
Nuclear Elements of Degree 6 in the
Free Alternative Algebra
I. R. Hentzel and L. A. Peresi

CONTENTS

1. Introduction
2. Extensions to the Computer Algebra System ALBERT
3. Representation Technique
4. The Computations
Acknowledgments
References

2000 AMS Subject Classification: Primary 17D05;
Secondary 17-04, 17-08, 68W30.

Keywords: Free alternative algebras, nucleus, polynomial
identities, computational algebra

We construct five new elements of degree 6 in the nucleus of the
free alternative algebra. We use the representation theory of the
symmetric group to locate the elements. We use the computer
algebra system ALBERT and an extension of ALBERT to express
the elements in compact form and to show that these new ele-
ments are not a consequence of the known degree-5 elements
in the nucleus. We prove that these five new elements and four
known elements form a basis for the subspace of nuclear ele-
ments of degree 6. Our calculations are done using modular
arithmetic to save memory and time. The calculations can be
done in characteristic zero or any prime greater than 6, and sim-
ilar results are expected. We generated the nuclear elements
using prime 103. We check our answer using five other primes.

1. INTRODUCTION

An alternative algebra is a nonassociative algebra over
a field satisfying the alternative laws (x, x, y) = 0 and
(x, y, y) = 0, where the associator (x, y, z) is defined by
(x, y, z) = (xy)z−x(yz). These algebras are called alter-
native because the associator is an alternating function
of its three arguments. That is,

(x, y, z) = (y, z, x) = (z, x, y) = −(y, x, z) = −(x, z, y)

= −(z, y, x).

Let F [X ] be the free nonassociative algebra over the
field F in generators X = {x1, x2, . . . , xn}. Let Alt[X ]
denote the ideal of F [X ] generated by the elements
(f1, f1, f2), (f2, f1, f1), (f1, f2 ∈ F [X ]).

Definition 1.1. The free alternative algebra in generators
X is the quotient algebra

ALT[X ] = F [X ]/Alt[X ].

The alternative laws of degree 3 imply identities of
degree n. These are the elements in Alt[X ] of degree n.
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Definition 1.2. The nucleus of a nonassociative algebra
A is the set

N(A) ={p ∈ A | (p, x, y) = (x, p, y) = (x, y, p) = 0,

∀x, y ∈ A}.

The center of a nonassociative algebra A is the set

C(A) = {p ∈ N(A) | [p, x] = 0, ∀x ∈ A}.

(The commutator [x, y] is defined by [x, y] = xy− yx.)

In 1953, it was shown in [Kleinfeld 53] that for any x
and y in an alternative algebra, the element [x, y]4 is in
the nucleus and this element is nonzero in the free alter-
native algebra on two or more generators. Subsequently,
other authors have found elements of larger and smaller
degree in the nucleus, as well as elements in the center.
See [Hentzel and Peresi 06a, Hentzel and Peresi 06b] and
the references therein.

In the Dniester Notebook, I. P. Shestakov proposed
the following problem (see [Filippov et al. 06, Problem
2.121]): Describe the center and the associative center—
the nucleus in our terminology—of a free alternative al-
gebra as completely characteristic subalgebras. Are they
finitely generated? (A subalgebra S of an algebra A is
completely characteristic if ψ(S) ⊂ S for all homomor-
phisms ψ : A → A.)

Our results in [Hentzel and Peresi 06a, Hentzel and
Peresi 06b] and in this paper give a partial solution to
this problem by giving a finite basis for the central and
nuclear elements of low degree.

In the free alternative algebra over Z103, the elements
of smallest degree in the center have degree 7, as we
proved in [Hentzel and Peresi 06a]. Furthermore, we ob-
tained all degree-7 central elements.

Definition 1.3. Let p be an element of the free nonas-
sociative algebra F [X ] over the field F in generators
X = {x1, x2, . . . , xn}. We say that p is an element
of the nucleus of the free alternative algebra in gener-
ators X if in the free alternative algebra on generators
X ∪ {xn+1, xn+2} one has that (p, xn+1, xn+2) = 0.

In [Hentzel and Peresi 06b] we proved that in the free
alternative algebra over Z103, the elements of smallest
degree in the nucleus have degree 5. Furthermore, we
proved that in the free alternative algebra over Z103 on
generators {a, b, c, d, e}, all the nuclear elements of degree
5 are consequences of the alternative identities of degree 5
(i.e., the identities of degree 5 implied by the alternative

laws of degree 3) and the nuclear element

([a, b][a, c])a− (a[a, b])[a, c]. (1–1)

In this paper we prove the following result (the Jor-
dan product x ◦ y is defined by x ◦ y = xy + yx, the
Jordan multiplication by x is denoted by Vx and defined
by Vx(y) = x ◦ y, and the Jordan associator 〈x, y, z〉 is
defined by 〈x, y, z〉 = (x ◦ y) ◦ z − x ◦ (y ◦ z)).

Theorem 1.4.

(i) The following elements are in the nucleus of the free
alternative algebra over Z103 on generators {a, b, c,
d, e, f}:

[[a, b][a, b], b]a, (1–2)

2[[a, b], a] ◦ [[b, c], c]− 2[[a, b], b] ◦ [[a, c], c] (1–3)

− 2[[a, c], a] ◦ [[b, c], b] + 2[[a, c], b] ◦ [[a, c], b]

+ 6[[b, c], a] ◦ [[b, c], a]− 6[[a, c], b] ◦ [[b, c], a]

+ 4[[a, b], c] ◦ [[b, c], a] + 3[a, b] ◦ [[a, c], [b, c]]

− 3[a, c] ◦ [[a, b], [b, c]]− 3[b, c] ◦ [[a, c], [a, b]],

〈a, a, b〉〈c, c, b〉+ 〈a, a, c〉〈b, b, c〉
− 〈a, b, c〉〈a, b, c〉+ 〈b, b, a〉〈c, c, a〉
+ 〈b, b, c〉〈a, a, c〉 − 〈b, c, a〉〈b, c, a〉 (1–4)

− 〈c, a, b〉〈c, a, b〉+ 〈c, c, a〉〈b, b, a〉
+ 〈c, c, b〉〈a, a, b〉 − 72(a, b, c)(a, b, c),

[V (d2)− V (d) ◦ d, a], (1–5)

where

V = VaVbVc + VbVcVa + VcVaVb − VbVaVc

− VaVcVb − VcVbVa

and

ALT SUM{b,c,d,e} (1–6){
3[[[a, b], a], c][d, e] + [[[a, b], c], a][d, e]

− 2[[[a, b], c], d][a, e] + 2[[[b, c], a], a][d, e]

− 4[[[b, c], a], d][a, e]
}
,

where ALT SUM{b,c,d,e} denotes the alternat-
ing sum over all permutations of the variables
{b, c, d, e}.

(ii) All the nuclear elements of degree 6 are conse-
quences of the alternative identities of degree 6 (i.e.,
the identities of degree 6 implied by the alternative
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laws of degree 3), the lifted nuclear elements of de-
gree 6 (i.e., the nuclear elements of degree 6 implied
by (1–1)), and the nuclear elements (1–2) through
(1–6).

The nuclear elements (1–2) through (1–6) are obtained
using the representation theory of the symmetric group
as well as the computer algebra system Albert [Jacobs
et al. 96].

The degree-5 nuclear element (1–1) generates elements
of degree 6 in the nucleus (see the last paragraph of
this section). We show that the nuclear elements (1–2)
through (1–6) are independent of one another and not
consequences of the degree-5 nuclear element (1–1).

We shall assume that all algebras are over a field F

of characteristic zero or of characteristic greater than the
degree of the identities in question. This is necessary for
two reasons. The first is that we work with the linearized
identities, and the assumption on characteristics ensures
that the linearized form of the identities is equivalent to
the unlinearized form. The second is that we need the
group algebra on the symmetric group to be semisim-
ple. For smaller characteristics, the classical idempotents
construction involves dividing by zero. Since the process
involves taking the direct sum of copies of the group al-
gebra, one for each association type, the same conditions
on characteristic are necessary and sufficient for our cal-
culations. We shall continue to use the definitions and
notation that are used in [Hentzel and Peresi 06b].

The Teichmüller identity

(xy, z, w)− (x, yz, w) + (x, y, zw)

= x(y, z, w) + (x, y, z)w

holds in any nonassociative algebra A. This identity may
be validated by expanding out the associators and seeing
that all the terms cancel.

The Teichmüller identity shows that if p is in N(A),
then

p(x, y, z) = (px, y, z),

(xp, y, z) = (x, py, z),

(x, yp, z) = (x, y, pz),

(x, y, zp) = (x, y, z)p.

In an alternative algebra A, all eight of the above
terms are equal. In particular:

(x, py, z) = (py, z, x) = p(y, z, x) = p(x, y, z),

(x, yp, z) = (x, y, pz) = (pz, x, y) = p(z, x, y) = p(x, y, z).

It follows that (x, [p, y], z) = 0. We have shown that in
an alternative algebra A, we have [A,N(A)] ⊂ N(A).

The degree-6 nuclear elements implied by the known
degree-5 nuclear element (1–1) are

([a, bd][a, c])a− (a[a, bd])[a, c], (1–7)

([a, b][a, cd])a− (a[a, b])[a, cd], (1–8)

([de, b][a, c])a+ ([a, b][de, c])a+ ([a, b][a, c])(de) (1–9)

− ((de)[a, b])[a, c]− (a[de, b])[a, c]− (a[a, b])[de, c],

[([a, b][a, c])a− (a[a, b])[a, c], d]. (1–10)

Element (1–7) is obtained by replacing b with bd in (1–1).
Element (1–8) is obtained by replacing c with cd in (1–1).
Element (1–9) is obtained by first linearizing (1–1) on a
to obtain

([d, b][a, c])a+ ([a, b][d, c])a+ ([a, b][a, c])d− (d[a, b])[a, c]

− (a[d, b])[a, c]− (a[a, b])[d, c]

and then replacing d by de. Element (1–10) is obtained
by bracketing (1–1) with d.

2. EXTENSIONS TO THE COMPUTER ALGEBRA
SYSTEM ALBERT

Albert is a computer algebra system based on the algo-
rithm described in [Hentzel and Jacobs 91]. One gives the
program the defining identities of a variety of nonassocia-
tive algebras. One also gives the program a polynomial
that is to be tested. Using the command generators,
one supplies the program with the problem type. This
refers to the number and degree of variables in this poly-
nomial.

The program builds a finite-dimensional algebra,
which is a homomorphic image of the free nonassociative
algebra specified by the defining identities, and evaluates
the polynomial in this finite-dimensional algebra. This
homomorphic image is the free nonassociative algebra in
the variety with the given defining identities such that
all products of degree larger than the degree specified for
that variable are zero.

When the polynomial evaluates to zero, the polyno-
mial is a consequence of the given identities, and the
polynomial is an identity in this variety.

When the polynomial does not evaluate to zero, the
polynomial is not zero in the free algebra and is not an
identity in this variety.

Albert works in positive characteristic. One can
specify any characteristic between 2 and 251. Albert

does not work in characteristic zero. Using Albert
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alone, one cannot be sure whether a result is dependent
on the particular characteristic chosen or whether it is
true in general.

Albert has the two commands save basis and save

multiplication table, which dump the basis and the
multiplication table of the finite-dimensional homomor-
phic image of the free algebra created by Albert into
two files. We use this multiplication table to extend the
capabilities of Albert to create and simplify nuclear el-
ements.

The program Albert is designed to answer specific
questions: Given an element p, Albert can test whether
p is in the nucleus of the free alternative algebra. Albert

creates a finite-dimensional algebra (which is a homomor-
phic image of the free alternative algebra with two addi-
tional variables x and y) and then uses the multiplication
table of this algebra to compute (p, x, y). If (p, x, y) is
zero, then p is in the nucleus of the free alternative alge-
bra (see an example in [Hentzel and Peresi 06b, Section
6.1] and another example in Section 4.7 below).

In this section we describe a procedure to create a
nuclear element p. The procedure uses the basis and the
multiplication table created by Albert. The defining
identities are the two alternative laws

(x, x, y) = 0 and (x, y, y) = 0.

Assume that we are looking for nuclear elements of
degree 5. We use Albert to build the finite-dimensional
homomorphic image of the free alternative algebra us-
ing the command generators a, b, c, d, e, x, y. We use
the save basis and save multiplication table com-
mands to store the basis and multiplication table in two
files.

In the basis file, we find all degree-5 basis elements
that contain a, b, c, d, e in some association and permu-
tation. These basis elements appear consecutively as
hn, . . . , hn+k. We use the multiplication table to expand
the associator (hi, x, y) (for i = n, . . . , n+k) into a linear
combination of basis elements. The coefficients of this
linear combination create the ith row (Ri) of a matrix.

A dependence relation
∑n+k

i=n ciRi on the rows of this
matrix corresponds to a nuclear element

∑n+k
i=n cibi. This

element is generated by working modulo some particular
positive characteristic.

Using this procedure, we recovered the nuclear element
previously known for degree 5. Unfortunately, when we
apply this procedure to find the degree-6 nuclear ele-
ments, the problem is too large for Albert. We can,
however, find the nuclear elements that can be written as
homogeneous polynomials in three a’s and three b’s. The

algebra on “generators” a, a, a, b, b, b, x, y is small enough
to be created by Albert. See Section 4.3.

3. REPRESENTATION TECHNIQUE

Since the problem is too large for Albert, we use the
representation technique as described in [Hentzel and
Peresi 06b]. For each partition of n, we obtain the rep-
resentation of the group algebra FSn given by this par-
tition. If d is the degree of this representation, then we
represent a multilinear polynomial of degree n by a for-
mal sum of d× d matrices. The advantage of the repre-
sentation technique is that it can process higher degrees
than techniques that rely on processing the identities as
polynomials. The disadvantage is that any nuclear el-
ement found is displayed in its encoded representation
form. Decoding a multilinear element of degree n pro-
duces an expression that may involve n! cat[n] terms. In
this paper,

cat[n] =
1
n

(
2n− 2
n− 1

)
.

It is called the Catalan number. Fortunately, we can use
Albert to simplify such an expression.

If we have an element p of degree 6 that we wish to
prove is in the nucleus, we calculate the type identities of
degree 8 implied by the alternative laws. Type identities
are the identities formed by lifting the alternative laws
in such a way that the set of identities is not excessively
redundant (see [Hentzel and Peresi 06b, Section 3]). If in
each representation the row space of (p, x, y) is contained
in the row space of the type identities, then p is in the
nucleus.

The task of creating an element in the nucleus of de-
gree 6 is more complicated. We wish to find elements
f(x1, x2, . . . , x6) such that

(f(x1, x2, . . . , x6), x7, x8) = 0

in ALT[x1, x2, . . . , x6, x7, x8]. If we work with the rep-
resentations of degree 8, we are not able to distin-
guish those permutations that interchange x1, x2, . . . , x6

and leave x7 and x8 fixed with those that interchange
x1, x2, . . . , x7, x8. The technique we use keeps x7 and x8

special. We attack the problem using the representations
of S6 for permutations of the elements x1, x2, . . . , x6, and
we encode the movements of x7 and x8 by increasing the
number of types. This is not an ideal solution because
it requires more memory. As mentioned in [Hentzel and
Peresi 06b, Section 5], we can assume that x7 and x8 are
skew-symmetric.
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T1 · · · T12012 (T ′
1, x7, x8) · · · (T ′

42, x7, x8)

Augmented
type identities Zero

of degree 8 matrix

Expansion of
associators

⎡
⎢⎢⎢⎣

I 0 · · · 0
0 I · · · 0
...

...
. . .

...
0 0 · · · I

⎤
⎥⎥⎥⎦

TABLE 1. Nuclear elements.

Given a multilinear polynomial f(x1, x2, . . . , x7, x8),
we first sort the terms by association type. Since cat[8] =
429, we have 429 association types. For each of these
association types, we collect the terms by the positions
of the skew-symmetric elements x7 and x8. There are(
8
2

)
= 28 distinct positions for x7 and x8. There are then

28 · 429 = 12012 types with which we have to work. The
multilinear polynomial is then encoded as an element of
the direct sum of 12012 copies of the group algebra FS6

in the form (g1, g2, . . . , g12012).
We create the type identities of degree 8 implied by the

alternative laws. Since S6 permutes only x1, x2, . . . , x6,
we have to include the permutations that move x7 and x8.
We make 28 copies of the type identities. In each copy we
interchange x7 and x8 with a different pair chosen from
x1, x2, . . . , x8.

These augmented type identities of degree 8 are now
encoded by the permutation of x1, x2, x3, x4, x5, x6 and a
number that specifies both the original association type
and the positions of x7 and x8.

In degree 6 there are 42 association types: T ′
1, . . . , T

′
42.

We expand the associator (wk, x7, x8), where wk is
x1x2x3x4x5x6 associated in type T ′

k. Each expansion has
a single I on the right-hand side and exactly two terms
on the left-hand side. The two terms are −(wkx7)x8 and
wk(x7x8). These expansions are appended to the aug-
mented type identities. See Table 1.

Since the group algebra FSn of the symmetric group
Sn is semisimple, it is isomorphic to a direct sum of com-
plete matrix algebras. We use the integral representa-
tions obtained by the algorithm given in [Clifton 81].

For each partition of 6, we now obtain a matrix from
the group algebra expressions in Table 1 by replacing
each element of FS6 by its representation matrix.

When we reduce this matrix to row canonical form, the
nonzero rows that have a leading one in the right-hand

portion of the matrix represent the identities of the form
(w, x7, x8), where w is a multilinear element of degree 6
in x1, x2, . . . , x6.

Among the nonzero rows that have a leading one in
the right-hand portion of the matrix occur all expressions
of the form (w, x7, x8), where w is itself zero. That is,
w is a consequence of the alternative identities in degree
6. We can eliminate these trivial identities by comparing
the row canonical form of just the alternative identities
for degree 6 with the right-hand portion of the matrix.
Any additional nonzero row that has a leading one in the
right-hand portion of the matrix represents an identity of
the form (w, x7, x8), where w 
= 0. Thus w is a nonzero
element of the nucleus.

3.1 Orthogonality Conditions

Suppose that Aij(t) and Bhk(t) are inequivalent repre-
sentations of FSn. Then

∑
t∈Sn

Aij(t)Bhk(t−1) = 0. (3–1)

Furthermore,

∑
t∈Sn

Aij(t)Ahk(t−1) =
n!
d
δikδjh, (3–2)

where d is the degree of the representation, and δxy is
the Kronecker delta defined by

δxy =

{
0 if x 
= y,

1 if x = y.

See [Boerner 63, equations (7.2) and (7.4), p. 77].
The orthogonality conditions (3–1) and (3–2) allow

us to create an element in the group algebra FSn given
its representations. In particular, we want the elements
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gk
ij whose kth representation is the matrix unit Eij and

whose representation is the zero matrix elsewhere.
The representation technique creates an element that

is displayed as a single row in a matrix. When we create
the polynomial form of this element, we choose to create
it when the row is placed across the bottom of the matrix.
We get equivalent elements from any fill of the matrix as
long as its row space is spanned by the single given row.

To get the matrix unit Edi on the bottom row of the
d× d representation Aij(t), we use

gk
di =

∑
t∈Sn

Aid(t−1) t. (3–3)

This usually produces a sum with n! terms, which we
simplify with Albert to an equivalent element modulo
the alternative laws that has a compact form.

3.2 Simplification Using ALBERT

Albert can be used to simplify the polynomial form of
an element. Using the representation technique, we can
find nuclear elements that are typically a linear combi-
nation of n! cat[n] terms.

An element expressed in this way is certainly a valid
solution to the problem, but it is desirable to write the
element in a more compact form. We can use Albert

to simplify the element.
Suppose we wish to know whether the nuclear el-

ement can be expressed by polynomials of the form
[[x, y], z] ◦ [[u, v], w]. We add [[x, y], z] ◦ [[u, v], w] as an
identity in addition to the alternative laws. We test
to see whether our element is an identity. If it is an
identity, then we know that our element is equivalent
modulo the alternative laws to one that can be writ-
ten as a linear combination of polynomials of the form
[[x, y], z] ◦ [[u, v], w].

If it is not an identity, then we can add further polyno-
mial forms, and continue testing. When we have finally
captured the nuclear element by the alternative laws and
the additional polynomial forms, then we turn to the ex-
tension of Albert. We put the alternative laws as well
as the nuclear element into Albert as the given identi-
ties. We save the basis and the multiplication table. Us-
ing the multiplication table, we evaluate the polynomial
forms on all possible substitutions and look for depen-
dence relations between these evaluations.

For example, if the nuclear element p is captured by
[[x, y], z] ◦ [[u, v], w], and the terms of p each involve two

a’s, two b’s, and two c’s, then we evaluate

[[a, b], a] ◦ [[b, c], c], [[a, c], a] ◦ [[b, c], b],

[[a, c], b] ◦ [[b, c], a], [[b, c], a] ◦ [[b, c], a].

Each evaluation is a linear combination of the basis. The
coefficients of this linear combination form a row of a
matrix. A linear dependence relation among the rows is
either an element that is a consequence of the alternative
laws or is a nonzero element of the nucleus. We can test
whether it is a consequence of the alternative laws using
Albert.

Using Albert, we can test whether the original ele-
ment p and this new element are equivalent modulo the
alternative laws. We do this by showing that each el-
ement is a consequence of the alternative laws and the
other element.

4. THE COMPUTATIONS

4.1 Representations of FSn

The representations of FSn are given in [Clifton 81]. The
algorithm for the matrix representation of a permutation
π associated with a particular Young diagram constructs
a matrix Aπ. The map π �→ Aπ is not a representation.
However, the map π �→ A−1

I Aπ is a representation, where
I is the identity permutation.

We arrange the standard tableaus in the “last-number
sequence.” In a standard tableau, the largest entry must
appear at the right end of its row and the bottom of its
column. If i < j, then those tableaus with largest entry
in row i come after those tableaus whose largest entry
is in row j. Inductively, those tableaus whose largest
entries are both in the same row are themselves sorted
by the position of the next-largest element.

Given a Young diagram, if the standard tableaus are
T1, . . . , Tf , then the representation has matrices of di-
mensions f × f . For each permutation π, Clifton’s algo-
rithm constructs a matrix Aπ = (aij) as follows. Apply
π to the numbers in tableau Tj . If two numbers occur in
the same column of Ti and the same row of π(Tj), then
let aij = 0. If not, then there is a permutation σ that
arranges the elements within the columns of Ti so that in
σ(Ti) each element is in the same column that it occupies
in Ti and is in the same row that it occupies in π(Tj). In
this case, let aij = sgn(σ).

Clifton’s construction writes the operators on the left:
π(X). In our work we put the operators on the right:
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(X)π. We use the transposes of the matrices of the rep-
resentation given by Clifton to adjust for reversing the
order of the group action.

Example 4.1. We will calculate the matrix associated
with the string cabed in the representation 32, which is
indexed by the Young diagram

[ ][ ][ ]
[ ][ ]

To encode the string cabed as a permutation based on
the standard order of abcde, we write 1 → 2, 2 → 3,
3 → 1, 4 → 5, 5 → 4. That is, whatever is in the first
position moves to the second position, whatever is in the
second position moves to the third position, and so on.
This permutation can be written as

π :
1 2 3 4 5
2 3 1 5 4

Notice that the bottom row does not match the order of
the original string cabed.

The standard tableaus in the “last-number sequence”
are as follows:

T1 T2 T3 T4 T5
123 124 134 125 135
45 35 25 34 24

We now apply Clifton’s algorithm to calculate the ma-
trix Aπ . We obtain

π(T1) π(T2) π(T3) π(T4) π(T5)

231
54

235
14

215
34

234
15

214
35

T1 123
45 1 0 0 −1 0

T2 124
35 0 0 0 −1 1

T3 134
25 0 0 0 −1 0

T4 125
34 0 −1 1 0 0

T5 135
24 0 −1 0 0 0

Since

AI =

⎡
⎢⎢⎢⎢⎣

1 0 0 0 −1
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎤
⎥⎥⎥⎥⎦ ,

we obtain

A−1
I Aπ =

⎡
⎢⎢⎢⎢⎣

1 0 0 0 1
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

1 0 0 −1 0
0 0 0 −1 1
0 0 0 −1 0
0 −1 1 0 0
0 −1 0 0 0

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

1 −1 0 −1 0
0 0 0 −1 1
0 0 0 −1 0
0 −1 1 0 0
0 −1 0 0 0

⎤
⎥⎥⎥⎥⎦ .

The matrix

(A−1
I Aπ)

t
=

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0
−1 0 0 −1 −1

0 0 0 1 0
−1 −1 −1 0 0

0 1 0 0 0

⎤
⎥⎥⎥⎥⎦

is the representation of the string cabed for the represen-
tation 32.

4.2 Nuclear Elements of Degree 6

There are 11 representations for FS6. We calculate the
row canonical form of the augmented type identities of
degree 8 and the expanded associators (see Table 1). We
count the number of nonzero rows that have a leading one
in the right-hand portion of the matrix. We also count
the nonzero rows having leading ones that come from the
degree-6 alternative identities. The additional nonzero
rows having leading ones are elements that are not zero
in the free alternative algebra and must be elements in
the nucleus.

Among those elements in the nucleus, we want to dis-
tinguish those elements that are already known. That
is, they can be obtained from the lifted nuclear elements
(1–7) through (1–10). In each representation the ranks
have to be related. The rank of the alternative laws is
less than or equal to the rank of the alternative laws and
the lifted nuclear elements (1–7) through (1–10), and this
rank is less than or equal to the rank of the alternative
laws and the nuclear elements of degree 6. See Table 2.

There is one new nuclear element in each of the rep-
resentations given by the partitions 33, 2211, and 21111.
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Partition Alternative
laws

Alternative
laws and nuclear
elements (1–7)
through (1–10)

Alternative
Laws and
nuclear
elements

6 41 41 41
51 205 205 205
42 369 372 372
411 406 409 409
33 205 206 207
321 652 658 658
3111 400 403 403
222 202 202 204
2211 360 362 363
21111 194 195 196
111111 36 36 36

TABLE 2. Rank of the matrices.

There are two new nuclear elements in the representa-
tion given by the partition 222. The shape of the tableau
tells us how the element can be expressed by polynomials
with repeated unknowns. In particular, we need as many
distinct elements as there are rows in the tableau, and
we need as many copies of the ith element as there are
boxes in the ith row. We choose to use polynomials with
repeated letters rather than multilinear polynomials be-
cause it makes for a more compact presentation of the
element. A polynomial from partition 33 can be written
with unknowns a, a, a, b, b, b. A polynomial from parti-
tion 222 can be written with unknowns a, a, b, b, c, c. A
polynomial from partition 2211 can be written with un-
knowns a, a, b, c, d, d. A polynomial from partition 21111
can be written with unknowns a, a, b, c, d, e.

4.3 The Nuclear Elements in Partition 33

We can see that there are two nuclear elements in parti-
tion 33. One of them is known because it is a consequence
of the lifted nuclear elements (1–7) through (1–10). The
other one is new. We could construct this element using
(3–3). But fortunately, this problem is small enough that
we can do it with Albert (see Section 2).

Using generators a, a, a, b, b, b, x, y, we create and
save the basis and the multiplication table. Then we
look up in the basis table the basis elements that are ex-
pressed with exactly three a’s and three b’s. There are
20 of them. We compute (hi, x, y) using the multiplica-
tion table. The matrix we create has 20 rows. These
rows are dependent and there are five dependence rela-
tions. These dependence relations generate five elements
in the nucleus. These elements have been simplified using
Artin’s theorem, which says that the subalgebra gener-
ated by a and b is associative [Zhevlakov et al. 82, Chap-

ter 2, Theorem 2]. Here are the five elements that are in
the nucleus:

(([a, bb]b)a)a+ (([b, aa]b)b)a+ (([bb, a]a)a)b

+ (([aa, b]a)b)b, (4–1)

(((b[a, b])b)a)a+ (([bb, a]a)a)b + ((([a, b]a)a)b)b, (4–2)

(([a, bb]b)a)a+ ([bb, aa]b)a+ ((a[a, bb])a)b, (4–3)

(((bb)a)[a, b])a+ ((ba)[bb, a])a+ (((ba)[a, b])a)b, (4–4)

[[a, b][a, b], b]a. (4–5)

Using Albert, we find that (4–1), (4–2), and (4–3)
are consequences of the alternative laws and the lifted
nuclear elements (1–7) through (1–10). Therefore none
of (4–1), (4–2), and (4–3) are considered new.

Using Albert, we find that neither (4–4) nor (4–5)
is a consequence of the alternative laws and the lifted
nuclear elements (1–7) through (1–10). We also find that
(4–4) and (4–5) are equivalent modulo the alternative
laws and the lifted nuclear elements (1–7) through (1–10).
Therefore (4–4) or (4–5) is the one new nuclear element
in partition 33. Element (4–5) is the element (1–2) in
Theorem 1.4.

4.4 The Nuclear Elements in Partition 222

The representation given by partition 222 has degree 5.
There are two new nonzero rows that have a leading one
in the right-hand side of the matrix. They appear under
the following types:

Nuclear Element (a)

x(x(x(x(xx))))
1 1 1 0 − 1
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Nuclear Element (b)

(xx)(x((xx)x))
0 0 0 0 1

x(x((xx)(xx)))
0 − 1 0 0 0

x(x(x((xx)x)))
0 0 0 0 1

x(x(x(x(xx))))
0 1 0 − 1 − 2

We create the polynomial expression for each of these
nuclear elements using (3–3). We then use Albert to
verify that element (a) can be expressed by polynomials
of the form [[x, y], z] ◦ [[u, v], w] and [x, y] ◦ [[z, u], [v, w]].

There are 90 possible ways to substitute a, a, b, b, c, c
for the elements x, y, z, u, v, w. Not all are equivalent
to the original element (a). But there is at least one
substitution that is. The checking for equivalency is done
using Albert. The element (a) is equivalent to (1–3).

The element (b) can be expressed by polynomials of
the form 〈x, y, z〉 ◦ 〈u, v, w〉 and (x, y, z)(u, v, w). The
element (b) is equivalent to (1–4).

4.5 The Nuclear Element in Partition 2211

There is one nuclear element obtainable from this repre-
sentation. It is given by the following:

Nuclear Element (c)

x(x(x(x(xx))))
0 2 3 1 − 1 1 − 5 1 4

Using (3–3) we construct the polynomial expression
for this nuclear element (c). The goal now becomes to
write a simpler expression for (c). We consider expres-
sions known to be central elements in Cayley–Dickson
algebras (see [Hentzel and Peresi 97]). This led us to
verify that element (c) is equivalent to (1–5).

4.6 The Nuclear Elements in Partition 21111

This representation gives the following nuclear element:

Nuclear Element (d)

(xx)(x(x(xx)))
0 0 0 0 1

x((xx)(x(xx)))
0 0 0 0 − 1

x(x((xx)(xx)))
1 0 0 1 0

x(x(x((xx)x)))
0 − 2 0 0 − 1

x(x(x(x(xx))))
−1 1 1 0 0

Using (3–3) we obtain the polynomial expression for
(d). We then use Albert to check that the alterna-
tive laws of degree 3 and [[[x, y], z], u][v, w] = 0 im-
ply (d). This means that we can capture (d) using
a linear combination of the 66 expressions of the form

[[[x, y], z], u][v, w], where the arguments x, y, z, u, v, w are
replaced by a, a, b, c, d, e in all possible ways.

We evaluate all 66 substitutions of a, a, b, c, d, e into
[[[x, y], z], u][v, w] and create the matrix of coefficients
with 66 rows. The dependence relations among the rows
give elements in the nucleus. Five of the dependence rela-
tions are consequences of the alternative laws. The sixth
one is (1–6). Therefore element (d) is equivalent to (1–6).

4.7 Further Checking

Using Albert we verify that (1–2) through (1–6) are
not consequences of the alternative laws. As an example
we will present the process for element (1–2). To verify
that [[a, b][a, b], b]a is not a consequence of the alterna-
tive laws, Albert constructs an algebra of dimension 68
(which is a homomorphic image of ALT[a, b]) and verifies
that [[a, b][a, b], b]a is not zero in this algebra. Therefore
[[a, b][a, b], b]a is not zero in ALT[a, b].

We verify that [[a, b][a, b], b]a is in the nu-
cleus using Albert. We need to show that
([[a, b][a, b], b]a, c, d) = 0 in ALT[a, b, c, d]. Albert

constructs an algebra of dimension 4006 (which is a
homomorphic image of ALT[a, b, c, d]) and verifies that
([[a, b][a, b], b]a, c, d) is zero in this algebra. This implies
that ([[a, b][a, b], b]a, c, d) is zero in ALT[a, b, c, d] (see
[Hentzel and Jacobs 91, Theorem 1 and its Corollary]).
By this process we cannot verify that (1–3) through
(1–6) are in the nucleus because the calculations are too
large for Albert.

We verify that elements (1–2) through (1–6) are in-
dependent (modulo the alternative laws and the lifted
nuclear elements (1–7) through (1–10)). We give the al-
ternative laws, elements (1–7) through (1–10) and ele-
ments (1–3) through (1–6) as the defining identities to
Albert. We check that (1–2) is not zero. This shows
that (1–2) is independent of (1–3) through (1–6). Sim-
ilarly, we show that each of the elements (1–3) through
(1–6) is independent of the other four elements.

Using representation techniques, we verify that ele-
ments (1–2) through (1–6) (i) are not a consequence of
the alternative laws, (ii) are independent (modulo the
alternative laws and the lifted nuclear elements (1–7)
through (1–10)), and (iii) are in the nucleus.

To prove (i), we lift the alternative laws to degree 6 and
compute the ranks in each representation (see Table 2,
second column). Then we separately add each of the
elements (1–2) through (1–6) and recompute the ranks.
Elements (1–2), (1–5), and (1–6) increase the rank by one
in the representation given by partitions 33, 2211, and
21111, respectively. Each of the elements (1–3) and (1–4)
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Representation Partition Rank

1 8 428
2 71 2996
3 62 8560
4 611 8982
5 53 11984
6 521 27384
7 5111 14962
8 44 5992
9 431 29954

10 422 23959
11 4211 38491
12 41111 14954
13 332 17970
14 3311 23954
15 3221 29933
16 32111 27353
17 311111 8958
18 2222 5981
19 22211 11962
20 221111 8532
21 2111111 2970
22 11111111 418

TABLE 3. Alternative identities: degree 8.

increases the rank by one in the representation given by
partition 222.

To prove (ii), we lift the alternative laws to degree
6, add the lifted nuclear elements (1–7) through (1–10)
and four of elements (1–2) through (1–6). We compute
the ranks in each representation. When we add the re-
maining element, the rank in only one representation in-
creases. Elements (1–2), (1–5), and (1–6) increase the
rank by one in the representation given by partitions 33,
2211, and 21111, respectively. Each of the elements (1–3)
and (1–4) increases the rank by one in the representation
given by partition 222.

To prove (iii), we lift the alternative laws to degree 8
and compute the ranks in each representation (see Ta-
ble 3). Now we add (p, x, y), where p is the linearized
form of one of the elements (1–2) through (1–6). In
all five cases, the ranks remain the same as in Table 3.
Therefore (p, x, y) = 0.

4.8 Remarks

We use a combination of Albert, the extension to Al-

bert, and representation theory to locate these nuclear
elements. The representation theory locates all the nu-
clear elements of degree 6 in the free alternative algebra
over Z103. These nuclear elements are expressed in rep-
resentation form as a row of a huge matrix.

There is no really good way to represent one of these
rows in simplified algebraic form. The shape of the
tableau where the nuclear element occurs tells us whether
we can express the identity using repeated variables. For
element (1–2), this reduces the problem enough so that
the creation of the algebraic form can be done just us-
ing Albert. For elements (1–3) through (1–6), Albert

cannot create the finite homomorphic image of the free
alternative algebra, and so the initial algebraic forms are
created using the orthogonality conditions. The calcula-
tions with the orthogonality conditions are done over the
integers.

In the representation form of the element, we first
change instances 102 to −1 and 101 to −2, believing
that smaller numbers are more likely to be correct for
other primes. These initial algebraic forms of the nuclear
elements are simplified using Albert modulo 251, and
again we change the coefficients to make them small.

At this stage, because of the changes in characteristic,
we cannot be sure that our resulting elements are still in
the nucleus until we recheck them.

We add identities (pi, x, y), where pi (i = 1, . . . , 5) is
the linearized form of elements (1–2) through (1–6), to
the degree-8 identities for the free alternative algebra.
We calculate the rank of these identities modulo primes
103, 229, 233, 239, 241, 251. In each case, the rank did
not increase when the identities are added. This means
that (1–2) through (1–6) are nuclear elements modulo
the six primes we checked.

We know that we have found all the degree-6 nuclear
elements modulo 103. We do not know that we have
found all the degree-6 nuclear elements modulo any other
characteristic. We do know that our elements are in the
nucleus for the primes that we tested.

ACKNOWLEDGMENTS

This paper was written while the author L. A. Peresi was
visiting Iowa State University on a grant from FAPESP (Proc.
2006/57531-4). We thank the referee for many suggestions
that improved the exposition of this paper.

REFERENCES

[Boerner 63] H. Boerner. Representations of Groups with Spe-
cial Consideration for the Needs of Modern Physics. New
York: John Wiley & Sons, 1963.

[Clifton 81] J. Clifton. “A Simplification of the Computation
of the Natural Representation of the Symmetric Group
Sn.” Proc. Amer. Math. Soc. 83 (1981), 248–250.



Hentzel and Peresi: Nuclear Elements of Degree 6 in the Free Alternative Algebra 255

[Filippov et al. 06] V. T. Filippov, V. K. Kharchenko, and I.
P. Shestakov. “Dniester Notebook: Unsolved Problems in
the Theory of Rings and Modules.” Translated by M. R.
Bremner and M. V. Kochetov. In Non-Associative Algebra
and Its Applications, edited by L. Sabinin, L. V. Sbitneva,
and I. P. Shestakov, pp. 461–516, Lecture Notes in Pure
and Appl. Math. 246. Boca Raton: CRC, 2006.

[Hentzel and Jacobs 91] I. R. Hentzel and D. P. Jacobs. “A
Dynamic Programming Method for Building Free Alge-
bras.” Comput. Math. Appl. 22 (1991), 61–66.

[Hentzel and Peresi 97] I. R. Hentzel and L. A. Peresi. “Iden-
tities of Cayley–Dickson algebras.” J. Algebra 188 (1997),
292–309.

[Hentzel and Peresi 06a] I. R. Hentzel and L. A. Peresi. “Cen-
tral Elements of Minimal Degree in the Free Alternative
Algebra.” In Non-Associative Algebra and Its Applications,

edited by L. Sabinin, L. V. Sbitneva, and I. P. Shestakov,
pp. 195–204, Lecture Notes in Pure and Appl. Math. 246.
Boca Raton: CRC, 2006.

[Hentzel and Peresi 06b] I. R. Hentzel and L. A. Peresi. “The
Nucleus of the Free Alternative Algebra.” Experimental
Mathematics 15 (2006), 445–454.

[Jacobs et al. 96] D. P. Jacobs, D. Lee, S. V. Muddana, A.
J. Offutt, K. Prabhu, and T. Whiteley. Version 3.0. Al-
bert’s User Guide. Clemson University, 1996. Available on-
line (www.cs.clemson.edu/∼dpj/albertstuff/albert.html).

[Kleinfeld 53] E. Kleinfeld. “Simple Alternative Rings.” Ann.
of Math. 58 (1953), 544–547.

[Zhevlakov et al. 82] K. A. Zhevlakov, A. M. Slin′ko, I. P.
Shestakov, and A. I. Shirshov. Rings That Are Nearly As-
sociative. New York: Academic Press, 1982.

Irvin R. Hentzel, Department of Mathematics, Room 432 Carver Hall, Iowa State University, Ames, IA 50011
(hentzel@iastate.edu)
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