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A closed hyperbolic 3-manifold is exceptional if its shortest
geodesic does not have an embedded tube of radius ln(3)/2.
D. Gabai, R. Meyerhoff, and N. Thurston identified seven fam-
ilies of exceptional manifolds in their proof of the homotopy
rigidity theorem. They identified the hyperbolic manifold known
as Vol3 in the literature as the exceptional manifold associ-
ated with one of the families. It is conjectured that there
are exactly six exceptional manifolds. We find hyperbolic 3-
manifolds, some from the SnapPea census of closed hyperbolic
3-manifolds, associated with five other families. Along with the
hyperbolic 3-manifold found by Lipyanskiy associated with the
seventh family, we show that any exceptional manifold is cov-
ered by one of these manifolds. We also find their group coeffi-
cient fields and invariant trace fields.

1. INTRODUCTION

A closed hyperbolic 3-manifold is exceptional if its short-
est geodesic does not have an embedded tube of radius
ln(3)/2. Exceptional manifolds arise in the proof of the
rigidity theorem proved by D. Gabai, R. Meyerhoff, and
N. Thurston in [Gabai et al. 03]. It is conjectured that
there are exactly seven exceptional manifolds.

Let N be a closed hyperbolic 3-manifold and δ the
shortest geodesic in N . If δ does not have an embed-
ded tube of radius ln(3)/2, then there is a two-generator
subgroup G of π1(N) such that H3/G also has this prop-
erty. Assume that G is generated by f and w, where
f ∈ π1(N) is a primitive hyperbolic isometry whose fixed
axis δ0 ∈ H3 projects to δ and w ∈ π1(N) is a hyperbolic
isometry that takes δ0 to its nearest translate. Thus,
it is necessary to study two-generator subgroups Γ of
PSL(2,C) with the property that one of the generators is
the shortest geodesic in H3/Γ and the distance from its
nearest translate is less than ln(3).
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Parameter Range �(Parameter) Range �(Parameter)
L′ 0.58117 to 0.58160 −3.31221 to −3.31190
D′ 1.15644 to 1.15683 −2.75628 to −2.75573
R′ 1.40420 to 1.40454 −1.17968 to −1.17919

TABLE 1. Parameter ranges for the region X3.

The space of two-generator subgroups of PSL(2,C) is
analyzed in the proof of the rigidity theorem of [Gabai
et al. 03]. The rigidity theorem is proved using Gabai’s
theorem [Gabai 03], which states that the rigidity theo-
rem is true if some closed geodesic has an embedded tube
of radius ln(3)/2. The authors of [Gabai et al. 03] show
that this holds for all but seven exceptional families of
closed hyperbolic 3-manifolds.

These seven families are handled separately. The
seven families are obtained by parameterizing the space
of two-generator subgroups of PSL(2,C) by a subset of
C3, dividing the parameter space into about a billion re-
gions and eliminating all but seven regions. These seven
regions correspond to the seven exceptional families and
are known as exceptional regions. They are denoted by
Xi for i = 0, . . . , 6 and described as boxes in C3. For
example, for the region X3 see Table 1.

A quasi-relator in a region is a word in f , w, f−1, and
w−1 that is close to the identity throughout the region
and experimentally appears to converge to the identity
at some point. Table 2 gives the two quasi-relators spec-
ified for each region Xi in [Gabai et al. 03]. The group
Gi = 〈f, w|r1(Xi), r2(Xi)〉, where r1(Xi), r2(Xi) are
the quasi-relators for Xi, is called the marked group for
the region Xi. It follows from [Gabai et al. 03] that any
exceptional manifold has a two-generator subgroup of its
fundamental group whose parameter lies in one of the
exceptional regions.

Let ρ(x, y) denote the hyperbolic distance between
x and y in H3. For an isometry f of H3 define
Relength(f) = inf{ρ(x, f(x)) | x ∈ H3}. Let T consist of
those parameters corresponding to the groups {G, f,w}
such that Relength(f) is the shortest element of G and
the distance between the axis of f and its nearest trans-
late is less than ln(3). Let S = exp(T ). In [Gabai et al.
03] the authors made the following conjecture.

Conjecture 1.1. [Gabai et al. 03] Each subbox Xi, 0 ≤
i ≤ 6, contains a unique element si of S. Further, if
{Gi, fi, wi} is the marked group associated with si, then
Ni = H3/Gi is a closed hyperbolic 3-manifold with the
following properties:

(i) Ni has fundamental group 〈f, w|r1(Xi), r2(Xi)〉,
where r1 and r2 are the quasi-relators associated
with the box Xi.

(ii) Ni has a Heegaard genus-2 splitting realizing the
above group presentation.

(iii) Ni nontrivially covers no manifold.

(iv) N6 is isometric to N5.

(v) If (Li,Di, Ri) is the parameter in T correspond-
ing to si, then Li, Di, Ri are related as follows:
For X0,X5,X6 we have L = D, R = 0. For
X1,X2,X3,X4 we have R = L/2.

D. Gabai, R. Meyerhoff, and N. Thurston [Gabai
et al. 03] proved that Vol3, the closed hyperbolic 3-
manifold with conjecturally the third-smallest volume, is
the unique exceptional manifold associated with the re-
gion X0. Jones and Reid [Jones and Reid 01] proved that
Vol3 does not nontrivially cover any manifold and that
the exceptional manifolds associated with the regions X5

and X6 are isometric.
In this paper we investigate the seven exceptional

regions and the associated exceptional hyperbolic 3-
manifolds. In Section 3, using Newton’s method for find-
ing roots of polynomials in several variables, we solve the
equations obtained from the entries of the quasi-relators
to very high precision. Then, using the program PARI-
GP [PARI 02], we find entries of the generating matrices
as algebraic numbers, find the group coefficient fields,
and verify with exact arithmetic that the quasi-relators
are relations for all the regions. We also find the invari-
ant trace fields for all the groups, verifying and extending
the data given in [Jones and Reid 01].

In Section 4 we show that the manifolds v2678(2, 1),
s778(−3, 1), and s479(−3, 1) from SnapPea’s census of
closed hyperbolic 3-manifolds [Weeks 93] are the excep-
tional manifolds associated with the regions X1, X2, X5,
and X6. We also show that their fundamental groups are
isomorphic to the marked groups Gi for i = 1, 2, 5, 6. In
Section 5 we find an exceptional manifold associated with
the region X4 and show that its fundamental group is iso-
morphic to the marked group G4. This manifold, which
we denote by N4, is commensurable with the SnapPea
census manifold m369(−1, 3). Lipyanskiy has described
a sixth exceptional manifold in [Lipyanskiy 02].

In Section 6, using Gröbner bases we show that the
quasi-relators have a unique solution in every region.
Let N0 = Vol3, N1 = v2678(2, 1), N2 = s778(−3, 1),
N3 the exceptional manifold associated with X3 found in
[Lipyanskiy 02], N4 the exceptional manifold associated
with X4 found in Section 5, and N5 = s479(−3, 1). We
shall prove the following theorem.
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Region Quasi-relators

X0 r1 = fwf−1w2f−1wfw2

r2 = f−1wfwfw−1fwfw

X1 r1 = f−2wf−1w−1f−1w−1fw−1f−1w−1f−1wf−2w2

r2 = f−2w2f−1wfwfw−1fwfwf−1w2

X2 r1 = f−1wfwfw−1f2w−1fwfwf−1w2

r2 = f−2wf−2w2f−1wfwfwf−1w2

X3 r1 = f−2wfwf−2w2f−1w−1f−1wf−1w−1(fw−1f−1w−1f)2w−1f−1wf−1w−1f−1w2

r2 = f−2wfwf−1wf(w−1fwfw−1)2fwf−1wfwf−2w2f−1w−1f−1w2

X4 r1 = f−2wfwf−1(wfw−1f)2wf−1wfwf−2w2(f−1w−1f−1w)2w

r2 = f−1(f−1wfw)2f−2w2f−1w−1f−1w(f−1w−1fw−1)2f−1wf−1w−1f−1w2

X5 r1 = f−1wf−1w−1f−1wf−1wfwfw−1fwfw

r2 = f−1wfwfw−1fw−1f−1w−1fw−1fwfw

X6 r1 = f−1w−1f−1wf−1w−1f−1w−1fw−1fwfw−1fw−1

r2 = f−1w−1fw−1fwfwf−1wfwfw−1fw−1

TABLE 2. Quasi-relators for all the regions.

Theorem 1.2. Let N be an exceptional manifold. Then
N is covered by Ni for some i = 0, 1, 2, 3, 4, 5.

2. INVARIANT TRACE FIELDS AND
2-GENERATOR SUBGROUPS

Two finite-volume orientable hyperbolic 3-manifolds are
said to be commensurable if they have a common finite-
sheeted cover. Subgroups G,G′ ⊂ PSL(2,C) are com-
mensurable if there exists g ∈ PSL(2,C) such that
g−1Gg ∩ G′ is a finite-index subgroup of both g−1Gg

and G′. It follows by Mostow rigidity that finite-volume
orientable hyperbolic 3-manifolds are commensurable if
and only if their fundamental groups are commensurable
as subgroups of PSL(2,C).

Let G be a group of covering transformations and let
G̃ be its preimage in SL(2,C). It is shown in [Macbeath
83] that the traces of elements of G̃ generate a number
field Q(trG) called the trace field of G. The invariant
trace field k(G) of G is defined as the intersection of all
the fields Q(trH), where H ranges over all finite-index
subgroups of G. The definition already makes clear that
k(G) is a commensurability invariant. In [Reid 90], Alan
Reid proved the following result.

Theorem 2.1. [Reid 90] The invariant trace field k(G) is
equal to

Q({tr2(g) : g ∈ G}) = Q(trG(2)),

where G(2) is the finite-index subgroup of G generated by
squares {g2 : g ∈ G}.

From [Hilden et al. 92, Corollary 3.2], the invariant
trace field of a 2-generator group 〈f, w | r1, r2〉 is gener-
ated by tr(f2), tr(w2), and tr(f2w2).

Using trace relations (see [Coulson et al. 00, Theo-
rem 4.2]), as well as [Hilden et al. 92, Corollary 3.2],
which says that Q(trG(2)) = Q(trGSQ), where GSQ =
〈g2

1 , . . . , g
2
n〉 with gi’s generators ofG such that tr(gi) �= 0,

we see that the invariant trace field of a 2-generator
group 〈f, w | r1, r2〉 is generated by tr(f2), tr(w2), and
tr(f2w2).

As described in Section 1, a marked group G is
generated by f and w, where f and w are seen as
covering transformations such that f represents the
shortest geodesic and w takes the axis of f to its near-
est translate. Let H3 denote the upper-half-space model
of hyperbolic 3-space and let the sphere at infinity be
the xy-plane. Conjugate G so that the axis of f is the
geodesic line B(0,∞) in H3 with endpoints 0 and ∞ on
the sphere at infinity, and the geodesic line perpendicu-
lar to w−1(B(0,∞)) and B(0,∞) (orthocurve) lies on the
geodesic line B(−1,1) in H3 with endpoints −1 and 1 on
the sphere at infinity.

We can parameterize such a marked group with three
complex numbers L, D, and R, where f is an L-
translation of B(0,∞) and w is a D-translation of B(−1,1)

followed by an R-translation of B(0,∞). We can write ma-
trix representatives for f and w using the exponentials
L′, D′, and R′ of L, D, and R, respectively (see [Gabai
et al. 03, Chapter 1]). We have
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f =
(√

L′ 0
0 1/

√
L′

)
, w =

(√
R′ ∗ ch

√
R′ ∗ sh

sh/
√
R′ ch/

√
R′

)
,

(2–1)
where

ch = (
√
D′ + 1/

√
D′)/2

and
sh = (

√
D′ − 1/

√
D′)/2.

We can write down the generators of the invariant trace
field of G in terms of L′, D′, and R′ as follows:

tr(f2) = L′ +
1
L′ ,

tr(w2) =
1
4

[(
R′ +

1
R′ + 2

)(
D′ +

1
D′ + 2

)
− 8
]
,

tr(f2w2) =
1
4

[(
D′ +

1
D′ + 2

)(
R′L′ +

1
R′L′

)

+
(
D′ +

1
D′ − 2

)(
L′ +

1
L′

)]
.

3. GUESSING THE ALGEBRAIC NUMBERS
AND EXACT ARITHMETIC

In this section we find the marked groups for the regions
as subgroups of PSL(2,C) with algebraic entries and find
their invariant trace fields. In [Gabai et al. 03], parameter
ranges for the seven regions are specified. For example,
for the parameter range for region X3, see Table 1.

We solve for L′, D′, and R′ such that the quasi-relators
are relations in the group. We obtain eight equations in
three complex variables out of which three are indepen-
dent, and we use Newton’s method with the parameter
range as approximate solutions to find high-precision so-
lutions, e.g., one hundred significant digits, for the pa-
rameters satisfying the equations.

This allows us to compute a =
√
L′, b =

√
R′,

c =
√
D′, and tr(f2), tr(w2), tr(f2w2) to high precision.

Once the numbers are obtained to high precision, we use
the algdep() function of the PARI-GP package [PARI
02] to guess a polynomial over the integers that has the
desired number as a root.

Although the algdep() function cannot prove that the
guess is in fact correct, we prove this using the guessed
values to perform exact arithmetic and verify the rela-
tions. Once we obtain a =

√
L′, b =

√
R′, and c =

√
D′

as roots of polynomials, we find a primitive element that
generates the field that contains all three numbers.

For the regions X0, X5, and X6, a, b, and c are all
contained in Q(a). By expressing the matrix entries as

algebraic numbers one can verify the relations directly.
For example, for X0, the minimal polynomial for a and c
is x8 + 2x6 + 6x4 + 2x2 + 1, and b = 1, so we can express
a, b, and c as follows:

a = Mod(x, x^8 + 2*x^6 + 6*x^4 + 2*x^2 + 1),

b = Mod(1, x^8 + 2*x^6 + 6*x^4 + 2*x^2 + 1),

c = Mod(x, x^8 + 2*x^6 + 6*x^4 + 2*x^2 + 1).

Then, using the formulas of Section 2, PARI-GP calcu-
lates the quasi-relators exactly as follows:

[Mod(1, x^8 + 2*x^6 + 6*x^4 + 2*x^2 + 1) 0],

[0 Mod(1, x^8 + 2*x^6 + 6*x^4 + 2*x^2 + 1)].

Thus, exact arithmetic verifies rigorously that the L′,
D′, and R′ calculated for X0 using Newton’s method are
correct and that the quasi-relators are in fact relations.

In general, the group coefficient field can have arbi-
trary index over the trace field. In order to keep the
degree of the group coefficient field low, we follow the
method described in [Lipyanskiy 02]. Given that f , w are
generic (fw−wf is nonsingular), if f2, w2 are any matri-
ces in SL(2,C) such that tr(f2) = tr(f), tr(w2) = tr(w),
and tr(f−1

2 w2) = tr(f−1w), then the two pairs are con-
jugate.

Let tr1 = tr(f), tr2 = tr(w), tr3 = tr(f−1w). Further-
more let

f2 =
(

0 1
−1 tr1

)
, w2 =

(
z 0

tr1 ∗z − tr3 tr2−z
)
,

(3–1)
where (tr2−z)∗z = 1. Then the pair (f2, w2) is conjugate
to (f, w). The coefficients of the original f and w may
have arbitrary index over the trace field, but in this form
the entries of the matrices are in an extension of the trace
field of degree at most two. Tables 3 and 4 display the
computation of z, tr1, tr2, and tr3 for all regions. In all
cases, z is the primitive element and tri ∈ Q(z). One
easily verifies the relations using the tables. We have the
following theorem.

Theorem 3.1. The marked groups Gi are 2-generator sub-
groups of PSL(2,C) with entries in the number fields as
given in Tables 3 and 4. Furthermore, the quasi-relators
are relations in these groups.

Remark 3.2. It is proved in [Lipyanskiy 02] that the quasi-
relators generate all the relations for these groups and
that the groups Gi are discrete cocompact subgroups of
PSL(2,C).
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Region Minimal Polynomial Numerical Value

X0 τ8 + 2τ6 + 6τ4 + 2τ2 + 1 0.853230697 − 1.252448658i

X1 τ8 − 2τ7 + 5τ6 − 4τ5 + 7τ4 − 4τ3 + 5τ2 − 2τ + 1 0.904047196 − 1.471654224i

X2 τ4 − 2τ3 + 4τ2 − 2τ + 1 0.742934136 − 1.529085514i

X3 τ24 − 8τ23 + 35τ22 − 107τ21 + 261τ20 − 538τ19

+ 972τ18 − 1565τ17 + 2282τ16 − 3034τ15 + 3706τ14

− 4171τ13 + 4339τ12 − 4171τ11 + 3706τ10 − 3034τ9

+ 2282τ8 − 1565τ7 + 972τ6 − 538τ5 + 261τ4 − 107τ3

+ 35τ2 − 8τ + 1

1.404292212 − 1.179267298i

X4 τ6 − 3τ5 + 5τ4 − 4τ3 + 5τ2 − 3τ + 1 1.354619901 − 1.225125454i

X5 τ12 + 2τ10 + 7τ8 − 4τ6 + 7τ4 + 2τ2 + 1 0.868063287 − 1.460023666i

X6 τ12 − 2τ10 + 7τ8 + 4τ6 + 7τ4 − 2τ2 + 1 1.460023666 − 0.868063287i

TABLE 3. Field containing z for all regions.

Region tr1 tr2 tr3

X0 −z − 6z3 − 2z5 − z7 tr1 (−5z2 − 2z4 − z6)/2

X1 2 − 4z + 4z2 − 7z3 + 4z4 − 5z5 + 2z6 − z7 tr1 tr1

X2 2 − 3z + 2z2 − z3 tr1 tr1

X3 8 − 34z + 107z2 − 261z3 + 538z4 − 972z5 + 1565z6

− 2282z7 + 3034z8 − 3706z9 + 4171z10 − 4339z11

+ 4171z12 − 3706z13 + 3034z14 − 2282z15 + 1565z16

− 972z17+538z18−261z19+107z20−35z21+8z22−z23

tr1 tr1

X4 3 − 4z + 4z2 − 5z3 + 3z4 − z5 tr1 tr1

X5 −z − 7z3 + 4z5 − 7z7 − 2z9 − z11 tr1 (−6z2 + 4z4 − 7z6 − 2z8 − z10)/2

X6 3z − 7z3 − 4z5 − 7z7 + 2z9 − z11 tr1 (4 − 6z2 − 4z4 − 7z6 + 2z8 − z10)/2

TABLE 4. Group coefficients as polynomials in z in respective field.

Region Minimal Polynomial Numerical Value

X0 τ2 + 3 1.732050808i

X1 τ4 − 2τ3 + τ2 − 2τ + 1 −0.207106781 + 0.978318343i

X2 τ2 + 1 i

X3 τ12 + 6τ11 + 23τ10 + 91τ9 + 257τ8 + 489τ7 + 823τ6

+ 1054τ5 − 13τ4 − 2445τ3 − 3405τ2 − 1847τ − 337
0.632778000 − 3.019170376i

X4 τ3 − τ − 2 −0.760689853 + 0.857873626i

X5 τ3 − τ2 + τ + 1 0.771844506 + 1.11514250i

X6 τ3 − τ2 + τ + 1 0.771844506 − 1.11514250i

TABLE 5. Invariant trace fields for all the regions.

Remark 3.3. f2 and w2 give an efficient way to solve the
word problem in these groups.

In this way we also obtain tr(f2), tr(w2), and tr(f2w2)
as roots of polynomials and find a primitive element that
generates the field that contains all three traces. We have
the following result.

Theorem 3.4. The invariant trace fields for all the regions
are as given in Table 5.

Remark 3.5. The invariant trace field descriptions in Ta-
ble 5 for Xi, i �= 3, are the canonical field descriptions
given by Snap [Coulson et al. 00].
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Region V H1 lmin Manifolds

X1 4.11696874 Z7 ⊕ Z7 1.0930 v2678(2, 1), v2796(1, 2)

X2 3.66386238 Z4 ⊕ Z12 1.061 s778(−3, 1), v2018(2, 1)

X4 7.517689 Z4 ⊕ Z12 1.2046 NA

X5 or X6 3.17729328 Z4 ⊕ Z4 1.0595 s479(−3, 1), s480(−3, 1),
s645(1, 2), s781(−1, 2),
v2018(−2, 1)

TABLE 6. Data for regions X1, X2, X4, X5, X6.

4. THE MANIFOLDS FOR THE REGIONS X1, X2,
X5, AND X6

In this section we find manifolds from the Hodgson and
Weeks census of closed hyperbolic 3-manifolds whose
fundamental groups are isomorphic to the groups Gi,
i = 1, 2, 5, 6. This census is included in Jeff Weeks’s pro-
gram SnapPea [Weeks 93] and is referred to as SnapPea’s
census of closed hyperbolic 3-manifolds.

These manifolds are described as Dehn surgeries on
cusped hyperbolic 3-manifolds from SnapPea’s census of
cusped manifolds [Callahan et al. 99], [Hildebrand and
Weeks 89]. We use the invariant trace fields and volume
estimates for the regions given in [Jones and Reid 01]
and [Lipyanskiy 02] to search through the roughly 11,000
manifolds in the closed census.

The package Snap [Goodman et al. 98] includes a text
file called closed.fields, which lists the invariant trace
fields for the manifolds in the closed census. Using this
file to compare the invariant trace fields, we narrowed
our search to fewer than 50 manifolds for each region.
Then using the homology, volume estimates, and length
of shortest geodesic, we further narrowed the search to
fewer than five manifolds. Table 6 gives the approximate
volume (V ) as given in [Jones and Reid 01], first homol-
ogy (H1), approximate length of shortest geodesic, which
is the value of the parameter L (lmin), and the manifold
description as given in SnapPea.

The above manifolds include those mentioned in
[Gabai et al. 03] for the regions X1, X2, and X5. All
the SnapPea manifolds associated with a region in Ta-
ble 6 are isometric. It is shown in [Jones and Reid 01]
that the manifolds associated with the regions X5 and
X6 are isometric with an orientation-reversing isometry.
The manifold associated with X4 is discussed in the next
section and that for X3 is discussed in [Lipyanskiy 02].

The fundamental groups of the above manifolds have
two generators and two relations. Tables 2 and 7 give
the relators for the marked groups and those for the fun-
damental groups of the corresponding manifolds. One

can verify the isomorphisms between the groups given in
Table 8. We have the following theorem.

Theorem 4.1. The manifolds v2678(2, 1), s778(−3, 1),
and s479(−3, 1) in SnapPea’s census of closed manifolds
are exceptional manifolds associated with the respective
regions X1, X2, and X5.

5. THE MANIFOLD ASSOCIATED WITH
THE REGION X4

In this section we give a description of the manifold asso-
ciated with the region X4 as a double cover of an orbifold
commensurable with the manifold m369(−1, 3) in Snap-
Pea’s census of closed manifolds.

In Section 4, using the approximate volumes and other
data given in [Jones and Reid 01] and [Lipyanskiy 02], we
found manifolds from SnapPea’s census of closed mani-
folds with fundamental groups isomorphic to the groups
for the regions X1, X2, X5, and X6. The regions X3

and X4 could not be handled because of their large vol-
umes. However, for the region X4, a list of manifolds was
found in the closed census having approximately half the
volume of X4 and the same commensurability invariants.

In hope of obtaining the manifold for X4 as a double
cover of one of these manifolds, we compared index-two
subgroups of the fundamental groups of each of these
manifolds to G4, the marked group for X4. Most of
the subgroups were eliminated on the basis of homol-
ogy. However, one index-two subgroup of the census
manifold m369(−1, 3) had the correct homology, and the
same lengths for its elements as for X4. Using the pro-
gram testisom [Holt and Rees 97], it was checked that
this subgroup is not isomorphic to G4.

Theorem 5.1. The manifold N4 associated with the region
X4 is commensurable with the manifold m369(−1, 3) in
SnapPea’s census of closed manifolds. This manifold is
obtained as a double cover of an orbifold that is double
covered by a double cover of m369(−1, 3).
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Manifold π1 Relators

v2678(2, 1) q1 = a2b2aba−1ba−1b−1a−1ba−1bab2

q2 = ab−1ab−1a−1b−1ab−1aba2b2a2b

s778(−3, 1) q1 = ab−1aba2b2ab2a2bab−1

q2 = ab2a2ba2b2aba−1ba−1b

s479(−3, 1) q1 = aba2b2a2bab−2a−2b−2

q2 = a2b2ab2a2bab−1ab−1ab

TABLE 7. Relators for manifolds.

Region Manifolds Isomorphism Inverse

X1 v2678(2, 1) f −→ a−1, w −→ b a −→ f−1, b −→ w

X2 s778(−3, 1) f −→ a, w −→ b−1 a −→ f , b −→ w−1

X5 s479(−3, 1) f −→ ab, w −→ b a −→ fw−1, b −→ w

TABLE 8. Isomorphisms.

Proof: Let M = m369(−1, 3). We will construct the
following diagram of 2 : 1 covers:

N N4

↓ ↘ ↓
M O

We obtain a presentation of π1(M) from SnapPea:

π1(M) = 〈a, b, c | ab−1a−1c2bc, abcb3a−1c−1,

acbc−1b−1cbacb〉.

Let φ : π1(M) → Z2 be defined by φ(a) = 1, φ(b) =
φ(c) = 0. Then φ is a homomorphism and ker(φ) is an
index-two subgroup of π1(M) generated by b and c. Let
N denote the double cover of M corresponding to this
subgroup, so that π1(N) = ker(φ). A presentation of
π1(N) is

π1(N) = 〈b, c | r1, r2〉,
where

r1 = bcb3cbc−1b−1cbc−1b−1cbc2(bc3)2bc2bcb−1c−1

× bcb−1c−1

and

r2 = cbc−1b−1cbc−1b−1cbc2(bc3)2(bc2bc3bc3bc3)2

× bcb−1c−1bcb−1c−1b.

Let ψ : π1(N)→ π1(N) be defined by ψ(c) = c−1 and
ψ(b) = c3b. Then ψ is an automorphism of π1(N) of order
two. Extending the group π1(N) by this automorphism,
we obtain a group H whose presentation is

H = 〈b, c, t | r1, r2, tct−1c, tbt−1b−1c−3, t2〉.

Moreover, π1(N) is a subgroup ofH of index two, and the
quotient of H3 by H is an orbifold O (due to the torsion
element t) that is double covered by N . Let µ : H → Z2

be defined by µ(c) = 0, µ(b) = µ(t) = 1. Then µ is a
homomorphism and ker(µ) is an index-two subgroup of
H generated by elements c and b ∗ t. Let x = c and
y = b ∗ t. Then a presentation of ker(µ) = G is

G = ker(µ) = 〈x, y| s1, s2, s3〉,

where

s1 = (yx−1y−1x−1)2yx2y2x3yxyxy−1xyxy−1xyxy

× x3y2x2,

s2 = (yxy−1x)2yxyx3(y2x2y2x3)2yxyxy−1xyxy−1xyx,

s3 = y−1x−3(y−1x−1)2yx−1y−1x−1yx2y2x3yxyx3y2x2

× (yx−1y−1x−1)2.

The presentation for the marked group G4 as given in
[Gabai et al. 03] is

G4 = 〈f, w| r1(X4), r2(X4)〉,

where

r1(X4) = f−2wfwf−1(wfw−1f)2wf−1wfwf−2w2

× (f−1w−1f−1w)2w,

r2(X4) = f−1(f−1wfw)2f−2w2f−1w−1f−1w

× (f−1w−1fw−1)2f−1wf−1w−1f−1w2.

One easily verifies that the map ν : G4 → G given by
ν(x) = f and ν(y) = f−1w−1 is an isomorphism. The in-
verse of ν is given by ν−1(f) = y and ν−1(w) = y−1x−1.
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Lipyanskiy [Lipyanskiy 02] constructed a Dirichlet do-
main for all the regions whose groups are isomorphic to
the marked groups. It follows that G4 is torsion-free,
and hence G is a torsion-free subgroup of H of index 2.
Hence it gives the manifold N4, which double covers the
orbifold O.

Remark 5.2. The symmetries of the configuration of lines
in H3 consisting of the axis of f , w, their translations, and
the orthocurves between them led us to study the above-
mentioned subgroups and automorphisms. The manifold
N has a geodesic of the same length and the same trans-
lation length as N4, but it is not the shortest geodesic
in N .

6. UNIQUENESS

In this section we address the issue of uniqueness of the
solutions in the given region. In [Gabai et al. 03, Chapter
3], the authors showed the existence and uniqueness of
the solution for the regionX0 using a geometric argument
to establish R′ = 1 and then using the symmetry of the
region X0 to reduce the number of variables and obtain
a one-variable equation that has only one solution in the
region X0. Using a Gröbner basis we show that there is
a unique point in every region Xi for which the quasi-
relators equal the identity.

Let I be the ideal generated by the equations formed
by the entries of the quasi-relators of a region subtracted
from the identity matrix. We compute a Gröbner basis
for I and verify that there is a unique solution to equa-
tions in the Gröbner basis in that region. For computa-
tional convenience we split the relations in half, which
reduces the degree of the polynomials generating the
ideal. Let p = tr1 = tr(f), q = tr2 = tr(w), and
r = tr3 = tr(f−1w) as in Section 3. Using (2–1), L′,
D′, and R′ can be expressed in terms of p, q, and r as
follows:

L′ =

(
p±

√
p2 − 4
2

)2

, (6–1)

D′ =

(
2q
√
R′ ±√4q2R′ − 4(1 +R′)2

2(1 +R′)

)2

, (6–2)

R′ =
qL′ − r√L′

r
√
L′ − q . (6–3)

Using (3–1), we can write the entries of conjugates of f
and w in terms of p, q, r, and z, where qz − z2 = 1. The

equations for quasi-relators using (3–1) are simpler for
computing Gröbner bases.

For example, for the region X0, using the ordering
z, r, q, p on the variables, the last entry of the Gröbner
basis is (p−1)(p+1)(p4−2p2 +4). Using (6–1) it can be
easily checked that only one root of the above equation
gives the value of L′ lying in the region X0. Similarly, the
last entries of the Gröbner bases in orders z, r, p, q and
z, p, q, r are (q−2)(q+2)(q4−2q2+4) and (r+1)(r2−r+1).
Using (6–2) and (6–3), it can be easily checked that only
one root of q4 − 2q2 + 4 and one of r2 − r + 1 give the
values of D′ and R′ lying in the region X0. This shows
that there is a unique solution for the quasi-relators in
the region X0.

Similarly, for the regionsX2,X4,X5,X6, the last entry
of the Gröbner basis is a polynomial in either p, q, or r,
depending on the ordering of the variables. Using (6–1),
(6–2), (6–3), we check that there is a unique solution in
the respective region.

For the regions X1 and X3 we obtain a multivariable
polynomial in p, q, and r as a factor of the last entry
of the Gröbner basis, along with a single-variable poly-
nomial. We eliminate this factor using the mean value
theorem.

For example, for the region X3 the last entry of the
Gröbner basis with the ordering z > r > q > p on the
variables factors as

(p3 + p2 − 2p− 1)

× (p10 − 7p9 + 15p8 + 4p7 − 49p6 + 11p5 + 88p4

+ 87p3 − 501p2 + 543p− 193)

× (p10 + 5p9 + 6p8 − 6p7 − 10p6 + 12p5 + 13p4 − 11p3

− 6p2 + 4p+ 1)(p12 − 8p11 + 23p10 − 19p9 − 35p8

+ 73p7 − 3p6 − 72p5 + 25p4 + 29p3 − 11p2 − 3p

+ 1)

× (rq + rp− r + qp− q − p+ 1).

It can be checked that only one root of the polynomial
in p above gives the value of L′ lying in the region X3.
We will show that the polynomial rq+rp−r+qp−q−p+1
has no root in the region X3.

From Table 1, we see that

L′ = 0.581385− 3.312055 i,

D′ = 1.15663− 2.756005 i,

R′ = 1.40437− 1.179435 i
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is the midpoint of region X3. Then using (2–1), we see
that the p, q, r values corresponding to this point are

p0 = 1.8219− 0.828571 i,

q0 = 1.82191− 0.828633 i,

r0 = 1.82192− 0.828537 i.

If the polynomial f(p, q, r) = rq+rp−r+qp−q−p+1
has a root, say (p1, q1, r1), in the region X3, then by the
mean value theorem, for some point (p, q, r) in X3 we
obtain

|f(p0, q0, r0)| = |∇f(p, q, r) · (p1 − p0, q1 − q0, r1 − r0)|
≤ ‖∇f(p, q, r)‖ ‖(p1 − p0, q1 − q0, r1 − r0)‖.

From the parameter ranges of region X3 from Table 1,
we know that ‖(p1− p0, q1− q0, r1− r0)‖ < 0.002. Hence
‖∇f(p, q, r)‖ ≥ |f(p0, q0, r0)|/0.002 at some point in the
region X3. It can be checked that |f(p0, q0, r0)|/0.002 ≈
3000 and that

‖∇f(p, q, r)‖
≤ ((|p|+ |q|+ 1)2 + (|q|+ |r|+ 1)2

+ (|r|+ |p|+ 1)2
)1/2

≤ ((|p0|+ |q0|+ 2)2 + (|q0|+ |r0|+ 2)2

+ (|r0|+ |p0|+ 2)2
)1/2

< 11

in the region X3, and hence f(p, q, r) does not have a
root in X3.

We can similarly check for the other variables by
changing the order of the variables. The last entry of
the Gröbner basis with the ordering z > r > p > q on
the variables factors as

(q − 2)

× (q10 − 7q9 + 15q8 + 4q7 − 49q6 + 11q5 + 88q4

+ 87q3 − 501q2 + 543q − 193
)

× (q10 + 5q9 + 6q8 − 6q7 − 10q6 + 12q5 + 13q4

− 11q3 − 6q2 + 4q + 1
)

× (q12 − 8q11 + 23q10 − 19q9 − 35q8 + 73q7 − 3q6

− 72q5 + 25q4 + 29q3 − 11q2 − 3q + 1
)

× (rp+ rq − r + pq − p− q + 1),

and the last entry of the Gröbner basis with the ordering
z > p > q > r on the variables factors as

(r3 + r2 − 2r − 1)

× (r10 − 7r9 + 15r8 + 4r7 − 49r6 + 11r5 + 88r4

+ 87r3 − 501r2 + 543r − 193)

× (r10 + 5r9 + 6r8 − 6r7 − 10r6 + 12r5 + 13r4

− 11r3 − 6r2 + 4r + 1)

× (r12 − 8r11 + 23r10 − 19r9 − 35r8 + 73r7 − 3r6

− 72r5 + 25r4 + 29r3 − 11r2 − 3r + 1)

× (pq + pr − p+ qr − q − r + 1).

Using (6–1), (6–2), (6–3) above, it can be checked that
there is only one root of the above polynomial in q and
one root of the polynomial in r that give values for D′

and R′ lying in the region X3. The polynomial in p, q,
and r is the same as above. Hence the quasi-relators for
the region X3 have a unique solution in the region X3.
The uniqueness of solutions is proved similarly for the
region X1.

Proposition 6.1. Let f and w be as in (2–1) and let
r1(Xi), r2(Xi) be quasi-relators for the region Xi. Then
there is a unique triple (L′,D′, R′) in the region Xi for
which the quasi-relators equal the identity matrix.

Proof: It follows from Theorem 3.1 that there is a triple
(L′,D′, R′) in the region Xi for which the quasi-relators
equal the identity matrix. The uniqueness follows from
the Gröbner-basis computation for every region.

We now give the proof of our main theorem.

Proof of Theorem 1.2: Let N be an exceptional manifold
and let δ be the shortest geodesic in N . Let f ∈ π1(N)
be a primitive hyperbolic isometry whose fixed axis δ0 ∈
H3 projects to δ and let w ∈ π1(N) be a hyperbolic
isometry that takes δ0 to its nearest translate. Let G be
the subgroup of π1(N) generated by f and w. Then the
manifold N ′ = H3/G is exceptional and δ0 projects to
the shortest geodesic in N ′.

It follows from [Gabai et al. 03, Corollary 1.29] that
the (L′,D′, R′) parameter for G lies in the region Xi for
some i = 0, 1, . . . , 6. By definition of the quasi-relators
[Gabai et al. 03], Relength(r1) and Relength(r2) are less
than Relength(f). Since f is the shortest element in G,
it follows that r1 and r2 equal the identity in G, that
is, they are relations in G. It is proved in [Lipyanskiy
02] that the quasi-relators generate all the relations in
the groups Gi = 〈f, w | r1(Xi), r2(Xi)〉 for i = 0, . . . , 6.
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Hence G = Gi, and π1(N) contains the marked group Gi

for some i = 0, 1, . . . , 6.
It follows from Proposition 6.1 that the quasi-relators

for a given region equal the identity at a unique point
in that region. Hence N is covered by Ni for some
i = 0, 1, 2, 3, 4, 5, where Ni are the manifolds described
in Section 1.

7. CONCLUSIONS

The first part of Conjecture 1.1 follows from Proposition
6.1. The results in Sections 4 and 5 prove part (i) of Con-
jecture 1.1 for regions Xi, i = 1, 2, 4, 5, 6, and the exact
arithmetic from Section 3 proves part (v) of Conjecture
1.1 for all the regions. The question about the unique-
ness of the manifolds remains open for all regions except
X0. It is reasonable to make the following conjecture:

Conjecture 7.1. The manifolds Ni for i = 1, 2, 3, 4, 5, 6
do not nontrivially cover any manifold.

Alan Reid proves the conjecture for N1 and N5 in the
following appendix.

8. APPENDIX: THE MANIFOLDS N1 AND N5

(written by Alan W. Reid)

In this appendix we prove the following theorem.

Theorem 8.1. The manifolds N1 and N5 do not properly
cover any closed hyperbolic 3-manifold.

Proof: We give the proof in the case N1. The case N5

is similar. Both arguments follow that given for Vol3 in
[Jones and Reid 01]. We refer the reader to [Maclachlan
and Reid 03] for details about arithmetic Kleinian groups
and quaternion algebras.

Thus, suppose that N1 = H3/Γ1 nontrivially covers
a closed hyperbolic 3-manifold N = H3/Γ, say, with
covering degree d. Using the identification of N1 as
v2678(2, 1) given in this paper, it follows that the vol-
ume of N1 is approximately 4.116968736384613 . . . and
that H1(N1; Z) = Z/7Z ⊕ Z/7Z is finite of odd order.
Note that since H1(N1; Z) is finite, the closed hyperbolic
3-manifoldN is orientable. Since the volume of the small-
est arithmetic manifold is approximately 0.94 [Chinburg
et al. 01], it follows that d ≤ 4.

Using Snap (or from computations in this paper), the
Kleinian group Γ1, and hence Γ, is arithmetic with invari-
ant trace field k, say. This has degree 4 and discriminant

−448, and the invariant quaternion algebra B/k is un-
ramified at all finite places. We remark that there is a
unique such field.

Since |H1(N1; Z)| is odd, Γ1 is derived from a quater-
nion algebra. Furthermore, B has type number 1, and
so Γ1 is conjugate to the group of elements of norm
1 of a maximal order O of B. The image of the el-
ements of norm 1 of O in PSL(2,C) can be shown
(see [Maclachlan and Reid 89]) to coincide with the
orientation-preserving subgroup of index 2 in the Cox-
eter simplex group T [2, 3, 3; 2, 3, 4]. The notation for the
Coxeter group is that of [Maclachlan and Reid 89].

Denote this group by C. The minimal index of a
torsion-free subgroup of C is at least 24, since by in-
spection of the Coxeter diagram, C contains a subgroup
isomorphic to S4. Therefore the volume calculations of
[Maclachlan and Reid 89] show that Γ1 is a minimal-index
torsion-free subgroup of this group.

The analysis in [Jones and Reid 01, Section 4] shows
that the possible maximal group in the commensurability
class of Γ1 that contains Γ is either the group ΓO (in the
notation of [Jones and Reid 01]), where O is the maximal
order above, or Γ{P7},O (in the notation of [Jones and
Reid 01]).

Suppose first that Γ < ΓO. By the remarks above, Γ
is not a subgroup of C. Now, [Maclachlan and Reid 89]
shows that ΓO contains C as a subgroup of index 2. It
follows that Γ must contain Γ1 as a subgroup of index 2,
and that Γ is a torsion-free subgroup of index 24 in ΓO.
We claim that this is impossible.

First, we can obtain a presentation of the group ΓO
using the geometric description of C above; namely, the
group ΓO is obtained from C by adjoining an orientation-
preserving involution t that is visible in the Coxeter dia-
gram. On checking the action of this involution, one gets
that a presentation for ΓO is given by

〈
t, a, b, c | t2, a2, b3, c3, (b ∗ c)2, (c ∗ a)3, (a ∗ b)4,

t ∗ a ∗ t−1 ∗ c ∗ b, t ∗ b ∗ t−1 ∗ a ∗ c−1, t ∗ c ∗ t−1 ∗ c〉.

A check with Magma (for example) shows that there
are 24 subgroups of index 24 and all but two are eas-
ily seen to have elements of finite order by inspection
of presentations. The remaining two have abelianiza-
tions Z/22Z. The index-2 subgroups in these groups
all have Z/11Z in their abelianizations by a stan-
dard cohomology-of-groups argument (or further check-
ing with Magma). In particular, these index-2 subgroups
cannot coincide with Γ1, which completes the analysis in
this case.
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For the second case, the covolume of G = Γ{P7},O can
be computed (using the formula in [Jones and Reid 01,
Section 2]) to be 12 times that of Γ1. An alternative,
equivalent, description of this maximal group is as the
normalizer of an Eichler order E of level P7 in O (see
[Maclachlan and Reid 03, Chapter 11], for example).

The results of [Chinburg and Friedman 00] (see in par-
ticular Theorems 3.3 and 3.6) show that G contains ele-
ments of orders 2 and 3, and so the minimal index of a
torsion-free subgroup in G is at least 6.

Now, Γ1 ⊂ G∩C. Furthermore, if we denote the image
of the group of elements of norm 1 in E in PSL(2,C) by
Γ1
E , then since the level is P7, it follows that the index [C :

Γ1
E ] is 8 (see [Maclachlan and Reid 03, Chapters 6, 11]).

It is not difficult to see that G∩C = Γ1
E . One inclusion is

clear, and the other follows because from above, we have
[C : Γ1

E ] = 8, so that the only possible indices for [C :
G ∩C] are 2 and 4 (it cannot be 1, since G is a different
maximal group from ΓO above). Now, C is perfect, and
so has no solvable quotients. Hence this excludes C from
having subgroups of index 2 or 4.

We deduce from the above that Γ1 is a subgroup of
Γ1
E . Using the presentation of C, and on checking with

Magma, for instance, we find that there are five sub-
groups of index 8, and some further low-index computa-
tions on these subgroups using Magma shows that only
one such subgroup can contain Γ1. This subgroup (de-
noted by H in what follows) is generated by two elements
of order 3 (b and c ∗ a in the generators above).

As in the first case, we can use the geometry associated
with H to construct a presentation for the group G. The
subgroup H has two generators with both generators of
order 3, so we can adjoin involutions s and t, so that a
presentation for G is
〈
x, y, s, t | s2, t2, (s ∗ t)2, s ∗ a ∗ s ∗ y−1, s ∗ y ∗ s−1 ∗ x−1,

t ∗ x ∗ t ∗ x, t ∗ y ∗ t−1 ∗ y, x3, y3,

x ∗ y−1 ∗ x−1 ∗ y ∗ x ∗ y ∗ x−1 ∗ y−1 ∗ x ∗ y ∗ x ∗ y−1

∗ x−1 ∗ y−1 ∗ x ∗ y ∗ x−1 ∗ y−1 ∗ x−1 ∗ y ∗ x
∗ y−1 ∗ x−1 ∗ y−1 ∗ x ∗ y〉.

From our remarks above, we need only check for
torsion-free subgroups of index 6. However, an easy in-
spection using Magma shows that all the subgroups of
index 6 (of which there are four) have elements of finite
order. This completes the proof.
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