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The Schwarz map of the hypergeometric differential equation
has been studied since the beginning of the last century. Its
target is the complex projective line, the 2-sphere. This paper
introduces the hyperbolic Schwarz map, whose target is hyper-
bolic 3-space. This map can be considered to be a lifting to
3-space of the Schwarz map. In this paper, we study the singu-
larities of this map, and attempt to visualize its image when the
monodromy group is a finite group or a typical Fuchsian group.
General cases will be treated in forthcoming papers.

1. INTRODUCTION

Consider the hypergeometric differential equation

E(a, b, c) = x(1 − x)u′′ + {c− (a + b + 1)x}u′ − abu = 0,

(1–1)
and define its Schwarz map by

s : X = C − {0, 1} � x �−→ u0(x) : u1(x) ∈ Z ∼= P
1,

(1–2)
where u0 and u1 are linearly independent solutions of
(1–1) and P1 is the complex projective line. The Schwarz
map of the hypergeometric differential equation was stud-
ied by Schwarz when the parameters (a, b, c) are real.

The success of Schwarz’s work has resulted in a num-
ber of high-dimensional versions being studied analyti-
cally, algebrogeometrically, and arithmetically over the
past decades. However, we have experienced a slight
reservation about the Schwarz map in (1–2): its target
seems not to be exactly the correct one, because even
if the monodromy group of s, the projective monodromy
group of the equation, is discrete in PGL2(C), it does not,
in general, act properly discontinuously on any nonempty
open set of the target P1, and so the image will be chaotic.

We propose a variation of the Schwarz map, which we
call the hyperbolic Schwarz map, that solves this diffi-
culty. It is defined as follows: Change Equation (1–1)
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into the so-called SL form

u′′ − q(x)u = 0, (ESL)

and transform it into the matrix equation

d

dx
(u, u′) = (u, u′)Ω, Ω =

(
0 q(x)
1 0

)
. (1–3)

We now define the hyperbolic Schwarz map, denoted by
S , as the composition of the (multivalued) map

X � x �−→ H = U(x)
t
U(x) ∈ Her+(2) (1–4)

and the natural projection

Her+(2) → H
3 := Her+(2)/R

+,

where U(x) is a fundamental solution of the system,
Her+(2) the space of positive definite Hermitian matrices
of size 2, and R+ the multiplicative group of positive real
numbers; the space H3 is called hyperbolic 3-space.

Note that the target of the hyperbolic Schwarz map
is H3, whose boundary is P1, which is the target of the
Schwarz map. In this sense, our Schwarz map can be con-
sidered to be a lifting to H3 of the Schwarz map. Note
also that the monodromy group of the system acts natu-
rally on H3.

Here we state a defect of our hyperbolic Schwarz map.
There is no standard way to transform our Equation
(1–1) into a matrix system (this freedom is often called
the gauge ambiguity); we therefore have made a choice.
The cost is that the symmetry of (1–1), which descends
to the Schwarz map, does not necessarily descend to the
hyperbolic Schwarz map.

Yet thanks to this choice, the image surface (of X un-
der S ) has the following geometrically nice property: it
is one of the flat fronts in H

3, which is a flat surface with a
certain kind of singularity [Kokubu et al. 04]. Moreover,
the classical Schwarz map s is recovered as the hyperbolic
Gauss map of the hyperbolic Schwarz map as a flat front.
The papers [Gálvez et al. 00, Kokubu et al. 03] give a
method of constructing flat surfaces in three-dimensional
hyperbolic space. Since any closed nonsingular flat sur-
face is isometric to a horosphere or a hyperbolic cylinder,
such surfaces necessarily have singularities: generic sin-
gularities of flat fronts are cuspidal edges and swallowtail
singularities [Kokubu et al. 05]; see Section 4.

We intend to publish a series of papers about the hy-
perbolic Schwarz map and its singularities [Sasaki et al.
08, Noro et al. 08]. This is the first one. In this paper, we
study the hyperbolic Schwarz map S of Equation (1–1)

when the parameters (a, b, c) are real, especially when
its monodromy group is a finite (polyhedral) group or a
Fuchsian group. In general, generic singularities of flat
fronts are cuspidal edges and swallowtails. In each of our
special cases, we find that there are a simple closed curve
C in X around ∞ and two points

P± ∈ X± ∩ C, X± = {x ∈ X | ±	x > 0}
such that the image surface has cuspidal edges only along
S (C − {P+, P−}) and has swallowtails only at S (P±).

We have attempted to visualize the image surfaces;
we often show part of the surfaces consisting of several
copies of the images of X±, since each of the images of
the three intervals (−∞, 0), (0, 1), and (1, +∞) lies on a
totally geodesic surface in H3.

In a computational aspect of this visualization, we use
the composition of the hyperbolic Schwarz map S and
the inverse of the Schwarz map s, Φ = S ◦ s−1, es-
pecially when the inverse of the Schwarz map is single-
valued globally; refer to Section 3.

This choice is very useful, because the inverse map
is often given explicitly as an automorphic function for
the monodromy group acting properly discontinuously on
the image of the Schwarz map. Moreover, in one of the
cases in which we treat the lambda function for drawing
pictures, it is indispensable, because we have a series that
converges very fast.

In our forthcoming papers, we shall introduce the de-
rived Schwarz map, investigate an associated parallel
family of flat fronts, and study confluence of swallow-
tail singularities. Basic ingredients of the hypergeometric
function and its Schwarz map can be found in [Iwasaki
et al. 91] and [Yoshida 97].

2. PRELIMINARIES

2.1 Models of Hyperbolic 3-Space

Hyperbolic 3-space H
3 = Her+(2)/R+ can be identified

with the upper half-space C × R+ as

C × R
+ � (z, t) �−→

(
t2 + |z|2 z̄

z 1

)
∈ Her+(2),(

h w̄
w k

)
∈ Her+(2) �−→ C × R

+ � 1
k

(
w,
√

hk − |w|2
)

.

It can also be identified with a subvariety

L1 = {x2
0 − x2

1 − x2
2 − x2

3 = 1}
of the Lorentz–Minkowski 4-space

L(+,−,−,−) =
{
(x0, x1, x2, x3) ∈ R

4 |
x2

0 − x2
1 − x2

2 − x2
3 > 0, x0 > 0

}
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by

Her+(2) �
(

h w̄
w k

)

�−→ 1
2
√

hk − |w|2
(

h + k, w + w̄,
w − w̄

i
, h − k

)
∈ L1

and with the Poincaré ball

B3 = {(x1, x2, x3) ∈ R
3 | x2

1 + x2
2 + x2

3 < 1}
by

L1 � (x0, x1, x2, x3) �−→ 1
1 + x0

(x1, x2, x3) ∈ B3.

We use these models according to convenience.

2.2 Local Exponents and Transformation into SL Form

The local exponents of Equation (1–1) at 0, 1, and ∞ are
given as {0, 1− c}, {0, 1−a− b}, and {a, b}, respectively.
Denote the differences of the local exponents by

μ0 = 1 − c, μ1 = c − a − b, μ∞ = b − a. (2–1)

Equation (1–1) transforms into the SL form (ESL) with

q = −1
4

{
1 − μ2

0

x2
+

1 − μ2
1

(1 − x)2
+

1 + μ2∞ − μ2
0 − μ2

1

x(1 − x)

}
,

by the projective change of the unknown

u �−→
√

xc(1 − x)a+b+1−c u.

Unless otherwise stated, we always take a pair (u0, u1) of
linearly independent solutions of (ESL) satisfying u0u

′
1−

u′
0u1 = 1, and set

U =
(

u0 u′
0

u1 u′
1

)
.

2.3 The Monodromy Group

The group of isometries of H3 is generated by the
orientation-preserving ones

H �−→ PH
t
P , H ∈ H

3, P ∈ GL2(C),

and the orientation-reversing one H → tH .
Let {u0, u1} be a pair of linearly independent solutions

of (ESL), and {v0, v1} another such pair. Put

U =
(

u0 u′
0

u1 u′
1

)
and V =

(
v0 v′0
v1 v′1

)
.

Then there is a nonsingular matrix, say P , such that
U = PV and such that

U
t
U = PV

t
V

t
P .

Thus the hyperbolic Schwarz map

S : X � x �−→ H(x) = U(x)
t
U(x)

=
( |u0|2 + |u′

0|2 u1ū0 + u′
1ū

′
0

ū1u0 + ū′
1u

′
0 |u1|2 + |u′

1|2
)

∈ H
3 (2–2)

is determined by the system up to orientation-preserving
automorphisms.

The monodromy group Mon(a, b, c) with respect to U

acts naturally on H3 by

H �−→ MH
t
M, M ∈ Mon(a, b, c).

Note that the hyperbolic Schwarz map to the upper-half-
space model is given by

X � x �−→
(
u0(x)ū1(x) + u′

0(x)ū′
1(x), 1

)
|u1(x)|2 + |u′

1(x)|2 ∈ C × R
+.

2.4 Singularities of Fronts

A smooth map f from a domain U ⊂ R2 to a Riemannian
3-manifold N3 is called a front if there exists a unit vec-
tor field ν : U → T1N along the map f such that df and
ν are perpendicular and the map ν : U → T1N is an im-
mersion, where T1N is the unit tangent bundle of N . We
call ν the unit normal vector field of f . Note that if we
identify T1N with the unit cotangent bundle T1N

∗, then
the condition df ⊥ ν is equivalent to the corresponding
map L : U → T ∗

1 N being Legendrian with respect to the
canonical contact structure T ∗

1 N . A point x ∈ U is called
a singular point of f if the rank df is less than 2 at x.

It is well known that generic singularities of fronts are
cuspidal edges and swallowtails [Arnold et al. 85]. In this
section, we roughly review these types of singularities.
General criteria for fronts to be cuspidal edges or swal-
lowtails are given in [Kokubu et al. 05].

2.4.1 The (2, 3) Cusp and Cuspidal Edges. Recall that
the cubic equation t3 + xt − y = 0 in t with real param-
eters (x, y) has three distinct real roots if and only if its
discriminant 27y2 + 4x3 is negative. Consider the map

F : R
2 � (s, t) �−→ (x, y) = (s − t2, st) ∈ R

2,

whose Jacobian is equal to s + 2t2. The image of the
(smooth) curve C : s+2t2 = 0 under F is a curve with a
cusp of (2, 3) type, and it is given by F (C) : 27y2+4x3 =
0. Note that F folds the t-axis to the negative half of the
x-axis, and that the inverse image of F (C) consists of C

and a curve tangent to C at the origin. Indeed, we have

27y2 + 4x3|x=s−t2, y=st = (s + 2t2)2(4s − t2).
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FIGURE 1. Image under the map F .

The semicircle centered at the origin in (s, t) space is
mapped by F , as shown in Figure 1.

When a (2, 3) cusp travels along a curve transversal to
R2 ⊂ R3, the locus of the singularity consists of cuspidal
edges. Precisely speaking, p ∈ U is a cuspidal edge of a
front f : U → R3 if there exist local diffeomorphisms ψ

and Ψ of (U, p) and (R3, f(p)) such that Ψ◦ f ◦ψ(u, v) =
(u2, u3, v) =: fc. In other words, the germ of the map f

at p is locally A-equivalent to fc.

2.4.2 Swallowtails. Consider the map

F̃ : R
2 � (s, t) �−→ (x, y, z) = (s − t2, st, s2 − 4st2) ∈ R

3.

This map is singular (the rank of the differential is not
full) along the curve C, and the image of the point
(−2t2, t) ∈ C is given as (−3t2,−2t3, 12t4). The semi-
circle centered at the origin in (s, t) space is mapped by
F̃ , as shown in Figure 2. The image surface has three
kinds of singularities:

1. cuspidal edges along F̃ (C) − {(0, 0, 0)},
2. a swallowtail at {(0, 0, 0)},
3. self-intersection along the image of the t-axis.

Here, by definition, a swallowtail is a singular point of
a differential map f : U → R3, which is A-equivalent to
F̃ (s, t). Another canonical form of the swallowtail is

fs(u, v) = (3u4 + u2v, 4u3 + 2uv, v),

which is A-equivalent to F̃ as fs(u, v) = Ψ ◦ F̃ ◦ ψ(u, v),
where

ψ(u, v) = (2v + 4u2, 2u),

Ψ(x, y, z) =
(−z + 4x2

16
,
y

2
,
x

2

)
.

3. USE OF THE SCHWARZ MAP

Let u and v be solutions of Equation (ESL) such that
uv′ − vu′ = 1. The Schwarz map is defined as X � x �→
z = u(x)/v(x) ∈ Z, which is the hyperbolic Gauss map
(see Section 3) of the hyperbolic Schwarz map S as in
(2–2). It is convenient to study the hyperbolic Schwarz
map (2–2) by regarding z as a variable.

Especially when the inverse of the Schwarz map is
single-valued globally, this choice of variable is very use-
ful, because the inverse map is often given explicitly as
an automorphic function for the monodromy group act-
ing properly discontinuously on the image of the Schwarz
map. In particular, Equation (1–3) is written as

dU

dz
= U

(
0 θ
ω 0

)
, where θ = q

dx

dz
ω =

dx

dz
.

Then by the representation formula in [Kokubu et al. 03],
the solution U is written by ω, the hyperbolic Gauss map
(i.e., the Schwarz map) z, and their derivatives:

U = i
1√
ẋ

⎛
⎜⎝ zẋ 1 +

z

2
ẍ

ẋ

ẋ
1
2

ẍ

ẋ

⎞
⎟⎠ , (3–1)

where the dot stands for d/dz.
Here we summarize how to prove the formula: Since

z′(:= dz/dx) = −1/v2 and ẍ = d2x/dz2, we have

v = i

√
1
z′

= i
√

ẋ, u = vz,

and

v′ =
dv

dx
=

dv

dz

dz

dx
=

i

2
(ẋ)−3/2ẍ,

u′ = i
1√
ẋ

+ z
i

2
(ẋ)−3/2ẍ.
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FIGURE 2. Swallowtail: image under the map F̃ .

So we have (3–1) and

H = U
t
U (3–2)

=
1
|ẋ|

⎛
⎜⎝ |z|2|ẋ|2 +

∣∣∣∣1 +
z

2

ẍ

ẋ

∣∣∣∣2 z|ẋ|2 +
1

2

(
1 +

z

2

ẍ

ẋ

)
ẍ

ẋ

z̄|ẋ|2 +
1

2

(
1 +

z̄

2

ẍ

ẋ

)
ẍ

ẋ
|ẋ|2 +

1

4

∣∣∣∣ ẍẋ
∣∣∣∣2

⎞
⎟⎠ .

When the (projective) monodromy group of Equation
(1–1) is a polyhedral group or a Fuchsian triangle group,
there is a set of real parameters (ā, b̄, c̄) such that ā −
a, b̄ − b, c̄ − c ∈ Z and such that the Schwarz map of
E(ā, b̄, c̄) has a single-valued inverse. Such equations are
said to be standard.

Equation E(a, b, c) is standard if a, b, c ∈ R satisfy

k0 :=
1

|μ0| , k1 :=
1

|μ1| , k∞ :=
1

|μ∞| ∈ {2, 3, . . . ,∞}.

Although it is a challenging problem to study transforma-
tions of the hyperbolic Schwarz maps of standard equa-
tions to general equations, we study only standard ones
in this paper.

4. SINGULARITIES OF HYPERBOLIC
SCHWARZ MAPS

Since Equation (ESL) has singularities at 0, 1, and ∞,
the corresponding hyperbolic Schwarz map S has singu-
larities at these points. In terms of flat fronts in H3, they
are considered ends of the surface. On the other hand,
the map S may not be an immersion at x ∈ X , even if
x is not a singular point of (ESL). In other words, x is a
singular point of the front S : X → H3.

In this section, we analyze properties of these singular
points of the hyperbolic Schwarz maps.

4.1 Singularities on X

As we saw in the introduction, the hyperbolic Schwarz
map S : X = C − {0, 1} → H

3 can be considered as a
flat front in the sense of [Kokubu et al. 03, Kokubu et al.
05]. Thus, as a corollary of [Kokubu et al. 05, Theorem
1.1], we have the following result.

Lemma 4.1.

i. A point p ∈ X is a singular point of the hyperbolic
Schwarz map S if and only if |q(p)| = 1.

ii. A singular point x ∈ X of H is A-equivalent to the
cuspidal edge if and only if

q′(x) �= 0 and q3(x)q̄′(x) − q′(x) �= 0.

iii. A singular point x ∈ X of H is A-equivalent to the
swallowtail if and only if

q′(x) �= 0,

q3(x)q̄′(x) − q′(x) = 0,

�
{

1
q

((
q′(x)
q(x)

)′
− 1

2

(
q′(x)
q(x)

)2
)}

�= 0.

We apply Lemma 4.1 to the hypergeometric equation.
Using μ0, μ1, and μ∞ as in (2–1), the coefficient of the
hypergeometric equation (ESL) is written as

q = −1
4

(
1 − μ2

0

x2
+

1 − μ2
1

(1 − x)2
+

1 + μ2
∞ − μ2

0 − μ2
1

x(1 − x)

)

=:
−Q

4x2(1 − x)2
, (4–1)
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where

Q = 1− μ2
0 + (μ2

∞ + μ2
0 − μ2

1 − 1)x + (1− μ2
∞)x2. (4–2)

Hence x ∈ X is a singular point if and only if

|Q| = 4|x2(1 − x)2|. (4–3)

Define R by

q′ = −Q′x(1 − x) − 2Q(1 − 2x)
4x3(1 − x)3

=:
−R

4x3(1 − x)3
. (4–4)

Then we have

q3(x)q̄′(x) − q′(x)

=
Q3

43x6(1 − x)6
· R

4x̄3(1 − x̄)3
+

R

4x3(1 − x)3
.

Hence the condition q3(x)q̄′(x)−q′(x) = 0 is equivalent
under the condition (4–3) to the condition that Q3R2 be
real and nonpositive.

Therefore, a singular point x is a cuspidal edge if and
only if (4–3) is satisfied and

Q3R2 is not a nonpositive real number. (4–5)

Moreover, a singular point x is a swallowtail if and only
if we have

Q3R2 is real nonpositive and

�
(
2|R|4 − x(1 − x)(2R′Q − RQ′)R

2
)
�= 0,

(4–6)

where ′ = d/dx. In fact, since (q′/q) = R/
(
x(1 − x)Q

)
,

we have

1
q

((
q′

q

)′
− 1

2

(
q′

q

)2
)

= − 2
Q3

(
2(1 − 2x)RQ + 2x(1 − x)(R′Q − RQ′) − R2

)
= − 2

Q3
(−2R2 + x(1 − x)(2R′Q − RQ′))

=
2R2Q

3

|R2Q
3|2
(
2|R|4 − x(1 − x)(2R′Q − RQ′)R

2
)

.

4.2 At a Singular Point of E(a, b, c)

In this subsection, we assume that the parameters a, b,
and c are real. Since q has poles of order 2 at 0, 1, and ∞,
|q| �= 1 in a neighborhood of the singularities of Equation
(1–1). Here, we study the behavior of X around these
points. If X were single-valued on a neighborhood of
the end, the following calculations would be essentially

similar to those in [Gálvez et al. 00], in which asymptotic
behavior of the end of flat fronts is investigated.

For example, around, x = 0, the Schwarz map has the
expression z = x|1−c|(1 + O(x)). So we may assume that
the inverse map has the expression x = zα

(
1 + O(z)

)
for

some real constant α (> 0). Since

ẋ = αzα−1(1 + O(z)),
ẍ

ẋ
=

α − 1
z

(1 + O(z)),

the principal part of the matrix U is given by

P :=
i√

αzα+1

⎛
⎜⎜⎝ αzα+1

(
1 +

α − 1
2

)
z

αzα α − 1
2

⎞
⎟⎟⎠ .

We have

P
t
P :=

1
|αzα+1|

⎛
⎜⎜⎝

∗∗
(

α2 − 1

4

)
z + |αzα|2z

∗∗
(

α − 1

2

)2

+ |αzα|2

⎞
⎟⎟⎠ .

Thus the hyperbolic Schwarz map S extends to the point
z = 0 and to the boundary of H3. Its image is nonsingular
at S (0), and is tangent to the boundary at this point.

5. HYPERBOLIC SCHWARZ MAPS

When the monodromy group of the equation E(a, b, c) is
a finite group or a typical Fuchsian group, we study the
singularities of the hyperbolic Schwarz map and visualize
the image surface.

5.1 Finite (Polyhedral) Monodromy Groups

We first recall fundamental facts about the polyhedral
groups and their invariants, basically following [Klein 84].

5.1.1 Basic Data. Let the triple (k0, k1, k∞) be one of

(2, 2, n) (n = 1, 2, . . . ), (2, 3, 3), (2, 3, 4), (2, 3, 5),

in which case the projective monodromy group is of finite
order N :

N = 2n, 12, 24, 60,

respectively. Note that

2
N

=
1
k0

+
1
k1

+
1

k∞
− 1.

For each case, we give a triplet {R1, R2, R3} of reflec-
tions whose mirrors bound a Schwarz triangle. These are
tabulated in Table 1, where

R(c, r) : z �−→ cz̄ + r2 − |c|2
z̄ − c̄
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Dihedral R1 : z �→ z̄, R2 : z �→ e2πi/nz̄, R3 : z �→ 1

z̄
.

Tetrahedral R1 : z �→ z̄, R2 : z �→ −z̄, R3 = R(−1 + i√
2

,
√

2).

Octahedral R1 : z �→ z̄, R2 : z �→ iz̄, R3 = R(−1,
√

2).

Icosahedral R1 : z �→ z̄, R2 : z �→ ε2z̄,

R3 = R

(
2 cos

π

5
,

√
1 + 4 cos2

π

5

)
=

−(ε − ε4)z̄ + (ε2 − ε3)

(ε2 − ε3)z̄ + (ε − ε4)
, ε = e2πi/5.

TABLE 1. Reflections generating the polyhedral groups.

is the reflection with respect to the circle of radius r > 0
centered at c. The monodromy group Mon (a polyhedral
group) is the group of even words of these three reflec-
tions.

The (single-valued) inverse map

s−1 : Z � z �−→ x ∈ X̄ ∼= P
1,

invariant under the action of Mon, is given as follows.
Let f0(z), f1(z), and f∞(z) be the monic polynomials
in z with simple zeros exactly at the images s(0), s(1),
and s(∞), respectively. If ∞ ∈ Z is not in these images,
then the degrees of these polynomials are N/k0, N/k1,
and N/k∞, respectively; if, for instance, ∞ ∈ s(0), then
the degree of f0 is N/k0 − 1. Now the inverse map s−1

is given by

x = A0
f0(z)k0

f∞(z)k∞
,

where A0 is a constant; we also have

1 − x = A1
f1(z)k1

f∞(z)k∞
,

dx

dz
= A

f0(z)k0−1f1(z)k1−1

f∞(z)k∞+1
,

for some constants A1 and A. See Table 2.

5.1.2 Dihedral Cases. We consider a dihedral case:
(k0, k1, k∞) = (2, 2, n), n = 3. The curve C in the x-
plane defined by (4–3), |Q| = 4|x(1 − x)|2, is symmetric
with respect to the line �(x) = 1

2 and has the shape of a
cocoon (see Figure 3 (left)).

We next study the condition (4–6). The curve
	(Q3R2) = 0 consists of the line �x = 1

2 , the real axis,
and a curve of degree 8. We can prove that on the upper
half x-plane, there is a unique point satisfying the con-
ditions (4–3) and (4–6) (this point is the intersection P

of the curve C and the line �x = 1
2 ) and that the image

surface has a swallowtail at this point and has cuspidal
edges along S (C) outside S (P ).

We omit the proof, since the computation is analogous
to the case (k0, k1, k∞) = (∞,∞,∞); see Section 5.2.1.

The curve that gives the self-intersection is tangent to
C at P and crosses the real axis perpendicularly; this
is the dotted curve in Figure 3 (left), and is made as
follows. Since the curve is symmetric with respect to the
line �x = 1

2 , on each level line 	x = t, we take two
points x1 and x2 (�(x1 +x2) = 1), compute the distance
between their images S (x1) and S (x2), and find the
points at which the two image points coincide.

We substitute the inverse of the Schwarz map (cf. Ta-
ble 2),

x =
1
4

(zn + 1)2

zn
, n = 3,

into the expression (3–2) of the hyperbolic Schwarz map,
and visualize the image surface in the Poincaré ball model
explained in Section 2.1. The upper half x-space corre-
sponds to a fan in the z-plane bounded by the lines with
argument 0, π/3, 2π/3, and the unit circle (see Figure
3 (right)). The image s(C) consists of two curves; the
dotted curves in the figures form the preimage of the
self-intersection.

Let Φ denote the hyperbolic Schwarz map in the z

variable:

Φ := S ◦ s−1 : Z � z �−→ H(z) ∈ H
3.

We visualize the image of the hyperbolic Schwarz map
when n = 3. Figure 4 (upper left) is a view of the im-
age of one fan in the z-plane under Φ (equivalently, the
image of the upper/lower half x-plane under S ). The
cuspidal edge traverses the figure from left to right, and
one swallowtail is visible in the center. The upper right
figure is the antipode of the left. Figure 4 (below) is a
view of the image of six fans dividing the unit z-disk.
To draw the images of fans with the same accuracy, we
make use of the invariance of the function x(z) under the
monodromy groups.

5.1.3 Other Polyhedral Cases. For other polyhedral
cases, the situation is similar. The sphere Z is divided
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Dihedral (k0, k1, k∞) = (2, 2, n), N = 2n.

A0 =
1
4
, A1 = −1

4
, A =

n

4
,

f0 = zn + 1, f1 = zn − 1, f∞ = z.

f∞ is of degree 1 = 2n/n− 1, since ∞ ∈ s(∞), that is, x(∞) = ∞.

Tetrahedral (k0, k1, k∞) = (2, 3, 3), N = 12.

A0 = −12
√

3, A1 = 1, A = 24
√

3,

f0 = z(z4 + 1),

f1 = z4 + 2
√

3z2 − 1 = (z2 − 2 +
√

3)(z2 + 2 +
√

3),

f∞ = z4 − 2
√

3z2 − 1 = (z2 − 2 −
√

3)(z2 + 2 −
√

3).

f0 is of degree 5 = 12/2− 1, since ∞ ∈ s(0), that is, x(∞) = 0.

Octahedral (k0, k1, k∞) = (3, 2, 4), N = 24.

A0 =
1

108
, A1 =

−1
108

, A =
1
27

,

f0 = z8 + 14z4 + 1 = (z4 + 2z3 + 2z2 − 2z + 1)(z4 − 2z3 + 2z2 + 2z + 1),

f1 = z12 − 33z8 − 33z4 + 1 = (z4 + 1)(z2 + 2z − 1)(z2 − 2z − 1)(z4 + 6z2 + 1),

f∞ = z(z4 − 1) = z(z2 + 1)(z2 − 1).

f∞ is of degree 5 = 24/4− 1, since ∞ ∈ s(∞), that is, x(∞) = ∞.

Icosahedral (k0, k1, k∞) = (3, 2, 5), N = 60.

A0 =
−1

1728
, A1 =

1
1728

, A =
−5

1728
,

f0 = z20 − 228z15 + 494z10 + 228z5 + 1

= (z4 − 3z3 − z2 + 3z + 1)(z8 − z7 + 7z6 + 7z5 − 7z3 + 7z2 + z + 1)

× (z8 + 4z7 + 7z6 + 2z5 + 15z4 − 2z3 + 7z2 − 4z + 1),

f1 = z30 + 522z25 − 10005z20 − 10005z10 − 522z5 + 1

= (z2 + 1)(z8 − z6 + z4 − z2 + 1)(z4 + 2z3 − 6z2 − 2z + 1)

× (z8 + 4z7 + 17z6 + 22z5 + 5z4 − 22z3 + 17z2 − 4z + 1)

× (z8 − 6z7 + 17z6 − 18z5 + 25z4 + 18z3 + 17z2 + 6z + 1),

f∞ = z(z10 + 11z5 − 1)

= z(z2 + z − 1)(z4 + 2z3 + 4z2 + 3z + 1)(z4 − 3z3 + 4z2 − 2z + 1).

f∞ is of degree 11 = 60/5 − 1, since ∞ ∈ s(∞), that is, x(∞) = ∞.

TABLE 2. Data of the polyhedral Schwarz maps.
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FIGURE 3. The curve C : |Q| = 4|x(1 − x)|2, when (k0, k1, k∞) = (2, 2, 3).

Image of a fan under Φ

Image of six fans

FIGURE 4. Dihedral case.
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into 2N triangles. Figure 5 shows the images under Φ of
N triangles for the tetrahedral and the octahedral cases,
and for the icosahedral case, it shows 2N = 120 trian-
gles dividing the z-plane, the images of the central ten
triangles, and the images of N = 60 triangles.

5.2 A Fuchsian Monodromy Group

We study only the case (k0, k1, k∞) = (∞,∞,∞).

5.2.1 Singular Locus. We find the singular locus of
the image when μ0 = μ1 = μ∞ = 0. We have

Q = 1 − x + x2, R = (−1 + 2 x)
(
x2 − x + 2

)
.

The singularities lie on the image of the curve

C : f := 16|x(1 − x)|4 − |Q|2 = 0.

Note that this curve is symmetric with respect to the line
�x = 1

2 .
Recall that the condition (4–6) is stated as

h := 	(Q3R2) = 0, �(Q3R2) > 0.

The curve h = 0 consists of the line �x = 1
2 , the real

axis, and a curve of degree 8. We can prove that on
the upper half x-plane, there is a unique point in the
intersection points of the curves C and h = 0 satisfying
conditions (4–3) and (4–6) (this point is the intersection
P of the curve C and the line �(x) = 1

2 ) and that the
image surface has a swallowtail singularity at P and has
cuspidal edges along S (C) outside S (P ).

The actual computation proceeds as follows. The im-
age curve has singularities at the image of the intersec-
tion of the curves C and {h = 0, �(Q3R2) > 0}. We can
show that there is only one such point: the intersection
of C and the line �x = 1

2 .
When μ0 = μ1 = μ∞ = 0, the coefficient q is expressed

as
q = −1

4
Q

x2(1 − x)2
, Q(x) = x2 − x + 1.

If we put x = s + it, then f := |Q|2 − 42|x2(1 − x)2|2 is
a polynomial in s and t of order 8. If we put

s =
1
2

+ u, u2 = U, t2 = T,

then f turns out to be a polynomial F in U and T of
order 4:

F =
1
2

+
5
2
(U − T ) − 5(U2 + T 2) + 6TU

+ 16(TU2 − T 2U) + 16(U3 − T 3) − 16(U4 + T 4)

− 64(T 3U − TU3) − 96T 2U2.

The polynomial R is expressed as

R = −4x3(1 − x)3q′(x) = (2x − 1)(x2 − x + 2).

The imaginary part of Q3R
2

has the form t(2s − 1)G,
where G is a polynomial in U and T of order 4:

G =
1323
256

+
189
16

(U − T ) +
9
8
(U2 + T 2) − 99

4
TU

+ 11(T 3 − U3) + 11(T 2U − TU2) − 5(U4 − T 4)

− 20(T 3U + TU3) − 30T 2U2.

Set
G1 := 5F − 16G, F1 := 256F − 16G1

and
U − T =: S, UT =: V.

Then we have

G1 = −1283
16

+ 256S3 − 43S2 + 1024V S − 353
2

S + 340V,

which is linear in V . Solving V from the equality G1 = 0
and substituting it into F1 = 0, we get a rational function
in S, whose numerator is a polynomial in S of degree 3.
The roots of this polynomial can be computed. In this
way, we can solve the system

|q| = 1, 	(Q3R
2
) = 0,

and prove that a solution x = ξ satisfies condition (4–6)
only if �(ξ) = 1

2 . Substituting x = 1
2 + it into the second

equation (4–6), we have

2|R|4 − x(1 − x)(2R′Q − RQ′)R
2

(5–1)

=
1
64

t2(7 − 4t2)2(21 + 440t2 − 560t4 + 256t6).

Since |q| �= 1 at x = 1
2 (1 ± √

7), we deduce that the
real part of (5–1) does not vanish on the singular points.
Hence there is a unique swallowtail in the image surface
of the upper x-plane.

5.2.2 The Lambda Function. The inverse of the
Schwarz map is a modular function known as the lambda
function:

λ : H
2 = {z ∈ C | 	z > 0} −→ X.

The hyperbolic Schwarz map is expressed in terms of
its derivatives. In this section we recall its definition and
give a few properties. We begin with the theta functions:
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FIGURE 5. Other polyhedral cases.
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FIGURE 6. The curve C : |Q| = 4|x(1 − x)|2, when (k0, k1, k∞) = (∞.∞,∞).
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FIGURE 7. Schwarz triangles with three zero angles.

for z ∈ H2, set q = eπiz/2,

θ2 =
∞∑
−∞

q(2n−1)2/2,

θ3 =
∞∑
−∞

q2n2
,

θ0 =
∞∑
−∞

(−1)nq2n2
.

Recall the well-known identity θ4
3 − θ4

0 = θ4
2 . We define

the lambda function as

λ(z) =
(

θ0

θ3

)4

= 1 − 16q2 + 128q4 − 704q6 + 3072q8

− 11488q10 + 38400q12 − · · · ;

note that λ : ∞ �→ 1, 0 �→ 0, 1 �→ ∞, and that λ sends
every triangle in Figure 7 onto the upper/lower half x-
plane. In the figure, for symmetry reasons, the Schwarz
triangles tessellating the upper half-plane H

2 are shown
in the Poincaré disk.

The inverse of the Schwarz map is given by x = λ(z).
In the expression S of the hyperbolic Schwarz map given
in Section 3, the derivatives λ′ and λ′′/λ′ are used. They

are computed as follows: Define the Eisenstein series E2

by

E2(z) =
1
24

η′(z)
η(z)

= 1 − 24
∞∑

n=1

⎛
⎝∑

d|n
d

⎞
⎠ e2πinz

= 1 − 24(q4 + 3q8 + 4q12 + 7q16 + · · · ).
Then we have

θ′0
θ0

− 1
6
E2 = −1

6
(θ4

2 + θ4
3),

θ′2
θ2

− 1
6
E2 =

1
6
(θ4

0 + θ4
3),

θ′3
θ3

− 1
6
E2 = −1

6
(θ4

0 − θ4
2),

where
′ = q

d

dq
=

2
πi

d

dz
,

and so we have
λ′ = −2θ4

2λ,

which leads to the q-series expansion

λ′′

λ′ = (log λ′)′ = 4
θ′2
θ2

+
λ′

λ
=

4
6
E2 +

4
6
(θ4

0 + θ4
3) − 2θ4

2.

This expression is useful for drawing the picture of the
image of Φ, because q-series converge very fast.



Sasaki et al.: The Hyperbolic Schwarz Map for the Hypergeometric Differential Equation 281

�

�

�
R

Q

P

Image of one triangle D

R

Q

P

R

Q

P

Image of {D, A} Image of {D, A, B, BA}

R

Q

P

R

Q

P

Image of {D, A, B, BA, C, CA} Image of{D, A, B, C,

AB,BA, AC,CA, BC, CB}

FIGURE 8. Images of the hyperbolic Schwarz map when k0 = k1 = k∞ = ∞.
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5.2.3 Visualizing the Image Surface. The image of the
hyperbolic Schwarz map is shown in Figure 8. The
first picture is the image of the triangle {D}, the sec-
ond is the two triangles {D, A}, the third is the four
triangles {D, A, B, BA}, the fourth is the six triangles
{D, A, B, BA, C, CA}, and the last is the ten triangles
{D, A, B, C, AB, BA, AC, CA, BC, CB}.
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