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The papers [Gálvez et al. 00, Kokubu et al. 03, Kokubu et

al. 05] gave a method of constructing flat surfaces in three-
dimensional hyperbolic space. Generically, such surfaces have
singularities, since any closed nonsingular flat surface is isomet-
ric to a horosphere or a hyperbolic cylinder. In [Sasaki et al.

08a], we defined a map, called the hyperbolic Schwarz map,
from one-dimensional projective space to three-dimensional hy-
perbolic space using solutions of the Gauss hypergeometric dif-
ferential equation. Its image is a flat front and its generic singu-
larities are cuspidal edges and swallowtail singularities. In this
paper we study the curves consisting of cuspidal edges and the
creation and elimination of swallowtail singularities depending
on the parameters of the hypergeometric equation.

1. INTRODUCTION

We consider the Gauss hypergeometric differential equa-
tion

x(1− x)u′′ + {c− (a+ b+ 1)x}u′ − abu = 0,

where (a, b, c) are complex parameters. By a change of
the unknown u through multiplication by a nonzero func-
tion, we transform the equation into the SL form

u′′ − q(x)u = 0,

where

q = −1
4

(
1− μ2

0

x2
+

1− μ2
1

(1− x)2 +
1 + μ2

∞ − μ2
0 − μ2

1

x(1 − x)
)

= −1
4

(1 − μ2∞)x2 + (μ2∞ + μ2
0 − μ2

1 − 1)x+ 1− μ2
0

x2(1− x)2 ,

and

μ0 = 1− c, μ1 = c− a− b, μ∞ = b− a.
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For two linearly independent solutions u0 and u1 to this
equation, we define the (multivalued) hyperbolic Schwarz
map

HS : X = C− {0, 1} � x �−→ U(x) tŪ(x) ∈ H
3, (HS)

where

U =
(
u0 u′0
u1 u′1

)
.

The image lies in the three-dimensional hyperbolic space
H3 identified with the space of positive 2× 2 Hermitian
matrices modulo diagonal ones.

We remark that the (multivalued) Schwarz map

S : X � x �−→ u0(x) : u1(x) ∈ P
1 (S)

and the (multivalued)derived Schwarz map

DS : X � x �−→ u′0(x) : u′1(x) ∈ P
1 (DS)

are regarded as maps with images in the ideal bound-
ary of H3, which is identified with the complex projec-
tive line. The maps S and DS are connected by a one-
parameter family of flat fronts in H3, and the map HS

is one member of this family. We refer to [Gálvez et al.
00, Kokubu et al. 03, Sasaki et al. 08b] for these maps.

The image surface of X under HS is one of flat fronts
studied in [Kokubu et al. 03]. The points 0 and 1 are
singularities of the differential equation, and they may
define ends generally. On the other hand, it is well known
that generic singularities of fronts are cuspidal edges and
swallowtails. In [Sasaki et al. 08a], we drew pictures of
surfaces when the monodromy group of the equation is
finite and when it is an elliptic modular group, paying
attention especially to the curves of cuspidal edges and
to the swallowtail singularities.

In this paper, we study the motion of such singulari-
ties depending on the parameters a, b, and c. Actually,
we treat the case in which the parameters take special
values: a = 1

2 , b = 1
2 , and c = 1 − p, where p is a real

parameter. The reason we treat this case is that the
hypergeometric differential equation admits a rich sym-
metry, so that computational arguments work fairly well.
Moreover, when p = 0, we were able to draw nice pictures
as in [Sasaki et al. 08a].

When p takes a general value, the number of points in
the plane X where the map HS has swallowtail singulari-
ties is counted, and when p takes some special values, we
encounter confluences of swallowtail singularities. Refer-
ring to the general theory of such confluences given in
[Arnold 76, Langevin et al. 95], we study what happens

in our case and show that two of the five types of conflu-
ences in [Langevin et al. 95] really occur, and one more
type of confluence appears. From a computational point
of view, we relied on the primary-decomposition algo-
rithm of related ideals to obtain the special values of p
and on computing the Sturm sequence associated with
polynomials in order to count the number of swallowtail
singularities.

2. SINGULARITIES OF THE IMAGE SURFACE

Relative to the differential equation in the SL form above,
the conditions on the coefficient q so that the surface has
cuspidal edges and swallowtails are given in the following
lemma [Sasaki et al. 08a].

Lemma 2.1.

1. A point p ∈ X is a singular point of the hyperbolic
Schwarz map HS if and only if |q(p)| = 1.

2. A singular point x ∈ X of HS is equivalent to the
cuspidal edge if and only if

q′(x) �= 0 and q3(x)q̄′(x)− q′(x) �= 0.

3. A singular point x ∈ X of HS is equivalent to the
swallowtail if and only if

q′(x) �= 0, q3(x)q̄′(x) − q′(x) = 0,

and

�
{

1
q

((
q′(x)
q(x)

)′
− 1

2

(
q′(x)
q(x)

)2
)}
�= 0.

We apply the lemma to the hypergeometric equation.
The set {|q| = 1} is given as the curve

C = {x : P1(x, x̄) = 0},

where
P1(x, x̄) = |Q|2 − 16|x2(1− x)2|2

and

Q(x) = (1− μ2
∞)x2 + (μ2

∞ + μ2
0 − μ2

1 − 1)x+ 1− μ2
0.

The topological type of the curve C depends heavily on
the number of real roots of the equation P1 = 0. We next
define R by

q′ = −Q
′x(1− x) − 2Q(1− 2x)

4x3(1− x)3 =
−R(x)

4x3(1− x)3 ,



Noro et al.: Confluence of Swallowtail Singularities of the Hyperbolic Schwarz Map 193

S by

q3(x)q̄′(x)− q′(x) =
S(x, x̄)

44x6(1− x)6x̄3(1− x̄)3
,

and T by

1
q

((
q′(x)
q(x)

)′
− 1

2

(
q′(x)
q(x)

)2
)

=
T (x, x̄)
Q(x)Q(x̄)

.

We thus have three polynomials in x, x̄, a, b, and c:

R(x) = x(1 − x)Q′ − 2(1− 2x)Q,

S(x, x̄) = Q3(x)R(x̄) + 64x3(1− x)3x̄3(1− x̄)3R(x),

T (x, x̄) = x(1 − x)Q(x̄)(−16Q2 − 8(1− 2x)QQ′

+ 6x(1− x)Q′2 − 4x(1− x)QQ′′).

We set

P2 = �(S), P3 = �(S),

and

R1 = �(R), R2 = �(R), R3 = �(T ).

Then the singularity is a cuspidal edge if and only if

P1 = 0, {P2 �= 0 or P3 �= 0}, {R1 �= 0 or R2 �= 0}
and is a swallowtail if and only if

P1 = 0, P2 = 0, P3 = 0,

{R1 �= 0 or R2 �= 0}, R3 �= 0.

2.1 Shape of the Curve C

We restrict our attention to the case (a, b, c) =
(

1
2 ,

1
2 , c
)
,

and set x =
(

1
2 + s

)
+ it and c = 1 − p, where p is

real. The polynomials Pi and Ri are polynomials in p,
s, and t. They are symmetric relative to the reflections
s ↔ −s, t ↔ −t, and p ↔ −p. Hence, we pay attention
only to the case p ≥ 0 in the following. Since x = 0, 1
are singularities of the coefficient q, the points (s, t) =(± 1

2 , 0
)

are out of consideration.
Since Q = 2c− c2−x+x2, P1 is a polynomial of total

degree 8 given as follows:

P1 =
1
2

+
5
2
s2 − 2p2s2 + 16t2s4 − 16t4s2 − 64t2s6

− 96t4s4 − 64t6s2 + 6t2s2 + 2t2p2 − 3
2
p2 − 16t6

− 16t8 − 5t4 − 5
2
t2 − 5s4 + 16s6 − 16s8 + p4.

The curve {(s, t) : P1(p, s, t) = 0} relative to the real
coordinates (s, t) is denoted also by C. It depends on the
value p and changes its shape as in Figures 1–3, where
the value of the constants pi will be given in the next
subsection.

2.2 Swallowtail Points

We study the set Z := {(p, s, t); P1 = P2 = P3 = 0}
using the primary-decomposition algorithm (refer, say,
to [Greuel and Pfister 02]) that finds a set of gener-
ators of every minimal associated prime of the ideal
I := 〈P1, P2, P3〉 in the ring Q[p, s, t]. The result is the
following.

Lemma 2.2. The set Z is the union of the sets defined by
the following ideals:

I1 := 〈p− 1, (2s− 1)2 + 4t2〉,
I2 := 〈p− 1, (2s+ 1)2 + 4t2〉,
I3 := 〈p+ 1, (2s− 1)2 + 4t2〉,
I4 := 〈p+ 1, (2s+ 1)2 + 4t2〉,
I5 := 〈t, 4s4 − s2 − p2 + 1〉,
I6 := 〈s, 8t4 + 6t2 + 2p2 − 1〉,
I7 := 〈H0(p, t), H1(p, s, t), H2(p, s, t), H3(p, s, t)〉,

where H0(p, t), H1(p, s, t), H2(p, s, t), are defined in Ta-
ble 1.

Although the result was obtained by a “black box”
algorithm, it can be verified if we are allowed to use the
method of finding a Gröbner basis. Let G be a Gröbner
basis of an ideal J with respect to a term order. We de-
note by NFG(f) the remainder on dividing a polynomial
f by G . Then f ∈ J if and only if NFG(f) = 0; in this
way, we can verify an ideal inclusion.

Lemma 2.2 is proved as follows. We first see that
I ⊂ Ii, which implies that the locus V (Ii) defined by
the ideal Ii is a subset of Z. The converse inclusion
Z ⊂ ⋃7

i=1 V (Ii) follows from
⋃7

i=1 V (Ii) = V (I1I2 · · · I7)
and I1I2 · · · I7 ⊂

√
I. In fact, I1I2 · · · I7 is generated by

P := {g1g2 · · · g7 : gi ∈ Ii(i = 1, . . . , 7)}, and we can
verify g2 ∈ I for each g ∈ P using a Gröbner basis of I.

Lemma 2.2 implies that the set Z consists of

Z1 := {(p, s, 0) : 4s4 − s2 − p2 + 1 = 0},
Z2 := {(p, 0, t) : 8t4 + 6t2 + 2p2 − 1 = 0},
Z3 := {(p, s, t) : H0(p, t) = H1(p, s, t) = H2(p, s, t)

= H3(p, s, t) = 0}.
Note that the set defined by the ideal Ii, 1 ≤ i ≤ 4, in
Lemma 2.2 is included in Z1. Figure 4 shows the set Z1

projected to the space (s, p). The explicit representation
is

s2 =
(
1±

√
16p2 − 15

)
/8, p = ±

√
4s4 − s2 + 1.

The right-hand figure enlarges the upper part of the left-
hand figure.
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p = 0 p = 0.65 p = p1 ≈ 0.7071067
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FIGURE 1. The curve C and the curve C (1).
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p = 0.967 p = p3 ≈ 0.9682458 p = 0.97
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FIGURE 2. The curve C and the curve C (2).
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p = 1.028 p = p8 ≈ 1.0307764 p = 1.0315
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FIGURE 3. The curve C and the curve C (3).
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H0 = (262144p8 − 524288p6 + 262144p4)t8 + (524288p10 − 1572864p8 + 1687552p6 − 735232p4 + 79872p2 + 16384)t6 + (393216p12 − 1654784p10

+ 2817024p8 − 2459136p6 + 1142464p4 − 260480p2 + 21700)t4 + (131072p14 − 737280p12 + 1755392p10 − 2289728p8 + 1761920p6 − 794968p4

+ 192308p2 − 18715)t2 + 16384p16 − 118784p14 + 376000p12 − 679104p10 + 766068p8 − 553296p6 + 250232p4 − 64912p2 + 7412,

H1 = (−8192000p18 + 71680000p16 − 267673600p14 + 565094400p12 − 749209600p10 + 651990400p8 − 375410912p6 + 138995680p4 − 30234388p2

+ 2960012)s
2

+ (−83886080p
16

+ 461373440p
14 − 1033895936p

12
+ 1196949504p

10 − 740818944p
8

+ 222822400p
6 − 22544384p

4
)t

6

+ (−125829120p
18

+ 786432000p
16 − 2102657024p

14
+ 3123380224p

12 − 2789900288p
10

+ 1502928896p
8 − 452747264p

6
+ 55562240p

4

+ 4239360p2 − 1409024)t4 + (−62914560p20 + 458424320p18 − 1490173952p16 + 2838306816p14 − 3490809856p12 + 2877347840p10

− 1598347904p8 + 588634656p6 − 138705184p4 + 19590612p2 − 1352780)t2 − 10485760p22 + 94371840p20 − 391053312p18 + 980131840p16

− 1640966144p14 + 1914822656p12 − 1580043904p10 + 917850432p8 − 366915360p6 + 96240468p4 − 15040195p2 + 1087441,

H2 = (−172748519424t2 + 342090457088000p16 − 2647506597888000p14 + 8502392953446400p12 − 15007782165760000p10 + 16125961477836800p8

− 10936659362160000p6 + 4626862256233568p4 − 1127440491359040p2 + 122038029361684)s2 + (3503006280581120p14

− 15725697150484480p12 + 27286047559778304p10 − 22422671555297280p8 + 8286510388346880p6 − 927195522924544p4)t6

+ (5254509420871680p16 − 27529427791380480p14 + 59988842462314496p12 − 69830531227779072p10 + 45967246621245440p8

− 16318586888937472p6 + 2406740047872000p4 + 118811578937344p2 − 58122468702208)t4 + (2627254710435840p18 − 16487753934110720p16

+ 45567759200370688p14 − 72489552047398912p12 + 72546907718641664p10 − 46869348690018304p8 + 19388801939481216p6

− 4981168098598560p
4

+ 752756242889920p
2 − 55743159881812)t

2
+ 437875785072640p

20 − 3498277391564800p
18

+ 12794850594193408p
16

− 28001940223336448p
14

+ 40236544719603712p
12 − 39314960801359872p

10
+ 26264510377602688p

8 − 11791213573216192p
6

+ 3403925190427360p4 − 576100608409972p2 + 44796791787623,

H3 = −43273504115712s4 + (−174591366701056000p16 + 1354597407135744000p14 − 4361070217826508800p12 + 7714396815022745600p10

− 8303627443711283200p8 + 5639582815676545920p6 − 2388886969950578656p4 + 582795932673655872p2 − 63153571220692772)s2

+ (−1787815595018813440p14 + 8060676765258874880p12 − 14035315945780543488p10 + 11564439040729546752p8 − 4282247261844406272p6

+ 480262996655341568p4)t6 + (−2681723392528220160p16 + 14102307692284477440p14 − 30819600746391273472p12

+ 35956859092128694272p10 − 23711874589423796224p8 + 8431178804896194560p6 − 1246058944783564800p4 − 60931259457007616p2

+ 30059710795074560)t4 + (−1340861696264110080p18 + 8440901125082644480p16 − 23384966557443178496p14 + 37273429941273878528p12

− 37362998720665520128p10 + 24170842385410605056p8 − 10009973619071190144p6 + 2574206274932313888p4 − 389407674475545536p2

+ 28850050377704036)t2 − 223476949377351680p20 + 1789753918478090240p18 − 6558969382275055616p16 + 14379092033155440640p14

− 20693107121308362752p
12

+ 20246624022842148864p
10 − 13542078892737183872p

8
+ 6086106587227785920p

6 − 1758722499457332320p
4

+ 297968123692665860p
2 − 23197985921481043

TABLE 1. The polynomials H0(p, t), H1(p, s, t), H2(p, s, t), from Lemma 2.2.
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FIGURE 4. The set Z1 projected to the space (s, p).
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As we shall see in the next subsection, the circles in
the right-hand figure denote those points that are worse
than a swallowtail singularity: the p-coordinate of the
top one is 1, that of middle ones is p5, and that of the
bottom ones is p3, where

p3 :=
√

15/4 ≈ 0.9682458365,

p5 ≈ 0.9713175204.

Thus, for any value of p ∈ (p3, 1), p �= p5, we have four
swallowtail points, and for any value p > 1, two swallow-
tail points, both on the axis t = 0.

For the set Z2 to have real points, it is necessary and
sufficient that −p1 ≤ p ≤ p1, where

p1 := 1/
√

2 ≈ 0.7071067810.

The explicit relation is

t2 =
(
−3 +

√
17− 16p2

)
/8, p = ±

√
1/2− 3t2 − 4t4.

For each value p ∈ [0, p1) we have two swallowtail points
lying on the line {s = 0}. In the case p = p1, the point
(s, t) = (0, 0) is not a swallowtail.

Summarizing the argument above, the number of swal-
lowtail points belonging to Z1 ∪ Z2 is given as follows:

p 0 ∗ p1 ∗ p3 ∗ p5 ∗ 1 ∗
Z1 0 0 0 0 0 4 2 4 0 2
Z2 2 2 0 0 0 0 0 0 0 0

Here ∗ stands for any value between the values of the two
sides.

To study the set Z3, we first deal with the polynomials
H2 and H3. We can write

H1(p, s, t) = c1(p)s2 + c0(p, t),

where

c1 = −8192000p18 + 71680000p16− 267673600p14

+ 565094400p12− 749209600p10 + 651990400p8

− 375410912p6 + 138995680p4− 30234388p2

+ 2960012.

Then we can see first of all that c1H2 and (c1)2H3 belong
to the ideal 〈H0, H1〉, which is verified by showing that
c1H2 mod H0 and (c1)2H3 mod H0 are divisible by H1.

Hence, for each value for which c1(p) �= 0, the set Z3

is the same as the set {H0 = H1 = 0}. Moreover, we
can see that c20 belongs to the ideal 〈c1, H0〉 because c1
divides the remainder c20 mod H0 with respect to t.

Hence, the set

{(p, s, t) : p ≥ 0, c1 = H0 = H1 = 0}

consists of lines in (p, s, t) space defined by c1(p) =
H0(p, t) = 0, which are given as

(p, t) = (p4,±0.011811323560992964937),

(p7,±0.000192205787502698965),

(p10,±0.022606558445778182272),

where

p4 ≈ 0.97127920368420120746,

p7 ≈ 1.00370488167353310415,

p10 ≈ 1.03276891081183183482.

The set

{(p, s, t) : p ≥ 0, c1 = H0 = H1 = H2 = H3 = 0}

consists of the points

(p, s, t) = (p4,±0.4448235948,±0.01181132356),

(p4,±0.2944179698,±0.01181132356),

(p7,±0.5074847467,±0.00019220578).

Taking care of these exceptions, it is enough to study the
set {(p, s, t) : H0 = H1 = 0}.

We next deal with the curve H0(t, p) = 0 in the tp
plane, where p ≥ 0. Look at Figure 5. In order to know
the precise shape of the curve, we use the Sturm sequence
{f0, f1, . . . , fl}, which for a polynomial f(t), is defined by
the following recurrence:

f0 = f, f1 =
df

dt
,

fi = −(fi−2 mod fi−1), i = 2, . . . , l, (2–1)

fl−1 mod fl = 0,

where (fi mod fi−1) is the polynomial remainder. We de-
fine σ(a) to be the number of sign changes in the sequence
{f0(a), f1(a), . . . , fl(a)}, where zeros are not counted.

Theorem 2.3. (Sturm) [Jacobson 75]. For a, b ∈ R such
that a < b and f(a), f(b) �= 0, the number of roots of
f(t) in the interval (a, b) is σ(a) − σ(b). In particular,
the number of all real roots of f(x) is determined by the
signs of the leading coefficients and the degrees of the fi.

Let � = {f0(t), . . . , fl(t)} (fi ∈ Q(p)[t]) be a sequence
of polynomials obtained by applying the recurrence (2–1)
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FIGURE 5. The curve H0(t, p) = 0.

to f0 = H0 with respect to t. Let M ⊂ R be the zeros
of the numerators and denominators of the leading coef-
ficients of the fi, and so R \M is the disjoint union of
open intervals Ik. Then the sequence � gives the correct
Sturm sequence at each p ∈ R \ M , and Theorem 2.3
ensures that the number of roots of H0 is constant for all
p ∈ Ik. It is clear that each branch t = t(p) such that
H0(p, t(p)) = 0 over Ik is a continuous function of p. If
p ∈M , then p is a root of an irreducible polynomial over
Q and we can compute the Sturm sequence over an al-
gebraic number field Q(p). The Sturm sequence at each
p tells the number of roots t(p) within any interval, and
we can draw the curve with desired precision.

The set M contains the zeros of the discriminant of
the equation H0 = 0, and we get the coordinates (p, t) of
several extreme points as in the figure:

X = (p10, 0.02260655844), A = (p9, 0.02095131175),

B = (p8, 0), C = (p6, 0), D = (p5, 0),

E = (p4, 0.01181132356), F = (p2, 0.08654627008),

where

p2 ≈ 0.94237741898935061,

p6 = 1,

p8 ≈ 1.03077640441513745,

p9 ≈ 1.03230371163023017.

(Since the point X is very near to A, the point
(p10,−0.0226065584) instead is drawn in the figure.)

For each point (p, t) on the curveH0(p, t) = 0, we solve
the equation H1(p, s, t) = 0. Then, since H1(p, s, t) =
c1(p)s2 + c0(p, t), the number of real solutions depends
on the signs of c1(p) and c0(p, t). To determine the sign
of c0(p, t)/c1(p), we enlarge the set M by adjoining the
values of p satisfying c0 = H0 = 0 for some t, and the
zeros of c1, and then recompute Ik. Here note that the
set {c0 = H0 = 0} is discrete because the resultant of c0
and H0 with respect to the variable t turns out to be a
nontrivial polynomial of p.

Let t = t(p) be the continuous function over Ik dis-
cussed above. Then c0(p, t(p))/c1(p) is also continuous,
and its sign is constant over Ik because the numerator
does not vanish over Ik. Thus we can determine the num-
ber of solutions by evaluating c0(p, t(p))/c1(p) at a point
p ∈ Ik. For p ∈ M , we have to deal with an algebraic
number field again; we omit the details.

2.3 Nonswallowtail Points

If for some p, the point (s, t) is a swallowtail, then
(p, s, t) ∈ Z. However, not all points in Z are swallow-
tails. We need to check the condition (R1 �= 0 or R2 �= 0)
and the condition R3 �= 0, namely, the condition q′ �= 0
and the condition �(T ) �= 0, respectively. This check is
done by studying the sets

E1 := {(p, s, t) : p ≥ 0, P1 = P2 = P3 = R1 = R2 = 0}

and

E2 := {(p, s, t) : p ≥ 0, P1 = P2 = P3 = R3 = 0},

by relying on the primary decomposition of the corre-
sponding ideals 〈P1, P2, P3, R1, R2〉 and 〈P1, P2, P3, R3〉.

Lemma 2.4. The set defined by the ideal
〈P1, P2, P3, R1, R2〉 over the real field is the union
of the sets defined by the ideals

1. 〈p− 1, t, s〉,
2. 〈p− 1, t, 2s− 1〉,
3. 〈p− 1, t, 2s+ 1〉,
4. 〈p− 1, 4s− 1, 16t2 + 1〉,
5. 〈p− 1, 4s+ 1, 16t2 + 1〉,
6. 〈p− 1, s, 4t2 + 1〉,
7. 〈p+ 1, t, s〉,
8. 〈p+ 1, t, 2s− 1〉,
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9. 〈p+ 1, t, 2s+ 1〉,
10. 〈p+ 1, 4s− 1, 16t2 + 1〉,
11. 〈p+ 1, 4s+ 1, 16t2 + 1〉,
12. 〈p+ 1, s, 4t2 + 1〉,
13. 〈2p2 − 1, t, s〉,
14. 〈16p2 − 17, t, 8s2 − 3〉,
15. 〈16p2 − 15, t, 8s2 − 1〉,
16. 〈16p2 − 17, s, 8t2 + 3〉,
17. 〈16p2 − 15, s, 8t2 + 1〉,
18. 〈20p2 − 19, 80t2 + 3, 80s2 − 3〉.

By this lemma we can see the following. The ideals
numbered 4, 5, 6, 10, 11, 12, 16, 17, 18, have no real points.
The ideals 1, 2, 3, 7, 8, 9, yield the three points

(1, 0, 0),
(

1,±1
2
, 0
)
,

and the ideals 13, 14, 15, yield the five points

(p1, 0, 0), (p8,±s1, 0), (p3,±s2, 0),

in E1(recall that we assumed p ≥ 0), where

p8 =
√

17/4 ≈ 1.03077640, s1 =
√

3/8 ≈ 0.61237,

s2 = 1/
√

8 ≈ 0.35355.

Lemma 2.5. The set defined by the ideal 〈P1, P2, P3, R3〉
over the real field is the union of the sets defined by the
ideals

19. 〈p− 1, 4s2 − 4s+ 4t2 + 1〉,
20. 〈p− 1, 4s2 + 4s+ 4t2 + 1〉,
21. 〈p+ 1, 4s2 − 4s+ 4t2 + 1〉,
22. 〈p+ 1, 4s2 + 4s+ 4t2 + 1〉,
23. 〈4p2 − 3, 4s− 1, 16t2 + 1〉,
24. 〈4p2 − 3, 4s+ 1, 16t2 + 1〉,
25. 〈r1(p), s, r2(p, t)〉,
26. 〈r3(p), t, r4(p, s)〉,
27. 〈r5(p), r6(p, s), r7(p, t)〉,

where

r1(p) = 256p6 − 464p4 + 224p2 − 19,

r2(p, t) = 24t2 + 64p4 − 84p2 + 29,

r3(p) = 256p6 − 560p4 + 416p2 − 109,

r4(p, s) = 24s2 − 64p4 + 108p2 − 47,

r5(p) = 262144p14 − 1458176p12 + 3352128p10

− 4064896p8 + 2723312p6− 934456p4

+ 111981p2 + 7964,

r6(p, s) = 105137152s2 + 805737070592p12

− 3734052323328p10 + 6842337426624p8

− 6160590983296p6 + 2674420712784p4

− 400807788840p2− 27034171281,

r7(p, t) = 105137152t2 + 1275266859008p12

− 6003856457728p10 + 11187800841024p8

− 10256897785728p6 + 4544374234288p4

− 701552747480p2− 45094112399.

In this lemma, the cases 19, 20, 21, 22, yield the two
points (

1,±1
2
, 0
)

in E2, and the cases 23, 24, 25, yield no real points. For
the ideal 26, by solving r3(p) = 0, we get a real positive
solution p = p5. The corresponding values of s are de-
termined by the equation r4(p, s) = 0. We thus have the
two points

(p5,±0.2939504177, 0)

in E2. For the last ideal, 27, by solving r5(p) = 0,
we get real positive solutions p = p2 and p9. The
corresponding values of (s, t) are determined by solving
r6(p, s) = r7(p, t) = 0. The result is

(p2,±0.3834951026,±0.08654627008),

(p9,±0.5955418899,±0.02095131175).

Summarizing the argument above, the number of the
swallowtail points belonging to Z3 where p ≥ 0 is given
as follows:

p p2 ∗ p5 ∗ p6 = 1 ∗ p8 ∗ p9 ∗
Z3 0 8 4 4 0 4 4 8 0 0

2.4 Numbers of Swallowtail Singularities

As we mentioned earlier, we restrict our consideration
to the range of p in the interval [0,∞). Combining the
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considerations in the previous two subsections, the ex-
ceptional values of p for which the point (p, s, t) in Z is
not a swallowtail are

p1, p2, p3, p5, p6 = 1, p8, p9. (2–2)

We remark that the values p4 and p7 that appeared in the
course of study of the set Z turn out not to be exceptional
and that the exceptional values of p are classified into the
three cases:

q′ = 0 and �(T ) �= 0 : p1, p3, p6 at (0, 0), p8,

q′ �= 0 and �(T ) = 0 : p2, p5, p9,

q′ = 0 and �(T ) = 0 : p6 at
(
±1

2
, 0
)
.

Now we sum up the above data and get the number N
of swallowtail singularities:

p 0 ∗ p1 ∗ p2 ∗ p3 ∗
N 2 2 0 0 0 8 8 12
p p5 ∗ p6 = 1 ∗ p8 ∗ p9 ∗
N 6 8 0 6 6 10 2 2

In Figures 1–3, the swallowtail singularities are rep-
resented by circles; other symbols represent worse singu-
larities, as explained in the next section.

Remark 2.6. The number N counts the swallowtail sin-
gularities in the plane x = 1

2 + s + it, not those on the
image surface; recall that the hyperbolic Schwarz map
HS is multivalued.

3. CONFLUENCE OF SWALLOWTAIL SINGULARITIES

In the previous section, we studied the variation in the
number of swallowtail singularities as p runs from 0 to∞.
On the other hand, the confluence of swallowtail singu-
larities has been studied by Arnold [Arnold 76]. Figure 6
is taken from [Langevin et al. 95, Figure 3], which shows
five types (1, . . . , 5) of confluence (bifurcation) of swal-
lowtail singularities. The types 1, 2, and 5 are called the
pair of cuspidal lips, the pair of cuspidal beaks, and type
A4, respectively; see [Saji et al. 07].

From the study in the last section, we observe that
types 2 and 5 actually occur in our move, and that an-
other type of confluence also occurs. In Figures 1–3, they
are indicated respectively by

• (type 2), � (type 5), �.
In this section, the (local) image surface is denoted

by S, and the (local) image of the curve C under the
hyperbolic Schwarz map HS is denoted by C(⊂ S).

3.1 • Around p = p1, p = p3, p = p6, and p = p8

When p < p1, there is a pair of swallowtail singularities
on S carried by a pair of cuspidal components of C. As
p tends to p1, two singularities come together and kiss,
and when p1 < p, then C becomes a pair of nonsingular
curves. We observe that this move is of type 2 in Figure
6. See also Figure 7, which represents the image surface
S under HS of the square {(s, t) : −0.5 < s < 0.5,−0.5 <
t < 0.5}. Something similar happens when p ↘ p3, p ↘
p8, and p↗ p6 around (s, t) = (0, 0).

3.2 � Around p = p2 and p = p9

When p ≤ p2, there are no swallowtail singularities.
However, when p > p2, there are four pairs of swallowtail
singularities, eight in all. The move around p2 is observed
to be of type 5 in Figure 6. Such a pair is drawn in Fig-
ure 8 (left) when p = 0.945. The lower picture is the
curve C, carrying two swallowtails, which reside at the
two cusps of this curve. The upper picture is a tubular
neighborhood in the surface S of the curve C. Something
similar happens when p↘ p9.

3.3 � Around p = p5

As p ↗ p5, three swallowtail singularities shrink to one
point that is not a swallowtail singularity, and after pass-
ing p5, one swallowtail singularity reappears immediately.
It is a move of type A5; we refer to [Saji et al. 07] for
its characterization. Note that this move is not among
Arnold’s five moves in Figure 6. Figure 8 (right) shows
the curve C with three cusps and the surface S around
this curve.

3.4 Around p = p6

When p = p6 = 1, there are no swallowtails. In Fig-
ure 2, � denotes the singularities x = 0 and x = 1 of
the differential equation. If p moves away from 1, then
three swallowtail singularities appear in both directions.
In Figure 9, the left picture is the image of a small square
situated to the right of the point (s, t) = (−0.5, 0) (sin-
gular point of the differential equation) including three
swallowtails when p = 0.975. They shrink to one point,
the image of the point x = 0, as p tends to 1.

The right picture is the image of a small square sit-
uated to the left of the point (−0.5, 0) including three
swallowtails when p = 1.028. Though this move resem-
bles the move of type 3 in Figure 6, it is different in that it
occurs at the singular points of the differential equation,
where the map is multivalued.
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FIGURE 6. Confluence of swallowtail singularities from [Langevin et al. 95, Figure 3].

p = 0.65 p = 0.7071 p = 0.78

FIGURE 7. The images under HS (1): the images of the square (−0.5, 0.5) × (−0.5, 0.5) and the curve C in it.

3.5 Drawing Figures

We give here some additional information about the fig-
ures. Figures 1–3 show the curve C. Each first row gives
a global view, and the second row for p ≥ 0.78 gives a

finer view of a part of C. The marks •, �, �, and � are
drawn in a somewhat emphasized manner.

In the third row (second row when p ≤ p1), the image
curves C are given; the range of the drawing is indicated
by a dotted rectangle in the figures of the first rows.
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p = 0.945 p = 0.971

The images of the rectangle

(0.375, 0.395) × (0.01, 0.135) and

the curve C

The images of a narrow strip along the

segment s ≈ 0.2975, t ∈ (−0.05, 0.05)

and the curve C

FIGURE 8. The images under HS (2).

p = 0.975 p = 1.028

The images of the rectangle

(−0.46,−0.41) × (−0.01, 0.01) and

the curve C

The images of the rectangle

(−0.57,−0.54) × (−0.01, 0.01) and

the curve C

FIGURE 9. The images under HS (3).
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When p < 1, the map HS defined in the upper
half-plane is continued analytically through the interval
0 < x < 1, and when p > 1, through the negative real
axis x < 0.

Figure 7 shows the images S of the square {(s, t) : s ∈
(−0.5, 0.5), t ∈ (−0.5, 0.5)}, where the image curves C are
drawn in greater detail than in Figure 1.

Figures 8 and 9 depict S and C for distinct values of p.
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