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We describe our successful computation of a list of representa-
tives of the 2,801,324 conjugacy classes of transitive groups of
degree 32.

1. INTRODUCTION

Many attempts to classify transitive groups of small de-
gree (up to 15) were carried out in the late nineteenth
and early twentieth centuries. See [Short 92] for details
and references. More recently, with assistance from com-
puters, transitive groups up to degree 11 were listed in
[Butler and McKay 83], degree 12 in [Royle 87], degrees
14 and 15 in [Butler 93], and all degrees up to 30 in
[Hulpke 96]; see also [Hulpke 05]. These are available as
libraries in GAP [GAP 04] and Magma [Bosma et al.
97] up to degree 30.

Transitive groups of degree 31 are primitive and hence
already known. (There are 12 classes, including L3(5),
L5(2), Alt(31), Sym(31), and 8 soluble examples of order
dividing 31× 30; see, for example, [Pogerolov 80].) Here,
we report on our recent computation of a complete list of
representatives of the conjugacy classes in Sym(32) of the
transitive groups of degree 32. There are 2,801,324 such
classes. The magnitude of this number in comparison
with smaller degrees (the largest such is 25,000 classes
of transitive groups of degree 24) had already been an-
ticipated by Hulpke, who perceived this a disincentive to
extending his lists to degree 32.

We have not yet seriously considered the problem
of calculating lists of transitive permutation groups of
higher degree. We would hazard a guess that for degrees
between 33 and 64, 36 and 48 would be very difficult but
potentially possible, degree 64 would be impossible with
current techniques and resources, and the other degrees
would be comparatively straightforward.

Tables of transitive groups are used in numerous ap-
plications. One of the more important has been in the
study of Galois groups of polynomials. In [Stauduhar 73],
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a method for computing the Galois group over the ratio-
nal field of an irreducible monic polynomial with integral
coefficients is described.

Geissler’s implementation in KANT and Magma, de-
scribed in [Geissler and Klüners 00], stores the transitive
lattice for each symmetric group having degree up to 23
and so is capable of finding the Galois group of any irre-
ducible polynomial up to that degree.

A knowledge of the transitive groups of degree n is
important in the study of the inverse problem of Galois
theory: given a transitive group G of degree n, does G

occur as the Galois group of a Galois field extension of
Q? Klüners and Malle [Klüners and Malle 00] have de-
termined such a polynomial for every transitive group of
degree less than 17.

The discovery of a finite group not realizable as a Ga-
lois group would be of major interest, and the hope of
such a discovery provides motivation for the extension of
this work to higher degrees.

Let G be the Galois group of a field extension K of Q

and suppose H1 and H2 are nonconjugate subgroups of
G. If H1 and H2 afford the same permutation character
of G, then the corresponding invariant subfields KH1 and
KH2 of K are nonisomorphic but have the same zeta
function. The two fields are then said to be arithmetically
equivalent.

In [Bosma and de Smit 01, Bosma and de Smit 02], the
existing tables of transitive groups are used to determine
the nonisomorphic arithmetically equivalent fields of de-
gree n ≤ 22, and de Smit has now extended the list up
to degree 31. Work is underway using our classification
to do the same for degree 32.

As a final application, the enumeration of all vertex-
transitive graphs on at most 31 vertices using the clas-
sification of transitive groups having degree less than 32
is described in [Royle and Praeger 89, McKay and Royle
90].

We discuss the methods used in Section 2. We used
two different methods, which we shall call the brute-force
method and the Hulpke method, depending on the small-
est size of a block in a block system preserved by the
group.

We have also written a function in Magma that takes
a transitive group G of degree 32 as input, identifies its
unique conjugate G′ in our lists, and finds an element of
Sym(32) that conjugates G to G′. We shall describe this
function briefly in Section 3.

Since many of our earlier runs had to be aborted to
allow us to improve some of our techniques, it is difficult
to estimate the total time taken for the computations,

but the final successful runs took a total of about two
weeks of CPU time, and the maximum RAM usage was
just under 7 gigabytes. We could to a large extent avoid
excessive memory usage in storing the groups by sub-
dividing the enumeration into separate cases, but there
were some cohomology computations, which we shall dis-
cuss in Section 2, that required moderately large amounts
of memory (up to 7 GB).

The computations were run on an AMD Opteron
Model 152 processor running at 2.6 GHz with 4 GB of
memory and an AMD Opteron Model 280 processor run-
ning at 2.4 GHz with 16 GB of memory.

Potentially, and also to a large extent in reality, the
most time-consuming component of the computations is
testing groups for conjugacy in Sym(32). Computing nor-
malizers and testing conjugacy of subgroups are notori-
ously difficult problems even in permutation groups of
small degree.

The best available algorithms are based on partition
backtrack methods, as described in [Leon 97], but the
currently available implementations are not particularly
good and are in need of improvement. The methods in-
troduced in [Hulpke 05] attempt to minimize the need
for conjugacy testing of subgroups, and in cases in which
it cannot be avoided, it is usually possible to arrange for
the conjugacy tests to take place in a relatively small
subgroup of Sym(32).

With the brute-force method, more conjugacy testing
is carried out, but again we try to do it in as small a sub-
group as possible. A large amount of the effort involved
in getting these computations to terminate was devoted
to finding tricks for speeding up conjugacy testing in in-
dividual cases. We shall briefly describe some of these
methods in Section 2.

Although there are 487 distinct orders of groups in
the final list, 2,737,535 of the 2,801,324 groups, that is,
about 97.7% of them, are 2-groups of order 2n for 5 ≤ n ≤
31, the most popular order being 215, of which there are
391,809 groups. Only 1051 of the groups are insoluble.

All except 8295 of the groups, that is, about 99.7% of
them, are imprimitive groups with a block system with
blocks of size 2.

We observe also that 11,605 of the groups in the list are
minimally transitive; that is, all of their proper subgroups
are intransitive.

The computations were carried out in Magma dur-
ing the second author’s visit to the University of Sydney
early in 2007, and he is grateful to the Australian Re-
search Council, who provided financial support for this
visit. The list of transitive groups of degree 32 will be
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accessible in Magma in a future release and is available
immediately from the authors on request.

2. METHODS USED IN THE CALCULATIONS

There are far fewer primitive than transitive permutation
groups, and complete lists of representatives of conju-
gacy classes of primitive groups have been computed up
to degree 2500; see [Roney-Dougal and Unger 03, Roney-
Dougal 05] (or [Short 92] for historical details). In par-
ticular, there are just seven such groups of degree 32.

So we can concentrate on the imprimitive examples.
As in [Hulpke 05], we subdivide the problem according to
the minimal block size in block systems stabilized by the
group, which for degree 32 can be 2, 4, 8, or 16. Let d be
the minimal block size and let t = 32/d be the number
of blocks in the system.

We shall assume that the transitive groups G that we
are enumerating act on the set of integers in the range
1 to 32, and since we are working up to conjugacy in
Sym(32), we can assume that those groups G with mini-
mal block size d stabilize the block system

B := { {dn + k : 1 ≤ k ≤ d} : 0 ≤ n ≤ t − 1 },

which we shall refer to as the principal minimal block sys-
tem fixed by G. In general, G may also fix other minimal
block systems.

Of the two methods to be described—the brute-force
and Hulpke methods—the former is very much easier and
more straightforward to program, so we used it whenever
practical, which was the case for d = 16, 8, and 4. The
brute-force method was impractical for d = 2, but we
note that a variant of this method was used by Hulpke in
[Hulpke 05] for the purpose of performing random tests
to verify the correctness of his lists.

2.1 The Brute-Force Method

For a fixed minimal block size d, we can try a straight-
forward “brute-force” method of listing the groups in
this class as follows. All such groups are subgroups of
the unique largest group in this class, which is Wd :=
Sym(d) � Sym(t). We initialize our list of groups to [Wd].
Then, for each group G in the list, we compute its maxi-
mal subgroups, using the algorithm described in [Cannon
and Holt 04]. For each such subgroup H , we test whether
H is transitive with minimal block size d, and if so, we
test H for conjugacy in Sym(32) with the groups already
in the list. If H is not conjugate to any of these, then we
append it to the list.

For d = 16 and d = 8, this process terminated very
quickly. Up to conjugacy in Sym(32), there are 171
groups with minimal block size 16, and 233 with minimal
block size 8. We also successfully applied this method to
the case d = 4, for which there are 7884 groups, although
this run took about five days of CPU time.

The most time-consuming part of this process is the
conjugacy testing, but in fact we do not really need to
test conjugacy in Sym(32). As in the procedure for min-
imal block size 2 to be described below, we take each
minimal block system B stabilized by H in turn, choose
g ∈ Sym(32) that maps B to the principal minimal block
system, and then test H ′ := Hg for conjugacy in Wd with
the groups already in the list.

The groups with minimal block sizes 8 and 16 all stabi-
lize a unique minimal block system, and the same is true
for all but 107 of the 7884 groups with minimal block
size 4. Of those, the majority stabilize just two mini-
mal block systems, and the maximum number stabilized
is 5, so the conjugacy testing process effectively reduces
to tests within Wd. But even these can be unpleasantly
time-consuming, and we made use of a number of extra
tricks, such as counting the numbers of fixed points of el-
ements of various orders, to help identify pairs of groups
that could not be conjugate more quickly than the de-
fault conjugacy testing function in Magma.

In addition, we can speed up conjugacy testing in Wd

by first testing the kernels of the actions of the two groups
on the block system for conjugacy in Wd, then testing
their images on the blocks for conjugacy in Sym(t), and
finally (if necessary) testing the groups for conjugacy
within the normalizer in Wd of the specific kernel and
image. For the first of these steps, testing conjugacy of
the kernels, we made use of the functions of J. S. Leon
for automorphism and isomorphism testing of designs,
which will be described in more detail for the case d = 2
in Section 2.2.1 below. The second step, testing block
images for conjugacy in Sym(t), presented no difficulties
in the use of default functions. The third step was time-
consuming in a few isolated cases for which the kernel
and image normalizers were large, but there was nothing
further that we could do to alleviate this.

2.2 Groups with Minimal Block Size Two

For the case d = 2, the brute-force method is impractical,
and so we applied the Hulpke method, which is described
in [Hulpke 05]. Again, all of the groups in our list are
subgroups of the largest group, W2 = Sym(2) � Sym(16),
that fixes the principal block system defined earlier. Let
K be the base group of W2 (so K is elementary abelian
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of order 216), and let φ : W2 → Sym(16) be the induced
action of W2 on the blocks in the system (so kerφ = K).

Following the notation used in [Hulpke 05], for a group
G on our list (or a candidate for appending to the list),
let M = G ∩ K be the kernel of the action of G on
the principal block system, and let R = φ(G) be the
group induced by G on the block system. So R is a
transitive group of degree t = 16. Here is an outline
description of the method of enumerating the groups. For
the remainder of this section, we shall denote W2 simply
by W .

A. Find the possible kernels M of the groups G on the
principal minimal block system, as defined above, and
make these into an ordered list in which kernels of
smaller order come before those of larger order.

B. For each kernel M in this list do the following:

1. Compute the normalizer N := NW (M) and let R :=
φ(N). (Note that since K is abelian, we have K ≤
N .)

2. Compute representatives S of the conjugacy classes
of transitive subgroups of R, and make these into an
ordered list. The brute-force method can be used for
this purpose when R �= Sym(16).

3. For each S in this list, let S := φ−1(S) and do the
following:

i. Compute representatives of the conjugacy
classes of complements of K/M in S/M . Ob-
tain representatives of the NN (S)-classes of
these. Each such complement has the form
G/M for some transitive subgroup G of W with
G ∩ K = M .

ii. For each such complement G, do the following:

a. Find all minimal block systems fixed by G.
b. For each such block system B other than

the principal block system, do the follow-
ing:
1. Choose g in Sym(32) mapping B to the

principal block system, and let G′ =
Gg; so G′ also fixes the principal block
system.

2. Let M ′ := G′ ∩ K. Then M ′ is conju-
gate in W to a unique member of the
list of possible kernels M . Replace G′

and M ′ by a suitable conjugate in W

so that M ′ becomes equal to one of the
groups in the list of kernels.

3. If M ′ comes earlier in the list of kernels
than M , then mark G as seen already,
and proceed immediately to step c be-
low.

4. If M ′ comes later in the list of ker-
nels than M , then proceed immedi-
ately to the next nonprincipal block
system fixed by G (if any) at step b.1.

5. Now we have M ′ = M . Let S
′

=
φ(G′). Then S

′
is conjugate in R to

a unique member of the list of transi-
tive subgroups of R. Replace G′ by a
suitable conjugate in N and S

′
by the

corresponding conjugate in R so that
S
′
becomes equal to one of the groups

in the list of transitive subgroups of R.
6. If S

′
comes earlier in the list of transi-

tive subgroups of R than S, then mark
G as seen already, and proceed imme-
diately to step c below.

7. If S
′
comes later in the list of transitive

subgroups of R than S, then proceed
immediately to the next nonprincipal
block system fixed by G (if any) at step
b.1.

8. Now we have S
′

= S. Test G′ for
conjugacy in NN(S) with any groups
G′′ that are already in the list, and for
which G′′ ∩K = M and φ(G′′) = S. If
G′ is conjugate to one of these groups
G′′, then mark G as seen already.

c. If G has not been marked as seen already,
then append it to the list of transitive
groups with minimal block size 2.

There are a number of differences between the above
process and the corresponding procedure presented in
[Hulpke 05, Section 5]:

• In contrast to [Hulpke 05], we do not treat the case
M = 1 differently from any of the other cases.

• In step B.1, NSym(32)(M) rather than NW (M) oc-
curs in [Hulpke 05], but these are equal, provided
that M �= 1, because the blocks of the principal
block system are the orbits of M and so the normal-
izer of M lies in W .

• We have described the treatment of multiple min-
imal block systems in more detail than in [Hulpke
05].
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It is not difficult to see that the procedure described
above has the desired effect, and generates a unique
representative of each conjugacy class of transitive sub-
groups of Sym(32) that stabilizes a block system with
block size 2. For more details on why this process works,
we refer the reader to [Hulpke 05].

We shall now discuss some of the individual steps in
the procedure in more detail.

2.2.1 Finding the Kernels. In the classification of
groups of degree up to 30, as described in [Hulpke 05],
finding the kernels (step A) turned out to be the most
time-consuming part of the whole process, but that was
far from being the case for groups of degree 32 with min-
imal block size 2, and we completed this part of the com-
putation using less than an hour of CPU time. We ob-
serve, however, that this step would have been consider-
ably more difficult for groups of degree 32 with minimal
block size 4, 8, or 16, which is the principal reason why
we preferred the brute-force method for those cases.

For such a group G with φ(G) = R, we can think of
K as a (permutation) module of dimension 16 for R over
the field F2 of order 2, and then M is an F2R-submodule
of K. So to find all possible kernels M , we first need
to find all F2R-submodules of K for all possible image
groups R. But if M is a submodule under the action of
R, then it is also a submodule under the action of any
subgroup of R, so to find all such M , we need to compute
the submodules only for the minimal transitive groups of
degree 16 (that is, those in which all proper subgroups
are intransitive), and there are just 75 of those up to
conjugacy in Sym(16).

We then need to test the subgroups M found for con-
jugacy in Sym(32), but since the orbits of all of these
subgroups are just the blocks of the principal block
system, this is equivalent to testing for conjugacy in
W = Sym(2) � Sym(16). For this purpose, and also for
finding the normalizers of the kernels in step B.1 and for
the conjugacy tests in step B.3.ii.b.2, we used the follow-
ing technique to speed up the computations.

For each kernel M , we form a combinatorial design on
32 points of which the blocks of the design are the fixed
points of the nontrivial elements of M . To test conjugacy
of two kernels M , or to find the normalizer of one such
kernel, we first test whether the corresponding designs
are isomorphic or, respectively, find the automorphism
group of the design. This process uses implementations
by J. S. Leon [Leon 91, Leon 97] of partition backtrack
methods, and is very much faster than conjugacy testing
or normalizer computation of permutation groups.

The normalizer of M in W can then be computed as
the normalizer within the automorphism group of the de-
sign, which is in all cases significantly smaller than W .
Similarly, to test conjugacy in the case that the designs
are isomorphic, we first replace one of the groups M by
a conjugate to make them both stabilize the same de-
sign, and then we can test them for conjugacy within the
normalizer of that design.

Up to conjugacy in Sym(32), there were 39 such
kernels altogether, one each of orders 2i for i =
0, 1, 2, 3, 13, 14, 15, 16, two of orders 2i for i = 4, 5, 11, 12,
three of orders 26 and 210, five of orders 27 and 29, and
seven of order 28.

For the remainder of the computation, we carried out
39 separate runs, one for each kernel, and stored the
resulting lists in 39 separate files. Table 1 shows, in
the third column, the numbers of groups in the lists
for each kernel, and also, in the second column, the
number of conjugacy classes of transitive subgroups of
R = φ(NW (M)) found in step B.2.

The brute-force method described above in Section 2.1
was used to find the subgroups in step B.2. But for the
kernels of orders 20, 21, 215, 216, we have R = Sym(16),
so we could use the existing list of transitive groups of
degree 16.

2.2.2 Finding Classes of Complements. Step 3.i of the
procedure turned out to be the most expensive in terms of
memory resources required and, together with conjugacy
testing of subgroups, was also the most time-consuming
step. Since we were finding complements of a normal ele-
mentary abelian subgroup, we could treat this subgroup
as a module for the group and use cohomological meth-
ods. These methods, including the calculation of class
representatives under the action of NN(S), are described
in detail in [Cannon et al. 01, Section 5], so we shall not
discuss them further here, except to remark that we were
fortunate that the necessary code was already available
to carry them out.

The magnitude of the required resources resulted from
the fact that there were a few cases in which there were
222 classes of complements of K/M in S/M , and we
needed to store representatives of all of these in order
to calculate orbit representatives under the action of
NN(S). Typically, the number of orbits in these cases
was a few thousand. The complements themselves were
not stored as permutation groups, but as 1-cocycles,
which could be represented by lists of vectors specifying
the images of the group generators under the cocycles.
If the number of classes of complements had been higher
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|M | #S #G

20 1954 10761

21 1954 31757

22 2477 64275

23 2596 77244

24 2596 64726

24 2804 50789

25 2648 287868

25 599 21262

26 2649 246045

26 176 1516

26 1790 288315

27 2004 122001

27 2362 319718

|M | #S #G

27 57 476

27 449 75016

27 66 329

28 2004 26526

28 683 20386

28 438 4632

28 2759 185769

28 2362 38572

28 2119 37160

28 30 232

29 2004 76088

29 2362 127185

29 57 738

|M | #S #G

29 449 7616

29 66 213

210 2649 182005

210 176 944

210 1790 43720

211 2648 190319

211 599 8172

212 2596 33402

212 2804 54413

213 2596 55244

214 2477 24109

215 1954 11532

216 1954 1954

TABLE 1. Numbers of groups for each kernel.

by a few powers of 2, then we would probably have been
unable to complete the computations, so this type of cal-
culation might turn out to be the factor that determines
whether it is feasible to extend the classification of tran-
sitive groups to higher degrees.

The remaining steps in the algorithm were all rela-
tively easy, except occasionally for the conjugacy test in
step b.8, but this was rarely required at all. It was needed
only in cases in which there was more than one minimal
block system fixed by G, and even then it was not always
needed. In fact, of the 2,793,029 groups on the list with
minimal block size 2, only 155,461 (that is, about 5.5%)
stabilize more than one minimal block system.

3. IDENTIFYING A GIVEN GROUP

If we are given an arbitrary transitive permutation group
G of degree 32, then we would like to be able to identify
the (unique) group G′ on our lists to which G is conju-
gate, and to find g ∈ Sym(32) with Gg = G′.

Doing this is a similar process to that displayed in
the procedure above for finding representatives of the
conjugacy classes of the groups. Although we used the
brute-force method to compute the lists of groups with
minimal block systems of sizes d = 4, 8, and 16, we ret-
rospectively reorganized these lists according to the ker-
nels of their actions on the principal block systems and
replaced groups by conjugates in order to ensure that
groups with conjugate kernels had equal kernels. This
facilitates the identification process. For the case d = 2,
we have also stored the lists of transitive subgroups of
R = φ(NW2(M)), which were computed in step B.1 of
the procedure above.

Primitive groups are easily handled. Here is an outline
of the method for imprimitive groups.

a. Find all minimal block systems fixed by G.

b. For each such block system B, do the following.

1. Choose g1 in Sym(32) mapping B to the principal
block system, and replace G by Gg1 ; so G now fixes
the principal block system.

2. Let M be the kernel of the action of G on the
principal block system. Then M is conjugate in
Wd := Sym(d) � Sym(t) to a unique kernel M ′ of a
group on our list. Find g2 ∈ Wd with Mg2 = M ′

and replace G by Gg2 .

3. If d > 2, then test G for conjugacy with all groups
G′ in the list with kernel M . If Gg3 = G′ for some
such G′, then return G′ and conjugating element
g1g2g3. Otherwise, proceed to the next block sys-
tem at step b.1.

4. Now d = 2. Let S = φ(G). Then, setting N =
NW2(M) and R = φ(N), S is conjugate in R to a
unique member of the list of transitive subgroups
of R. Replace G by a suitable conjugate Gg3 with
g3 ∈ N to make S equal to its conjugate in the list.

5. Test G for conjugacy in NN (S) with the groups G′

in the list for which G′ ∩ K = M and φ(G′) = S.
If Gg4 = G′ for some such G′, then return G′ and
conjugating element g1g2g3g4. Otherwise, proceed
to the next block system at step b.1.

We have tested this process extensively, partly because
such testing helps to provide evidence for the correctness
of the lists. We have used two types of tests.
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For the first type, we have taken groups from the
lists themselves, conjugated them by random elements
of Sym(32), and then applied the above identification
process. This would of course fail to reveal any groups
that were missing from the lists, but it could potentially
identify any duplicates in the lists, because the presence
of duplicates would result in some of the groups being
found to be conjugate to different groups in the lists. We
have carried out these tests on all of the groups with min-
imal block size larger than 2, and on random samples of
several thousands in each of the 39 collections of groups
with minimal block size 2.

For the second type of test, we form sequences of
groups G0 = Sym(32), G1, . . . , Gr, where each Gi is a
randomly chosen maximal transitive subgroup of Gi−1,
and r is a small integer. We then apply the identifica-
tion test to Gr. This process could in principle detect
any omissions from the lists, because if Gr were missing,
then it would fail to be identified. We have carried out
such tests many thousands of times.

Experiments indicate that we achieve the most even
distribution of the different types and orders of groups
on the lists by choosing r itself at random and using
something like a Poisson distribution for r, with maxi-
mum likelihood at about r = 5. But unfortunately, this
method still does not succeed in choosing groups from
our lists with anything like a uniform distribution. The
largest numbers of groups on the lists are those with min-
imal block size 2 and with kernel M having order 2n for
intermediate values of n, such as 5 ≤ n ≤ 11. The proce-
dure above, however, seems to result in a disproportion-
ately large number of groups with minimal block size 2,
but with kernels of order 2n for large and small values of
n, such as 1, 2, 15, 16.

The performance of the identification process is good
on average, but there are occasional bad cases, so there
is scope for further improvements. Groups with minimal
block size 8 or 16 are identified almost instantly. The
average CPU time for those with minimal block size 4 is
about 7 seconds, but with a worst case encountered of
1456 seconds. The bad cases result from the occasional
need to carry out time-consuming subgroup conjugacy
tests.

For block size 2, the average identification time de-
pends heavily on the number of groups in the particu-
lar list to which the group belongs. (Recall that there
is a separate list for each kernel.) The average for the
shorter lists is around 1 second, whereas for the longer
lists, containing more than 100,000 groups, the average
increases to around 60 seconds. There is, however, much

less variation in the times than for block size 4, presum-
ably because there are far fewer difficult subgroup con-
jugacy tests to be carried out.
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