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We present an algorithm for computing the dimensions of higher
secant varieties of minimal orbits. Experiments with this algo-
rithm lead to many conjectures on secant dimensions, especially
of Grassmannians and Segre products. For these two classes
of minimal orbits we give a short proof of the relation—known
from the work of Ehrenborg, Catalisano–Geramita–Gimigliano,
and Sturmfels–Sullivant—between the existence of certain codes
and nondefectiveness of certain higher secant varieties.

1. INTRODUCTION

A generic polynomial of degree d in C[x] can be written as
a sum of �(d+1)/2� powers (ax+b)d, a, b ∈ C. A generic
n×n matrix of rank k and trace 0 is the sum of k matrices
of rank 1 and trace 0; in fact, this is true for any trace-
zero matrix of rank k, though that doesn’t matter here.
But what is the generic rank of a tensor in (C2)⊗10? That
is, if we want to write a generic element of this tensor
power as a sum of decomposable tensors, then how many
do we need?

These are instances of a general type of problem that
has been solved only in very few cases. In this paper, we
do not solve many instances either, but we do present a
program for investigating small concrete instances. Also,
we will boldly state some conjectures that our experi-
ments with this program suggest. We hope that this
paper will be an incentive for others working in this field
either to prove or disprove our conjectures, or to use our
program and experiment for themselves.

To be more concrete about the type of problem that
our program can handle, let G be a connected reductive
complex algebraic group and let V be a nontrivial irre-
ducible module for G; for the theory of algebraic groups
we refer to [Borel 91]. The projective space PV contains a
unique (Zariski-)closed orbit X, consisting of the highest-
weight lines and called the minimal orbit; see Section 2
for the short argument. Denote by C ⊆ V the affine cone
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over X. For any natural number k, we write kX for the
Zariski closure of the union of all projective (k−1)-spaces
spanned by k points on X; kX is called the kth secant
variety of X (by some other authors the (k − 1)st secant
variety). Often, the term secant variety itself is used for
the second secant variety, while those for k > 2 are re-
ferred to as higher secant varieties. More concretely, the
affine cone over kX is the Zariski closure of

kC := {v1 + · · · + vk | vi ∈ C}.

In the examples above, G is equal to SL2 acting on the
space V of binary forms of degree d, or to SLn acting on
its Lie algebra, or to SL10

2 acting on the space (C2)⊗10

of 10-tensors, respectively. Accordingly, C is the set of
pure dth powers of linear forms, or the set of trace-zero
matrices of rank at most 1, or the set of all pure 10-
tensors.

One can ask many questions about the sets kX and
kC. For instance, how do we find polynomial equations
defining kC? For the matrix example we know them:
kC = kC is the set of trace-zero matrices of rank at most
k, and these are characterized (even scheme-theoretically;
see [Bruns and Vetter 88]) by the vanishing of all (k+1)-
minors. For the example of binary forms, too, equations
defining kC set-theoretically are known: certain minors
of Hankel (or catalecticant) matrices [Harris 92, Proposi-
tion 9.7] (indeed, these equations even define kC scheme-
theoretically; see, e.g., [Iarrobino and Kanev 99]).

But for the example of 10-tensors we do not know
equations. Of course, equations can in theory be found
by a Gröbner basis computation: One computes the clo-
sure of the image of the addition morphism Ck → kC.
However, these computations quickly become totally in-
feasible, so sophisticated algebraic geometry is already
needed to find equations for small secant varieties. There
is recent progress in this direction: In [Landsberg and
Weyman 06], scheme-theoretic equations for some secant
varieties of 3-fold and 4-fold Segre powers are given, and
[Sturmfels and Sullivant 06] shows how combinatorial
methods help in finding such equations.

Another question: Are the sets kC closed? In the
matrix case they are; for the 10-tensors we do not know;
and for the binary forms they are not. One can show,
in fact, that a polynomial with a zero of multiplicity m,
0 < m < d, cannot be written as a sum of fewer than
m + 1 pure dth powers, so that the sets kC with �(d +
1)/2� ≤ k < d cannot possibly be closed.

But by far the most modest property of kC that
one may want to determine is its dimension dim kC :=

dim kC = dim kX + 1, and this is precisely what our al-
gorithm does. That such an algorithm is useful is clear
from the vast literature dealing exactly with these se-
cant dimensions; see, e.g., [Alexander 88, Alexander and
Hirschowitz 92, Alexander and Hirschowitz 95, Catal-
isano et al. 02, Catalisano et al. 05a, Catalisano et al.
05b, Ehrenborg 00, Hirschowitz 85, Sturmfels and Sulli-
vant 06].

Since the addition map Ck → kC is dominant, dim kC

is at most k dim C; we call the minimum of the latter
number and dimV the expected dimension of kC. If kC

has the expected dimension, then kC (and kC and kX)
are called nondefective. Otherwise, kC, kC, and kX are
called defective. The difference min{dim V, k dim C} −
dim kC is called the k-defect (note that these defects are
the sums of the defects as defined in [Zak 93]). If kC is
not defective for any k ≥ 1, then we call C and X them-
selves nondefective; otherwise, we call them defective.

As we will see below, calculating dim kC in con-
crete cases boils down to straightforward linear algebra
computations—at least if one allows for a small error
probability—and only in rare concrete cases does kC not
have the expected dimension. And yet it is very difficult
to prove anything substantial in this direction.

First, however, we list some important things that are
known about these higher secant varieties. The standard
reference for secant varieties, containing a wealth of clas-
sification results on varieties with constraints on their
secant dimensions, is [Zak 93]:

1. Take G = SLn and let V be the space of homoge-
neous polynomials in x1, . . . , xn of degree d. Then
C is the set of dth powers of linear forms. A simple
duality shows that dim kC is the codimension of the
space of homogeneous polynomials in x1, . . . , xn of
degree d that vanish together with all their first par-
tial derivatives on k fixed generic points. This relates
higher secant varieties to the problem of multivariate
interpolation, which was solved in the series of pa-
pers [Hirschowitz 85, Alexander 88, Alexander and
Hirschowitz 92, Alexander and Hirschowitz 95].

2. For G a simple algebraic group acting on its Lie alge-
bra g, the set C consists of all “extremal elements,”
that is, elements X ∈ g for which ad(X)2g ⊆ CX.
The first secant variety is known in this case ([Kaji
et al. 99, Kaji and Yasukura 00]), and for classical
G the higher secant varieties were completely deter-
mined in [Baur and Draisma 04].
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3. For G = SLn and V the d-fold exterior power of Cn,
the set C is the affine cone over the Grassmannian,
in its Plücker embedding, of d-dimensional vector
spaces in Cn. The paper [Catalisano et al. 05a] lists
some defective Grassmannians, and proves that for
d > 2 and kd ≤ n the variety kC is not defective.
In Section 4.1 we generalize this latter result, and
conjecture that the list of defective Grassmannians
in [Catalisano et al. 05a] is complete.

4. For G = SLn1 ×· · ·×SLnd
and V = Cn1 ⊗· · ·⊗Cnd ,

the cone C consists of the decomposable powers, and
is the cone over the Segre product of the Cni . For
small d and some concrete values of the ni, secant
dimensions of C, or bounds on these, are known;
see [Catalisano et al. 02] and the references therein.
The case in which all ni are equal is treated in more
detail in Section 4.

From here we proceed as follows: in Section 2 we
present our algorithm for computing dim kC; Section 3
deals with some implementation issues; and Section 4
lists our conjectures based on experiments with that im-
plementation. These conjectures concern Grassmannians
and Segre products, as well as a general finiteness state-
ment. Our algorithm, called sedimo, can be downloaded
from http://www.win.tue.nl/∼jdraisma/.

2. THE ALGORITHM

We retain the notation G,V,X,C from Section 1. That
is, G is a connected reductive algebraic group, V is a
nontrivial irreducible G-module, X is the closed orbit in
PV —whose uniqueness will be dealt with soon—and C

is the cone over X in V .

2.1 Required Representation Theory

For those whose background is not in representation the-
ory, we briefly sketch how one can put the objects under
investigation into a computer algebra system to compute
secant dimensions: Let B be a Borel subgroup of G,
i.e., maximal under the closed, connected subgroups of
G, and let T be a maximal torus in B. Then B stabi-
lizes a unique 1-dimensional subspace in V , spanned by
a highest-weight vector v0, and the character of T on this
line determines V up to isomorphism. This character is
the highest weight and can be given by a tuple of natural
numbers relative to a certain basis of the (free abelian)
character group of T . Conversely, algorithms are already
available in [GAP 02] to construct, given a highest weight
as a tuple of natural numbers, the corresponding module

V —strictly speaking not as a G-module, but as a mod-
ule over the Lie algebra g of G. The tangent space to
the orbit Gv0 in V is gv0, and transporting this space
around by elements of G constructed with the exponen-
tial map g → G gives tangent spaces that are used in the
computation of dim kC; eventually, the rank of
some large matrix is our lower bound on dim kC. All
these matters can be found in [Borel 91, Humphreys
81, Humphreys 71].

Unfortunately, the computations are rather slow in
characteristic 0, and therefore we indicate in Section 3
how to reduce them modulo a prime. Very roughly speak-
ing, one first does the construction above over Z; i.e., one
constructs elements of G that have integral matrices rel-
ative to some appropriate basis of V . Then the large
matrix whose rank needs to be computed is also integral,
and hence its rank modulo p is a lower bound to its rank
over Q. The insight that these constructions can in the-
ory be done over Z (and hence over any field) goes back to
Chevalley [Steinberg 68]. The results on quantum groups
that the actual implementation in Section 3 uses cannot
be given extensive description in the present paper.

2.2 The Highest-Weight Orbit

We reduce the computation of dim kC to straightfor-
ward linear algebra as follows. First, we recall that the
closed G-orbit in PV is unique and equal to the orbit of
highest-weight lines: Indeed, suppose that x ∈ PV has
a closed orbit Gx, and let P be the stabilizer of x in G.
Then G/P ∼= Gx is a projective variety, and therefore
P contains a Borel subgroup B of G [Borel 91, Section
11.2, Corollary]. By the representation theory of alge-
braic groups and their Lie algebras [Borel 91, Humphreys
71, Humphreys 81], B stabilizes a unique line in the irre-
ducible representation V , namely, the highest-weight line
Cv0, which therefore corresponds to x. Hence X = Gx is
the orbit of highest-weight lines. Then the cone C over
the minimal orbit X equals C = Gv0 ∪ {0}—recall that
V was assumed nontrivial, so that this really is a cone.
In what follows we need the Lie algebras g, p of G and P ,
and also a maximal torus T of B.

2.3 A Dense Orbit under a Unipotent Subgroup

Now let u− be the direct sum of all T -root spaces in g

that are not in p. Then u− is the Lie algebra of a unique
connected (unipotent) subgroup U− of G. Let X1, . . . , Xr

be a basis of u− consisting of T -root vectors. Then the
following statements are well known:
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1. The map Ψ : Cr → U− sending (t1, . . . , tr) to
exp(t1X1) · · · exp(trXr) is an isomorphism of vari-
eties (combine Section 14.4, Proposition, with Sec-
tion 7.3 from [Borel 91]).

2. The U−-orbit U−v0 is the intersection of C with the
affine hyperplane where the v0-coordinate is 1 (rel-
ative to a T -weight basis of V containing v0). This
follows easily from the Bruhat decomposition [Borel
91, Section 14.12, Theorem].

3. Hence the image of U−v0 in PV is dense in X.

Our program works, in fact, with elements in U−v0 rather
than all of C.

2.4 Terracini’s Lemma

We work here with C̃ := Gv0 = C\{0}, which is a smooth
variety since it is homogeneous. Consider the addition
map π : C̃k → kC, (v1, . . . , vk) �→ ∑

i vi and denote
its differential at the k-tuple v = (v1, . . . , vk) ∈ C̃k by
dvπ. By elementary algebraic geometry, the map sending
v ∈ C̃k to the rank of dvπ is lower semicontinuous (since
C̃k is smooth), and its generic value is dim(kC) by the
dominance of π. On the other hand, the image of dvπ

equals
k∑

i=1

Tvi
C̃,

where Tvi
C̃ denotes the tangent space to C at vi, re-

garded as a linear subspace of V . We conclude that the
dimension of this latter space is always a lower bound for
dim kC, while it is equal to dim kC for generic tuples v.
This observation is, in fact, one of the first results in the
theory of join and secant varieties, and is due to Terracini
[Terracini 11].

2.5 The Algorithm

Our algorithm, which we have implemented in GAP [GAP
02], is as follows:

Algorithm 2.1.

Input: (g, λ, k), where g is a split rational semisimple
Lie algebra with a distinguished split Cartan subal-
gebra h and a distinguished Borel subalgebra b con-
taining h; λ ∈ h∗ is a b-dominant weight; and k is a
natural number.

Output: a lower bound for dim kC that with high prob-
ability equals dim kC. (Here C = Gv0 ∪ {0}, where
G is the simply connected complex algebraic group

associated to g and v0 is a b-highest-weight vec-
tor in the irreducible g- (and G-) module of highest
weight λ.)

Method:

1. Construct the irreducible representation ρ :
g → gl(V ) of highest weight λ.

2. Denote by v0 the highest-weight vector of V ,
and compute representatives (X1, . . . , Xr) of
the negative h-root spaces in g that do not van-
ish on v0 (these span u−).

3. For i ∈ {1, . . . , r} compute those divided pow-
ers ρ(Xi)d/(d!) that are nonzero.

4. Set T := {0}, the zero subspace of V .

5. Compute Tv0C := Kv0 + u−v0.

6. Repeat the following steps k times:

(a) Choose rational numbers t1, . . . , tr at ran-
dom.

(b) Compute

u := exp(t1ρ(X1)) · · · exp(trρ(Xr))

using the divided powers of the ρ(Xi) for
faster computation of the exponentials.

(c) Set T := T + uTv0C.

7. Return dimT .

Proof of the algorithm: The isomorphism Ψ of Section
2.3 identifies U− as an affine space, and moreover gives
U− a Q-structure, corresponding to Qr via Ψ. In the
ith step of the algorithm, a random element ui of U−(Q)
is computed, as well as the corresponding tangent space
Tuiv0C = uiTv0C. The algorithm returns the dimension
of the sum of these Tuiv0C. We claim that this dimension
is smaller than dim kC only if (u1, . . . , uk) lies in some
proper Zariski-closed subset of U−(Q)k—hence only with
“small probability.” Indeed, since TsvC = TvC for all
s ∈ C∗ and v ∈ U−v0, and since {sv | s ∈ C∗, v ∈
U−v0} is dense in C, the generic rank of dvπ for v ∈ Ck

is equal to the generic rank of dvπ for v ∈ (U−v0)k.
Hence the (u1, . . . , uk) ∈ Uk

− where d(u1v0,...,ukv0)π does
not have rank dim kC form a proper closed subset S of
Uk
−. Finally, U−(Q)k is Zariski-dense in Uk

−, so that it
cannot be contained in S. This proves the correctness of
the algorithm.
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It is hard to estimate, in an implementation of this
algorithm, the precise probability with which the se-
lected tuple (u1, . . . , uk) lies outside S, since it depends
on the random generator supplying the rational num-
bers ti. However, if the algorithm returns the expected
dimension, then we are sure that the output is correct.
Otherwise, by repeating the procedure, we can make the
probability that the result is correct arbitrarily close to 1.

3. IMPLEMENTATION

We have implemented the algorithm in the computer al-
gebra system GAP4 [GAP 02], using the built-in func-
tionality for semisimple Lie algebras and their represen-
tations. All steps are rather straightforward to imple-
ment. It turns out that in working over the field Q, the
main bottleneck of the algorithm is the computation of a
basis of the space T in Step 6(c). For example, the com-
putation of the secant dimensions of the Grassmannian
of 5-dimensional subspaces in an 11-dimensional vector
space took 362 seconds, of which 309 were spent in the
basis computation of Step 6(c).1 This is due to the fact
that the coefficients of the vectors grow very fast (prob-
ably because of their random nature). In the example
mentioned earlier, the vectors in a triangularized basis
were dense, and contained rational numbers of up to 70
digits in both denominator and numerator.

For this reason we have included in our implementa-
tion the possibility to compute modulo a prime p. This,
however, presents a new problem: The coefficients of
the matrices of the divided power in Step (3) may not
be integral. We can get around this by computing an
“admissible lattice” in the highest-weight module V (cf.
[Humphreys 71]). An algorithm for this purpose is not
present in GAP4. We have implemented an algorithm for
this based on the theory of crystal bases (cf. [Jantzen
96]).

Roughly, this works as follows. First we note that
V is also a module for the quantum group Uq(g). Now
from the crystal graph of V we get a set of elements
Fi in the negative part of Uq(g), with the property that
{Fi · v0} spans an admissible lattice (for details we refer
to [de Graaf 03, Lakshmibai 95]).

Each Fi can be mapped to an element F ′
i of the nega-

tive part of the universal enveloping algebra U(g). Then
{F ′

i · v0} spans an admissible lattice of V . This approach
has the advantage that we do not need to check linear

1The computations in this section were done on a 2-GHz pro-
cessor, with 500 MB RAM memory for GAP.

n d Total Module Basis dim V (λ) kmax

11 5 71 60 3 462 14
12 6 222 165 23 924 24
13 6 973 686 160 1716 39
14 7 5456 3249 1380 3432 68

TABLE 1. Time (in seconds) for the computation of the
secant dimensions of the Grassmannian of d-spaces in
n-space. The third column lists the total time spent;
the fourth and fifth, respectively, the time used for the
construction of the module along with the matrices
in Step (3), and for the computation of the basis in
Step 6(c). The sixth column displays the dimension
of the g-module, and the last column contains kmax,
the maximal k for which dim kC has been computed.

independence of the basis elements. The necessary algo-
rithms for quantum groups are implemented in the GAP4
package QuaGroup [de Graaf 05].

With this, the computation in the example above took
71 seconds, with only 3 seconds spent in Step 6(c).

In computing modulo a prime, the computed dimen-
sions may be smaller than those over Q. However, we
have an upper bound for the dimension of kC (namely
k dim C), which “usually” gives the correct dimension.
Furthermore, if this bound is attained by our algorithm,
then we are sure to have the correct value. It rarely hap-
pens that this upper bound is not reached. However, if
this happens to be the case, then we perform the compu-
tation modulo a bigger prime, and eventually over Q. If
we still do not attain the upper bound in that case, we
conclude that we are in a defective situation with high
probability.

Another problem occurs when the dimension of V gets
large (e.g., close to 1000). Then storing the matrices in
Step (3) may lead to memory problems. To get around
this we used an ad hoc implementation of sparse ma-
trices (storing only the nonzero entries). This greatly
reduces the memory requirements, and for dimensions
greater than roughly 500 leads to a speedup for the ma-
trix multiplications in Step 6 (b) as well.

Table 1 contains some run times of the algorithm in
computing the secant dimensions of the Grassmannian
of d-dimensional subspaces of n-space. We see that the
running times increase rather sharply, mainly because the
same holds for the dimensions of the g-modules. Most of
the time is spent on the construction of the module V (λ)
and the matrices of Step (3). For small n, the time used in
Step 6(c) is negligible, but as n increases, the percentage
of the time spent in that step also increases.
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4. CONJECTURES

4.1 Grassmannians

For G = SLn and V =
∧d(Cn), the minimal orbit X

is the Grassmannian, in its Plücker embedding, of d-
dimensional vector subspaces of Cn, and the cone C over
X is the set of (completely) decomposable wedge prod-
ucts in V . For this setting, our algorithm more or less
reduces to the algorithm presented in [McGillivray 05],
in which article the following conjecture is also tested up
to n = 14. For d = 2 the set kC equals is the set of
all skew-symmetric matrices of (usual matrix) rank at
most 2k (see, e.g., [Zak 93] or [Baur and Draisma 04]);
we therefore exclude d = 2 in the following conjecture.

Conjecture 4.1. Suppose that d > 2 and also that 2d ≤ n.
Then C is defective in exactly the following cases:

1. n = 7 and d = 3, in which case (dim kC)k equals
(13, 26, ∗34, 35);

2. n = 8 and d = 4, in which case (dim kC)k equals
(17, 34, ∗50, ∗64, 70); or

3. n = 9 and d = 3, in which case (dim kC)k equals
(19, 38, 57, ∗74, 84),

where ∗ indicates the defective dimensions.

We have verified this conjecture with our program for
all n up to 15. The defective Grassmannians in the list
above were already found in [Catalisano et al. 05a]. For
each of them, the first defect occurs at the smallest k

with kd > n. The following proposition shows that there
are no other defective Grassmannians with this property.

Proposition 4.2. In the setting of Conjecture 4.1, write
n = qd + r with 0 ≤ r < d. Then kC is not defective
for k = 1, . . . , q, and (q + 1)C is defective if and only if
(n, d, q + 1) ∈ {(7, 3, 3), (8, 4, 3), (9, 3, 4)}.

The statement for k ≤ q is already present in [Catal-
isano et al. 05a].

Proof: For k ≤ q + 1 the group SLn has a dense orbit on
the k-fold Cartesian power Xk. Indeed, choose a basis

e11 · · · · · · · · · e1d

e21 · · · · · · · · · e2d

...
...

eq,1 · · · · · · · · · eq,d

eq+1,1 · · · eq+1,r

of Cn. For every d-subset S of

A := {(i, j) | 1 ≤ i ≤ q + 1, 1 ≤ j ≤ d,

and i = q + 1 ⇒ j ≤ r},
we let eS denote the wedge product (say in normal read-
ing order) of the eij with (i, j) ∈ S; these form a basis of
V =

∧d
Cn. For i = 1, . . . , q let vi be the wedge product

of the ith row in the array above. For j = r +1, . . . , d let
sj be the sum of the dth column in the array above, and
set

vq+1 := eq+1,1 · · · eq+1,rsr+1 · · · sd.

One readily verifies that the GLn-orbit of the tuple
(Cvi)k

i=1 is dense in Xk for all k = 1, . . . , q + 1. There-
fore, the generic rank of the summation map Ck → kC

equals its rank at the tuple (v1, . . . , vk). In other words,
the dimension of kC is equal to the dimension of the sum

Tv1C + · · · + Tvk
C.

Now for i ≤ q, the tangent space Tvi
C is the span

of all eS where S is a d-subset of A containing at least
d − 1 elements from row i. Using this description, the
assumption d > 2 readily implies that the sum

T := Tv1C + · · · + Tvq
C

is direct. This proves that dim(kC) = k dim(C) for
k ≤ q.

Now suppose that k = q + 1. Then the above shows
that kC is defective if and only if Tvk

contains a nonzero
element of T . An element of Tvk

is of the form

w :=
r∑

j=1

ek,1 · · · bj · · · ek,rsr+1 · · · sd

+
d∑

j=r+1

ek,1 · · · ek,rsr+1 · · · bj · · · sd,

where the bj ∈ Cn replaces ek,j in the first sum and sj in
the second sum. Let S be a d-set in A; we will compute
the coefficient of eS in w. First, eS can occur in w only
if S is of one of the following four types:

Type 1. S contains the entire last (kth) row of A, and
furthermore S hits all d − r last columns of A.

Type 2. S is obtained from a Type-1 set by replacing a
single position in the kth row, say (k, j), with j ≤ r,
by position (i, j) with i < k in the same column.

Type 3. S is obtained from a Type-1 set by replacing a
single position in the kth row, say (k, j), by position
(i, j′), with i < k and j′ �= j, i.e., in a different
column.
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Type 4. S is obtained from a Type-1 set by replacing a
single position in the last d − r columns, say (i, j),
with i < k and j > r, with a position (i′, j′) with
i′ < k and j′ �= j, i.e., in a different column.

For computing the coefficient of eS in w in these four
cases, we let B : A → C be the function mapping (i, j)
to the (i, j)th component of bj ; note that B records only
the entries of bj corresponding to basis elements of Cn in
column j. Then the coefficients are as follows:

1. If S is of Type 1, then eS can occur in all terms of
w (and, in fact, also in vk), and its coefficient in w

is ±∑
(i,j)∈S B(i, j) (the sign is irrelevant).

2. If S is of Type 2, then eS can occur only in the term
of w with index j, and its coefficient is ±B(i, j).

3. If S is of Type 3 or 4, then eS can occur only in the
term of w with index j, and there is a unique column
of A containing two elements of S, say (i1, j′), (i2, j′)
with i1 < i2 and j′ �= j. Now there are two cases:

(a) If j′ ≤ r, then i2 is equal to k = q + 1,
and eS has coefficient ±(bj)(i1,j′) (which is not
recorded by B!).

(b) If j′ > r, then the coefficient of eS is
±((bj)(i1,j′) − (bj)(i2,j′)): One chooses either
ei1,j′ as the jth factor and ei2,j′ as the factor
at position j′, or vice versa. Again, these coef-
ficients are not in B.

Now suppose that w ∈ T . Then the only eS that can
have nonzero coefficient in w are those for which S is
obtained from one of the first q rows of A by replacing a
single entry by another entry of A. Such d-sets S we will
call good, others bad. For every bad S of Types 1–4, the
above yields a linear condition on the coefficients of the
bj reflecting that eS has coefficient 0 in w. We will first
argue that we may assume the coefficients (bj)(i,j′) with
j′ �= j, i.e., those not recorded by B, to be zero.

By assumption, d ≥ 3 and n ≥ 2d ≥ 6, so q ≥ 2.
The case n = 6 = 2d needs special attention: Note that
then Tv1C ⊕ Tv2C = V , so that C is not defective. So
we assume that either d ≥ 4 or n > 2d. Then it is
somewhat tedious, but straightforward, to verify that the
linear conditions for S of Types 3 and 4 show that for all
j = 1, . . . , d one has the following:

1. For all j′ ≤ r with j′ �= j, and for all i = 1, . . . , q,
one has (bj)(i, j′) = 0. Indeed, for this one need
only exhibit a bad S of Type 3 or 4 containing (i, j′)

and (k, j′) and no element from column j. If, for
instance, n = 8, d = 3, r = 2, k = q + 1 = 3, j =
1, j′ = 2, i = 2, then S indicated by the stars in the
following picture is such a bad d-set, of Type 3:

. . ∗

. ∗ .

. ∗

2. for all j′ > r with j′ �= j, and for all i1, i2 = 1, . . . , q

with i1 �= i2 one has (bj)(i1,j′) = (bj)(i2,j′). Indeed,
for this one need only exhibit a bad S of Type 3
or 4 containing (i1, j′), (i2, j′) and no element from
column j. If, for instance, n = 8, d = 4, r = 0, k =
q + 1 = 3, j = 2, j′ = 3, i1 = 1, i2 = 2, then

. . ∗ ∗
∗ . ∗ .

(with an empty last row) is an example of such a
bad S, of Type 4.

This shows that the components of the bj that are not
recorded by B together contribute only a scalar multiple
of vk to w. We may therefore just as well assume that
those components are all 0, i.e., that bj only has nonzero
coefficients in positions in the jth column of A. Hence
now all coefficients of eS in w are zero for S of Type
3 or 4.

Thus we end up looking for B : A → C with the
following properties:

1. For every bad S of Type 1, the sum
∑

(i,j)∈S B(i, j)
is 0. Pictorially, the sum of B along subsets of the
form

. . . . ∗

. . ∗ ∗ .
∗ ∗

is zero.

2. For every bad S of Type 2, the entry of B at position
(i, j) (as in the definition of Type 2) is 0. Pictorially,
if S contains the positions of the stars in

. . . . ∗

. ∗ ∗ ∗ .
∗ .

then B(2, 2) = 0.

3. For some good S of Type 1 the sum above is nonzero,
or for some good S of Type 2 the entry B(i, j) is
nonzero—this to ensure that w is a nonzero element
of T . This condition will be expressed by calling B

nontrivial.
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For (n, d, q + 1) ∈ {(8, 4, 3), (9, 3, 4)} (where the
(q + 1)st row of A is empty) there certainly are such B:

⎡
⎣

1 1 0 0
0 0 −1 −1

⎤
⎦ and

⎡
⎢⎢⎣

1 1 1
0 0 0
−1 −1 −1

⎤
⎥⎥⎦ .

Note that indeed, the sum along any subset S of the in-
dices that hits all columns is zero for bad S, while it can
be nonzero if S is good. For (n, d, q + 1) = (7, 3, 3) we
can take the B for (n, d, q + 1) = (9, 3, 4) and delete the
(empty last row and) positions (3, 2) and (3, 4). This
proves defectiveness of the Grassmannians in the propo-
sition. (And with a little extra work, one shows that all
B with the required properties lead to scalar multiples of
the same vector in Tvk

C ∩ T , so that the defect is 1.)
Finally, we have to show that such B exist only for

the parameters above. First we argue that r is at most
1. Indeed, suppose that r ≥ 2. Since k−1 = q ≥ 2, every
choice of a position (i, j) in {1, . . . , k − 1} × {1, . . . , r},
together with all entries (k, j′) with j′ ≤ r and j′ �= j,
can be extended to a bad S, having, in fact, positions in
three different rows. This implies that B(i, j) = 0 for all
i ≤ k − 1 and j ≤ r. Furthermore, all S of Type 1 are
bad (since r ≥ 2), so that B cannot be nontrivial.

So r ≤ 1. First we handle r = 0. We distinguish three
cases:

1. If d ≥ 5, then one readily sees that B must be
constant on each column of A: For instance, for
(n, d) = (10, 5) this follows for the third column of
A from the fact that the sum of B is zero along both
of the following bad d-sets:

∗ ∗ ∗ . .
. . . ∗ ∗ and

∗ ∗ . . .
. . ∗ ∗ ∗

Now if B is constant on each column, then its sums
along all S of Type 1 are identical; hence if that sum
is zero for bad S, then it is also zero for all good S,
but then B cannot be nontrivial. This settles d ≥ 5.

2. If d = 4 and q ≥ 3, then again B is necessarily
constant on every column of A; for instance, the fact
that the sum of B is zero along the two bad sets

∗ ∗ . .
. . ∗ .
. . . ∗ and

∗ ∗ . .
. . ∗ ∗
. . . .

shows that B(2, 4) = B(3, 4). As in the case in which
d ≥ 5, this implies that B cannot be nontrivial.

3. Finally, if d = 3 and n ≥ 12, then a similar reasoning
using bad sets such as

∗ . .
. ∗ .
. . ∗
. . .

and

∗ . .
. ∗ .
. . .
. . ∗

shows that again B is constant on each column,
hence trivial.

Next take r = 1. Now we distinguish two cases:

1. d ≥ 4. Then using bad d-sets of Type 2 such as

. . ∗ ∗
∗ ∗ . .
.

one finds that B(i, 1) = 0 for all i < k. Also, the
fact that B sums up to 0 along d-sets of Type 1 such
as

. . ∗ ∗

. ∗ . .
∗

and
. . ∗ .
. ∗ . ∗
∗

shows that B is constant on each of the d − 1 last
columns of A. As before, this implies that B does
not meet the nontriviality condition.

2. d = 3 and n ≥ 10. Then bad d-sets of Type 2 such
as

. . ∗

. ∗ .
∗ . .
.

show that B(i, 1) = 0 for all i < k. And finally, pairs
of d-sets such as

. . ∗

. . .

. ∗ .
∗

and

. . .

. . ∗

. ∗ .
∗

show that B is constant on each of the d − 1 last
columns of A, hence not nontrivial.

This proves the proposition.

We cannot resist pointing out an interesting link be-
tween secant dimensions of Grassmannians and coding
theory: a binary code of length n and constant weight d

is a subset of {0, 1}n in which every element has exactly d

entries equal to 1. The (Hamming) distance between two
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elements of {0, 1}n is the number of coordinates where
they differ.

Theorem 4.3. Retain the setting of Conjecture 4.1, and
let B be a binary code of length n and constant weight d

with |B| = k. Then the following hold:

1. If the distance between any two distinct elements of B

is at least 6, then kC is not defective.

2. If every word in {0, 1}n of weight d has an element of
B at distance at most 2, then kC = V .

The first observation slightly generalizes [Catalisano
et al. 05a, Theorem 2.1.ii]; the second observation is also
stated, in a slightly different form, in [Ehrenborg 00,
Proposition 7.5]. More relations between secant varieties
and combinatorics are given in [Sturmfels and Sullivant
06].

Proof: Let e1, . . . , en be a basis of Cn. To every word
w in {0, 1}n of weight d we associate an element of V

as follows: If i1 < · · · < id are the coordinates i where
bi = 1, then we set

ew := ei1 · · · eid
∈ V.

Now

Tew
C =

d∑
j=1

ei1 · · · eij−1Cneij+1 · · · eid

is precisely the span of all eu where u is a word of weight
d at distance at most 2 from w. Hence the dimension
of

∑
b∈B Teb

C (and therefore that of kC) is at least the
cardinality of the set of all weight-d words in {0, 1}n at
distance at most 2 from B. This implies both statements.

4.2 Segre powers

For G = SLd
n and V = (Cn)⊗d, the minimal orbit X

is (Pn−1)d in its Segre embedding, and the affine cone C

over X is the set of decomposable tensors in V . For d = 2
the set kC corresponds to the set of n×n matrices of rank
at most k, so we leave out this well-understood case from
our study. Already for d = 3, or for d large and n = 2,
the secant dimensions are not known, though there are
some results, for a good overview of which we refer to
[Catalisano et al. 02]. Our conjecture is as follows.

Conjecture 4.4. Suppose that d �= 2. The variety C is
defective if and only if

1. n = 2 and d = 4, in which case (dim kC)k equals
(5, 10, ∗14, 16); or

2. n = 3 and d = 3, in which case (dim kC)k equals
(7, 14, 21, ∗26, 27),

where ∗ indicates the defective secant dimensions.

We have verified this conjecture with our program for
d+n ≤ 8 as well as for n = 2 and d = 9, 10 and for d = 3
and n ≤ 9. Again, it is not hard but tedious to prove the
following proposition.

Proposition 4.5. In the setting of Conjecture 4.4, kC is
not defective for k ≤ n, and (n + 1)C is defective if and
only if (n, d) ∈ {(2, 4), (3, 3)}.

The proof is completely analogous to that of Proposi-
tion 4.2: Here (SLn)d has a dense orbit on Xk, whence
the rank of the differential of the summation map Ck →
kC need be computed only at a point of Ck over this or-
bit. We omit the details, but do report a funny numeric
coincidence: The same array B that shows that 3C is de-
fective for the Grassmannian of 4-dimensional subspaces
of an 8-dimensional space also shows that 3C is defective
for the fourth Segre power of PC2. The same (numeric)
connection exists between the defect in 4C for the Grass-
mannian of 3-dimensional subspaces of a 9-dimensional
space and the defect in 4C for the third Segre power
of PC3.

We recall another interesting link to coding theory,
which can be proved in the same manner as Theorem
4.3, but is also well known from [Catalisano et al. 02,
Ehrenborg 00, Sturmfels and Sullivant 06].

Theorem 4.6. In the setting of Conjecture 4.4, let B be a
subset of {1, . . . , n}d of size k. Then the following hold:

1. If the Hamming distance between any two elements of
B is at least 3, then kC is not defective.

2. If every element of {1, . . . , n}d is at distance at most
1 from an element of B, then kC = V .

4.3 A Finiteness Question

The experiments with our program suggest the following
question: Fix the complex semisimple group G. To what
extent is it true that the set of all irreducible representa-
tions of G whose minimal orbit is defective is finite? For
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instance, from the fundamental work of Alexander and
Hirschowitz [Alexander 88, Alexander and Hirschowitz
92, Alexander and Hirschowitz 95], we know that for each
n, only finitely many symmetric powers of the natural
representation of SLn have defective minimal orbits.

We give a conjecturally complete list of “defective
highest weights” for some small groups; note that for
G = SL2, the minimal orbit is defective in no irreducible
representation.

Conjecture 4.7. The only irreducible representations of
G for which the minimal orbit is defective are those with
the following highest weights (in the labeling of [Bourbaki
68]):

1. for G of Type A2:

(a) 2ω1 and 2ω2 with secant dimensions (3, ∗5, 6) (X
is the quadratic Veronese embedding of P2),

(b) 4ω1 and 4ω2 with secant dimensions
(3, 6, 9, 12, ∗14, 15) (the quartic Veronese em-
bedding of P2),

(c) ω1 +ω2 with secant dimensions (4, ∗7, 8) (a hyper-
plane section of the Segre embedding of P2 × P2),
and

(d) 2ω1 + 2ω2 with secant dimensions (4, 8, 12,

16, 20, 24, ∗26, 27) (the image of the previous vari-
ety under the quadratic Veronese reembedding of
P(Vω1+ω2), which image spans only a subspace of
projective dimension 26 in the space PS2(Vω1+ω2)
of dimension 35);

2. for G of Type A3:

(a) ω1 + ω2 and ω2 + ω3 with secant dimensions
(6, 12, ∗17, 20) (the flag variety of flags V1 ⊆ V2 ⊆
C4 with dim Vi = i, in its minimal-dimensional
embedding),

(b) 2ω1 and 2ω3 with secant dimensions (4, ∗7, ∗9, 10)
(the quadratic Veronese embedding of P3),

(c) ω1 + ω3 with secant dimensions (6, ∗11, ∗14, 15)
(a hyperplane section of the Segre embedding of
P3 × P3),

(d) 2ω2 with secant dimensions (5, 10, ∗14,

∗17, ∗19, 20) (the image of the Grassman-
nian of 2-spaces in 4-space under the quadratic
Veronese reembedding of PVω2 ; this image spans
a codimension-1 subspace), and

(e) 4ω1 and 4ω3 with secant dimensions
(4, 8, 12, 16, 20, 24, 28, 32, ∗34, 35) (the quartic
Veronese embedding of P3);

3. for G of Type B2:

(a) 2ω1 with secant dimensions (4, 8, ∗11, ∗13, 14) (the
image of a quadric in P4 under the quadratic
Veronese reembedding, which image spans a
codimension-1 subspace),

(b) 2ω2 with secant dimensions (4, ∗7, ∗9, 10) (the
image of the Grassmannian of isotropic 2-
dimensional vector spaces under the quadratic
Veronese reembedding),

(c) ω1+ω2 with secant dimensions (5, 10, ∗14, 16) (the
flag variety of isotropic flags V1 ⊆ V2 ⊆ C5 with
dim Vi = i, in its minimal embedding), and

(d) 4ω2 with secant dimensions (4, 8, . . . ,

28, 32, ∗34, 35) (the quartic Veronese reembedding
of the Grassmannian of isotropic 2-dimensional
vector spaces in C4); and, finally,

4. for G of Type G2:

(a) 2ω1 with secant dimensions (6, 12, ∗17, ∗21, 24)
(the quadratic Veronese reembedding of a quadric
in P6, spanning a codimension-1 subspace),

(b) ω2 with secant dimensions (6, ∗11, 14) (the orbit
of long-root vectors in G2), and

(c) 2ω2 with secant dimensions (6, . . . , 72, ∗76, 77)
(the quadratic Veronese reembedding of the previ-
ous variety, which image spans a proper subspace).

The conjecture for A2 and B2 has been verified for
weights iω1 + jω2 with i + j ≤ 6. For A3, the conjecture
has been checked for highest weights iω1 + jω2 + kω3

with i + j + k ≤ 4, and for G2 the conjecture has been
verified for all highest weights iω1 + jω2 with i + j ≤ 4.
To attack the question posed in this section, one would
need completely new techniques, far beyond our easy al-
gorithm. But we hope that the challenges boldly posed
in this paper as conjectures will be taken up by some of
our readers!
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