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We give a conjecture concerning when the discriminant of an ir-
reducible monic integral polynomial equals the discriminant of
the field defined by adjoining one of its roots to Q. We discuss
computational evidence for it. An appendix by the second au-
thor gives a conjecture concerning when the discriminant of an
irreducible monic integral polynomial is square-free and some
computational evidence for it.

1. INTRODUCTION

This paper arose out of a search for S5-extensions of Q

with small discriminant, performed by the first and third
authors. Using PARI, they made lists of irreducible monic
integral quintic polynomials f and computed both the
polynomial discriminant Dpol(f) and the absolute dis-
criminant of the splitting field Dfield(f). They noticed
that these two discriminants were equal far more often
than expected.

Call an irreducible monic integral polynomial f es-
sential if Dpol(f) = Dfield(f). It is well known that this
implies that the ring of integers of the splitting field of f
is monogenic.

In reply to an inquiry, Hendrik Lenstra suggested the
following:

Conjecture 1.1. Let n ≥ 2. The probability that a ran-
dom irreducible monic integral polynomial of degree n and
height ≤ X is essential should tend to 6/π2 as X → ∞.

For any irreducible monic integral polynomial f ,
Dpol(f)/Dfield(f) is a square integer. Hence, f is es-
sential if Dpol(f) is square-free. However, this square-
freeness does not account for 100% of essential polyno-
mials, probabilistically speaking.

In Section 3, we present a heuristic argument for Con-
jecture 1.1 due to Lenstra, who kindly communicated it
to us via email in October 2004. In Section 4, we ask,
when does a random polynomial have square-free dis-
criminant? A conjecture of Bjorn Poonen suggests that
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for a fixed degree, there should be an asymptotic prob-
ability for this. In the appendix (Section 6), the second
author gives a precise conjecture for the value of this
probability. Unlike Conjecture 1.1, this probability de-
pends on the degree of the polynomial.

In Section 5 and the appendix we present our ex-
perimental evidence, gathered using PARI and Magma,
where we studied polynomials whose degrees ranged from
2 to 7. This evidence supports our conjectures.

2. PROBABILITY

In this paper we deal with two kinds of probability that
are easily related. First, let n,N be positive integers and
let Z/NZ[x]n denote the set of all monic polynomials in
Z/NZ[x] of degree n.

Suppose Q(f) is a predicate of a monic polynomial f
of degree n in Z/NZ[x]. For example, Q might be the
property that f is irreducible.

Define the probability that f possesses Q to be

#{ f ∈ Z/NZ[x]n | f has Q }
#Z/NZ[x]n

.

Now let R(T ) be a predicate of an irreducible monic
polynomial T of degree n in Z[x]. Define the height h(T )
to be the maximum of the absolute values of the coeffi-
cients of T . Let Bn(X) be the set of all monic, irreducible
T of degree n with h(T ) ≤ X. Then we define the prob-
ability that T has R to be

lim
X→∞

#{ T ∈ Bn(X) | T has R }
#Bn(X)

.

We make a similar definition for all polynomials (not nec-
essarily irreducible) in a similar way.

We have the following lemma:

Lemma 2.1. Let n,N be positive integers and Q,R pred-
icates as above. Suppose R(T ) = Q(T mod N). Then
the probability that T mod N has Q equals the probabil-
ity that T has R.

Proof: Easy, given the fact that the probability that
a monic integral polynomial of degree n is irreducible
equals 1 [van der Waerden 34].

3. LENSTRA’S HEURISTIC ARGUMENT

Let p be a prime number, K a number field, and A a
sublattice of finite index of the ring of integers OK of K.

We say that A is p-maximal if p does not divide the index
of A in OK .

Let T ∈ Z[x] be a monic, irreducible polynomial with
root θ and K = Q[θ]. It is well known that the poly-
nomial discriminant of T equals the field discriminant
of K if and only if Z[θ] is p-maximal for every prime p.
(See, for example, [Lang 70, Proposition 16 and Remark
1, Section 3.3].) We call such a T essential. Of course, if
T is essential, OK is monogenic, i.e., OK is generated as
a ring over Z by a single element.

We wish to determine the probability (as defined in
Section 2.1) that an irreducible monic T of degree n is
essential. Obviously, if n = 1 this probability is 1. It will
turn out that for n ≥ 2, the probability we conjecture
is independent of n. Start with Dedekind’s criterion, as
found, for example, in [Cohen 95, Section 6.1.2], as part
(2) of Theorem 6.1.4.

Denote reduction modulo p by an overbar.

Lemma 3.1. (Dedekind’s criterion.) Let T ∈ Z[x] be a
monic, irreducible polynomial with root θ and K = Q[θ].
Let p be a prime number. Let

T̄ =
∏

t̄ei
i

be the factorization of T̄ into monic irreducible polyno-
mials in Fp[x], where the ti ∈ Z[x] are arbitrary monic
lifts of the t̄i. Let

g =
∏

ti, h =
∏

tei−1
i ,

so that h ∈ Z[x] is a monic lift of T̄ /ḡ. Set f = (gh −
T )/p ∈ Z[x]. Then Z[θ] is p-maximal if and only if

(f̄ , ḡ, h̄) = 1

in Fp[x].

From this we can derive the following corollary:

Corollary 3.2. With notation as above, Z[θ] is p-maximal
if and only if (�) there does not exist a monic polynomial
u ∈ Z[x] such that ū is irreducible in Fp[x] and T ∈
(p2, pu, u2) ⊂ Z[x].

Proof: First suppose that Z[θ] is not p-maximal. Then
f̄ , ḡ, h̄ have a common factor, which without loss of gen-
erality is t̄1. Therefore e1 > 1. Set u = t1. Then
T = gh − pf =

∏
tei
i − pf . Since ū divides f̄ , we have

au = f + pb for some integral polynomials a, b. Hence
pf ∈ (p2, pu) and T ∈ (p2, pu, u2). Conversely, let u be
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as in the statement of the corollary. Then T̄ ∈ (ū2).
Without loss of generality, u = t1 and e1 > 1. Then
ū divides ḡ and h̄. Now there are integral polynomi-
als a, b, c such that T = p2a + pub + u2c. Therefore,
f = (gh− T )/p = −pa− ub+ u2( g

u
h
u − c)/p. By Gauss’s

lemma, p must divide
(

g
u

h
u − c

)
. It follows that ū also

divides f̄ .

Continuing with the heuristic, we note that the prob-
ability that a monic integral polynomial T satisfies (�)
is independent of whether T is irreducible. This is be-
cause the probability that T is irreducible is 1 [van der
Waerden 34]. We can then compute that probability as
follows: First note that (�) depends on T only modulo
p2. Let R = (Z/p2Z)[x]. For each positive integer i,
let Ri denote the set of polynomials in R of degree ≤ i

and let R monic
i be the subset of monic polynomials of

degree i. For any g ∈ R denote by Ig the ideal (g2, pg),
Ig,n = Ig ∩ Rn, and I monic

g,n = Ig ∩ R monic
n . Note that

each of these sets depends only on ḡ.

Lemma 3.3. Let g, h be monic polynomials in R of degrees
d, e respectively such that ḡ and h̄ are both square-free and
relatively prime. Then Ig,n ∩ Ih,n = Igh,n.

Proof: If f ∈ Ig,n ∩ Ih,n, then f = ag2 + pbg and f =
Ah2 + pBh for some polynomials a, b, A,B. Then f̄ =
āḡ2 = Āh̄2, and hence f̄ is equal to C̄(gh)

2
for some

polynomial C.
Therefore f − C(gh)2 = pk for some polynomial k.

Then

k =
ag2 + pbg − Cg2h2

p
=

(a− Ch2)g2

p
+ bg.

Since g is monic, this implies that p divides a−Ch2 and
thus that k̄ is divisible by ḡ. Similarly, k̄ is divisible by h̄.
It follows that f = C(gh)2+pD(gh) for some polynomial
D, and so f ∈ Igh,n. The converse is obvious.

Proposition 3.4. Let g1, . . . , gk be monic polynomials in
R such that the ḡi are all irreducible and distinct. Let
d be the sum of their degrees. Let f ∈ R monic

n be ran-
domly chosen. Then the probability P (g1, . . . , gk) that
f ∈ I monic

g1,n ∩ · · · ∩ I monic
gk,n is 0 if 2d > n and p−3d other-

wise.

Proof: Let g = g1 · · · gk. Then I monic
g1,n ∩ · · · ∩ I monic

gk,n =
Ig1,n∩· · ·∩Igk,n∩R monic

n = I monic
g,n , since by Lemma 3.3

we have that Ig1,n ∩ · · · ∩ Igk,n = Ig,n.
We must show that the cardinality of I monic

g,n is 0 if
2d > n and p2n−3d otherwise. If f = ag2 + pbg for some

a, b, since f and g are monic, looking modulo p we see
that 2d ≤ n. So we may assume from now on that 2d ≤ n.

Define a map of sets

φ : R̄ monic
n−2d × R̄n−d−1 → I monic

g,n

as follows: For each α ∈ R̄ monic
n−2d fix a lift a(α) ∈ R monic

n−2d

and for each β ∈ R̄n−d−1 fix a lift b(β) ∈ Rn−d−1. Set
φ(α, β) = a(α)g2 + pb(β)g. We will show that φ is bijec-
tive.

1. φ is injective: If a(α)g2+pb(β)g = a(α′)g2+pb(β′)g,
then ā(α) = ā(α′), which means that α = α′. Then
pb(β)g = pb(β′)g so b(β)g = b(β′)g+pk for some polyno-
mial k, and hence b̄(β) = b̄(β′), which means that β = β′.

2. φ is surjective: Let f = ag2 + pbg for some a, b,
where f is monic. Since ā must be monic of degree n−2d,
we may write a = a′ + pb′, where a′ is itself monic of
degree n − 2d. By adding b′g to b we may thus assume
that a is already monic of degree n − 2d and (since we
can add p times any polynomial we like to b) that the
degree of b is n− d or less.

Let b∗ be the coefficient of xn−d in b. Then f = ag2 +
pb∗xn−dg+p(b−b∗xn−d)g. Now p(b−b∗xn−d)g has degree
less than n, so that ag2 + pb∗xn−dg must be monic of
degree n. Then ā is monic of degree n − 2d, so that
a = a(α) + pk for some α and some polynomial k of
degree n− 2d or less. Therefore f = a(α)g2 + p(b+ kg)g.

Since f, g, a(α) are all monic, the coefficient of xn−d in
b+ kg (which has degree n− d or less) must be divisible
by p. Therefore (b+ kg) = β for some β in R̄n−d−1 and
p(b + kg) = pb(β). Therefore f = a(α)g2 + pb(β)g is in
the image of φ. It now follows easily that P (g1, . . . , gk) =
p−3d if 2d ≤ n.

Proposition 3.5. Let Pn denote the probability that an
element of R monic

n is not in Ig,n for any g ∈ R such that
ḡ is irreducible. Then if n ≥ 2, Pn = 1 − p−2.

Proof: Let H(t) =
∑

n≥0 Pnt
n. To evaluate this using

our previous results, consider

K(t) = (1 − t)−1
∏
γ

(
1 − t2d(γ)

p3d(γ)

)
,

where the product runs over all irreducible monic γ in R̄
and d(γ) denotes the degree of γ. The coefficient of tn in
K(t) is ∑

k≥0

∑
γ1,...,γk

(−1)kp−3d,

where the inner sum runs over k-tuples of γ’s such that
2d = 2d(γ1) + · · · + 2d(γk) ≤ n.
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By Proposition 3.4, using the usual inclusion–
exclusion rule for independent events, we see that the
double sum equals Pn. So H(t) = K(t).

On the other hand, let Z(u) = 1
1−pu be the zeta func-

tion of Y = SpecFp[x]. Defining s by the equation
u = p−s, the Euler product for the zeta function gives

Z(u) =
∏
y

(1 −N(y)−s)−1,

where the product is taken over all the closed points y
of Y . If y corresponds to the irreducible polynomial γ of
degree d(γ), its norm is given by N(y) = pd(γ). Thus

Z(u) =
∏
γ

(
1 − p−d(γ)s

)−1

=
∏
γ

(
1 − ud(γ)

)−1

.

Hence as formal power series, we have

1 − pu =
∏
γ

(
1 − ud(γ)

)
.

Setting u = t2/p3 we obtain

1 − t2

p2
=
∏
γ

(
1 − t2d(γ)

p3d(γ)

)
.

Thus

H(t) = (1 − t)−1

(
1 − t2

p2

)
and the coefficient Pn of tn is 1 − p−2 if n ≥ 2.

Finally, we assume that the probabilities that Z[θ] is
p-maximal, for varying p’s, are independent. Applying
this assumption to Corollary 3.2 and Proposition 3.5, we
obtain our Conjecture 1.1, which we can restate as fol-
lows:

Conjecture The probability that an irreducible monic in-
tegral polynomial T of degree n ≥ 2 with root θ has its
polynomial discriminant equal to the discriminant of the
number field Q(θ) exists and equals

∏
p(1− p−2) = 6/π2.

4. SQUARE-FREENESS OF POLYNOMIAL
DISCRIMINANTS

It might be thought that the reason Conjecture 1.1
should be true is that almost all polynomials might have
square-free discriminant, since the probability that a ran-
dom integer is square-free is known to be 6/π2. For if the
irreducible, monic, integral polynomial T (x) has discrim-
inant D(T ) and the field discriminant of Q[x]/(T ) is D,

then it is well known that D(T )/D is an integral square.
(See, for example, [Lang 70, Section 3.3].)

Section 6 presents a conjecture and numerical evidence
for the value of the probability that a random polynomial
of fixed degree has square-free discriminant. This result
denies the “thought” of the previous paragraph.

We remark that the existence of such a probability is
consistent with general results of Bjorn Poonen, where
the abc conjecture implies that there is a well-defined
density Pn for the set of integral, monic polynomials T
of fixed degree n with square-free discriminant. The for-
mula for the density is given by [Poonen 03, Theorem
3.2], applied to the discriminant viewed as a polynomial
in the coefficients of T . Of course, there is no easy way
to evaluate Poonen’s formula directly.

5. EXPERIMENTAL EVIDENCE

The data in Table 1 below were generated (using PARI)
from random samples of one million polynomials per de-
gree, chosen uniformly from a box of prescribed coeffi-
cient height 10,000. The polynomials were first checked
for reducibility, and then the irreducible polynomials had
their fields and polynomial discriminants compared. The
last column shows the experimental value minus the ex-
pected value 6/π2 ≈ 0.6079271 divided by the standard
deviation. (The standard deviation σ is computed in the
usual way for a binomial distribution with N trials as-
suming p = 6/π2. That is, σ =

√
p(1 − p)/N , which in

our case is ≈ 0.00049.)

Degree Percent Coincidence Error/Standard Deviation
2 0.608356 0.8797
3 0.608551 1.2777
4 0.607761 −0.3391
5 0.607229 −1.4289
6 0.607297 −1.2908
7 0.607995 0.0443

TABLE 1.

6. APPENDIX: SQUARE-FREE DISCRIMINANTS

Let p be a prime and let I be the set of monic irreducible
elements of Z/pZ[X]. If f ∈ Zp[X] is a monic polynomial,
then we can write f mod p =

∏
g∈I g

eg . Using Hensel’s
lemma [Weiss 63, 2.2.1] we can write f =

∏
g∈I fg, where

fg ∈ Zp[X] is monic and satisfies fg = geg mod p. Recall
that we let Dpol denote the polynomial discriminant and
we denote reduction modulo p by an overbar.

Denote by R(f, g) the resultant of f and g.

Lemma 6.1. Let f, g ∈ Zp[X], with f monic. If
gcd(f̄ , ḡ) = 1, then ordpR(f, g) = 0.
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Proof: Write f̄ = (X−t1)·· · ··(X−tn), with the ti in some
algebraic closure of Fp. From the proof of [Lang 93, Sec-
tion IV.8, Proposition 8.3] we have R(f̄ , ḡ) =

∏n
i=1 ḡ(ti).

Now p | R(f, g) if and only if R(f̄ , ḡ) = 0, so ḡ(ti) = 0
for some ti, i.e., if ti is a zero of ḡ.

Corollary 6.2. Let f, g ∈ Zp[X] be monic. If gcd(f̄ , ḡ) =
1, then ordp(Dpol(fg)) = ordp(Dpol(f))+ ordp(Dpol(g)).

Proof: This follows from

Dpol(fg) = Dpol(f)Dpol(g)R(f, g)2

and Lemma 6.1.

Corollary 6.3. Let f ∈ Zp[X] be monic. If f̄ is irre-
ducible, then ordp(Dpol(f)) = 0.

Proof: This follows from using Lemma 6.1 with g = f ′

and from [Lang 93, Section IV.8, Proposition 8.5].

Proposition 6.4. Let Pn,0 denote the probability that
a monic polynomial f ∈ Zp[X] of degree n satisfies
ordpDpol(f) = 0. If n ≤ 1, then Pn,0 = 1 and if n ≥ 2,
then Pn,0 = 1 − p−1.

Proof: Let H(t) =
∑

n≥0 Pn,0t
n. From Lemma 6.1 and

its corollaries, we see that whether the polynomial f sat-
isfies ordpDpol(f) = 0 depends only on f modulo p. We
have ordpDpol(f) = 0 if and only if for all g ∈ I we have
eg = 0 or 1, i.e., if and only if f̄ is square-free.

Denote by M the set of monic polynomials in
Z/pZ[X]. From unique factorization in Z/pZ[X] we have
the following formula:∑

f∈M

udeg f =
∏
g∈I

∑
k≥0

uk deg g.

Taking square-free parts left and right and replacing u

by t/p, we obtain

H(t) =
∏
g∈I

(
1 +

(
t

p

)deg g )
.

Now,

1
1 − t

=
∑

tn =
∏
g

∑
i≥0

(
t

p

)i deg g

,

=
∏
g

1

1 − (t/p)deg g
=
∏
g

1 + (t/p)deg g

1 − (t2/p2)deg g
,

= H(t)
1

1 − t2/p
.

So H(t) = (1 − t)−1
(
1 − t2

p

)
. The coefficient Pn,0 of

tn is 1 if n ≤ 1 and 1 − p−1 otherwise.

Lemma 6.5. Let R be a ring and r ∈ R[X] a monic poly-
nomial. Denote by Ω(R[X]/(r))/R the module of Kähler
differentials of R[X]/r over R. Then Ω(R[X]/r)/R

∼=
R[X]/(r, r′).

Proof: Follows from [Matsumura 70, Section 10.26]

Write l(L) for the length of a finite-length Zp-module
L, and set e(ψ,L) = l(cok(ψ)) − l(ker(ψ)) for a Zp-
module endomorphism ψ : L→ L.

Lemma 6.6. Let f ∈ Zp[X] be monic and h ∈ I. Then
ordpDpol(fh) ≥ (eh − 1) deg h. If also p | eh, then

ordpDpol(fh) ≥ eh deg h.

Proof: Let

φ : Zp[X]/fh → Zp[X]/fh,

x 
→ f ′hx,

be multiplication by f ′h. Then

cok(φ) = Zp[X]/(fh, f
′
h) = Ω(Zp[X]/fh)/Zp

(Lemma 6.5).
From [Fulton 70, Lemma A.2.6] we get that

e(φ,Zp[X]/fh) = e(det(φ),Zp),

and from [Fulton 70, Example A.2.1], we get

det(φ) = R(fh, f
′
h) = Dpol(fh).

We have

pordpDpol(fh) = pe(det(φ),Zp) ≥ #Ω(Zp[X]/fh)/Zp
.

The map

Ω(Zp[X]/(fh))/Zp
→ Ω(Fp[X]/(fh))/Fp

,

dg 
→ dḡ,

is surjective, so

#Ω(Zp[X]/fh)/Zp
≥ #Ω(Fp[X]/(fh))/Fp

= #Fp[X]/(fh, f
′
h)

=

{
#Fp[X]/(heh) = peh deg(h) if p | eh,

#Fp[X]/(heh−1) = p(eh−1) deg(h) otherwise,

which completes the proof.
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Proposition 6.7. A monic polynomial f ∈ Zp[X] satisfies
ordpDpol(f) = 1 if and only if the following conditions
are met:

(i) p �= 2;

(ii) there is a unique h ∈ I for which eh ≥ 2;

(iii) for this h we have deg h = 1 and eh = 2;

(iv) if h = X − α̃ and α is any lift of α̃ to Zp, then
fh(α) �≡ 0 mod p2.

Proof: Let I ′ be the set of all g ∈ I with eg ≥ 2. From
Lemma 6.1, its corollaries, and Lemma 6.6, we see that

ordp(Dpol(f)) =
∑
g∈I′

ordp(Dpol(fg)) ≥
∑
g∈I′

(eg − 1) deg g.

This can equal 1 only if #I ′ = 1 and the only h ∈ I ′

satisfies deg h = 1 and eh = 2. Furthermore, if p = 2,
then ordp(Dpol(f)) ≥ eh deg h = 2. So p �= 2.

If f satisfies conditions (i)–(iii), then there are b, c ∈
pZp such that fh = (X − α)2 + b(X − α) + c and
ordp(Dpol(fh)) = ordp(b2 − 4c), which is 1 if and only
if ordp(c) = 1, independently of the choice of the lift α.

Theorem 6.8. Let Pn,1 denote the probability that a
monic polynomial f ∈ Zp[X] of degree n satisfies
ordp(Dpol(f)) = 1. The following table gives Pn,1 for
various n and p.

p = 2 p �= 2

n = 2 0 p−1 − p−2

n = 3 0 p−1 − 2p−2 + p−3

n ≥ 4 0 (p − 1)2(1 − (−p)−n)/(p2(p + 1))

Proof: From Proposition 6.7 we see that whether f satis-
fies ordp(Dpol(f)) = 1 depends only on f modulo p2. So
we have

Pn,1 =
1
p2n

#{f ∈ Z/p2Z[X] : f monic, deg f = n,

ordp(Dpol(f)) = 1}.
If p = 2, then Proposition 6.7 tells us that the discrim-

inant being square-free is the same as it being a unit, so
Pn,1 = 0.

Now let p �= 2 and let H(t) =
∑

n≥0 Pn,1t
n. Let

N = {f ∈ Z/p2Z[X] : f monic} and N ′ = {f ∈ N :
ordp(Dpol(f)) = 1}. For h ∈ I linear, let

Nh = {f ∈ N : ordpDpol(fh) = 1},
Nh,1 = {f ∈ N : h2 = f̄ , f(α) �= 0},
Nh,2 = {f ∈ N : ordpDpol(f) = 0, h � f̄}.

Then N ′ = ∪h∈I,deg h=1Nh, and for all h we have a bi-
jection

Nh → Nh,1 ×Nh,2,

f 
→ (fh, f/fh).

So we have the following generating function:∑
n≥0

Pn,1p
2nun

=
∑

f∈N ′
udeg f =

∑
h∈I,deg h=1

∑
f∈Nh

udeg f

=
∑

h∈I,deg h=1

(( ∑
f∈Nh,1

udeg f
)( ∑

f∈Nh,2

udeg f
))

=
∑

h∈I,deg h=1

p (p− 1)u2
∏

g∈I,g �=h

(
1 + (pu)deg g

)
,

where we have used Proposition 6.7 and the proof of
Proposition 6.4 for the last step.

Setting u = t/p2, we obtain

H(t) =
∑

h∈I,deg h=1

t2
(p− 1

p3

) ∏
g∈I,g �=h

(
1 +

( t
p

)deg g
)
.

By rewriting this formula and using Proposition 6.4
we obtain

H(t) = pt2
(
p− 1
p3

)(
1 +

t

p

)−1∏
g∈I

(
1 +

(
t

p

)deg g
)

= t2
(
p− 1
p2

)(
1 +

t

p

)−1

(1 − t)−1

(
1 − t2

p

)

= t2
p− 1

p2(p+ 1)

(
p− t2

1 − t
+

1 − t2

p

1 + t
p

)
,

and the coefficient of tn is given by

Pn,1 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
p−1

p2(p+1) (p+ 1), n = 2,
p−1

p2(p+1) (p− 1
p ), n = 3,

p−1
p2(p+1)

(
p− 1 +

(
−1
p

)n−2

+ (−1
p )n−3

)
, n ≥ 4.

By combining Proposition 6.4 and Theorem 6.8, we
obtain the probability that ordpDpol(f) ≤ 1:

p = 2 p �= 2

n = 2 1
2

1 − 1
p2

n = 3 1
2

1 − 2
p2 + 1

p3

n ≥ 4 1
2

(1 − 1
p
) +

(p−1)2(1−(−p)−n+2)

(p2(p+1))

If we assume that all these probabilities are indepen-
dent, then we obtain a heuristic for the probability that
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degree heuristic value experimental value error/s.d.
2 0.4052847 0.404588 −1.4191
3 0.3425997 0.342442 −0.3323
4 0.2997226 0.299933 0.4593
5 0.3090905 0.309574 1.0463
6 0.3064416 0.305986 −0.9883
7 0.3072498 0.307041 −0.4526

TABLE 2.

a polynomial f ∈ Z[X] has square-free discriminant, by
taking the product over all p.

For 2 ≤ n ≤ 7, Table 2 gives approximations for the
heuristic probability. It is obtained by calculating the
product for primes up to one million. It also gives ex-
perimental values, which were obtained as the fraction of
polynomials with square-free discriminant out of a ran-
dom set of one million polynomials of height at most
10,000. In the last column the experimental value is
compared to the heuristic value and then divided by the
standard deviation.

For n = 2 we can calculate the heuristic probability
exactly. It is

1
2

∏
p�=2

(
1 − 1

p2

)
=

2
3

∏
p

(
1 − 1

p2

)
=

4
π2
.

The following theorem proves that this value is in fact
correct.

Theorem 6.9. The probability that a random monic poly-
nomial in Z[X] of degree 2 has square-free discriminant
is 4/π2. More exactly,

lim
x→∞#{(b, c) ∈ ([−x, x] × [−x, x]) ∩ (Z × Z) :

Dpol(X2 + bX + c) is square-free}
=

4
π2

(2x)2 +O(x7/4).

Proof: Write

P (x) = #{(b, c) ∈ ([−x, x] × [−x, x]) ∩ (Z × Z) :

Dpol(X2 + bX + c) is square-free}.

If b is even, then Dpol(X2 +bX+c) = b2−4c = 0 mod 4,
so we need to consider only odd b. SinceDpol(X2+bX+c)
is square-free if and only if Dpol(X2 − bX + c) is square-
free, it suffices to count the case in which b > 0 twice. So
we have

P (x) = 2#{(d, c) ∈ ([0, (x− 1)/2] × [−x, x]) ∩ (Z × Z) :

(2d+ 1)2 − 4c is square-free}.

Now we can use inclusion–exclusion. Since |(2d+1)2−
4c| ≤ x2 + 4x < (x+ 2)2, it suffices to do the inclusion–
exclusion up to x + 2. We have already dealt with the
even n, so the inclusion–exclusion needs to be done only
over the odd n. Let µ(n) denote the Möbius function.
Then we have

P (x) = 2
x+2∑
n=1

n odd

µ(n)A(n),

where

A(n) = #{(d, c) ∈ ([0, (x− 1)/2] × [−x, x]) ∩ (Z × Z) :

(2d+ 1)2 − 4c = 0 mod n2}.

We split this sum into two parts:

Q1(x) = 2
x3/4∑
n=1

n odd

µ(n)A(n)

and

Q2(x) = 2
x+2∑

n=x3/4

n odd

µ(n)A(n).

For the first part we observe that we have an element in
the set only if c = 4−1(2d+ 1)2 mod n2. So the number
of c is

⌊
2x+1

n2

⌋
or this number plus 1. Then we sum over

all d to get

Q1(x) = 2
x3/4∑
n=1

n odd

µ(n)
⌊
x+ 1

2

⌋(
2x+ 1
n2

+B(n)
)
,

where |B(n)| ≤ 1. Now,
⌊

x+1
2

⌋ (
2x+1

n2

)
= x2

n2 +O(x).

Furthermore,

x3/4∑
n=1

n odd

|µ(n)
⌊
x+ 1

2

⌋
B(n)| <

x3/4∑
n=1

n odd

⌊
x+ 1

2

⌋
= O(x7/4).

So

Q1(x) = 2
x3/4∑
n=1

n odd

µ(n)
x2

n2
+O(x7/4).

To count Q2(x), we observe that since (2d+1)2−4c �=
0, we need (2d + 1)2 ≥ n2 + 4c ≥ x6/4 − 4x, which can
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happen only if d ≥ 1
2x

3/4 − x1/4 − 1. So when d is large
enough to get a solution, the difference between (2(d +
1) + 1)2 and (2d+ 1)2 is at least 4x3/4 − 8x1/4, which is
greater than x3/4, for x sufficiently large. Around every
multiple of n2 we have an interval of length 8x in which
(2d+ 1)2 must lie for solutions to occur. The number of
d that can lie in such an interval is at most 8x/x3/4 +
1 = 8x1/4 + 1, and the number of intervals is at most
x2/n2 + 1 ≤ x2/4 + 1. So per n, the number of solutions
is at most 8x3/4 +O(x2/4). So

Q2(x) ≤ 2
x+2∑

n=x3/4

n odd

(8x3/4 +O(x2/4)) < 16x7/4 +O(x6/4)

= O(x7/4).

Now we have

P (x) = 2
x3/4∑
n=1

n odd

µ(n)
x2

n2
+O(x7/4).

We use that
∞∑

n=x3/4

n odd

x2µ(n)
n2

≤
∫ ∞

x3/4−1

x2

t2
dt =

x2

(x3/4 − 1)
= O(x5/4)

to conclude that

P (x) = 2x2
∞∑

n=1
n odd

µ(n)
n2

+O(x7/4).

Since
∞∑

n=1
n even

µ(n)
n2

=
∞∑

m=1

µ(2m)
(2m)2

= −1
4

∞∑
m=1

n odd

µ(m)
m2

and ∞∑
n=1

µ(n)
n2

=
6
π2
,

we obtain
P (x) = 4x2 4

π2
+O(x7/4),

and the proof is complete.

ACKNOWLEDGMENTS

We wish to thank the following individuals whom we con-
sulted when we were at the beginning of this project: Manjul
Bhargava, Henri Cohen, Keith Conrad, Darrin Doud, William
Duke, Farshid Hajir, Roger Heath-Brown, John Jones, Hugh
Montgomery, David Rohrlich, and Jean-Pierre Serre. Special
thanks to Hendrik Lenstra for explaining his heuristic argu-
ment to us.

Many thanks to the first referee, who noted in an earlier
version that some of our experimental results differed from
the heuristic results by several standard deviations. This led
us to discover a slight error in our formulas and to report the
standard deviations, which are now within respectable limits.
Thanks also to the second referee for very helpful suggestions.

The first and third authors wish to thank the National
Science Foundation for support of this research through NSF
grant number DMS-0139287.

REFERENCES

[Cohen 95] Henri Cohen. A Course in Computational Alge-
braic Number Theory, second corrected printing. New
York: Springer, 1993.

[Fulton 70] W. Fulton. Intersection Theory. Berlin: Springer,
1997.

[Lang 70] S. Lang. Algebraic Number Theory. Reading, MA:
Addison-Wesley, 1970.

[Lang 93] S. Lang. Algebra, 3rd edition. Reading, MA:
Addison-Wesley, 1993.

[Matsumura 70] H. Matsumura. Commutative Algebra. New
York: Benjamin, 1970.

[Poonen 03] Bjorn Poonen. “Squarefree Values of Multivari-
able Polynomials.” Duke Math. J. 118 (2003), 353–373.

[van der Waerden 34] B. L. van der Waerden. “Die Seltenheit
der Gleichungen mit Affekt.” Math. Ann. 109 (1934),
13–16.

[Weiss 63] Edwin Weiss. Algebraic Number Theory. New
York: McGraw-Hill, 1963

Avner Ash, Boston College, Chestnut Hill, MA 02445 (Avner.Ash@bc.edu)

Jos Brakenhoff, Universiteit Leiden, Leiden, the Netherlands (jbrakenh@math.leidenuniv.nl)

Theodore Zarrabi, Boston College, Chestnut Hill, MA 02445 (Ted.Zarrabi@risk.sungard.com)

Received December 2, 2005; accepted in revised form February 1, 2007.


