
On the Singularization of the
Two-Dimensional Jacobi–Perron Algorithm
B. Schratzberger

CONTENTS

1. Introduction
2. Ingredients
3. The Process of Insertion and Singularization
4. Examples
Acknowledgments
References

2000 AMS Subject Classification: Primary 11K50

Keywords: Jacobi–Perron algorithm, Podsypanin algorithm,
singularization, S-expansions

We present a constructive method to convert the (two-
dimensional) Jacobi–Perron evolution of (x1, x2) ∈ [0, 1]2 into
the corresponding evolution of Podsypanin, and vice versa. A
similar approach allows us to extend the result to Brun’s algo-
rithm. The method, based on the techniques of singularization
and insertion, is built up in steps. From experiments, we as-
sume that each step terminates after finitely many states almost
everywhere.

1. INTRODUCTION

In [Iosifescu and Kraaikamp 02], it is demonstrated in
detail how a multitude of semiregular one-dimensional
continued-fraction algorithms (the class of S-expansions)
are related to one another (cf. also [Kraaikamp 91]). In
particular, it is shown how such algorithms might be
transformed into other algorithms of the same class by
the techniques of singularization and insertion. Apart
from the classification, this allows us to transfer certain
statistical and approximation properties from one algo-
rithm to another in an intuitive way.

Although this classification is now quite well under-
stood in dimension one, little is known about similar
relations in higher dimensions (cf. [Schratzberger 04]).
In this paper, we will show that in two dimensions, the
Podsypanin algorithm and the Jacobi–Perron algorithm
can be linked by very similar techniques. We present
a constructive process for converting one algorithm into
the other by means of singularization and insertion. The
method is built up in steps. From experiments, we as-
sume that each step of this process terminates after a
finite number of stages. Apart from [Schratzberger 04],
this is to our knowledge the first time that this method
has been applied in dimension two.

We now describe the fundamental definitions and
ideas. Let X be some suitable subset of R

2. Most gener-
ally, we consider algorithms T : {1, 2}×N0×Z×X → X,
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which can be described as follows:

T (j, A,C, x1, x2) :=

⎧⎨
⎩
(

1
x2

− A, x1
x2

− C
)

if j = 1,(
x2
x1

− C, 1
x1

− A
)

if j = 2.

The local inverse branches V : {1, 2}×N0 ×Z×X → X,
again dependent on the digits j, A, and C, are given as

V (j, A,C, x1, x2) :=

⎧⎨
⎩
(

x2+C
x1+A , 1

x1+A

)
if j = 1,(

1
x2+A , x1+C

x2+A

)
if j = 2.

We refer to j ∈ {1, 2} as the type, and to A and C

as the partial quotients of T and V , respectively. If
the digits are uniquely specified, we will often write
T (x1, x2) and V (x1, x2) instead of T (j, A,C, x1, x2) and
V (j, A,C, x1, x2).

An extensive account on piecewise fractional linear
maps is given in [Schweiger 00]. We adopt the follow-
ing definitions:

Definition 1.1. Let X be a set, T : X → X. If there
exists a partition {X(i) : i ∈ I} of X, where I is finite
or countable, such that the restriction of T to X(i) is
injective, then (X,T ) is called a fibred system.

The partition {X(i) : i ∈ I} is called the time-1 parti-
tion.

Definition 1.2. A cylinder of rank t is the set

X(i1, . . . , it) := {x : i(x) = i1, . . . , i(T t−1(x)) = it}.

A cylinder X(i1, . . . , it) is called full if

T tX(i1, . . . , it) = X.

In particular, we are interested in two well-known spe-
cial cases of T : The first example of a generalization of
the regular one-dimensional continued-fraction algorithm
was given by [Jacobi 68] in an (unsuccessful) attempt
to generalize Lagrange’s theorem on quadratic irrational
numbers and the eventual periodicity of their expansions.
His algorithm was revived in [Perron 07]. For a general
description of the Jacobi–Perron algorithm and its prop-
erties, see [Schweiger 00].

Other types of multidimensional continued-fraction al-
gorithm were later proposed by several authors to gener-
alize some of the classical properties of the regular one-
dimensional algorithm. We consider an algorithm intro-
duced by Podsypanin [Podsypanin 77] as a generalization
of Brun’s algorithm (see also [Pustyl′nikov 03]).

00

1

1A= 1

C = 1

A= 2

C= 2

A= 3...

...

FIGURE 1. The time-1 partition of the JPA.

We give the definitions of the two algorithms in ques-
tion. Here and in the following, [x] will denote the integer
part of some x ∈ R.

Definition 1.3. [Perron 07] The (two-dimensional)
Jacobi–Perron algorithm (JPA) is generated by a map
TJ : [0, 1]2 → [0, 1]2,

TJ(x1, x2) =
(

x2

x1
− C,

1
x1

− A

)
,

where A :=
[

1
x1

]
and C :=

[
x2
x1

]
.

Let t ≥ 1, and define

A(t) = A(t)
(
x

(0)
1 , x

(0)
2

)
:= A

(
T t−1

J (x(0)
1 , x

(0)
2 )
)

,

C(t) = C(t)
(
x

(0)
1 , x

(0)
2

)
:= C

(
T t−1

J

(
x

(0)
1 , x

(0)
2

))
,

while j(t) := 2. The algorithm is ergodic and conser-
vative, and it is known to admit an invariant measure.
Not all cylinders XJ

((
A(1), C(1)

)
, . . . ,

(
A(t), C(t)

))
are

full. In particular, the conditions of Perron state that
whenever A(t) = C(t) for some t, then C(t+1) > 0. See
Figure 1.

The two-dimensional JPA is a projective version
of a linear three-dimensional algorithm: Let M :=
{(b0, b1, b2) : b0 ≥ b1 ≥ 0, b0 ≥ b2 ≥ 0}, and define
τJ : M → M by

τJ(b0, b1, b2) = (b1, b2 − Cb1, b0 − Ab1),

where A :=
[

b0
b1

]
and C :=

[
b2
b1

]
. Now using the projec-

tion map p : M → [0, 1]2 defined by

p(b0, b1, b2) =
(

b1

b0
,
b2

b0

)
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yields the two-dimensional JPA. The matrices α
(t)
J :=

αJ(A(t), C(t)) of τJ are given as

αJ(A,C) =

⎛
⎝ 0 1 0

0 −C 1
1 −A 0

⎞
⎠ .

The inverses β
(t)
J := βJ(A(t), C(t)) of the matrices of the

algorithm,

βJ(A,C) =

⎛
⎝ A 0 1

1 0 0
C 1 0

⎞
⎠ ,

produce a series of convergence matrices
{

Ω(t)
J

}∞

t=0
as

follows:

Ω(0)
J =

⎛
⎜⎝ q(0) q(−2) q(−1)

p
(0)
1 p

(−2)
1 p

(−1)
1

p
(0)
2 p

(−2)
2 p

(−1)
2

⎞
⎟⎠ := E,

and

Ω(t)
J =

⎛
⎜⎝ q(t) q(t−2) q(t−1)

p
(t)
1 p

(t−2)
1 p

(t−1)
1

p
(t)
2 p

(t−2)
2 p

(t−1)
2

⎞
⎟⎠ := Ω(t−1)

J β
(t)
J .

The columns of the convergence matrices produce Dio-
phantine approximations(

p
(t)
1

q(t)
,
p
(t)
2

q(t)

)

to
(
x

(0)
1 , x

(0)
2

)
.

Definition 1.4. [Podsypanin 77] The (two-dimensional)
Podsypanin algorithm (PA) is generated by a map TP :
[0, 1]2 → [0, 1]2, where

TP (x1, x2) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(
1
x2

− A, x1
x2

)
if x2 ≥ x1 (j = 1),

A :=
[

1
x2

]
,(

x2
x1

, 1
x1

− A
)

if x1 ≥ x2 (j = 2),

A :=
[

1
x1

]
.

As above,

j(t) = j(t)(x(0)
1 , x

(0)
2 ) := j(T t−1

P (x(0)
1 , x

(0)
2 )),

A(t) = A(t)(x(0)
1 , x

(0)
2 ) := A(T t−1

P (x(0)
1 , x

(0)
2 )),

and C(t) := 0. All cylinders

XP ((j(1), A(1)), . . . , (j(t), A(t)))

are full, and the algorithm again is ergodic and conser-
vative. The density of the invariant measure is explicitly
known [Schweiger 78]. See Figure 2.

The inverses are given as β
(t)
P := βP (j(t), A(t)), where

βP (1, A) =

⎛
⎝ A 1 0

0 0 1
1 0 0

⎞
⎠

and

βP (2, A) =

⎛
⎝ A 0 1

1 0 0
0 1 0

⎞
⎠ .

The convergence matrices Ω(t)
P and the corresponding

Diophantine approximations are defined similarly to the
above. We may generalize the definitions of the matrices
βJ(A,C) and βP (j, A) to β(j, A,C), where

β(1, A,C) =

⎛
⎝ A 1 0

C 0 1
1 0 0

⎞
⎠

and

β(2, A,C) =

⎛
⎝ A 0 1

1 0 0
C 1 0

⎞
⎠ .

Thus βJ(A,C) = β(2, A,C) and βP (j, A) = β(j, A, 0).
Similar to the above, j is referred to as the type of the
matrix β(j, A,C).

Assume that we want to transform the JPA evolution
of a given

(
x

(0)
1 , x

(0)
2

)
∈ [0, 1]2 into the corresponding

PA evolution. Note that as long as x
(t)
2 ≤ x

(t)
1 , the JPA

equals the PA. Thus the method starts at
(
x

(t)
1 , x

(t)
2

)
,

where t ≥ 0 is the smallest integer such that x
(t)
2 > x

(t)
1 .

In particular, we need to determine the size of
[
1/x

(t)
2

]
.

0
0

1

1

j= 2

j=1

A=1

A=1

A=2

A=2

A=3

A=3

...

...
...

FIGURE 2. The time-1 partition of the PA.
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Note that for i ≥ 1, there are uniquely defined digits
(A(t+1), C(t+1)), . . . , (A(t+i), C(t+i)) such that

(x(t)
1 , x

(t)
2 ) ∈ XJ((A(t+1), C(t+1)), . . . , (A(t+i), C(t+i))).

Hence
[
1/x

(t)
2

]
is dependent on the digits of the JPA

evolution of
(
x

(t)
1 , x

(t)
2

)
and the size of

XJ

((
A(t+1), C(t+1)

)
, . . . ,

(
A(t+i), C(t+i)

))
→ 0

as i → ∞; in fact,
(
x

(t)
1 , x

(t)
2

)
can be defined as

∞⋂
i=1

XJ

((
A(t+1), C(t+1)

)
, . . . ,

(
A(t+i), C(t+i)

))
.

We try to derive the digits of the PA evolution from the
digits of the JPA evolution.

Example 1.5. Consider some suitable (x1, x2) ∈
XJ((2, 1), (A2, C2)). If C2 ≤ 1, then

[
1
x2

]
= 1, while

if C2 > 1, then
[

1
x2

]
= 2. See Figure 3.

The basic idea of the method proposed in the fol-
lowing sections is that not only the first digits, but the
entire PA evolution of a.e. such

(
x

(t)
1 , x

(t)
2

)
can be de-

rived by manipulating the digits of the JPA evolution
of
(
x

(t)
1 , x

(t)
2

)
. This will be done by operations on the

matrices β
(
j(t+i), A(t+i), C(t+i)

)
, i ≥ 1. In particular,

we generalize the techniques of singularization and inser-
tion. A detailed discussion of the concept of S-expansions

C1=1

A1 =2

C2 =0,1

C2>1

FIGURE 3. (x1, x2) ∈ XJ((2, 1), (A2, C2)). In this
case, the size of [1/x2] only depends on the size of C2.

in the one-dimensional case is given in [Iosifescu and
Kraaikamp 02]. A first attempt at a generalization to
two dimensions, applied to Brun’s algorithm, has been
given in [Schratzberger 04].

The fundamental idea of singularization, as intro-
duced in [Kraaikamp 91], was to improve approximation
properties of the (one-dimensional) regular continued-
fraction algorithm. In particular, Kraaikamp was inter-
ested in semiregular continued-fraction algorithms whose
sequences of convergents

{
p(t)/q(t)

}∞
t=1

are subsequences
of the sequence of regular convergents to x.

This was done by removing certain matrices β(t) from
the sequence of inverse matrices {β(t)}∞t=0 of the regu-
lar continued-fraction algorithm (where the matrices β(t)

are defined in a spirit similar to that of the above). The
process was defined by a matrix identity and a law of sin-
gularization, which in an unambiguous way determined
the matrices to be singularized. We generalize this def-
inition of singularization. For more details on the two-
dimensional case, we refer to [Schratzberger 04].

Definition 1.6. A transformation σt defined by a matrix
identity that removes the matrix β(t) from the sequence
of inverse matrices that changes an algorithm into a new
form such that the sequence of Diophantine approxima-

tions
{(p

∗(t)
1

q∗(t) ,
p
∗(t)
2

q∗(t)

)}∞
t=0

obtained from the new algorithm
is a subsequence of the original one is called a singulariza-
tion. We say that we have singularized the matrix β(t).

The process works in both directions: under certain
criteria defined by a law of insertion, in using the inverse
matrix identities from above we will be able to insert a
matrix β∗(t).

Definition 1.7. A transformation σt defined by a matrix
identity that inserts the matrix β∗(t) into the sequence
of inverse matrices that changes an algorithm into a new
form such that the sequence of Diophantine approxima-

tions
{(p

(t)
1

q(t) ,
p
(t)
2

q(t)

)}∞
t=0

obtained from the original algo-
rithm is a subsequence of the sequence of approximations{(p

∗(t)
1

q∗(t) ,
p
∗(t)
2

q∗(t)

)}∞
t=0

of the new algorithm is called an in-
sertion. We say we have inserted the matrix β∗(t).

Recall that in the case of the PA, we have βP (j, A) =
β(j, A, 0) (i.e., C = 0), while all matrices of the JPA are
of type 2. Hence when transforming the JPA evolution of
some initial (x(0)

1 , x
(0)
2 ), we first need to switch the type

j(t+1), where C(s) = 0 for 1 ≤ s ≤ t and C(t+1) ≥ 1. In
particular, we will try to insert a matrix β

(
1,
[

1

x
(t)
2

]
, 0
)
.
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This insertion will be defined by the matrix identities
described in Section 2 and a law of insertion described in
Section 3.

As opposed to the conversion processes described in
[Iosifescu and Kraaikamp 02] and [Schratzberger 04], we
use different matrix identities, and more of them. The
process of insertion and singularization to be defined is
much more complex, and depends on the choice of the
initial

(
x

(0)
1 , x

(0)
2

)
. Hence it cannot be described by a

simple law of insertion and singularization comparable
with the laws of singularization LM, L1, and Lq from
[Schratzberger 04], for example.

Instead, we will give certain criteria related to
the digits that allow the insertion of the matrix
β
(
1,
[

1

x
(t)
2

]
, 0
)
. In case these criteria are not met, we

will further describe how we may modify some matrices
β
(
j(t+i), A(t+i), C(t+i)

)
, where i > 1, with similar oper-

ations, in order to fulfill the criteria afterward. Experi-
ments indicate that this can be done in a finite number
of operations a.e.

In the opposite case, if we want to transform the PA
evolution of some corresponding

(
x

(t)
1 , x

(t)
2

)
into its JPA

evolution, under certain criteria we may singularize the
matrix β

(
1, A(t+1), 0

)
. Again, if the criteria are not met,

we may perform modifications on some subsequent ma-
trices β

(
j(t+i), A(t+i), C(t+i)

)
in order to guarantee the

criteria afterward.
Since the matrices β

(
j(t), A(t), C(t)

)
are defined as the

inverses of the matrices of the algorithm, their modifi-
cation obviously yields the modification of the original
algorithm. In particular, in the course of the transforma-
tion of one algorithm into the other, we will temporarily
encounter the following algorithm:

Definition 1.8. TS : {1, 2} × [0, 1]2 → [0, 1]2 is defined as

TS(j, x1, x2) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(
1
x2

− A, x1
x2

− C
)

if j = 1, A :=
[

1
x2

]
,

C :=
[

x1
x2

]
,(

x2
x1

− C, 1
x1

− A
)

if j = 2, A :=
[

1
x1

]
,

C :=
[

x2
x1

]
.

Let j1, . . . , jt−1 be uniquely specified, and

(
x

(1)
1 , x

(1)
2

)
= TS

(
j1, x

(0)
1 , x

(0)
2

)
, . . . ,

(
x

(t−1)
1 , x

(t−1)
2

)
= TS

(
jt−1, x

(t−2)
1 , x

(t−2)
2

)
.

Analogously to the above, we define

A(t) := A
(
jt, x

(t−1)
1 , x

(t−1)
2

)
and

C(t) := C
(
jt, x

(t−1)
1 , x

(t−1)
2

)
.

Not all cylinders

X
((

j1, A
(1), C(1)

)
, . . . ,

(
jt, A

(t), C(t)
))

of this algorithm are full, and we have an analogue of the
conditions of Perron (the extended conditions of Perron):
if for some t we have A(t) = C(t) and jt = jt+1, then
C(t+1) > 0; if A(t) = C(t) and jt �= jt+1, then C(t+1) = 0.

The inverses of the matrices of this algorithm are given
in the obvious way: β(t) := β

(
jt, A

(t), C(t)
)
. We may

now specify the qualities of the generalized process of
singularization and insertion to be defined: as indicated
above, in transforming the JPA into the PA, our method
starts with the first matrix β

(
jt, A

(t), C(t)
)
, where C(t) >

0 (note that in this case, j1 = · · · = jt = 2). In the
opposite case, in transforming the PA into the JPA, our
method starts with the first matrix β

(
1, A(t), 0

)
.

For a given j ∈ {1, 2}, define j∗ such that jj∗ = 2.
The matrices β

(
jt+i, A

(t+i), C(t+i)
)
, where i ≥ 0, and

thus the evolution of
(
x

(t−1)
1 , x

(t−1)
2

)
, will be modified in

a way such that the following conditions hold:

1. For almost every such
(
x

(t−1)
1 , x

(t−1)
2

)
, after a finite

number of operations, a matrix β
(
j∗t ,
[
1/x

(t−1)
2

]
, 0
)

can be inserted or the matrix β
(
jt, At, 0

)
can be sin-

gularized.

2. The evolution thus modified might contain an episode
in which it can be described neither by the algorithm
TJ nor by TP . This episode can be described by the
algorithm TS , where the types are uniquely defined by
the method.

After having successfully inserted

β
(
j∗t−1,

[
1/x

(t−1)
2

]
, 0
)

or singularized β
(
jt, At, 0

)
, we continue considering

the next matrix β
(
jt+k, A(t+k), C(t+k)

)
(of the mod-

ified evolution), where for k ≥ 1, we either have
C(t+k) > 0 (singularization) or C(t+k) = 0 (insertion).

We claim that:

3. The method also applies to TS and its related matri-
ces.
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Note that although it is assumed from experimental
evidence, at this point there is no proof that condition
1 (in particular, the word “finite”) holds for the process
described in the following sections. Together with condi-
tion 3, this would result in a fourth condition:

4. The length of the episode described by TS will be 0
infinitely often a.e.

The latter proposition would imply that for almost
every (x1, x2), its JPA evolution and the PA evolution
“meet” infinitely often. Further, since they are defined
by the matrices β(t), both algorithms would produce in-
finitely many common convergents(

p
(t)
1

q(t)
,
p
(t)
2

q(t)

)

(cf. [Schratzberger 04]).

2. INGREDIENTS

Before we actually develop the method to transform
the PA into the JPA, and vice versa, we establish the
method’s ingredients, based on the techniques of singu-
larization and insertion as described in [Iosifescu and
Kraaikamp 02] and [Schratzberger 04]. As indicated,
these techniques are based on some matrix identities, to
be applied to the inverse matrices of an algorithm. Hence
in the current section, we present the matrix identities
used in the process described in Section 3. The following
matrix identity of type I1, and its inverse of type I2, are
fundamental:

Type I1:

β(j, A1, 0)β(j, A2, C2)β(j∗, A3, C3)

= β(j∗, A1A2 + C2, A2)β(j∗, A3, A1 + C3).

Type I2:

β(j, A1, C1)β(j, A2, C2)

= β(j∗,X, 0)β(j∗, C1, A1 − XC1)β(j, A2, C2 − X).

Thus whenever in the PA evolution of an initial(
x

(0)
1 , x

(0)
2

)
we encounter a j(t) = 1, we will try to use

matrix identity type I1 to switch the type of the matrix
β(t) from type 1 to type 2. Since j(t) = 1 means that
x

(t−1)
2 > x

(t−1)
1 , this is exactly what the JPA evolution

would look like (at time t) (cf. Figures 1 and 2).
If j(t) = j(t+1) �= j(t+2) and A(t+2) ≥ A(t) +

C(t+2) (where the extended conditions of Perron are
fulfilled), we may directly apply matrix identity type

I1. In all other cases we first have to modify the dig-
its (j(t), A(t), C(t)), (j(t+1), A(t+1), C(t+1)), and so on to
guarantee the criteria afterward. We state the following
lemma.

Lemma 2.1. Consider some initial (x1, x2) ∈ R
2 and

a corresponding T evolution specified by some digits
(j1, A1, C1), . . . , (jt, At, Ct). If for all i, t ≥ i ≥ 1,

(i) T t(x1, x2) ∈ [0, 1]2,

(ii) Ai ∈ N, Ci ∈ N0,

(iii) we have exactly one of

(a) Ai > Ci,

(b) Ai = Ci, ji = ji+1, and Ci+1 > 0,

(c) Ai = Ci, ji �= ji+1, and Ci+1 = 0,

then for every k such that t − 1 ≥ k ≥ 0, we have

T k(x1, x2)

∈ X
(
(jk+1, Ak+1, Ck+1), . . . ,(
jt+1, A

(
jt+1, T

t(x1, x2)
)
, C
(
jt+1, T

t(x1, x2)
)))

.

Remark 2.2. The assumptions in item (iii) of Lemma 2.1
concerning Ci+1 subject to ji and ji+1 if Ai = Ci are
implied by the extended conditions of Perron.

Proof of Lemma 2.1: Define ∆(x, x′, x′′) to be the in-
terior of the triangle defined by the vertices x, x′, and
x′′, and let � (x, x′, x′′, x′′′) denote the interior of the
quadrangle defined by the vertices x, x′, x′′, and x′′′.
The result follows inductively (k → k − 1) from the
application of the local inverse V , with the appropri-
ate digits, to �((0, 0), (1, 0), (1, 1), (0, 1)) (if Ak > Ck) or
∆((0, 0), (1, 0), (1, 1)) and ∆((0, 0), (1, 1), (0, 1)) (if Ak =
Ck and jk = 1 or jk = 2, respectively).

Example 2.3. Let (x1, x2) ∈ XP ((1, 2), (1, 1), (2, 4)). Af-
ter the application of matrix identity type I1, the modi-
fied evolution is specified by the digits (2, 2, 1), (2, 4, 2).
Hence in this case, the singularization leads directly to
the JPA evolution of (x1, x2). See Figure 4.

Recall that to apply the above matrix identities suc-
cessfully, there are strict assumptions concerning the
types. In particular, if j2 = j3, we may alternatively
use the following matrix identities:
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x
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TJ

FIGURE 4. x ∈ XP ((1, 2), (1, 1), (2, 4)). The dashed
line shows the evolution of x after singularization.

Type II1:

β(j, A1, 0)β(j, A2, C2)β(j, A3, 0)β(j, A4, C4)

= β(j∗, A1A2 + C2, A2)β(j, A3, 0)

× β(j, A1 + A4, C4 − A1A3).

Type II2:

β(j, A1, C1)β(j∗, A2, 0)β(j∗, A3, C3)

= β(j∗,X, 0)β(j∗, C1, A1 − XC1)β(j∗, A2, 0)

× β(j∗, A4 − X,C4 + XA2).

Note that matrix identity type I1 can be directly ap-
plied only if A3 ≥ A1 +C3 (with respect to the extended
conditions of Perron). Similar restrictions subject to the
partial quotients Ai and Ci (i ≥ 1) are true for matrix
identities types I2, II1, and II2. In these cases, we first
need to modify some digits (ji, Ai, Ci) (i ≥ 2) to meet
the criteria. For example, we need to reduce C3. We
propose the following matrix identities:

Type I3:

β(j, A1, C1)β(j, A2, C2)β(j∗, A3, C3)

= β(j, A1 − K,C1)β(j, A2, C2 + KA2)

× β(j∗, A3, C3 + K),

β(j, A1, C1)β(j∗, A2, C2)β(j, A3, C3)

= β(j, A1, C1 − K)β(j∗, A2, C2 + KA2)

× β(j, A3, C3 + K).

x

TP
5x

TP

TJ

FIGURE 5. x ∈ XP ((1, 1), (1, 2), (2, 1), (2, 1), (2, 5)).
The dashed lines show the evolution of x after appli-
cation of matrix identities II3 (thin line) and I1.

Type II3:

β(j, A1, C1)β(j, A2, C2)β(j, A3, 0)β(j, A4, C4)

= β(j, A1 − K,C1)β(j, A2, C2 + KA2)β(j, A3, 0)

× β(j, A4 + K,C4 − KA3),

β(j, A1, C1)β(j∗, A2, C2)β(j∗, A3, 0)β(j∗, A4, C4)

= β(j, A1, C1 − K)β(j∗, A2, C2 + KA2)β(j∗, A3, 0)

× β(j∗, A4 + K,C4 − KA3).

Example 2.4. Let

(x1, x2) ∈ XP ((1, 1), (1, 2), (2, 1), (2, 1), (2, 5)).

We cannot apply matrix identity type II1, since j2 �= j3;
nor can we apply I1, since A3 = A1 + C3, j3 = j4, and
C4 = 0 (thus the extended conditions of Perron with
respect to the digits j4 and C4 would not be fulfilled).
Hence we first have to modify β3 in applying matrix
identity type II3 (where K = −1) from the second ma-
trix, which results in an evolution specified by the digits
(1, 1, 0), (1, 2, 1), (2, 1,−1), (2, 1, 0), (2, 4, 1). Note that
this forces the thus modified orbit of (x1, x2) to leave
the unit square temporarily (cf. Figure 5). Now the con-
ditions for matrix identity I1 are fulfilled, and we may
finish the singularization process. The modified evolu-
tion of (x1, x2) is specified by the digits (2, 3, 2), (2, 1, 0),
(2, 1, 0), (2, 4, 1).

Example 2.4 illustrates how, in some cases, the ma-
nipulation of some digits (ji, Ai, Ci) (i ≥ 2) is necessary
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to meet the criteria to successfully singularize or insert a
matrix β(j1, A1, C1). In particular, these manipulations
may result in partial quotients Ci < 0. The following
matrix identities will be used in related cases:

Type III1:

β(j, A1, C1)β(j, 1, 0)β(j, A3,−C3)β(j, 1, 0)β(j∗, A5, C5)

= β(j, A1, C1 + 1)β(j∗, A3 − C3 + 1, C3 − 1)

× β(j∗, A5 + 1, C5 − 1),

β(j, A1, C1)β(j∗, 1, 0)β(j∗, A3,−C3)β(j∗, 1, 0)β(j, A5, C5)

= β(j, A1 + 1, C1)β(j, A3 − C3 + 1, C3 − 1)

× β(j, A5 + 1, C5 − 1).

Type III2:

β(j, A1, C1)β(j, A2,−C2)β(j, A3, C3)

= β(j, A1 − 1, C1)β(j∗, 1, 0)β(j∗, A2 − C2, C2 − 1)

× β(j∗, 1, 0)β(j, A3 − 1, C3 + 1),

β(j, A1, C1)β(j∗, A2,−C2)β(j∗, A3, C3)

= β(j, A1, C1 − 1)β(j, 1, 0)β(j, A2 − C2, C2 − 1)

× β(j, 1, 0)β(j∗, A3 − 1, C3 + 1).

Type IV1:

β(j, A1, C1)β(j∗, 1,−1)β(j∗, A3, C3)

= β(j, A1 + 1, C1 − 1)β(j, 1,−1)β(j, C3 + 1, A3 − 1)

Type IV2:

β(j, A1, C1)β(j, 1,−1)β(j, A3, C3)

= β(j, A1 − 1, C1 + 1)β(j∗, 1,−1)β(j∗, C3 + 1, A3 − 1)

Finally, to overcome potential situations in which for
some i ≥ 1, we have Ai = Ci = 0, we propose the follow-
ing matrix identities:

Type V1:

β(j, A1, C1)β(j, 0, 0)β(j∗, A3, C3)

= β(j, A1 + C3, A3 + C1),

β(j, A1, C1)β(j∗, 0, 0)β(j, A3, C3)

= β(j, A1 + A3, C1 + C3).

Type V2:

β(j, A1, C1) = β(j, Y,X)β(j∗, 0, 0)β(j, A1 − Y,C1 − X).

Type V3:

β(j, A1, C1) = β(j, Y,X)β(j, 0, 0)β(j∗, C1 − X,A1 − Y ).

Based on these matrix identities, we will now define a
process of insertion and singularization.

3. THE PROCESS OF INSERTION AND
SINGULARIZATION

Based on the previous section, we will describe a con-
structive method to transform the PA into the JPA (and
vice versa). The process is constructed as a set of states.

Depending on the digits, in each state the process ei-
ther terminates (i.e., a matrix has successfully been sin-
gularized, or inserted, or modified) or leads to another
state, with similar options. In the latter case, after suc-
cessful completion of the second state, the process returns
to the initial state.

The technical ingredients have been established in the
previous section. Hence in the following, we mainly spec-
ify the order of application of the above matrix identities.
For i ≥ 1, we most generally assume Ai ∈ N0 and Ci ∈ Z.
The initial situations are characterized in states P (from
PA to JPA) and J (from JPA to PA).

State S describes singularization criteria for specific
situations that do not occur in any regular PA evolution
(where Ci = 0) or in a regular JPA evolution (where
ji = 2). However, these situations might temporarily
occur in the course of the transformation of one algorithm
into the other.

Note that state J also includes the case C1 > 0 and
j1 = j2 = 1, which again is typical neither of a regular PA
evolution nor of a regular JPA evolution. However, this
case is treated exactly the same way as the case C1 > 0
and j1 = j2 = 2, the initial situation of transforming a
JPA evolution into a PA evolution.

At any state, we first check the types, to decide which
suitable matrix identity can be applied. If none of the
matrix identities described in Section 2 applies, we need
to switch some particular jt. This is again done by con-
tinuing at state P , J , or S (depending on Ct, jt, and
jt+1), starting with matrix βt. After successful comple-
tion of the second state, we return to the initial state.

Once the types are fixed, and hence the particular ma-
trix identity to be applied, we compare the modified par-
tial quotients with the criteria for a successful application
of this matrix identity.

Again, if the criteria are not met, we need to modify
some partial quotients At+1 or Ct+1. This is done by
continuing at states H11–H13 and H21–H14, starting
with matrix βt. In particular, at states H21 and H22,
Ct+1 is enlarged, while at states H23 and H24, Ct+1

is reduced (by at least 1). Thus H21 and H22 describe
exactly the inverse modifications, as opposed to H23 and
H24. Similarly, state H11 is inverse to states H12 and
H13, and state P is inverse to states J and S.
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3.1 State P

Consider the T evolution of some (x1, x2) specified by
the digits (j1, A1, C1), (j2, A2, C2), . . . and its matrices
β1, β2, . . . , where A1, A2, A3 ∈ N, C1 = 0, C2 ∈ N0, and
C3 ∈ Z.

If j1 �= j2: Switch the type j2 (state P , J , or S, accord-
ingly, starting with matrix β2).

If j1 = j2:

(1) If j2 = j3 and C3 = 0: If j3 �= j4, then switch the
type j4 (state P , J , or S, accordingly, starting with
matrix β4).

If j3 = j4:

If C4 ≥ A1A3: Apply matrix identity type II1, start-
ing with matrix β1. The process terminates.

If C4 < A1 and A3 = 1: Continue with state H11,
starting with matrix β2.

If C4 < A1A3 and A3 > 1: Switch the type j3 (state
P , starting with matrix β3).

(2) If j2 = j3 and C3 > 0: Switch the type j3 (state P ,
J , or S, accordingly, starting with matrix β3).

(3) If j2 �= j3: If A3 ≥ A1 + C3 (where the extended
conditions of Perron with respect to the digits j4 and
C4 are fulfilled), then apply matrix identity type I1

from β1. The process terminates.

In all other cases, reduce C3 (states H23 and H24, start-
ing with matrix β2). See Figure 6.

3.2 State J

Consider the T evolution of some (x1, x2) specified by
the digits (j1, A1, C1), (j2, A2, C2), . . . and its matrices
β1, β2, . . . , where A1, A2, C1 ∈ N, A1 ≥ C1, and j1 = j2.
Define, for i ≥ 1, [

Ai

Ci

]
=:

Ai − ri

Ci
.

Thus ri ≤ min{Ai − Ci, Ci − 1}, and ri ≤ Ai−1
2 .

(1) If C2 ≥ A1−r1
C1

, then apply matrix identity type I2,
starting with matrix β1. Here and in the following,
the X in matrix identity type I2 is replaced by A1−r1

C1
.

The process terminates.

(2) If C2 = A1
C1

− 1 (thus A1
C1

∈ N) and A1 > C1, first
apply matrix identity type I2, starting with matrix
β1. Define β̃i = β(j̃i, Ãi, C̃i) to be the ith matrix

of the modified evolution after the insertion. Then
apply matrix identity type I3, starting with matrix
β̃1, where K = 1. The process terminates.

(3) If C2 < A1−r1
C1

− 1, r1 > 0, and A2 > A1−r1
C1

− C2: If
j2 �= j3, then switch the type j3 (state P , J , or S,
accordingly, starting with matrix β3).

If j2 = j3, first apply matrix identity type I2, starting
with matrix β1. Define β̃i = β(j̃i, Ãi, C̃i) in analogy
to the above; that is, here and in the following, β̃i

will always be the ith matrix of the modified evo-
lution after the most recent modification. Continue
with state H12, starting with matrix β̃2. The process
terminates.

(4) If C2 < A1
C1

− 1 (thus A1
C1

∈ N) and A2 +1 > A1
C1

−C2:
If j2 �= j3, then switch the type j3 (state P , J , or S,
accordingly, starting with matrix β3).

If j2 = j3, first apply matrix identity type I2, starting
with matrix β1. Continue with matrix identity type
I3, starting with matrix β̃1, where K = 1. Then
continue with state H12, starting with matrix β̃2.
The process terminates.

(5) If C2 = A1−r1
C1

−1, r1 > 0 and A2 = 1,then if j2 �= j3:
Switch the type j3 (state P , J , or S, accordingly,
starting with matrix β3).

If j2 = j3, first apply matrix identity type I2, start-
ing with matrix β1, and continue with state H13,
starting with matrix β̃2. The process terminates.

(6) If C2 = A1
C1

−2 (thus A1
C1

∈ N) and A2 = 1: If j2 �= j3,
then switch the type j3 (state P , J , or S, accordingly,
starting with matrix β3).

If j2 = j3, first apply matrix identity type I2, starting
with matrix β1. Continue with matrix identity type
I3, starting with matrix β̃1, where K = 1. Then
continue with state H13, starting with matrix β̃2.
The process terminates.

In all other cases, enlarge C2 (state H21 or H22, start-
ing with β1).

3.3 State S

Consider the T evolution of some (x1, x2) specified by
the digits (j1, A1, C1), (j2, A2, C2), . . . and its matrices
β1, β2, . . . , where A1, A2, C1 ∈ N, A1 ≥ C1, and j1 �= j2.

If C2 = 0 and j2 �= j3, then switch the type j3 (state
P , J , or S, accordingly, starting with matrix β3).

If C2 = 0, j2 = j3, and A3 ≥ (A2 + 1)A1−r1
C1

+ C3,
apply matrix identity type I2, starting with matrix β1.
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FIGURE 6. Diagram of the cases of the process at state P .

Similar to the above, the X in matrix identity type I2 is
replaced by A1−r1

C1
. The process terminates.

In all other cases, switch the type j2 (state P , J , or S,
accordingly, starting with matrix β2) and continue with
state J , starting with matrix β̃1.

3.4 State H11

Consider the T evolution of some (x1, x2) specified by the
digits (j1, A1, C1), (j2, A2, C2), . . . and its matrices β1,
β2, . . . , where A2 = 1, C2 = 0, and j2 = j3. If j3 �= j4,
then switch the type j4 (state P , J , or S, accordingly,
starting with matrix β4).

If j3 = j4:

(1) If A4 ≥ 2: First apply matrix identity V2, starting
with matrix β4, where Y = 1 and X = 0. Continue
with matrix identity type III1, starting with matrix
β̃1. Then apply matrix identity type I3, starting with
matrix β̃2, where K = 1. If Ã4 = C̃4, where the ex-
tended conditions of Perron with respect to the digits
j̃5 and C̃5 are not fulfilled, or Ã4 < C̃4, then continue
with states H23 and H24, accordingly, starting with
matrix β̃3. If further, the extended conditions of Per-
ron are not met for the third matrix of the thus modi-
fied evolution, apply matrix identity type I3, starting
with β̃2, where K = −1.

If Ã2 = C̃2, where the extended conditions of Perron
with respect to the digits j̃3 and C̃3 are not fulfilled,
or Ã2 < C̃2, continue with state H24, starting with
matrix β̃1.

If Ã2 ≥ C̃2, and the extended conditions of Perron
with respect to the digits j̃3 and C̃3 are fulfilled, the
process terminates.

(2) If A4 = 1 and C4 = 1: If j4 = j5, then switch the
type j5 (state P , J , or S, accordingly, starting with
matrix β5).

If j4 �= j5, apply matrix identity type I3, starting
with matrix β3, where K = −1. Continue with ma-
trix identity type III1, starting with matrix β̃1, and
states H21 and H22, accordingly, starting with ma-
trix β̃2.

If Ã2 = C̃2, where the extended conditions of Perron
with respect to the digits j̃3 and C̃3 are not fulfilled,
or Ã2 < C̃2, continue with state H24, starting with
matrix β̃1.

If Ã2 ≥ C̃2, and the extended conditions of Perron
with respect to the digits j̃3 and C̃3 are fulfilled, the
process terminates.

(3) If A4 = 1 and C4 = 0: If j4 = j5, then switch the
type j5 (state P , J , or S, accordingly, starting with
matrix β5).

If j4 �= j5, apply matrix identity type III1, starting
with β1. If C̃3 = −1, enlarge C̃3 (states H21 and
H22, accordingly, starting with matrix β̃2).

If Ã2 = C̃2, where the extended conditions of Perron
with respect to the digits j̃3 and C̃3 are not fulfilled,
or Ã2 < C̃2, continue with state H24, starting with
matrix β̃1.
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If Ã2 ≥ C̃2, and the extended conditions of Perron
with respect to the digits j̃3 and C̃3 are fulfilled, the
process terminates.

3.5 State H12

Consider the T evolution of some (x1, x2) specified by
the digits (j1, A1, C1), (j2, A2, C2), . . . and its matrices
β1, β2, . . . , where either A2 �= 1 or both C2 �= 0 and
C2 �= −1, and j2 = j3.

If A3 ≤ C3 + 2, where the extended conditions of Per-
ron with respect to the digits j4 and C4 would not be
fulfilled, reduce C3 (states H23 and H24, accordingly,
starting with matrix β2).

If A3 ≥ C3 +2, and the extended conditions of Perron
with respect to the digits j4 and C4 would be fulfilled:

(1) If A3 ≥ 2 and C3 ≥ −1: Apply matrix identity type
III2, starting with β1.

If Ã3 = C̃3, where the extended conditions of Perron
with respect to the digits j̃4 and C̃4 are not fulfilled,
or Ã3 < C̃3, reduce C̃3 (states H23 and H24, accord-
ingly, starting with matrix β̃2).

If Ã3 ≥ C̃3, where the extended conditions of Perron
with respect to the digits j̃4 and C̃4 are fulfilled, the
process terminates.

(2) If A3 ≥ 2 and C3 = −2: Apply matrix identity type
III2, starting with matrix β1, and continue with ma-
trix identity type I3, where K = 1, starting with
matrix β̃3.

If Ã3 = C̃3, where the extended conditions of Perron
with respect to the digits j̃4 and C̃4 are not fulfilled,
or Ã3 < C̃3, reduce C̃3 (states H23 and H24, accord-
ingly, starting with matrix β̃2).

If Ã3 ≥ C̃3, where the extended conditions of Perron
with respect to the digits j̃4 and C̃4 are fulfilled, the
process terminates.

(3) If A3 = 1 and C3 = −1: If j3 = j4, then switch the
type j4 (state P , J , or S, accordingly, starting with
matrix β4).

If j3 �= j4, apply matrix identity type III2, starting
with matrix β1, and continue with matrix identity
type V1, starting with matrix β4.

If Ã3 = C̃3, where the extended conditions of Perron
with respect to the digits j̃4 and C̃4 are not fulfilled,
or Ã3 < C̃3, reduce C̃3 (states H23 and H24, accord-
ingly, starting with matrix β̃2).

If Ã3 ≥ C̃3, where the extended conditions of Perron
with respect to the digits j̃4 and C̃4 are fulfilled, the
process terminates.

3.6 State H13

Consider the T evolution of some (x1, x2) specified by
the digits (j1, A1, C1), (j2, A2, C2), . . . and its matrices
β1, β2, . . . , where A2 = 1 and C2 = −1.

If j2 �= j3, then switch the type j3 (state P , J , or S,
starting with matrix β3, accordingly).

If j2 = j3:

(1) If A3 ≥ C3 + 2: Apply matrix identity type IV1

or IV2, accordingly, starting with matrix β1. If
Ã3 = C̃3, where the extended conditions of Perron
with respect to the digits j̃4 and C̃4 are not fulfilled,
or Ã3 < C̃3, reduce C̃3 (states H23 and H24, accord-
ingly, starting with matrix β̃2).

If Ã3 ≥ C̃3, where the extended conditions of Perron
with respect to the digits j̃4 and C̃4 are fulfilled, con-
tinue with state H12, starting with matrix β̃1. The
process terminates.

(2) If A3 ≤ C3 + 1: If j3 = j4 and C4 > 0, or j3 �= j4
and C4 = 0, apply matrix identities type IV1 or IV2,
accordingly, starting with matrix β1.

If j3 = j4 and C4 = 0, or j3 �= j4 and C4 > 0, reduce
C3 (states H23 and H24, accordingly, starting with
matrix β2). Continue with state H12, starting with
matrix β̃1. The process terminates.

3.7 State H21

Consider the T evolution of some (x1, x2) specified by
the digits (j1, A1, C1), (j2, A2, C2), . . . and its matrices
β1, β2, . . . , where j2 �= j3.

(1) If A3 = C3 + 1, and the extended conditions of Per-
ron with respect to the digits j4 and C4 would be
fulfilled, or A3 > C3 + 1, apply matrix identity type
I3, where K = 1, starting with matrix β1. The pro-
cess terminates.

(2) If A3 = C3+1, and the extended conditions of Perron
with respect to the digits j4 and C4 would not be
fulfilled, apply matrix identity type I3, where K = 1,
starting with matrix β1.

(3) If A3 = C3, then if either j3 = j4 and C4 = 0, or
j3 �= j4 and C4 > 0, reduce C3 (states H23 and H24,
starting with matrix β2, respectively). The process
terminates.
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If j3 �= j4 and C4 = 0, switch the type j4 (states P ,
J , and S, starting with matrix β4, respectively).

If j3 = j4 and C4 > 0, apply matrix identity type
I2, starting with matrix β3, and continue with state
H22, starting with matrix β1.

3.8 State H22

Consider the T evolution of some (x1, x2) specified by
the digits (j1, A1, C1), (j2, A2, C2), . . . , and its matrices
β1, β2, . . . , where j2 = j3.

(1) If C3 > 0, then switch the type j3 (state P , J , or S,
starting with matrix β3, accordingly) and continue
with state H21, starting with matrix β̃1.

(2) If C3 = 0: If j3 �= j4, then switch the type j4 (states
P , J and S, starting with matrix β4, respectively).

If j3 = j4:

(2.1) If C4 ≥ A3, apply matrix identity type II3,
where K = 1, starting with matrix β1. The
process terminates.

(2.2) If C4 < A3 and A3 ≥ 2, enlarge C4 (states
H21 and H22, starting with matrix β3, respec-
tively).

(2.3) If A3 = 1 and C4 = 0, enlarge C4 (states
H21 and H22, starting with matrix β3, respec-
tively). Then,
If Ã3 = 1 and C̃3 = 0: Apply matrix identity
type II3, where K = 1, starting with matrix
β̃1. The process terminates.
If Ã3 = C̃3 = 0: If j̃4 �= j̃5, switch the type
j̃5 (states J and S, starting with matrix β̃5,
respectively).
If j̃4 = j̃5, apply matrix identity type I2, start-
ing with matrix β̃4. Continue with matrix
identity type V1, starting with matrix β̃2. If
C̃4 < 0, continue with states H11 and H13,
accordingly, starting with matrix β̃3, followed
by matrix identity type I3, starting with ma-
trix β̃1. The process terminates.

3.9 State H23

Consider the T evolution of some (x1, x2) specified by
the digits (j1, A1, C1), (j2, A2, C2), . . . and its matrices
β1, β2, . . . , where j2 �= j3.

(1) If C3 > 0, apply matrix identity type I1, where K =
−1, starting with matrix β1. The process terminates.

(2) If C3 = 0, then if j3 �= j4 and A4 = C4, switch the
type j4 (states P , J and S, starting with matrix β4,
respectively).

If j3 = j4 and A4 = C4 = 1: Reduce C4 (states H23

and H24, accordingly, starting with matrix β3)

If j3 = j4, j4 �= j5, A4 = 1 and C4 = 0: Switch the
type j5 (state P , J , or S, accordingly, starting with
matrix β5).

If j3 = j4 = j5, A4 = 1 and C4 = 0, apply matrix
identity type I3, where K = −1, starting with matrix
β1. Continue with state H11, starting with matrix
β̃3, followed by matrix identity type V3, where Y =
Ã2 and X = C̃2 − 1, starting with matrix β̃2. Then
switch the type j̃4 (state P , starting with matrix β̃4),
to continue with state H24, starting with matrix β̃3,
until Ã3 > 0. The process terminates.

In any other case, enlarge C3 (states H21 and H22,
starting with matrix β2, respectively).

3.10 State H24

Consider the T evolution of some (x1, x2) specified by
the digits (j1, A1, C1), (j2, A2, C2), . . . and its matrices
β1, β2, . . . , where j2 = j3.

(1) If C3 > 0, then switch the type j3 (state P , J , or S,
accordingly, starting with matrix β3) and continue
with state H23, starting with matrix β1.

(2) If C3 = 0: If j3 �= j4, then switch the type j4 (state
P , J , or S, accordingly, starting with matrix β4).

If j3 = j4:

(2.1) If either A4 − 1 = A3 + C4, and the extended
conditions of Perron with respect to j5 and C5

would be fulfilled, or A4 − 1 > A3 + C4, then
apply matrix identity type II3, where K = −1,
starting with matrix β1. The method termi-
nates.

(2.2) If A4 > 1, and either A4 − 1 = A3 + C4, where
the extended conditions of Perron with respect
to j5 and C5 would not be fulfilled, or A4−1 <

A3 +C4, then reduce C4 (states H23 and H24,
starting with matrix β3, respectively).

(2.3) If A4 = 1, then switch the type j3 (state P ,
starting with matrix β3) and continue with
state H23, starting with matrix β1.
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4. EXAMPLES

Example 4.1. Let

(x1, x2) ∈ XP ((1, 3), (1, 4), (1, 1), (1, 4), (1, 2)).

We start at state P . Since j1 = j2 = j3 = j4, A3 = 1,
and C4 < A1, we continue at state H11: we apply matrix
identities V2, III2, and I3 in turn, and return to state P .
Now j̃2 �= j̃3, and Ã3 ≥ Ã1+C̃3. We may therefore apply
matrix identity I1, and the process terminates after three
states:

β(1, 3, 0)β(1, 4, 0)β(1, 1, 0)β(1, 4, 0)β(1, 2, 0)

= β(1, 3, 0)β(1, 4, 0)β(1, 1, 0)β(1, 4, 0)β(1, 1, 0)

β(2, 0, 0)β(1, 1, 0)

= β(1, 3, 0)β(1, 4, 1)β(2, 5,−1)β(2, 1,−1)β(1, 1, 0)

= β(1, 3, 0)β(1, 4, 1)β(2, 4,−1)β(2, 1, 0)β(1, 1, 1)

= β(2, 13, 4)β(2, 4, 2)β(2, 1, 0)β(1, 1, 1).

The resulting evolution is specified by the digits
(2, 13, 4), (2, 4, 2), (2, 1, 0), and (1, 1, 1).

Example 4.2. Consider the T evolution of some (x1, x2)
specified by the digits (1, 1, 1), (2, 1, 0), and (2, 2, 0). We
start at state S. We may directly apply matrix identity
II1. The method terminates after the first state:

β(1, 1, 1)β(2, 1, 0)β(2, 2, 0)

= β(2, 1, 0)β(2, 1, 0)β(2, 1, 0)β(2, 1, 1)

If we combine Examples 4.1 and 4.2, we find that

XP ((1, 3), (1, 4), (1, 1), (1, 4), (1, 2), (2, 1), (2, 2))

= XJ((13, 4), (4, 2), (1, 0), (1, 0), (1, 0), (1, 0), (1, 1)).

In particular, for

x ∈ XP ((1, 3), (1, 4), (1, 1), (1, 4), (1, 2), (2, 1), (2, 2)),

we have
T 7

P x = T 7
J x,

that is, the orbits of the PA evolution and the JPA evolu-
tion meet again after seven iterations each. See Figure 7.

The basic principle of the above method is that if we
cannot directly apply one of the matrix identities to in-
sert or singularize a suitable matrix, we may always mod-
ify some subsequent digits in order to guarantee the ap-
propriate assumptions. In particular, assume that we are

x

TP
7x

FIGURE 7. x ∈ XP ((1, 3), (1, 4), (1, 1), (1, 4), (1, 2),
(2, 1), (2, 2)). The full line shows the orbit of the PA
evolution, the dashed line that of the JPA evolution
of x. The two orbits meet again after seven iterations.

at some state ς1 ∈ {P, J, S}, with matrix βt. Then either
the process terminates (i.e., we may successfully singular-
ize or insert a matrix), or we continue at some prescribed
state

ς2 ∈ {P, J, S,H11,H12,H13,H21,H22,H23,H24}

with some prescribed matrix βt+k, k ≥ 1.
Again, at state ς2, the process either terminates (and

we return to state ς1, to try again) or leads to an-
other state ς3, with similar options. The question now
is whether success at ς1 (almost) always follows after a
finite number of additional states. Assume that we want
to transform the PA into the JPA. In particular, we are
interested in the asymptotic behavior of the following
sets:

Definition 4.3. Let s ≥ 0. We define

Gs := {(x1, x2) ∈ [0, 1]2 : the method terminates after

s or fewer states}

and
Bs := [0, 1]2 \ Gs.

Thus Bs is the “bad” set with respect to the number s

of states visited. We assume that λ(Bs) → 0 as s → ∞,
where λ is Lebesgue measure on [0, 1]2.

By the construction of the process described in Sec-
tion 3, it is clear that at each state, there is a set of
positive measure where the method does not terminate.
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Therefore, the method cannot work for all (x1, x2) ∈
[0, 1]2, and their PA evolutions, in finitely many states,
but only for almost all (x1, x2) ∈ [0, 1]2. The following
example is due to F. Schweiger [Schweiger 03].

Example 4.4. Consider the point (x1, x2) = (−2ρ2+11ρ−
4, ρ2−5ρ), where ρ is the largest root of x3−6x2+5x−1.
Thus ρ ≈ 5, 05, x1 ≈ 0, 56, x2 ≈ 0, 24, and (x1, x2) ∈
XP ((2, 1), (1, 1), (1, 1), (2, 1)). Note that x3−6x2+5x−1
is the characteristic polynomial of the matrix product
βP (2, 1)βP (1, 1)βP (1, 1)βP (2, 1).

Since the first matrix is of type j1 = 2, to trans-
form the PA evolution of (x1, x2) into its JPA evolu-
tion, we start at state P with matrix β2. We must
not directly apply matrix identity type I1 due to the
extended conditions of Perron (A4 = 1, A2 + C4 = 1,
j4 = j5(= j1) = 2, but C5 = 0), but continue with state
H24 from matrix β3, to reduce C4. Since C5(= C1) = 0
and j5(= j1) �= j6(= j2), we need to switch the type
j6(= j2), which is exactly where we started from. Hence
the transformation of this particular PA evolution into a
JPA evolution cannot be accomplished in finitely many
states.

The JPA evolution of (x1, x2) turns out to be periodic
again, namely (x1, x2) ∈ XJ ((1, 0), (2, 1), (1, 0), (3, 0))
(cf. [Schweiger 03]). We may estimate the approximation
exponents dP and dJ using the eigenvalues of the conver-
gence matrices defined by the digits, to obtain dP ≈ 1.27,
while dJ ≈ 1.26. The two algorithms are essentially dif-
ferent in the sense that the corresponding evolutions of
(x1, x2) never meet, and they have at most a finite num-
ber of convergents in common.
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