Confluence of Swallowtail Singularities of the Hyperbolic Schwarz Map Defined by the Hypergeometric Differential Equation

Masayuki Noro, Takeshi Sasaki, Kotaro Yamada, and Masaaki Yoshida

CONTENTS

1. Introduction
2. Singularities of the Image Surface
3. Confluence of Swallowtail Singularities
4. List of Polynomials

Acknowledgments
References

Abstract

The papers [Gálvez et al. 00, Kokubu et al. 03, Kokubu et al. 05] gave a method of constructing flat surfaces in threedimensional hyperbolic space. Generically, such surfaces have singularities, since any closed nonsingular flat surface is isometric to a horosphere or a hyperbolic cylinder. In [Sasaki et al. 08a], we defined a map, called the hyperbolic Schwarz map, from one-dimensional projective space to three-dimensional hyperbolic space using solutions of the Gauss hypergeometric differential equation. Its image is a flat front and its generic singularities are cuspidal edges and swallowtail singularities. In this paper we study the curves consisting of cuspidal edges and the creation and elimination of swallowtail singularities depending on the parameters of the hypergeometric equation.

1. INTRODUCTION

We consider the Gauss hypergeometric differential equation

$$
x(1-x) u^{\prime \prime}+\{c-(a+b+1) x\} u^{\prime}-a b u=0
$$

where (a, b, c) are complex parameters. By a change of the unknown u through multiplication by a nonzero function, we transform the equation into the SL form

$$
u^{\prime \prime}-q(x) u=0
$$

where

$$
\begin{aligned}
q & =-\frac{1}{4}\left(\frac{1-\mu_{0}^{2}}{x^{2}}+\frac{1-\mu_{1}^{2}}{(1-x)^{2}}+\frac{1+\mu_{\infty}^{2}-\mu_{0}^{2}-\mu_{1}^{2}}{x(1-x)}\right) \\
& =-\frac{1}{4} \frac{\left(1-\mu_{\infty}^{2}\right) x^{2}+\left(\mu_{\infty}^{2}+\mu_{0}^{2}-\mu_{1}^{2}-1\right) x+1-\mu_{0}^{2}}{x^{2}(1-x)^{2}}
\end{aligned}
$$

and

$$
\mu_{0}=1-c, \quad \mu_{1}=c-a-b, \quad \mu_{\infty}=b-a
$$

For two linearly independent solutions u_{0} and u_{1} to this equation, we define the (multivalued) hyperbolic Schwarz map

$$
\begin{equation*}
H S: X=\mathbb{C}-\{0,1\} \ni x \longmapsto U(x)^{t} \bar{U}(x) \in \mathbb{H}^{3}, \tag{HS}
\end{equation*}
$$

where

$$
U=\left(\begin{array}{cc}
u_{0} & u_{0}^{\prime} \\
u_{1} & u_{1}^{\prime}
\end{array}\right)
$$

The image lies in the three-dimensional hyperbolic space \mathbb{H}^{3} identified with the space of positive 2×2 Hermitian matrices modulo diagonal ones.

We remark that the (multivalued) Schwarz map

$$
\begin{equation*}
S: X \ni x \longmapsto u_{0}(x): u_{1}(x) \in \mathbb{P}^{1} \tag{S}
\end{equation*}
$$

and the (multivalued)derived Schwarz map

$$
\begin{equation*}
D S: X \ni x \longmapsto u_{0}^{\prime}(x): u_{1}^{\prime}(x) \in \mathbb{P}^{1} \tag{DS}
\end{equation*}
$$

are regarded as maps with images in the ideal boundary of \mathbb{H}^{3}, which is identified with the complex projective line. The maps S and $D S$ are connected by a oneparameter family of flat fronts in \mathbb{H}^{3}, and the map $H S$ is one member of this family. We refer to [Gálvez et al. 00, Kokubu et al. 03, Sasaki et al. 08b] for these maps.

The image surface of X under $H S$ is one of flat fronts studied in [Kokubu et al. 03]. The points 0 and 1 are singularities of the differential equation, and they may define ends generally. On the other hand, it is well known that generic singularities of fronts are cuspidal edges and swallowtails. In [Sasaki et al. 08a], we drew pictures of surfaces when the monodromy group of the equation is finite and when it is an elliptic modular group, paying attention especially to the curves of cuspidal edges and to the swallowtail singularities.

In this paper, we study the motion of such singularities depending on the parameters a, b, and c. Actually, we treat the case in which the parameters take special values: $a=\frac{1}{2}, b=\frac{1}{2}$, and $c=1-p$, where p is a real parameter. The reason we treat this case is that the hypergeometric differential equation admits a rich symmetry, so that computational arguments work fairly well. Moreover, when $p=0$, we were able to draw nice pictures as in [Sasaki et al. 08a].

When p takes a general value, the number of points in the plane X where the map $H S$ has swallowtail singularities is counted, and when p takes some special values, we encounter confluences of swallowtail singularities. Referring to the general theory of such confluences given in [Arnold 76, Langevin et al. 95], we study what happens
in our case and show that two of the five types of confluences in [Langevin et al. 95] really occur, and one more type of confluence appears. From a computational point of view, we relied on the primary-decomposition algorithm of related ideals to obtain the special values of p and on computing the Sturm sequence associated with polynomials in order to count the number of swallowtail singularities.

2. SINGULARITIES OF THE IMAGE SURFACE

Relative to the differential equation in the SL form above, the conditions on the coefficient q so that the surface has cuspidal edges and swallowtails are given in the following lemma [Sasaki et al. 08a].

Lemma 2.1.

1. A point $p \in X$ is a singular point of the hyperbolic Schwarz map HS if and only if $|q(p)|=1$.
2. A singular point $x \in X$ of $H S$ is equivalent to the cuspidal edge if and only if

$$
q^{\prime}(x) \neq 0 \quad \text { and } \quad q^{3}(x) \bar{q}^{\prime}(x)-q^{\prime}(x) \neq 0
$$

3. A singular point $x \in X$ of $H S$ is equivalent to the swallowtail if and only if

$$
q^{\prime}(x) \neq 0, \quad q^{3}(x) \bar{q}^{\prime}(x)-q^{\prime}(x)=0
$$

and

$$
\Re\left\{\frac{1}{q}\left(\left(\frac{q^{\prime}(x)}{q(x)}\right)^{\prime}-\frac{1}{2}\left(\frac{q^{\prime}(x)}{q(x)}\right)^{2}\right)\right\} \neq 0
$$

We apply the lemma to the hypergeometric equation. The set $\{|q|=1\}$ is given as the curve

$$
C=\left\{x: P_{1}(x, \bar{x})=0\right\}
$$

where

$$
P_{1}(x, \bar{x})=|Q|^{2}-16\left|x^{2}(1-x)^{2}\right|^{2}
$$

and

$$
Q(x)=\left(1-\mu_{\infty}^{2}\right) x^{2}+\left(\mu_{\infty}^{2}+\mu_{0}^{2}-\mu_{1}^{2}-1\right) x+1-\mu_{0}^{2}
$$

The topological type of the curve C depends heavily on the number of real roots of the equation $P_{1}=0$. We next define R by

$$
q^{\prime}=-\frac{Q^{\prime} x(1-x)-2 Q(1-2 x)}{4 x^{3}(1-x)^{3}}=\frac{-R(x)}{4 x^{3}(1-x)^{3}}
$$

S by

$$
q^{3}(x) \bar{q}^{\prime}(x)-q^{\prime}(x)=\frac{S(x, \bar{x})}{4^{4} x^{6}(1-x)^{6} \bar{x}^{3}(1-\bar{x})^{3}}
$$

and T by

$$
\frac{1}{q}\left(\left(\frac{q^{\prime}(x)}{q(x)}\right)^{\prime}-\frac{1}{2}\left(\frac{q^{\prime}(x)}{q(x)}\right)^{2}\right)=\frac{T(x, \bar{x})}{Q(x) Q(\bar{x})}
$$

We thus have three polynomials in x, \bar{x}, a, b, and c :

$$
\begin{aligned}
R(x)= & x(1-x) Q^{\prime}-2(1-2 x) Q \\
S(x, \bar{x})= & Q^{3}(x) R(\bar{x})+64 x^{3}(1-x)^{3} \bar{x}^{3}(1-\bar{x})^{3} R(x), \\
T(x, \bar{x})= & x(1-x) Q(\bar{x})\left(-16 Q^{2}-8(1-2 x) Q Q^{\prime}\right. \\
& \left.+6 x(1-x) Q^{\prime 2}-4 x(1-x) Q Q^{\prime \prime}\right) .
\end{aligned}
$$

We set

$$
P_{2}=\Re(S), \quad P_{3}=\Im(S)
$$

and

$$
R_{1}=\Re(R), \quad R_{2}=\Im(R), \quad R_{3}=\Re(T)
$$

Then the singularity is a cuspidal edge if and only if

$$
P_{1}=0, \quad\left\{P_{2} \neq 0 \text { or } P_{3} \neq 0\right\}, \quad\left\{R_{1} \neq 0 \text { or } R_{2} \neq 0\right\}
$$

and is a swallowtail if and only if

$$
\begin{array}{rr}
P_{1}=0, \quad P_{2}=0, & P_{3}=0 \\
\left\{R_{1} \neq 0 \text { or } R_{2} \neq 0\right\}, & R_{3} \neq 0
\end{array}
$$

2.1 Shape of the Curve C

We restrict our attention to the case $(a, b, c)=\left(\frac{1}{2}, \frac{1}{2}, c\right)$, and set $x=\left(\frac{1}{2}+s\right)+i t$ and $c=1-p$, where p is real. The polynomials P_{i} and R_{i} are polynomials in p, s, and t. They are symmetric relative to the reflections $s \leftrightarrow-s, t \leftrightarrow-t$, and $p \leftrightarrow-p$. Hence, we pay attention only to the case $p \geq 0$ in the following. Since $x=0,1$ are singularities of the coefficient q, the points $(s, t)=$ $\left(\pm \frac{1}{2}, 0\right)$ are out of consideration.

Since $Q=2 c-c^{2}-x+x^{2}, P_{1}$ is a polynomial of total degree 8 given as follows:

$$
\begin{aligned}
P_{1}= & \frac{1}{2}+\frac{5}{2} s^{2}-2 p^{2} s^{2}+16 t^{2} s^{4}-16 t^{4} s^{2}-64 t^{2} s^{6} \\
& -96 t^{4} s^{4}-64 t^{6} s^{2}+6 t^{2} s^{2}+2 t^{2} p^{2}-\frac{3}{2} p^{2}-16 t^{6} \\
& -16 t^{8}-5 t^{4}-\frac{5}{2} t^{2}-5 s^{4}+16 s^{6}-16 s^{8}+p^{4}
\end{aligned}
$$

The curve $\left\{(s, t): P_{1}(p, s, t)=0\right\}$ relative to the real coordinates (s, t) is denoted also by C. It depends on the value p and changes its shape as in Figures $1-3$, where the value of the constants p_{i} will be given in the next subsection.

2.2 Swallowtail Points

We study the set $Z:=\left\{(p, s, t) ; P_{1}=P_{2}=P_{3}=0\right\}$ using the primary-decomposition algorithm (refer, say, to [Greuel and Pfister 02]) that finds a set of generators of every minimal associated prime of the ideal $I:=\left\langle P_{1}, P_{2}, P_{3}\right\rangle$ in the ring $\mathbb{Q}[p, s, t]$. The result is the following.

Lemma 2.2. The set Z is the union of the sets defined by the following ideals:

$$
\begin{aligned}
I_{1} & :=\left\langle p-1,(2 s-1)^{2}+4 t^{2}\right\rangle \\
I_{2} & :=\left\langle p-1,(2 s+1)^{2}+4 t^{2}\right\rangle \\
I_{3} & :=\left\langle p+1,(2 s-1)^{2}+4 t^{2}\right\rangle \\
I_{4} & :=\left\langle p+1,(2 s+1)^{2}+4 t^{2}\right\rangle \\
I_{5} & :=\left\langle t, 4 s^{4}-s^{2}-p^{2}+1\right\rangle \\
I_{6} & :=\left\langle s, 8 t^{4}+6 t^{2}+2 p^{2}-1\right\rangle \\
I_{7} & :=\left\langle H_{0}(p, t), H_{1}(p, s, t), H_{2}(p, s, t), H_{3}(p, s, t)\right\rangle
\end{aligned}
$$

where $H_{0}(p, t), H_{1}(p, s, t), H_{2}(p, s, t)$, are defined in Table 1.

Although the result was obtained by a "black box" algorithm, it can be verified if we are allowed to use the method of finding a Gröbner basis. Let G be a Gröbner basis of an ideal J with respect to a term order. We denote by $\mathrm{NF}_{G}(f)$ the remainder on dividing a polynomial f by G. Then $f \in J$ if and only if $\mathrm{NF}_{G}(f)=0$; in this way, we can verify an ideal inclusion.

Lemma 2.2 is proved as follows. We first see that $I \subset I_{i}$, which implies that the locus $V\left(I_{i}\right)$ defined by the ideal I_{i} is a subset of Z. The converse inclusion $Z \subset \bigcup_{i=1}^{7} V\left(I_{i}\right)$ follows from $\bigcup_{i=1}^{7} V\left(I_{i}\right)=V\left(I_{1} I_{2} \cdots I_{7}\right)$ and $I_{1} I_{2} \cdots I_{7} \subset \sqrt{I}$. In fact, $I_{1} I_{2} \cdots I_{7}$ is generated by $P:=\left\{g_{1} g_{2} \cdots g_{7}: g_{i} \in I_{i}(i=1, \ldots, 7)\right\}$, and we can verify $g^{2} \in I$ for each $g \in P$ using a Gröbner basis of I.

Lemma 2.2 implies that the set Z consists of

$$
\begin{aligned}
& Z_{1}:=\left\{(p, s, 0): 4 s^{4}-s^{2}-p^{2}+1=0\right\} \\
& Z_{2}:=\left\{(p, 0, t): 8 t^{4}+6 t^{2}+2 p^{2}-1=0\right\} \\
& Z_{3}:=\left\{(p, s, t): H_{0}(p, t)=H_{1}(p, s, t)=H_{2}(p, s, t)\right. \\
&\left.=H_{3}(p, s, t)=0\right\}
\end{aligned}
$$

Note that the set defined by the ideal $I_{i}, 1 \leq i \leq 4$, in Lemma 2.2 is included in Z_{1}. Figure 4 shows the set Z_{1} projected to the space (s, p). The explicit representation is

$$
s^{2}=\left(1 \pm \sqrt{16 p^{2}-15}\right) / 8, \quad p= \pm \sqrt{4 s^{4}-s^{2}+1}
$$

The right-hand figure enlarges the upper part of the lefthand figure.

$p=0$	$p=0.65$	$p=p_{1} \approx 0.7071067$

$p=0.78$	$p=0.94$	$p=p_{2} \approx 0.9423774$

FIGURE 1. The curve C and the curve \mathcal{C} (1).

$p=0.967$	$p=p_{3} \approx 0.9682458$	$p=0.97$

FIGURE 2. The curve C and the curve \mathcal{C} (2).

FIGURE 3. The curve C and the curve \mathcal{C} (3).

```
H}=(262144\mp@subsup{p}{}{8}-524288\mp@subsup{p}{}{6}+262144\mp@subsup{p}{}{4})\mp@subsup{t}{}{8}+(524288\mp@subsup{p}{}{10}-1572864\mp@subsup{p}{}{8}+1687552\mp@subsup{p}{}{6}-735232\mp@subsup{p}{}{4}+79872\mp@subsup{p}{}{2}+16384)\mp@subsup{t}{}{6}+(393216\mp@subsup{p}{}{12}-1654784\mp@subsup{p}{}{10
    +2817024p 若-2459136p b}+1142464\mp@subsup{p}{}{4}-260480\mp@subsup{p}{}{2}+21700)\mp@subsup{t}{}{4}+(131072\mp@subsup{p}{}{14}-737280\mp@subsup{p}{}{12}+1755392\mp@subsup{p}{}{10}-2289728p\mp@subsup{p}{}{8}+1761920\mp@subsup{p}{}{6}-794968\mp@subsup{p}{}{4
```



```
H1}=(-8192000\mp@subsup{p}{}{18}+71680000\mp@subsup{p}{}{16}-267673600\mp@subsup{p}{}{14}+565094400\mp@subsup{p}{}{12}-749209600p\mp@subsup{p}{}{10}+651990400\mp@subsup{p}{}{8}-375410912p\mp@subsup{p}{}{6}+138995680\mp@subsup{p}{}{4}-30234388\mp@subsup{p}{}{2
    +2960012)s s
```



```
    +4239360\mp@subsup{p}{}{2}-1409024)\mp@subsup{t}{}{4}+(-62914560\mp@subsup{p}{}{20}+458424320p\mp@subsup{p}{}{18}-1490173952p\mp@subsup{p}{}{16}+2838306816\mp@subsup{p}{}{14}-3490809856\mp@subsup{p}{}{12}+2877347840\mp@subsup{p}{}{10}
    -1598347904p 早 +588634656\mp@subsup{p}{}{6}-138705184\mp@subsup{p}{}{4}+19590612\mp@subsup{p}{}{2}-1352780)t\mp@subsup{t}{}{2}-10485760\mp@subsup{p}{}{22}+94371840\mp@subsup{p}{}{20}-391053312p\mp@subsup{p}{}{18}+980131840\mp@subsup{p}{}{16}
    - 1640966144\mp@subsup{p}{}{14}+1914822656\mp@subsup{p}{}{12}-1580043904\mp@subsup{p}{}{10}+917850432\mp@subsup{p}{}{8}-366915360\mp@subsup{p}{}{6}+96240468\mp@subsup{p}{}{4}-15040195\mp@subsup{p}{}{2}+1087441,
```



```
    -16318586888937472 p + 2406740047872000 p 4 +118811578937344p 2 - 58122468702208)t t + (2627254710435840p 18 - 16487753934110720p 16
```



```
    -28001940223336448\mp@subsup{p}{}{14}+40236544719603712p\mp@subsup{p}{}{12}-39314960801359872p 年 + 26264510377602688p }\mp@subsup{}{}{8}-11791213573216192p\mp@subsup{p}{}{6
    +3403925190427360 p 4 - 576100608409972 p 2 + 44796791787623,
```



```
    - 8303627443711283200p 早 +5639582815676545920p 每-2388886969950578656\mp@subsup{p}{}{4}+582795932673655872\mp@subsup{p}{}{2}-63153571220692772)s}\mp@subsup{s}{}{2
```



```
    +30059710795074560) t t + (-1340861696264110080 p 18 + 8440901125082644480 p }\mp@subsup{}{}{16}-23384966557443178496\mp@subsup{p}{}{14}+37273429941273878528p\mp@subsup{p}{}{12
```



```
    +28850050377704036)t t - 223476949377351680p 20 +1789753918478090240p 18 - 6558969382275055616p }\mp@subsup{}{}{16}+14379092033155440640p 14
    -20693107121308362752p 12 +20246624022842148864p 10 - 13542078892737183872p 早 +6086106587227785920p b
    +297968123692665860 p
```

TABLE 1．The polynomials $H_{0}(p, t), H_{1}(p, s, t), H_{2}(p, s, t)$ ，from Lemma 2．2．

FIGURE 4．The set Z_{1} projected to the space (s, p) ．

As we shall see in the next subsection, the circles in the right-hand figure denote those points that are worse than a swallowtail singularity: the p-coordinate of the top one is 1 , that of middle ones is p_{5}, and that of the bottom ones is p_{3}, where

$$
\begin{aligned}
& p_{3}:=\sqrt{15} / 4 \approx 0.9682458365 \\
& p_{5} \approx 0.9713175204
\end{aligned}
$$

Thus, for any value of $p \in\left(p_{3}, 1\right), p \neq p_{5}$, we have four swallowtail points, and for any value $p>1$, two swallowtail points, both on the axis $t=0$.

For the set Z_{2} to have real points, it is necessary and sufficient that $-p_{1} \leq p \leq p_{1}$, where

$$
p_{1}:=1 / \sqrt{2} \approx 0.7071067810
$$

The explicit relation is

$$
t^{2}=\left(-3+\sqrt{17-16 p^{2}}\right) / 8, \quad p= \pm \sqrt{1 / 2-3 t^{2}-4 t^{4}}
$$

For each value $p \in\left[0, p_{1}\right)$ we have two swallowtail points lying on the line $\{s=0\}$. In the case $p=p_{1}$, the point $(s, t)=(0,0)$ is not a swallowtail.

Summarizing the argument above, the number of swallowtail points belonging to $Z_{1} \cup Z_{2}$ is given as follows:

p	0	$*$	p_{1}	$*$	p_{3}	$*$	p_{5}	$*$	1	$*$
Z_{1}	0	0	0	0	0	4	2	4	0	2
Z_{2}	2	2	0	0	0	0	0	0	0	0

Here $*$ stands for any value between the values of the two sides.

To study the set Z_{3}, we first deal with the polynomials H_{2} and H_{3}. We can write

$$
H_{1}(p, s, t)=c_{1}(p) s^{2}+c_{0}(p, t)
$$

where

$$
\begin{aligned}
c_{1}= & -8192000 p^{18}+71680000 p^{16}-267673600 p^{14} \\
& +565094400 p^{12}-749209600 p^{10}+651990400 p^{8} \\
& -375410912 p^{6}+138995680 p^{4}-30234388 p^{2} \\
& +2960012 .
\end{aligned}
$$

Then we can see first of all that $c_{1} H_{2}$ and $\left(c_{1}\right)^{2} H_{3}$ belong to the ideal $\left\langle H_{0}, H_{1}\right\rangle$, which is verified by showing that $c_{1} H_{2} \bmod H_{0}$ and $\left(c_{1}\right)^{2} H_{3} \bmod H_{0}$ are divisible by H_{1}.

Hence, for each value for which $c_{1}(p) \neq 0$, the set Z_{3} is the same as the set $\left\{H_{0}=H_{1}=0\right\}$. Moreover, we can see that c_{0}^{2} belongs to the ideal $\left\langle c_{1}, H_{0}\right\rangle$ because c_{1} divides the remainder $c_{0}^{2} \bmod H_{0}$ with respect to t.

Hence, the set

$$
\left\{(p, s, t): p \geq 0, c_{1}=H_{0}=H_{1}=0\right\}
$$

consists of lines in (p, s, t) space defined by $c_{1}(p)=$ $H_{0}(p, t)=0$, which are given as

$$
\begin{aligned}
(p, t)= & \left(p_{4}, \pm 0.011811323560992964937\right) \\
& \left(p_{7}, \pm 0.000192205787502698965\right) \\
& \left(p_{10}, \pm 0.022606558445778182272\right),
\end{aligned}
$$

where

$$
\begin{aligned}
p_{4} & \approx 0.97127920368420120746 \\
p_{7} & \approx 1.00370488167353310415 \\
p_{10} & \approx 1.03276891081183183482
\end{aligned}
$$

The set

$$
\left\{(p, s, t): p \geq 0, c_{1}=H_{0}=H_{1}=H_{2}=H_{3}=0\right\}
$$

consists of the points

$$
\begin{aligned}
(p, s, t)= & \left(p_{4}, \pm 0.4448235948, \pm 0.01181132356\right) \\
& \left(p_{4}, \pm 0.2944179698, \pm 0.01181132356\right) \\
& \left(p_{7}, \pm 0.5074847467, \pm 0.00019220578\right)
\end{aligned}
$$

Taking care of these exceptions, it is enough to study the set $\left\{(p, s, t): H_{0}=H_{1}=0\right\}$.

We next deal with the curve $H_{0}(t, p)=0$ in the $t p$ plane, where $p \geq 0$. Look at Figure 5. In order to know the precise shape of the curve, we use the Sturm sequence $\left\{f_{0}, f_{1}, \ldots, f_{l}\right\}$, which for a polynomial $f(t)$, is defined by the following recurrence:

$$
\begin{align*}
f_{0} & =f, \quad f_{1}=\frac{d f}{d t} \\
f_{i} & =-\left(f_{i-2} \bmod f_{i-1}\right), i=2, \ldots, l \tag{2-1}
\end{align*}
$$

$$
f_{l-1} \bmod f_{l}=0
$$

where $\left(f_{i} \bmod f_{i-1}\right)$ is the polynomial remainder. We define $\sigma(a)$ to be the number of sign changes in the sequence $\left\{f_{0}(a), f_{1}(a), \ldots, f_{l}(a)\right\}$, where zeros are not counted.

Theorem 2.3. (Sturm) [Jacobson 75]. For $a, b \in \mathbb{R}$ such that $a<b$ and $f(a), f(b) \neq 0$, the number of roots of $f(t)$ in the interval (a, b) is $\sigma(a)-\sigma(b)$. In particular, the number of all real roots of $f(x)$ is determined by the signs of the leading coefficients and the degrees of the f_{i}.

Let $\ell=\left\{f_{0}(t), \ldots, f_{l}(t)\right\}\left(f_{i} \in \mathbb{Q}(p)[t]\right)$ be a sequence of polynomials obtained by applying the recurrence (2-1)

FIGURE 5. The curve $H_{0}(t, p)=0$.
to $f_{0}=H_{0}$ with respect to t. Let $M \subset \mathbb{R}$ be the zeros of the numerators and denominators of the leading coefficients of the f_{i}, and so $\mathbb{R} \backslash M$ is the disjoint union of open intervals I_{k}. Then the sequence ℓ gives the correct Sturm sequence at each $p \in \mathbb{R} \backslash M$, and Theorem 2.3 ensures that the number of roots of H_{0} is constant for all $p \in I_{k}$. It is clear that each branch $t=t(p)$ such that $H_{0}(p, t(p))=0$ over I_{k} is a continuous function of p. If $p \in M$, then p is a root of an irreducible polynomial over \mathbb{Q} and we can compute the Sturm sequence over an algebraic number field $\mathbb{Q}(p)$. The Sturm sequence at each p tells the number of roots $t(p)$ within any interval, and we can draw the curve with desired precision.

The set M contains the zeros of the discriminant of the equation $H_{0}=0$, and we get the coordinates (p, t) of several extreme points as in the figure:

$$
\begin{aligned}
& X=\left(p_{10}, 0.02260655844\right), \quad A=\left(p_{9}, 0.02095131175\right), \\
& B=\left(p_{8}, 0\right), \quad C=\left(p_{6}, 0\right), \quad D=\left(p_{5}, 0\right), \\
& E=\left(p_{4}, 0.01181132356\right), \quad F=\left(p_{2}, 0.08654627008\right),
\end{aligned}
$$

where

$$
\begin{aligned}
& p_{2} \approx 0.94237741898935061, \\
& p_{6}=1, \\
& p_{8} \approx 1.03077640441513745, \\
& p_{9} \approx 1.03230371163023017 .
\end{aligned}
$$

(Since the point X is very near to A, the point ($p_{10},-0.0226065584$) instead is drawn in the figure.)

For each point (p, t) on the curve $H_{0}(p, t)=0$, we solve the equation $H_{1}(p, s, t)=0$. Then, since $H_{1}(p, s, t)=$ $c_{1}(p) s^{2}+c_{0}(p, t)$, the number of real solutions depends on the signs of $c_{1}(p)$ and $c_{0}(p, t)$. To determine the sign of $c_{0}(p, t) / c_{1}(p)$, we enlarge the set M by adjoining the values of p satisfying $c_{0}=H_{0}=0$ for some t, and the zeros of c_{1}, and then recompute I_{k}. Here note that the set $\left\{c_{0}=H_{0}=0\right\}$ is discrete because the resultant of c_{0} and H_{0} with respect to the variable t turns out to be a nontrivial polynomial of p.

Let $t=t(p)$ be the continuous function over I_{k} discussed above. Then $c_{0}(p, t(p)) / c_{1}(p)$ is also continuous, and its sign is constant over I_{k} because the numerator does not vanish over I_{k}. Thus we can determine the number of solutions by evaluating $c_{0}(p, t(p)) / c_{1}(p)$ at a point $p \in I_{k}$. For $p \in M$, we have to deal with an algebraic number field again; we omit the details.

2.3 Nonswallowtail Points

If for some p, the point (s, t) is a swallowtail, then $(p, s, t) \in Z$. However, not all points in Z are swallowtails. We need to check the condition ($R_{1} \neq 0$ or $R_{2} \neq 0$) and the condition $R_{3} \neq 0$, namely, the condition $q^{\prime} \neq 0$ and the condition $\Re(T) \neq 0$, respectively. This check is done by studying the sets

$$
E_{1}:=\left\{(p, s, t): p \geq 0, P_{1}=P_{2}=P_{3}=R_{1}=R_{2}=0\right\}
$$

and

$$
E_{2}:=\left\{(p, s, t): p \geq 0, P_{1}=P_{2}=P_{3}=R_{3}=0\right\},
$$

by relying on the primary decomposition of the corresponding ideals $\left\langle P_{1}, P_{2}, P_{3}, R_{1}, R_{2}\right\rangle$ and $\left\langle P_{1}, P_{2}, P_{3}, R_{3}\right\rangle$.

Lemma 2.4. The set defined by the ideal $\left\langle P_{1}, P_{2}, P_{3}, R_{1}, R_{2}\right\rangle$ over the real field is the union of the sets defined by the ideals

1. $\langle p-1, t, s\rangle$,
2. $\langle p-1, t, 2 s-1\rangle$,
3. $\langle p-1, t, 2 s+1\rangle$,
4. $\left\langle p-1,4 s-1,16 t^{2}+1\right\rangle$,
5. $\left\langle p-1,4 s+1,16 t^{2}+1\right\rangle$,
6. $\left\langle p-1, s, 4 t^{2}+1\right\rangle$,
7. $\langle p+1, t, s\rangle$,
8. $\langle p+1, t, 2 s-1\rangle$,
9. $\langle p+1, t, 2 s+1\rangle$,
10. $\left\langle p+1,4 s-1,16 t^{2}+1\right\rangle$,
11. $\left\langle p+1,4 s+1,16 t^{2}+1\right\rangle$,
12. $\left\langle p+1, s, 4 t^{2}+1\right\rangle$,
13. $\left\langle 2 p^{2}-1, t, s\right\rangle$,
14. $\left\langle 16 p^{2}-17, t, 8 s^{2}-3\right\rangle$,
15. $\left\langle 16 p^{2}-15, t, 8 s^{2}-1\right\rangle$,
16. $\left\langle 16 p^{2}-17, s, 8 t^{2}+3\right\rangle$,
17. $\left\langle 16 p^{2}-15, s, 8 t^{2}+1\right\rangle$,
18. $\left\langle 20 p^{2}-19,80 t^{2}+3,80 s^{2}-3\right\rangle$.

By this lemma we can see the following. The ideals numbered $4,5,6,10,11,12,16,17,18$, have no real points. The ideals $1,2,3,7,8,9$, yield the three points

$$
(1,0,0), \quad\left(1, \pm \frac{1}{2}, 0\right)
$$

and the ideals $13,14,15$, yield the five points

$$
\left(p_{1}, 0,0\right), \quad\left(p_{8}, \pm s_{1}, 0\right), \quad\left(p_{3}, \pm s_{2}, 0\right)
$$

in E_{1} (recall that we assumed $p \geq 0$), where

$$
\begin{aligned}
p_{8} & =\sqrt{17} / 4 \approx 1.03077640, \quad s_{1}=\sqrt{3 / 8} \approx 0.61237 \\
s_{2} & =1 / \sqrt{8} \approx 0.35355
\end{aligned}
$$

Lemma 2.5. The set defined by the ideal $\left\langle P_{1}, P_{2}, P_{3}, R_{3}\right\rangle$ over the real field is the union of the sets defined by the ideals
19. $\left\langle p-1,4 s^{2}-4 s+4 t^{2}+1\right\rangle$,
20. $\left\langle p-1,4 s^{2}+4 s+4 t^{2}+1\right\rangle$,
21. $\left\langle p+1,4 s^{2}-4 s+4 t^{2}+1\right\rangle$,
22. $\left\langle p+1,4 s^{2}+4 s+4 t^{2}+1\right\rangle$,
23. $\left\langle 4 p^{2}-3,4 s-1,16 t^{2}+1\right\rangle$,
24. $\left\langle 4 p^{2}-3,4 s+1,16 t^{2}+1\right\rangle$,
25. $\left\langle r_{1}(p), s, r_{2}(p, t)\right\rangle$,
26. $\left\langle r_{3}(p), t, r_{4}(p, s)\right\rangle$,
27. $\left\langle r_{5}(p), r_{6}(p, s), r_{7}(p, t)\right\rangle$,
where

$$
\begin{aligned}
r_{1}(p)= & 256 p^{6}-464 p^{4}+224 p^{2}-19, \\
r_{2}(p, t)= & 24 t^{2}+64 p^{4}-84 p^{2}+29 \\
r_{3}(p)= & 256 p^{6}-560 p^{4}+416 p^{2}-109, \\
r_{4}(p, s)= & 24 s^{2}-64 p^{4}+108 p^{2}-47, \\
r_{5}(p)= & 262144 p^{14}-1458176 p^{12}+3352128 p^{10} \\
& -4064896 p^{8}+2723312 p^{6}-934456 p^{4} \\
& +111981 p^{2}+7964, \\
r_{6}(p, s)= & 105137152 s^{2}+805737070592 p^{12} \\
& -3734052323328 p^{10}+6842337426624 p^{8} \\
& -6160590983296 p^{6}+2674420712784 p^{4} \\
& -400807788840 p^{2}-27034171281, \\
r_{7}(p, t)= & 105137152 t^{2}+1275266859008 p^{12} \\
& -6003856457728 p^{10}+11187800841024 p^{8} \\
& -10256897785728 p^{6}+4544374234288 p^{4} \\
& -701552747480 p^{2}-45094112399 .
\end{aligned}
$$

In this lemma, the cases $19,20,21,22$, yield the two points

$$
\left(1, \pm \frac{1}{2}, 0\right)
$$

in E_{2}, and the cases $23,24,25$, yield no real points. For the ideal 26 , by solving $r_{3}(p)=0$, we get a real positive solution $p=p_{5}$. The corresponding values of s are determined by the equation $r_{4}(p, s)=0$. We thus have the two points

$$
\left(p_{5}, \pm 0.2939504177,0\right)
$$

in E_{2}. For the last ideal, 27, by solving $r_{5}(p)=0$, we get real positive solutions $p=p_{2}$ and p_{9}. The corresponding values of (s, t) are determined by solving $r_{6}(p, s)=r_{7}(p, t)=0$. The result is

$$
\begin{aligned}
& \left(p_{2}, \pm 0.3834951026, \pm 0.08654627008\right) \\
& \left(p_{9}, \pm 0.5955418899, \pm 0.02095131175\right)
\end{aligned}
$$

Summarizing the argument above, the number of the swallowtail points belonging to Z_{3} where $p \geq 0$ is given as follows:

p	p_{2}	$*$	p_{5}	$*$	$p_{6}=1$	$*$	p_{8}	$*$	p_{9}	$*$
Z_{3}	0	8	4	4	0	4	4	8	0	0

2.4 Numbers of Swallowtail Singularities

As we mentioned earlier, we restrict our consideration to the range of p in the interval $[0, \infty)$. Combining the
considerations in the previous two subsections, the exceptional values of p for which the point (p, s, t) in Z is not a swallowtail are

$$
\begin{equation*}
p_{1}, p_{2}, p_{3}, p_{5}, p_{6}=1, p_{8}, p_{9} \tag{2-2}
\end{equation*}
$$

We remark that the values p_{4} and p_{7} that appeared in the course of study of the set Z turn out not to be exceptional and that the exceptional values of p are classified into the three cases:

$$
\begin{aligned}
& q^{\prime}=0 \text { and } \Re(T) \neq 0: p_{1}, p_{3}, p_{6} \text { at }(0,0), p_{8} \\
& q^{\prime} \neq 0 \text { and } \Re(T)=0: p_{2}, p_{5}, p_{9} \\
& q^{\prime}=0 \text { and } \Re(T)=0: p_{6} \text { at }\left(\pm \frac{1}{2}, 0\right) .
\end{aligned}
$$

Now we sum up the above data and get the number N of swallowtail singularities:

p	0	$*$	p_{1}	$*$	p_{2}	$*$	p_{3}	$*$
N	2	2	0	0	0	8	8	12
p	p_{5}	$*$	$p_{6}=1$	$*$	p_{8}	$*$	p_{9}	$*$
N	6	8	0	6	6	10	2	2

In Figures $1-3$, the swallowtail singularities are represented by circles; other symbols represent worse singularities, as explained in the next section.

Remark 2.6. The number N counts the swallowtail singularities in the plane $x=\frac{1}{2}+s+i t$, not those on the image surface; recall that the hyperbolic Schwarz map $H S$ is multivalued.

3. CONFLUENCE OF SWALLOWTAIL SINGULARITIES

In the previous section, we studied the variation in the number of swallowtail singularities as p runs from 0 to ∞. On the other hand, the confluence of swallowtail singularities has been studied by Arnold [Arnold 76]. Figure 6 is taken from [Langevin et al. 95, Figure 3], which shows five types $(1, \ldots, 5)$ of confluence (bifurcation) of swallowtail singularities. The types 1,2 , and 5 are called the pair of cuspidal lips, the pair of cuspidal beaks, and type A_{4}, respectively; see [Saji et al. 07].

From the study in the last section, we observe that types 2 and 5 actually occur in our move, and that another type of confluence also occurs. In Figures 1-3, they are indicated respectively by

$$
\text { - (type } 2), \quad \text { (type } 5), \quad \odot .
$$

In this section, the (local) image surface is denoted by \mathcal{S}, and the (local) image of the curve C under the hyperbolic Schwarz map $H S$ is denoted by $\mathcal{C}(\subset \mathcal{S})$.

3.1 - Around $p=p_{1}, p=p_{3}, p=p_{6}$, and $p=p_{8}$

When $p<p_{1}$, there is a pair of swallowtail singularities on \mathcal{S} carried by a pair of cuspidal components of \mathcal{C}. As p tends to p_{1}, two singularities come together and kiss, and when $p_{1}<p$, then \mathcal{C} becomes a pair of nonsingular curves. We observe that this move is of type 2 in Figure 6. See also Figure 7, which represents the image surface \mathcal{S} under $H S$ of the square $\{(s, t):-0.5<s<0.5,-0.5<$ $t<0.5\}$. Something similar happens when $p \searrow p_{3}, p \searrow$ p_{8}, and $p \nearrow p_{6}$ around $(s, t)=(0,0)$.

$3.2 \forall$ Around $p=p_{2}$ and $p=p_{9}$

When $p \leq p_{2}$, there are no swallowtail singularities. However, when $p>p_{2}$, there are four pairs of swallowtail singularities, eight in all. The move around p_{2} is observed to be of type 5 in Figure 6. Such a pair is drawn in Figure 8 (left) when $p=0.945$. The lower picture is the curve \mathcal{C}, carrying two swallowtails, which reside at the two cusps of this curve. The upper picture is a tubular neighborhood in the surface \mathcal{S} of the curve \mathcal{C}. Something similar happens when $p \searrow p_{9}$.

$3.3 \odot$ Around $p=p_{5}$

As $p \nearrow p_{5}$, three swallowtail singularities shrink to one point that is not a swallowtail singularity, and after passing p_{5}, one swallowtail singularity reappears immediately. It is a move of type A_{5}; we refer to [Saji et al. 07] for its characterization. Note that this move is not among Arnold's five moves in Figure 6. Figure 8 (right) shows the curve \mathcal{C} with three cusps and the surface \mathcal{S} around this curve.

3.4 Around $p=p_{6}$

When $p=p_{6}=1$, there are no swallowtails. In Figure 2 , \square denotes the singularities $x=0$ and $x=1$ of the differential equation. If p moves away from 1 , then three swallowtail singularities appear in both directions. In Figure 9, the left picture is the image of a small square situated to the right of the point $(s, t)=(-0.5,0)$ (singular point of the differential equation) including three swallowtails when $p=0.975$. They shrink to one point, the image of the point $x=0$, as p tends to 1 .

The right picture is the image of a small square situated to the left of the point $(-0.5,0)$ including three swallowtails when $p=1.028$. Though this move resembles the move of type 3 in Figure 6, it is different in that it occurs at the singular points of the differential equation, where the map is multivalued.

FIGURE 6. Confluence of swallowtail singularities from [Langevin et al. 95, Figure 3].

FIGURE 7. The images under $H S(1)$: the images of the square $(-0.5,0.5) \times(-0.5,0.5)$ and the curve \mathcal{C} in it.

3.5 Drawing Figures

We give here some additional information about the figures. Figures $1-3$ show the curve C. Each first row gives a global view, and the second row for $p \geq 0.78$ gives a
finer view of a part of C. The marks $\bullet, ~ \odot$, , and \square are drawn in a somewhat emphasized manner.

In the third row (second row when $p \leq p_{1}$), the image curves \mathcal{C} are given; the range of the drawing is indicated by a dotted rectangle in the figures of the first rows.

FIGURE 8. The images under $H S$ (2).

FIGURE 9. The images under $H S$ (3).

When $p<1$, the map $H S$ defined in the upper half-plane is continued analytically through the interval $0<x<1$, and when $p>1$, through the negative real axis $x<0$.

Figure 7 shows the images \mathcal{S} of the square $\{(s, t): s \in$ $(-0.5,0.5), t \in(-0.5,0.5)\}$, where the image curves \mathcal{C} are drawn in greater detail than in Figure 1.

Figures 8 and 9 depict \mathcal{S} and \mathcal{C} for distinct values of p.

ACKNOWLEDGMENTS

The authors wish to express their thanks to the referees, who gave several suggestions that improved the presentation of this paper.

REFERENCES

[Arnold 76] V. I. Arnol'd. "Wave Front Evolution and Equivariant Morse Lemma." Comm. Pure Appl. Math. 29 (1976), 557-582.
[Gálvez et al. 00] J. A. Gálvez, A. Martínez, and F. Milán. "Flat Surfaces in Hyperbolic 3-Space." Math. Annalen 316 (2000), 419-435.
[Greuel and Pfister 02] G.-H. Greuel and G. Pfister. A Singular Introduction to Commutative Algebra. Berlin: Springer, 2002.
[Iwasaki et al. 91] K. Iwasaki, H. Kimura, S. Shimomura, and M. Yoshida. From Gauss to Painlevé: A Modern Theory of Special Functions. Wiesbaden: Vieweg, 1991.
[Jacobson 75] N. Jacobson. Lectures in Abstract Algebra 3: Theory of Fields and Galois Theory, Graduate Texts in Math. 32. New York: Springer, 1975.
[Kokubu et al. 03] M. Kokubu, M. Umehara, and K. Yamada. "An Elementary Proof of Small's Formula for Null Curves in $\operatorname{PSL}(2, \mathbb{C})$ and an Analogue for Legendreian Curves in PSL(2, ©)." Osaka J. Math. 40 (2003), 697-715.
[Kokubu et al. 05] M. Kokubu, W. Rossman, K. Saji, M. Umehara, and K. Yamada. "Singularities of Flat Fronts in Hyperbolic Space." Pacific J. Math. 221 (2005), 303-351.
[Langevin et al. 95] R. Langevin, G. Levitt, and H. Rosenberg. "Classes d'homotopie de surfaces avec rebroussements et queues d'aronde dans \mathbb{R}^{3}." Can. J. Math. 47 (1995), 544-572.
[Saji et al. 07] K. Saji, T. Sasaki, and M. Yoshida. "Hyperbolic Schwarz Map of the Confluent Hypergeometric Differential Equation." Preprint, 2007.
[Sasaki et al. 08a] T. Sasaki, K. Yamada, and M. Yoshida. "Hyperbolic Schwarz Map for the Hypergeometric Equation." To appear in Experiment. Math., 2008
[Sasaki et al. 08b] T. Sasaki K. Yamada, and M. Yoshida. "Derived Schwarz Map of the Hypergeometric Differential Equation and a Parallel Family of Flat Fronts." To appear in Intern. J. Math., 2008.
[Yoshida 97] M. Yoshida. Hypergeometric Functions, My Love. Wiesbaden, Vieweg, 1997.

Masayuki Noro, Department of Mathematics, Kobe University, Kobe 657-8501, Japan (noro@math.kobe-u.ac.jp)
Takeshi Sasaki, Department of Mathematics, Kobe University, Kobe 657-8501, Japan (sasaki@math.kobe-u.ac.jp)
Kotaro Yamada, Faculty of Mathematics, Kyushu University, Fukuoka 812-8581, Japan (kotaro@math.kyushu-u.ac.jp)
Masaaki Yoshida, Faculty of Mathematics, Kyushu University, Fukuoka 810-8560, Japan (myoshida@math.kyushu-u.ac.jp)

Received February 20, 2007; accepted February 14, 2008.

