 1, 1} represents a multiset (S,m)
where S = {0, 1}, m(0) = 2, and m(1) = 3. This is also
denoted in this paper by {	20,	31}.

Let θ : X×X×X → A be a quandle 3-cocycle, which
can be regarded as a function satisfying

θ(x, z, w) − θ(x, y, w) + θ(x, y, z) − θ(x ∗ y, z, w)

+ θ(x ∗ z, y ∗ z, w) − θ(x ∗ w, y ∗ w, z ∗ w) = 0,

∀x, y, z, w ∈ X,

and θ(x, x, y) = 0 = θ(x, y, y)∀x, y ∈ X .
Let C be a coloring of arcs and regions of a given dia-

gram K. Specifically, for a coloring C, there is a coloring
of regions that extends C as depicted in Figure 5. Sup-
pose that two regions R1 and R2 are separated by an
arc colored by y and the normal of the arc points from
R1 to R2. If R1 is colored by x, then R2 receives the
color x ∗ y. Let (xτ , yτ , zτ ) (called the ordered triple
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FIGURE 5. Region colors at a crossing.

of colors at a crossing τ) be the colors near a cross-
ing τ such that x is the color of the region (called the
source region) from which both orientation normals of
over- and under-arc point, y is the color of the under-
arc (called the source under-arc) from which the normal
of the over-arc points, and z is the color of the over-
arc (see Figure 5). The weight in this case is defined
by B(C, τ) = ε(τ)φ(xτ , yτ , zτ ). The 3-cocycle invariant is
defined in a similar way to the 2-cocycle invariant by the
multiset Φθ(K) = {∑τ B(C, τ) | C ∈ ColrX(K)}, where
ColrX(K) denotes the set of colorings of the regions of K
by X .

If the quandle X is finite, the invariant as a multi-
set can be written by an expression similar to those for
the state-sums; if a given multiset of group elements is
{	m1g1, . . . ,	m�

g�}, then we use the polynomial nota-
tion m1u

g1 + · · · + m�u
g� , where u is a formal symbol.

For example, the multiset value of the invariant for a tre-
foil with the Alexander quandleX = Z2[t, t−1]/(t2+t+1)
with the same coefficient group A = X and a cer-
tain 2-cocycle is {	4(0),	12(t + 1)}, and is denoted by
4 + 12u(t+1), where we use the convention u0 = 1 and
exponential rules apply.

For computing the invariants, one needs an explicit
formula for cocycles. Polynomial expressions were used
first in [Mochizuki 03], and investigated closely including
higher-dimensional cocycles in [Ameur 07].

3. BOUNDARY MONOCHROMATIC COLORINGS
AND THE COCYCLE INVARIANTS OF TANGLES

We use quandle cocycle invariants as obstructions to em-
bedding tangles in knots. We first define cocycle invari-
ants for tangles.

Definition 3.1. Let T be a tangle and X a quandle. A
(boundary-monochromatic) coloring C : A → X is a map
from the set of arcs in a diagram of T to X satisfying the

Quandle Tangle Colored

Zp[t, t
−1]/(t2 − t + 1) 62, 63,

717(NW In, SW In).
Z2[t, t

−1]/(t2 + t + 1) 62, 63, 717(NW In, SW In),
74(NW In, NE In),
75(NW In, NE In),
76(NW In, NE In),
77(NW In, NE In).

R3 62, 63, 716, 717.
R5 713, 718.
R7 715.

TABLE 1. Tangles with nontrivial colorings

same quandle coloring condition as for knot diagrams at
each crossing such that the (four) boundary points of the
tangle diagram receive the same element of X .

For a coloring C of a tangle diagram T , region colorings
are defined in a similar manner as in the knot case.

Denote by Colx(T ) and ColX(T ) the set of
boundary-monochromatic colorings of T with the bound-
ary color x ∈ X and the set of all boundary-
monochromatic colorings, respectively. Let Φ(T, x) =∑
C∈Colx(T )

∏
τ B(C, τ). Then the cocycle invariant for

a tangle T is defined by Φφ(T ) =
∑

x∈X Φ(T, x). The
invariants for region colorings are defined in a similar
manner, by taking the sum over all colorings of regions
as well as colorings of diagrams.

It can be proved in a way similar to the case of a knot
that the number of colorings |ColX(T )| does not depend
on the choice of a diagram of T . If a diagram D1 of T
has a coloring C1, and a diagram D2 is obtained from D1

by a Reidemeister move, then there is a unique coloring
C2 of D2 induced from C1 such that the colors stay the
same except where the move is performed. Given two
diagrams D1 and D2 of a tangle T , there is one-to-one
correspondence between the set of colorings of D1 and
the set of colorings of D2, and the cocycle invariant is
well defined.

Table 1 summarizes the tangles in the tangle ta-
ble that have nontrivial boundary monochromatic col-
orings by some Alexander quandles. These are found
through computing by hand, with occasional assistance
from the computer software Maple. Specifically, vari-
ables xi, i = 1, 2, . . . , are assigned to the arcs of tangle
diagrams as indicated in Figure 6. Coloring conditions
of the form xk = txi+(1− t)xj are imposed at crossings,
giving rise to a system of linear equations with coeffi-
cients in Z[t, t−1] that is solved to find which Alexander
quandles give nontrivial colorings of the tangles given in
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FIGURE 6. Tangles with nontrivial colorings by Alexander quandles.

Figure 6. See Section 6 for more details on computations.
This list is similar to the original list in [Kanenobu et al.
03], but excludes the tangles that color trivially with any
Alexander quandle. We compare with the knot table, so
the tangles with closed components are also excluded.

4. QUANDLE COCYCLE INVARIANTS AS
OBSTRUCTIONS TO TANGLE EMBEDDINGS

The quandle 2- and 3-cocycle invariants are defined for
tangles in a manner similar to the knot case using the
set of boundary monochromatic colorings, and denoted
by Φφ(T ). We use the multiset version of the invariant.

Definition 4.1. The inclusion of multisets is denoted by
⊂m. Specifically, if an element x is repeated n times in
a multiset, call n the multiplicity of x, then M ⊂m N

for multisets M , N means that if x ∈ M , then x ∈ N

and the multiplicity of x in M is less than or equal to the
multiplicity of x in N .

Theorem 4.2. Let T be a tangle and X a quandle. Sup-
pose that T embeds in a link L. Then we have the inclu-
sion Φφ(T ) ⊂m Φφ(L).

Proof: Suppose that a diagram of T embeds in a diagram
of L. By abuse of language, we call the diagrams them-
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selves respectively T and L. For a coloring C of T , let
x be the color of the boundary points. Then there is a
unique coloring C′ of L such that the restriction of C′ to
T is C and all the arcs of L outside T automatically re-
ceive the color x. Then the contribution of

∑
τ∈T B(C, τ)

to Φφ(T ) is equal to the contribution
∑

τ∈LB(C′, τ) to
Φφ(L), and the theorem follows. The same argument
works for region colorings and 3-cocycle invariants.

In Table 2, a summary is presented for the tangles that
have a nontrivial coloring by Alexander quandles. In the
left column of the table, the tangles that appear in Table
1 are listed. In the middle column, knots that we found
to embed a given tangle are listed. The third column lists
the knots for which we could not exclude the possibility of
embedding the given tangle using cocycle invariants. The
tangles are specified by the notation T (62), for example,
for the tangle numbered 62, to distinguish them from
knots. We note that there are 84 knots in the table up to
(and including) 9-crossing knots. For the tangle T (63),
for example, all except 3 out of 84 knots are detected by
the cocycle invariants as not allowing an embedding of
the tangle. It is checked by hand that these remaining
three do embed it.

To demonstrate how we obtain these results, we state
and prove the following.

Proposition 4.3. The tangle T (62) with the orientation of
the NW arc inward and the SW arc outward does not em-
bed in the knots in the table up to nine crossings except,
possibly, for 818,, 929, 938.

Proof: We exhibit a method for determining the invariant
from the table in [Smudde 2008], in which computations
of the cocycle invariants were based on the knot table in
[Cha and Livingston 08]. The tangle T (62) can be written
as the addition of two tangles R(3)+R(3), and is colored
nontrivially by the quandle Zp[t]/(t2 − t + 1). We note
that the closure D(R(3)) is the left-hand trefoil, that is,
the mirror of the (right-hand) trefoil given in [Cha and
Livingston 08].

For p = 2, the table of quandle cocycle invariants in
[Smudde 2008] gives 16+48ut as the invariant for the tre-
foil with the 3-cocycle φ(x, y, z) = (x − y)(y − z)2, with
values also in Z2[t]/(t2−t+1). This implies that any non-
trivial coloring contributes t to the invariant. Its mirror
has the same property. With two copies, any nontrivial
coloring of the tangle contributes 2t = 0 when p = 2.
Hence the value of the invariant of the tangle is 64. Ex-
amining the table, we see that this does not embed in

knots up to nine crossings except for the following possi-
bilities:

85, 810, 815, 818, 819, 820, 821, 916, 922, 924, 925, 928, 929,

930, 936, 938, 939, 940, 941, 942, 943, 944, 945, 949.

For p = 3, the invariant table gives 243 + 486u(2t+2)

as the invariant for the trefoil. This implies that 486
nontrivial colorings contribute 2t+2 to the invariant. Its
mirror contributes t+ 1. With two copies, 486 nontrivial
colorings of the tangle contribute 2t+2. Hence the value
of the invariant of the tangle is 243+486u(2t+2). It follows
by examining the table that this does not embed in knots
up to nine crossings except for 31, 818, 92, 94, 929, 934, 938.

For p = 5, the table gives

625+3750u(t+3)+3750u(4t+2)+3750u(3t+4)+3750u(2t+1)

as the invariant for the trefoil. As in the previous cases,
the value of the invariant of this tangle is

625+3750u(3t+4)+3750u(2t+1)+3750u(4t+2)+3750u(t+3)

(for example, for the contribution t+ 3 of the trefoil, the
mirror contributes 4t+ 2, its double contributes 3t+ 4).

From the table, this does not embed in knots up to
nine crossings except for

31, 83, 85, 811, 815, 818, 819, 821, 91, 95, 96, 916, 919, 923,

928, 929, 938, 940.

For p = 7, the trefoil has 117649 as the invariant value,
and so does the tangle. From the table this does not
embed in knots up to nine crossings except for

31, 85, 810, 811, 815, 818, 819, 820, 821, 91, 96, 916, 923, 928,

929, 938, 940.

Combining all these facts, we deduce that this tangle
does not embed in knots of up to nine crossings except
for perhaps 818, 929, 938.

We have not been able to determine whether the tan-
gle T (62) actually embeds in these three knots that the
invariant failed to exclude. In the next example, how-
ever, we were able to determine completely the embed-
ding problem for knots of up to nine crossings.

Proposition 4.4. The knots in the table up to nine cross-
ings in which the tangle T (63) embeds are exactly 810,
820, 924. Here, the orientation of the tangle is such that
the endpoint NW is oriented inward and the SW endpoint
is oriented outward.
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Tangle Embeds in May Embed in

62 (NW In, SW Out) (85)
∗ = N(T (62) + R(−2)) 818, 929, 938.

62 (NW In, SW In) (31) = N(T (62) + R(−1)) 31, 74, 77, 818, 910, 929,
935, 937, 938, 946, 948.

63 (NW In, SW Out) (810) = N(T (63) + R(2, 1))∗

(820) = N(T (63) + R(2))∗ 810, 820, 924.
(924) = N(T (63) + R(2, 2))∗

74 (NW In, NE In) (41) = (N(T (74) + R(−1)) 31, 41, 72, 73, 81, 84, 811,
813, 818, 91, 96, 912, 913,
914, 921, 923, 935, 937, 940.

75 (NW In, NE In) (73)
∗ = N(T (75) + R(−1)) Same as 74(NW In, NE In).

76 (NW In, NE In) 85, 810, 815, 818 − 821, 916,
922, 924, 925, 928 − 930, 936,
938, 939, 941 − 945, 949.

77 (NW In, NE In) Same as 76(NW In, NE In).
713 (NW In, NE Out) (74) = N(T (713))

(816) = N(T (713) + R(1))
(939) = N(T (713) + R(1, 1)) 41, 74, 924, 937, 939, 940, 949.
(949) = N(T (713)

+R(−1,−1))
715 (NW In, SW In) (52) = N(T (715) + R(−1)) 52, 816, 941, 942.
715 (NW In, SW Out) (77) = D(T (715)) 71, 77, 85, 94, 912, 941.

(941) = N(T (715) + R(2))
716 (NW In, NE In) (77)

∗ = D(T (716)) 85, 815, 818, 819, 821, 92, 94,
911, 915, 916, 928, 934, 937,
940, 946, 947.

716 (NW In, NE Out) (74) = N(T (716)) Same as 62(NW In, SW In).
717 (NW In, SW In) (818) = N(T (717) + R(1)) 818, 940.
717 (NW In, SW Out) Same as 716(NW In, NE In).
718 (NW In, SW In) (821) = N(T (718) + R(1)) 51, 818, 821, 92, 912, 923, 931,

940, 949.
718 (NW In, SW Out) (51) = D(T (718)) Same as 718(NW In, SW In).

TABLE 2. Summary of the results.

Proof: The tangle T (63) is written as the addition R(3)+
R(−3). Hence it is colored nontrivially by

Zp[t]/(t2 − t+ 1)

for any p ∈ Z (we use only primes), as well as the dihedral
quandle R3. For the quandle Zp[t]/(t2−t+1) we used the
3-cocycle f(x, y, z) = (x − y)(y − z)p. The colors of the
source region for these two copies of the trefoil diagrams
(R(3) and R(−3)) coincide. The signs of the crossings
are opposite. Hence the invariant is trivial, (p2)3 copies
of 0, for Zp[t]/(t2− t+1). Note that even with the trivial
invariant value (p2)3 for T , the cocycle invariant can give
stronger obstruction than the numbers of colorings if a
knot has a nontrivial invariant value and has a smaller
constant than (p2)3. For p = 5, in particular, from the
calculations in [Smudde 2008], Theorem 4.2 implies that
this tangle may embed, among knots in the table up to
nine crossings, only in 810, 812, 818, 820, 924. The invari-
ant with R3 further excludes 812 and 818. Therefore the
tangle may embed only in 810, 820, and 924.

On the other hand, it is seen that

(810) = N(T (63) +R(2, 1))∗,

(820) = N(T (63) +R(2))∗,

(924) = N(T (63) +R(2, 2))∗,

where K∗ denotes the mirror image of a knot K, and R
denotes the rational tangles. Note that this tangle T (63)
is equivalent to its mirror. Therefore we have shown that
the tangle T (63) does indeed embed in these three knots.

Remark 4.5. In general, the orientation needs to be spec-
ified to define the quandle cocycle invariants. (In our
case only the dihedral quandles can be used for the in-
variant without specifying the orientations [Satoh 07].)
Furthermore, the mirror images of a given knot in the
table may be different. Thus all of our results are stated
for oriented tangles and oriented knots, and do not in-
clude their mirror images. Our conventions for specifying
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orientations of tangles have already been explained. For
knots in the table, we used Livingston’s table [Cha and
Livingston 08], which includes particular choices of mir-
rors if a knot is not amphicheiral. For the orientations,
we used the braid form in [Cha and Livingston 08] for
our calculations, so that the orientations are specified by
downward orientations of the braids.

5. EMBEDDING DISJOINT TANGLES

In this section we discuss embeddings of disjoint unions
of tangles in knots. We prove two propositions that will
be used as obstructions to embedding disjoint unions of
tangles and give some examples.

Let C =
∑k

i=1miu
ci, D =

∑�
j=1 nju

dj be polynomial
expressions of multiset values of the invariants, where
mi, nj ∈ Z+, ci, dj ∈ A, where A is the coefficient abelian
group. Then we define C × D =

∑
i,jminju

ci+dj . Let
|X | denote the number of elements of a quandle X .

The quandle cocycle invariants are defined for a dis-
joint union of tangles T1	· · ·	Tk in a manner similar to
invariants of tangles, by requiring that all the boundary
points of T1, . . . , Tk receive the same color. Let φ be a
2-cocycle of a quandle X and define

Φφ(T1 	 · · · 	 Tk) =
∑
xj∈X

k∏
i=1

Φφ(Ti, xj).

Proposition 5.1. Let φ be a 2-cocycle. Let T1, . . . , Tk be
a disjoint union of tangles such that for all i = 1, . . . , k,
the condition Φφ(Ti, x) = Φφ(Ti, y) holds for all x, y ∈ X.
Then

Φφ(T1 	 · · · 	 Tk) =
1

|X |k−1
Φφ(T1) × · · · × Φφ(Tk).

Furthermore, if a disjoint union of T1, . . . , Tk embeds in
a link L, then

Φφ(T1 	 · · · 	 Tk) ⊂m Φφ(L).

Proof: We compute

Φφ(T1 	 · · · 	 Tk) =
∑
xj∈X

k∏
i=1

Φ(Ti, xj) = |X |
k∏
i=1

Φ(Ti, x)

for any fixed x ∈ X , since Φ(Ti, x) = Φ(Ti, y) for all
x, y ∈ X . The condition also implies that Φ(Ti, x) =
1

|X|Φφ(Ti) for all i = 1, . . . , k. Hence

Φφ(T1 	 · · · 	 Tk) =
1

|X |k−1
Φφ(T1) × · · · × Φφ(Tk).

Thus by the same argument as the proof of Theorem 4.2,
if T1 	 · · · 	 Tk embeds in a link L, then

1
|X |k−1

Φφ(T1) × Φφ(T2) × · · · × Φφ(Tk) ⊂m Φφ(L).

Example 5.2. For the following examples, we consider
the quandle X = Z2[t, t−1]/(t2 + t+1), and the 2-cocycle
f(x, y) = (x − y)2y. The invariant values for this quan-
dle are available in [Smudde 2008] (here we used knots
up to nine crossings). It is seen that the following tan-
gles satisfy the condition required in Proposition 5.1 by
direct calculation. Alternatively, either the triviality of
the invariant or the property that only the trivial color-
ings make trivial contributions to the invariant implies
the condition required.

(a) We compute Φf (T (62) 	 T (62)) = 1
4 (16 × 16) = 64

(Proposition 4.3). Using [Smudde 2008], we compare
this invariant to the cocycle invariant of knots in the
knot table, and conclude that T (62) 	 T (62) does
not embed in any knot in the knot table up to nine
crossings.

The invariant value of T (63) is Φf (T (63)) = 16 by
an argument similar to those used for 3-cocycles
in the proof of Proposition 4.4. By Theorem 5.1,
Φf (T (63) 	 T (63)) = 1

4 (16 × 16) = 64. Hence
T (63) 	 T (63) does not embed in any knot in the
knot table up to nine crossings.

The disjoint union T (62) 	 T (63) also has the same
invariant value 64; hence the same conclusion holds.

(b) The invariant of the tangle T (75) with orientation
(NW In, NE In) is Φf (T (75)) = 4 + 12u(t+1). This
can be seen from the fact that T (75) embeds in the
knot (73)∗ and the number of colorings by this quan-
dle is the same for T (75) and (73)∗, so that by an
argument similar to the proof of Proposition 4.3,
the tangle has the same invariant value as (73)∗ (see
[Smudde 2008]). Hence by Theorem 5.1, we obtain

Φf (T (75)	T (75)) =
1
4
(4+12u(t+1))2 = 40+24u(t+1).

Using [Smudde 2008], we compare this invariant to
the cocycle invariant of knots in the table, and we
conclude that T (75) 	 T (75) does not embed in any
knot in the table up to nine crossings.

(c) Again by Theorem 5.1,

Φf (T (62)	T (75)) =
1
4
16(4+12u(t+1)) = 16+48u(t+1).
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We find that T (62) 	 T (75) does not embed in any
knot in the knot table up to nine crossings with the
possible exceptions of 818 and 940.

Since the invariant value for T (63)	T (75) is the same
as T (62) 	 T (75), we obtain the same conclusion.

Let ψ be a 3-cocycle of a quandle X with coefficient
group A. Denote by Φψ(T, x, s) the 3-cocycle invariant
with the boundary color x ∈ X and the color of the
leftmost region s ∈ X . Then the 3-cocycle invariant for
the disjoint union of tangles 	ki=1Ti is defined if the Ti’s
satisfy the condition Φψ(Ti, x, s) = Φψ(Ti, x′, s′) for all
x, x′, s, s′ ∈ X for all i = 1, . . . , k, and is defined in this
case by

Φψ(T1 	 · · · 	 Tk) =
∑

xj∈X,s∈X

k∏
i=1

Φφ(Ti, xj , s)

= |X |
∑
xj∈X

k∏
i=1

Φφ(Ti, xj , s)

for a fixed s ∈ X . Note that the invariant does not
depend on the fixed region color s because of the above
assumption. Then the same argument as the proof of the
preceding theorem can be applied to show the following.

Proposition 5.3. Let ψ be a 3-cocycle. Let T1, . . . , Tk be
a disjoint union of tangles such that for all i = 1, . . . , k,
the condition Φψ(Ti, x, s) = Φψ(Ti, x′, s′) holds for all
x, x′, s, s′ ∈ X. Then we have

Φψ(T1 	 · · · 	 Tk) =
1

|X |2(k−1)
Φψ(T1) × · · · × Φψ(Tk).

Furthermore, if a disjoint union of T1, . . . , Tk embeds in
a link L, then

Φψ(T1 	 · · · 	 Tk) ⊂m Φψ(L).

Example 5.4. We used dihedral quandles Rp with
Mochizuki’s cocycle [Mochizuki 03]

ψ(x, y, z) =
1
p
(x− y)[ (2zp − yp)− (2z − y)p ] (mod p).

The invariant values are available in [Smudde 06]1 for
knots with up to 12-crossings for p = 3 and p = 5.
By arguments similar to those in Example 5.2, it is seen
that the following tangles satisfy the condition required
in Proposition 5.3.

1(http://shell.cas.usf.edu/quandle/Invariants/DihInv/).

(a) For the dihedral quandle R3 and the Mochizuki 3-
cocycle ψ, the tangle T (62) satisfies the condition in
Theorem 5.3. This is because T (62) is the sum of
two copies of part of the trefoil diagrams, and the
trefoil has the property that any nontrivial coloring
gives the same nontrivial contribution to the cocycle
invariant. Since Φψ(T (62)) = 9(1+2u), by Theorem
5.1 we obtain

Φψ(T (62) 	 T (62)) =
1
32

81(1 + 4u+ 4u2)

= 9 + 36u+ 36u2.

Using [Smudde 06],2 we compare this invariant to
the cocycle invariant of knots in the knot table, and
we find that T (62) 	 T (62) does not embed in any
knot in the knot table up to 11 crossings (there are
801) except for, possibly, 818 and 11a314. From the
invariant value, the number of colorings of T (62) 	
T (62) is 81, and among 801 knots in the table up to
11 crossings, there are 40 with at least 81 colorings.
Hence the number of colorings alone can exclude all
but 40 knots, but the cocycle invariant is able to
exclude all but 2.

(b) Φψ(T (63) 	 T (63)) = 1
32 3333 = 81 with R3, and

T (63) 	 T (63) does not embed in any knot in the
knot table up to 11 crossings, except possibly 1099;
hence the cocycle invariant excludes all 801 knots but
one.

(c) For the quandle R5 and tangles T (713) and T (718),
both have invariant 25(1+2u+2u3); hence T (713)	
T (718) has invariant 25(5+u+4u2+2u3+4u4). Thus
it does not embed in any knot in the knot table up
to 11 crossings, except possibly 10103, 10155, 11a317,
11n148.

6. COMPUTATIONAL ASPECTS AND CONCLUDING
REMARKS

In this section we explain briefly how computations were
performed for tangles and knots in the table, and com-
ment on how the remaining problems and new problems
raised in the paper can be explored using computer pro-
grams.

For tangles, two main methods were used: (1) Find
Alexander quandles that color a given tangle nontrivially

2(http://shell.cas.usf.edu/quandle/Invariants/DihInv/
Dih Z 3mod(t+1)3cocinv.txt).
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by hand (or Maple-assisted) calculations. (2) Take clo-
sures of the tangle, find the resulting knot in the table,
and use the computational results in [Smudde 2008] to
determine the cocycle invariants. See the proof of Propo-
sition 4.3 for more details of the argument (2). Here we
exhibit a hand calculation (1) as an example for the tan-
gle T (717) with orientation NW in, SW out.

Let x be the color of the boundary arcs, and let
y, x1, x2, x3, x4 be the colors of the arcs as depicted in
Figure 6. From the crossings adjacent to the NW, SW,
SE, NE endpoints, respectively, we obtain the relations

x1 = t−1y + (1 − t−1)x = x + t−1(y − x),

x3 = tx + (1 − t)x1 = x + (t−1 − 1)(y − x),

x2 = ty + (1 − t)x = x + t(y − x),

x4 = tx + (1 − t)y = y + t(x − y).

From the remaining three crossings, we obtain

x2 = tx + (1 − t)x3,

x4 = tx1 + (1 − t)x2,

x3 = tx + (1 − t)x4.

The system gives solutions t = 2 and p = 3, so that we
consider the quandle Z3[t, t−1]/(t − 2) = R3 that colors
the tangle T (717) nontrivially.

For invariants for knots in the table, closed braid forms
in [Cha and Livingston 08] were used. computer (Maple
and C++) programs were written that perform the fol-
lowing procedures: All possible colors are assigned at the
top arcs (top colors) of a braid, the colors at the bottom
arcs are computed according to coloring rules, and com-
pared with the top colors. If they agree, it gives a coloring
of the closed braid, and the cocycle value is computed.
Programs and outputs can be found in [Smudde 06].3

The tables of quandle cocycle invariants for knots in the
table up to nine crossings that were used for the tangle
embeddings studied in this paper are found in [Smudde
2008].

The following problems remain to be explored compu-
tationally. Although invariants for knots in the table are
computed systematically, the size of the quandle that the
developed programs can handle is very limited, since the
number of colorings increases exponentially compared to
the size of the quandle. More efficient calculations are
desirable. The invariants for tangles are sometimes com-
puted case by case from the table in [Kanenobu et al. 03]
by hand. It is of interest, then, to develop a method of

3(http://shell.cas.usf.edu/quandle/Invariants/database/
database.php).

computing tangle invariants by computer programs. In
particular, a theory of partially closed braid forms may
be useful.
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