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We define a combinatorial, discrete-time random walk on a
closed, triangulated 3-manifold. As one varies the triangula-
tion, keeping the number of tetrahedra fixed, the maximal mean
commute time of the random walk becomes a random variable
on a finite, uniform probability space of triangulations. Using
computer experiments, we obtain empirical density functions
for these random variables. The densities are then applied in de-
veloping Bayes-type heuristics that allow a walking entity, mov-
ing randomly in an unknown 3-manifold, to obtain probabilistic
information about which manifold it might be moving in. Mean
commute times are calculated via the effective electrical resis-
tance of certain quartic graphs associated with the random walk.
As a by-product, we define a topological invariant, the electri-
cal resistance, of a 3-manifold, which we interpret as a refined
complexity measure with values in the rational numbers.

1. INTRODUCTION

We investigate the statistical topology of 3-manifolds by
posing the following question: To what extent is the
topology of a manifold remembered by purely statistical
properties of certain stochastic processes executed on the
manifold? In the present paper, we shall focus on com-
pact three-dimensional manifolds without boundary, and
the stochastic process we will consider is a combinatorial,
discrete-time random walk on the manifold. Our model
for the random walk is based on the well-known fact due
to Moise [Moise 52] that every compact 3-manifold M can
be triangulated by a simplicial complex T with finitely
many tetrahedra (see also [Bing 59]). Choose and fix such
a T . From a tetrahedron, the walk proceeds across one
of the tetrahedron’s four 2-faces to the adjacent tetrahe-
dron. The face is chosen uniformly at random. Note that
since M is a closed manifold, every two-simplex is indeed
the face of precisely two tetrahedra.

We focus here on the mean commute time associated
with such random walks, i.e., the expected number of
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steps that it takes to go from a tetrahedron a to a tetra-
hedron b and back to a. An important point to be empha-
sized is that the walking entity itself can, by maintain-
ing a “flight log,” calculate approximations to the mean
commute times. The theorems and heuristics presented
below can then be used by the walking entity to obtain
information about which manifold it might be walking in.

Fix the manifold M and the number n of tetrahedra.
Then there are finitely many triangulations of M hav-
ing n tetrahedra (see Lemma 4.3). Associating to every
such triangulation the maximal mean commute time of
the random walk on it defines a random variable on the
finite, uniform probability space of triangulations of M

with n tetrahedra. Our main results are empirical den-
sity functions of these random variables, for certain man-
ifolds and certain interesting values of n. The densities
are calculated by executing computer experiments.1 Our
algorithm generates a large number of triangulations of a
fixed manifold at random and then calculates mean com-
mute times for random walks on each of these triangu-
lations by computing the effective electrical resistance of
an associated quartic graph, using classical results from
graph theory.

As a by-product of these investigations we define a
topological invariant, the electrical resistance of a 3-
manifold, which we interpret as a refined complexity mea-
sure of the manifold. For example, S3 has resistance
0.4, and the 3-dimensional Klein bottle has resistance
0.8056.2

The theoretical densities are not known at present,
since we do not have complete lists of triangulations of
3-manifolds. Even if we did, they would be extremely
long: it is known, for instance, that already the 2-sphere
S2 has 28,615,703,421,545 triangulations with up to 23
vertices.

What conclusions can we draw from the empirical den-
sities? At first, one probably expects statistical quanti-
ties associated with such random walks to reflect very
little of the full topological structure of the manifold. It
turns out, however, that in certain special situations, the
mean commute time carries enough information to allow
one to determine the manifold completely. We prove, for
example, the following theorem, which appears as Theo-
rem 8.1 in Section 8.1.

1The C code of this software is available at http://www.mathi.
uni-heidelberg.de/∼banagl/statisticaltopology/er.c.

2Throughout this paper, all numerical equalities are to be un-
derstood, of course, as decimal approximations.

Theorem Suppose an unknown manifold M is triangu-
lated with 27 tetrahedra. If the maximal mean commute
time associated with the combinatorial random walk on
this triangulation is greater than or equal to 88, then M

is the 3-sphere.

In general, we are interested in calculating, for a given
number of tetrahedra n and a given threshold time t, the
a posteriori probabilities

P(M | C ≤ t),

that is, the probability that the manifold one is walking
in is M after having observed that the commute time
C is less than or equal to t. We wish to calculate this
in terms of the a priori probabilities P(M) (the proba-
bility that a 3-manifold triangulation with n tetrahedra
triangulates M ; for more information on this probability
measure see Sections 4 and 5). As an illustration, the
empirical density functions enable us to generate Bayes-
type results such as the following, which is Heuristic 8.2
in Section 8.1.

Heuristic. Suppose an unknown manifold M is trian-
gulated with 27 tetrahedra. Assume we know that the
maximal mean commute time associated with the com-
binatorial random walk on this triangulation is less than
or equal to 102. Then M is either the 3-sphere or S2�S1

with probabilities

P
(
S3 | C ≤ 102

)
=

0.009 P(S3)
0.009 P(S3) + P(S2 � S1)

,

P
(
S2 � S1 | C ≤ 102

)
=

P(S2 � S1)
0.009 P(S3) + P(S2 � S1)

.

Here S2 � S1 denotes the 3-dimensional Klein bottle,
i.e., the space obtained from S2×[0, 1] by antipodal iden-
tification of S2 × {0} and S2 × {1}. Thus we learn that
knowing that the commute time is relatively small gives
high weight to S2 � S1. The following is Heuristic 8.4 in
Section 8.2.

Heuristic. Suppose an unknown manifold M is trian-
gulated with 40 tetrahedra. Let C denote the maximal
mean commute time associated with the combinatorial
random walk on this triangulation. Then:

1. C < 120 or C > 135.

2. If C > 135, then M is S3, S2 � S1, or S2 × S1.
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3. If C < 120, then M = RP 3.

4. Assume we know for instance that C ≤ 162. Then
M is S3, S2 �S1, S2×S1, or RP 3 with probabilities

P(S3 | C ≤ 162) = 0.0023 P(S3)/p,

P(S2 � S1 | C ≤ 162) = 0.0957 P(S2 � S1)/p,

P(S2 × S1 | C ≤ 162) = 0.0777 P(S2 × S1)/p,

P(RP 3 | C ≤ 162) = P(RP 3)/p,

where

p = 0.0023 P(S3) + 0.0957 P(S2 � S1)

+ 0.0777 P(S2 × S1) + P(RP 3).

From the previous heuristic we learn that knowing
that the commute time is relatively small gives high
weight to projective space. For instance, if we draw a
sample out of all triangulations with 40 tetrahedra (con-
taining possibly several copies of the same triangulation)
so that the entropy of the partition S3, S2 �S1, S2×S1,

RP 3 is maximized, then

P(S3 | C ≤ 162) = 0.00196,

P(S2 � S1 | C ≤ 162) = 0.08140,

P(S2 × S1 | C ≤ 162) = 0.06609,

P(RP 3 | C ≤ 162) = 0.85056.

These heuristics are found using, in addition to the em-
pirical densities, results on the combinatorics of trian-
gulations of 3-manifolds and their f -vectors established
in discrete geometry (especially the powerful results of
Walkup [Walkup 70]).

2. THE MEAN COMMUTE TIME

Let I be a finite state-space and (Xt)t=0,1,2,... a discrete-
time Markov chain with underlying probability space
(Ω,F, P), Xt : Ω → I, and transition matrix P =
(pij)i,j∈I , pij = P(X1 = j | X0 = i). Given i ∈ I, we
write Pi(A) for the conditional probability P(A | X0 = i).
The hitting time of j ∈ I is the random variable

Hj : Ω −→ {0, 1, 2, . . .} ∪ {∞}

given by

Hj(ω) = inf{t ≥ 0 : Xt(ω) = j}.

The mean hitting time for j starting from i ∈ I, i.e., the
mean time taken for (Xt)t=0,1,2,... to reach j provided
X0 = i, is

Ei(Hj) =
∞∑

k=1

Pi(Hj ≥ k).

The mean commute time between i and j is

C(i, j) = Ei(Hj) + Ej(Hi).

This quantity expresses the expected number of steps
that it takes the chain to go from i to j and back to i.
The maximal mean commute time is defined to be

Cmax = max
i,j

C(i, j).

3. RANDOM WALKS ON GRAPHS

A graph G = (V,E) with finite set of nodes V and fi-
nite set of edges E is assumed to be undirected, without
multiple edges and without self-loops. We write n = |V |
for the number of nodes and m = |E| for the number of
edges. In our terminology, we will distinguish between
“vertex,” which is understood to be a 0-simplex in a sim-
plicial complex, and “node,” which refers to an element
of V . The graph G is called d-regular if the degree of
every node is d. Note that for such a graph, we have the
relation

m =
1
2
dn. (3–1)

The class of quartic, i.e., 4-regular, graphs will play a
distinguished role in this paper, for we will describe in
Section 5 a construction associating a quartic graph to
any given triangulation of a closed 3-manifold.

Given a graph G, there is a natural definition of a
Markov chain on V = I. A discrete-time random walk
on G is the Markov chain with transition matrix

pvw =

{
1/dv if (v, w) is an edge,
0 if not,

(3–2)

where dv is the degree of the node v. The corresponding
stationary distribution is

πv =
dv

2m
.

Thus, as described in the previous section, we may con-
sider the mean commute time CG(v, w) between any two
nodes v, w and the maximal mean commute C(G) :=
Cmax of a graph G.
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4. TRIANGULATIONS OF 3-MANIFOLDS

Let M3 be a three-dimensional manifold. In the present
paper, we work exclusively with connected, closed M ,
i.e., 3-manifolds are compact and have no boundary. The
literature on 3-manifolds uses mainly two different con-
cepts of triangulation: one triangulates M by a simplicial
complex (in the sense of [Munkres 84, Section 1.3]), or
one triangulates M , more generally, by a simplicial cell
complex. The difference is that in a simplicial complex
a simplex is uniquely determined by its vertices. This is
not the case in a simplicial cell complex. For example,
one needs five tetrahedra to triangulate the 3-sphere S3

by a simplicial complex (take the boundary of a standard
4-simplex), but only one tetrahedron is required to tri-
angulate it as a simplicial cell complex. This paper uses
only triangulations by simplicial complexes. The reason
for this choice is explained in Section 5.

For a triangulation T , let fd, d = 0, 1, 2, 3, denote the
number of d-dimensional simplices in T . The quadru-
ple f = (f0, f1, f2, f3) is called the f -vector of T . By
Poincaré duality, the Euler characteristic χ(M) of M

vanishes, χ(M) = f0 − f1 + f2 − f3 = 0. In a mani-
fold triangulation, every 2-simplex is a face of precisely
two tetrahedra. (This is in fact still true if the space is
only a pseudomanifold.) Hence 2f2 = 4f3. Summarizing,
an f -vector of a 3-manifold triangulation has the form

f = (f0, f1, 2(f1 − f0), f1 − f0). (4–1)

Two theorems of Walkup [Walkup 70] will be used in
establishing our heuristics:

Theorem 4.1. With the exception of S3, S2 � S1, and
S2 × S1, which have minimal triangulations with 5, 9,
and 10 vertices, respectively, every other triangulated 3-
manifold has at least 11 vertices.

Theorem 4.2. For every 3-manifold M , there is an integer
γ(M) such that

f1 ≥ 4f0 + γ(M)

for every triangulation of M . One has

γ(S3) = −10,

γ(S2 � S1) = γ(S2 × S1) = 0,

γ(RP 3) = 7,

with γ(M) ≥ 8 for every other 3-manifold M .

Let Triangn(M) be the set of isomorphism classes of
abstract simplicial complexes T with n tetrahedra whose
topological realization |T | is homeomorphic to M .

Lemma 4.3. The set Triangn(M) is finite.

Proof: This is implied by Theorem 4.2. The details are
as follows: For any triangulation T ∈ Triangn(M), let
f = (f0, f1, f2, f3 = n) denote its f -vector. According to
Walkup’s theorem, f1 ≥ 4f0 −10 for any T . By equation
(4–1), f3 = f1−f0. Consequently, the number of vertices
is bounded above in terms of the number of tetrahedra:

f0 ≤ n + 10
3

.

Let V be the set of vertices in T . Then T can be uniquely
described by specifying its tetrahedra, that is, by speci-
fying a set with n elements, each of which is a set of four
elements (the vertices of the tetrahedron) chosen from V .
Therefore,

|Triangn(M)| ≤
((f0

4

)
n

)
≤
(( 1

3 (n+10)
4

)
n

)
.

To relate two triangulations of a manifold M3 to each
other, we use Pachner’s results [Pachner 78, Pachner 87].
Let Md be a d-dimensional manifold triangulated by a
simplicial complex T . For 0 ≤ i ≤ d, Pachner defines a
bistellar i-move as follows: Choose any (d − i)-simplex
∆d−i in T . If the link Lk(∆d−i) of ∆d−i in T is not the
boundary of any i-simplex of T , then the bistellar i-move
on ∆d−i consists in removing the join

∆d−i ∗ Lk(∆d−i)

from T and replacing it with the join

∂∆d−i ∗ ∆i,

where ∆i is a new i-simplex (not in T before execution of
the move) such that ∂∆i = Lk(∆d−i). In the case d = 3
it is convenient to refer to a 0-move as a 1 → 4 move,
to a 1-move as a 2 → 3 move, to a 2-move as a 3 → 2
move, and to a 3-move as a 4 → 1 move. See Figure 1.
Thus, a 1 → 4 move replaces one tetrahedron by four
tetrahedra and a 2 → 3 move replaces two tetrahedra by
three tetrahedra.

A PL sphere is a simplicial complex that is piecewise
linearly homeomorphic to the boundary of a simplex. A
combinatorial manifold is a triangulation of a topological
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FIGURE 1. Pachner moves on a 3-manifold triangulation.

manifold such that the link at every vertex is a PL sphere.
Two simplicial complexes triangulating a manifold are
bistellarly equivalent if there exists a finite sequence of
bistellar moves transforming one complex into the other.

Theorem 4.4. (Pachner.) Two combinatorial manifolds
are bistellarly equivalent if and only if they are PL home-
omorphic.

This result, together with Moise’s work [Moise 52] as-
serting that every 3-manifold has a unique (up to PL
homeomorphism) PL structure, implies that any two tri-
angulations of a closed 3-manifold can be obtained from
each other by executing a finite sequence of Pachner
moves.

5. PASSAGE TO QUARTIC GRAPHS

Given any triangulation T ∈ Triangn(M), there is an
obvious way to associate a quartic graph QG(T ) to T

such that combinatorial random walks on T correspond
to random walks on QG(T ): For QG(T ) = (V,E), take
the set of nodes V to be the set of tetrahedra in T . Take
the set of edges E to be the set of 2-simplices in T , that
is, v ∈ V and w ∈ V are joined by an edge iff the tetrahe-
dra v and w share a common 2-face in T . Then QG(T ) is
indeed a quartic graph, and we have m = 2n. The com-
binatorial random walks of the introduction are precisely
the discrete-time random walks of Section 3 on QG(T ).
The transition matrix is

pvw =

{
1
4 if (v, w) is an edge,
0 if not,

and the stationary distribution is πv = 1/n. We will be
interested in the mean commute times between v and w,
CQG(T )(v, w), and in the maximal mean commute time,
C(QG(T )), as defined in Sections 2 and 3.

The construction of QG(T ) is related to the “face-
pairing graphs” of Burton [Burton 04], but there is an im-
portant difference: Burton triangulates by simplicial cell
complexes, not by simplicial complexes in the strict sense.
Consequently, his face-pairing graphs are 4-valent multi-
graphs, i.e., may possess multiple edges and self-loops.
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FIGURE 2. Pachner moves on quartic graphs.

For example, S2 ×S1 can be triangulated by a simplicial
cell complex containing two tetrahedra. The correspond-
ing face-pairing graph has two nodes, each having one
self-loop. The two nodes are joined by two distinct edges.
Real projective space RP 3 and the lens space L(3, 1) can
also be triangulated by a cell complex with two tetrahe-
dra. However, there are only two 4-valent multigraphs on
two nodes that can arise as face-pairing graphs, namely
the graph described for S2×S1, and the graph with four
distinct edges between the two nodes. Thus two man-
ifolds among S2 × S1, RP 3, and L(3, 1) have the same
face-pairing graph. In particular, stochastic processes
running on this graph cannot distinguish between these
two manifolds. This explains why we work with simpli-
cial complexes, not cell complexes, in this paper.

Next, let us define the random variable whose investi-
gation is the focus of this paper. We make Triangn(M)
into a probability space as follows: According to Lemma
4.3, Triangn(M) is finite. We endow it with the uni-
form probability measure: For a triangulation T ∈
Triangn(M), set

P({T}) =
1

|Triangn(M)| .

Then the maximal mean commute time defines a random
variable

Cn(M) : Triangn(M) −→ Q,
T �→ C(QG(T )).

Sections 8.1 and 8.2 determine empirical density func-
tions of Cn(M) for M = S3, S2 � S1, S2 × S1, and RP 3

for n = 27, 40. These values of n are closely tied to
the discrete geometry of the Klein bottle and projective
space, respectively, and are thus of particular interest.
Our software allows the investigation of any n, limited in
practice only by time constraints and the available com-
puting environment.

As discussed in the previous section, any two trian-
gulations of M are related by a finite sequence of Pach-
ner moves. Figure 2 shows how the associated quartic
graphs QG(T ) of triangulations T transform under the
four Pachner moves. In fact, Pachner 1 → 4 moves in-
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duce a map

{(G, v) | G a quartic graph, v ∈ V (G)}
−→ {quartic graphs}.

An analogous statement does not hold for 4 → 1 moves.
For instance, applying a 4 → 1 move to any four nodes
of the complete graph K5 on five nodes leads to a multi-
graph with two nodes and four distinct edges between
these two nodes. Furthermore, 2 � 3 moves do not read-
ily give maps from quartic graphs to quartic graphs: the
problem is that one cannot read off from the graph alone
(not knowing the triangulation T ) how to reconnect the
edges to the rest of the graph.

6. ELECTRICAL RESISTANCE

To calculate mean commute times, we employ a rein-
terpretation in terms of resistance of electrical networks.
Consider a graph G as an electrical network in which each
edge (x, y) is a resistor of Rxy ohms. Choose two distinct
nodes a and b and apply voltage 1 at a and ground b

(i.e., set voltage to 0). We are interested in determining,
and giving a probabilistic interpretation of, the voltages
vx that develop at nodes x, and the currents ixy flowing
along the wires (x, y) of the circuit. Let ix =

∑
y ixy be

the total current flowing from x. By Kirchhoff’s node
law, ix = 0 for x 	= a, b. Using Ohm’s law

ixy =
vx − vy

Rxy
,

we deduce that
vx =

∑
y

Cxy

Cx
vy,

where Cxy = 1/Rxy is the conductance of the wire (x, y)
and Cx =

∑
y Cxy. Let us now specialize to Rxy = 1

ohm for every edge. Then Cxy/Cx = 1/dx, where dx

is the degree of the node x. Using (3–2), we obtain, in
terms of transition probabilities pxy,

vx =
∑

y

pxyvy, x 	= a, b.

This linear system, together with the boundary condi-
tions va = 1, vb = 0, has a unique solution. We define
the effective resistance erG(a, b) between a and b by

erG(a, b) =
va

ia
=

1
ia

.

Now the voltage can be interpreted as a hitting probabil-
ity, since both functions are harmonic and they have the
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FIGURE 3. A Wheatstone bridge.

same boundary values. The current ixy flowing through
the wire connecting x to y is proportional to the expected
net number of times that a walking entity, starting at a

and walking until b is reached, will move along the wire
from x to y. Chandra et al. [Chandra et al. 89] showed
that the mean commute time is twice the number of edges
times the effective resistance:

Theorem 6.1. (Commute interpretation of resistance.)
Given two nodes v, w in a graph G, the effective resis-
tance erG(v, w) between v and w is related to the mean
commute time of the associated random walk by

CG(v, w) = 2m · erG(v, w),

where m is the number of edges.

Note that if G = QG(T ) for some T ∈ Triangn(M),
then

CG(v, w) = 4n · erG(v, w)

holds. This can be seen either graph-theoretically by
noting that for a 4-regular graph, m = 2n (see (3–1)),
or topologically by observing that in a 3-manifold the
number of 2-simplices is twice the number of tetrahedra
(see our discussion of f -vectors in Section 4). This means
that within the set Triangn(M), i.e., within the set of
triangulations having n tetrahedra, the commute times
are proportional to the electrical resistance values. We
shall write er(G) for the maximal effective resistance of
a graph G,

er(G) = max
v,w

erG(v, w).

It is perhaps interesting to note that performing a
Pachner 1 → 4 move on a node v of QG(T ) (see Figure
2) corresponds physically to removing v and replacing it
with an electrical network component called a Wheat-
stone bridge; see Figure 3.
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The Wheatstone bridge is a circuit used for precise
measurements of resistance. It consists of a source of
electrical current (such as a battery) and a galvanometer
that connects two parallel branches of a diamond con-
taining four resistors, three of which are known. In order
to determine the resistance of the unknown resistor, the
resistances of the other three are adjusted and balanced
until the current passing through the galvanometer de-
creases to zero.

Definition 6.2. Let M3 be a closed 3-manifold and
T ∈ Triangn(M) a triangulation. The (maximal effec-
tive) electrical resistance er(T ) of T is given by

er(T ) = er(QG(T )).

The (maximal mean) commute time C(T ) of T is given
by

C(T ) = C(QG(T )).

Let nmin be the unique natural number such that
Triangnmin

(M) 	= ∅ but Triangnmin−1(M) = ∅, that is,
nmin is the smallest number of tetrahedra necessary to
triangulate M . The electrical resistance er(M) of the
manifold M is defined to be

er(M) = min{er(T ) | T ∈ Triangnmin
(M)}.

By definition, er(M) is a topological invariant of M .

Example 6.3. We compute er(S3). The unique minimal
triangulation T of the sphere is the boundary complex
of a standard 4-dimensional simplex. Explicitly, T has
vertices {1, 2, 3, 4, 5} and five tetrahedra

(1, 2, 3, 4), (1, 2, 3, 5), (1, 2, 4, 5), (1, 3, 4, 5), (2, 3, 4, 5).

Therefore,
QG(T ) = K5,

the complete graph on five nodes. By Foster’s identity,∑
(v,w)∈E

er(v, w) = n − 1 = 4.

By the symmetry of the complete graph, the er(v, w) are
all equal. Since there are 10 edges, we see that

er(K5) =
2
5
,

whence er(S3) = 2
5 . (Alternatively, one may solve the lin-

ear system directly for K5, or one argues on probabilistic

grounds that the maximal mean commute time for the
complete graph Kn is C(Kn) = 2(n−1), so that by The-
orem 6.1, er(Kn) = (n − 1)/2n.) Moreover, if M is any
manifold, then er(M) ≥ 2

5 : By a result of [Coppersmith
et al. 96], the effective resistance between any two nodes
v, w of a simple, connected graph G satisfies the lower
bound

erG(v, w) ≥ 1
dv + 1

+
1

dw + 1
,

where dv, dw are the degrees of v, w, respectively. For
any triangulation T of M , G = QG(T ) is quartic, and
thus dv = dw = 4 for all v, w.

The following table records the electrical resistances
of some 3-manifolds:

M er(M)
S3 0.4

RP 3 0.7464(∗)
L(3, 1) 0.7621(∗)
S2 � S1 0.8056

The values marked by (∗) are known to be upper bounds,
but the reverse inequalities rely on assuming the validity
of two conjectures in discrete geometry. The conjectures
say that Walkup’s triangulation of RP 3 with f -vector
(11, 51, 80, 40) [Walkup 70] is unique among all trian-
gulations of RP 3 with this f -vector, and that Brehm’s
triangulation of L(3, 1) with f -vector (12, 66, 108, 54) is
unique among vertex minimal triangulations; see [Lutz
05].

One may think of the electrical resistance of a 3-
manifold as a refined complexity measure with values
in the rational numbers. For example, there are three
manifolds with Matveev complexity 0, namely S3, RP 3,
and L(3, 1). As the above table shows, these are further
distinguished by their electrical resistance values.

7. THE ALGORITHM

Let us describe the algorithm used to produce the ex-
perimental data. The input consists of a quintuple
(T, n, s, l,N), where T is a seed triangulation of a 3-
manifold M containing n0 tetrahedra, n ≥ n0 is the de-
sired number of tetrahedra of the random triangulations
of M to be generated, s is the desired sample size, and
l, N ≥ 0 are parameters that control the generation of the
random triangulations. We refer to l as the excess Pach-
ner length and to N as the Markov length. Given such a
quintuple, the algorithm proceeds roughly as follows: It
applies random Pachner forward moves, i.e., 1 → 4 and
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2 → 3 moves, starting out from T , until a triangulation
with n + l tetrahedra is reached. Once n + l tetrahedra
have been reached, random reverse Pachner moves, i.e.,
4 → 1 and 3 → 2 moves, are applied until a triangula-
tion T1 with n tetrahedra is reached. Then T1 is again
inflated to n + l tetrahedra, and reduced to n tetrahe-
dra, yielding a triangulation T2, etc., until one arrives
after N steps at a triangulation TN . The algorithm then
generates the associated quartic graph QG(TN ) and com-
putes its maximal electrical resistance using the method
of Section 6. This amounts to solving a large linear sys-
tem, which is done numerically by Jacobi iteration. From
the resistance, the commute time C(TN ) is computed us-
ing Theorem 6.1. This entire process is carried out s

times, and each time a density curve is updated. For
the seed triangulation T , we typically start with a ver-
tex minimal triangulation for a given manifold.3 The
output of the algorithm consists of the densities for elec-
trical resistance and maximal mean commute times, as
well as their sample means. We have implemented this
algorithm in C for speed. The high-quality FSU-ULTRA
random-number generator by Marsaglia and Zaman has
been used [Marsaglia and Zaman 91].4

In the following section, we describe the results, as
well as their implications, of executing the algorithm for
n = 27 and n = 40. We chose these two values because of
their distinguished roles in discrete geometry: n = 27 is
closely tied to the 3-dimensional Klein bottle, since it is
the minimal number of tetrahedra required to triangulate
the Klein bottle; n = 40 is closely tied to real projective
space, since it is the minimal number of tetrahedra re-
quired to triangulate RP 3.

The empirical densities presented here are based on
a sample size of s = 3000 triangulations. Experiments
show that this sample size is adequate for our purposes,
i.e., drawing multiple random samples of 3000 leads only
to small changes in the density curves. An excess Pachner
length of l = 35 and a Markov length of N = 5 were
employed.

In what sense and why does this algorithm generate
roughly uniform triangulation samples? We shall first
define abstractly a class of stratified graphs, for which
we isolate general conditions under which the algorithm
provably generates the uniform probability measure in
the limit (Theorem 7.7). We will then create a stratified

3These can be found, e.g., at the manifold page of F. Lutz,
http://www.math.tu-berlin.de/diskregeom/stellar/.

4The code is available at http://www.mathi.uni-heidelberg.de/
∼banagl/statisticaltopology/er.c.

model of the Pachner graph and discuss how it fits into
the abstract framework.

Let us recall the definition of a multipartite graph:

Definition 7.1. A multipartite graph is a graph G =
(V,E) together with a partition V =

⋃
i∈I Vi of the set

of nodes (I some index set) such that no two nodes in
the same Vi are joined by an edge in E.

A special class of multipartite graphs is that of the strat-
ified graphs:

Definition 7.2. A stratified graph is a multipartite graph
G = (V,E) with node partition V = V0 ∪ V1 ∪ V2 ∪ · · ·
such that if v ∈ Vi, w ∈ Vj , i < j, and (v, w) ∈ E is
an edge, then j = i + 1. (In other words, edges exist
only between adjacent Vi.) The Vi are called the strata
of G. Note that in a stratified graph, the edges starting
at a node v ∈ Vi can be classified into forward edges
(if they end in Vi+1) and backward edges (if they end in
Vi−1). The degree dv of v is the sum of the forward degree
d+

v (the number of forward edges emanating from v) and
the backward degree d−v (the number of backward edges
emanating from v).

The following three conditions on a stratified graph
will be the hypotheses of the uniform measure theorem
below.

Definition 7.3. A stratified graph is forward connected
if for every i = 0, 1, 2, . . . and any two nodes v, v′ ∈ Vi,
there exists a node w ∈ Vi+l for some l > 0 such that
both v and v′ can be connected to w by paths that use
only forward edges.

Definition 7.4. A stratified graph is stratum-regular
if there exist sequences (d+

0 , d+
1 , d+

2 , . . .) and (d−0 =
0, d−1 , d−2 , . . .) of positive (except for d−0 ) integers such
that for every i = 0, 1, 2, . . . and every v ∈ Vi, one has
d+

v = d+
i , d−v = d−i . In other words, the forward degrees

are constant on every stratum, and the backward degrees
are constant on every stratum.

Definition 7.5. A stratified graph is stratum-finite if ev-
ery stratum Vi is a finite set.

Let G be a forward-connected, stratum-finite,
stratum-regular, stratified graph; let v0 ∈ V0 be any
node; and let L,N be two positive integers. Consider
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the following random algorithm operating on the input
quadruple (G, v0, L,N):

Algorithm 7.6.
v := v0;

for n = 1 upto N:

for l = 0 upto L − 1:
pick any forward edge (v, w), w ∈ Vl+1,

among the d+
v forward edges

starting at v

with uniform probability 1/d+
v ;

v := w;

end-for-l;

for l = L − 1 downto 0:
pick any backward edge (w, v), w ∈ Vl,

among the d−v backward edges

starting at v

with uniform probability 1/d−v ;
v := w;

end-for-l;

end-for-n;

output v;

Theorem 7.7. Let G be a forward-connected, stratum-
finite, stratum-regular, stratified graph. Then there exists
a positive integer L such that for any v0 ∈ V0, Algorithm
7.6 draws nodes from V0 with uniform probability 1/|V0|
as N → ∞.

Proof: The first step is to find L. Let v, v′ ∈ V0 be nodes
in the 0-stratum. Since G is forward connected, there
exists a node w ∈ Vl(v,v′) for some l(v, v′) > 0 such that
both v and v′ can be connected to w by paths that use
only forward edges. Set

L = max
v,v′∈V0

l(v, v′).

This maximum exists because G is stratum-finite.
The second step is to build a Markov chain that de-

scribes the action of Algorithm 7.6. The states are given
by

V0 ∪ V +
1 ∪ V −

1 ∪ V +
2 ∪ V −

2 ∪ · · · ∪ V +
L−1 ∪ V −

L−1 ∪ VL,

where V +
k and V −

k , k = 1, . . . , L − 1, are two disjoint
copies of the set Vk. For each k = 0, . . . , L, choose a
bijection between Vk and the set {1, 2, . . . , |Vk|}. This
relabeling allows us to refer to nodes of Vk by natural
numbers i, 1 ≤ i ≤ |Vk|. The transition matrix P has

the following form:

P =

V0 V +
1 V −

1 V +
2 V −

2 V +
3 V +

L−1 V −
L−1 VL

0 F0 0 0 0 0 V0

0 0 0 F1 0 0 V +
1

B0 0 0 0 0 0 V −
1

0 0 0 0 0 F2 V +
2

0 0 B1 0 0 0
. . . V −

2
0 0 0 0 0 0 V +

3
0 0 0 0 B2 0 V −

3

. . .
. . .

. . . 0 0 FL−1 V +
L−1

0 0 0 V −
L−1

0 BL−1 0 VL

.

The Fk are matrices of order |Vk| × |Vk+1| that contain
the probabilities fk

ij of going from node i ∈ Vk to node
j ∈ Vk+1 via a forward edge. Since G is stratum-regular,

fk
ij =

{
1/d+

k , if (i, j) is a forward edge starting at i,

0, otherwise.

Since Fk is a probability matrix, we have∑
j

fk
ij = 1 (7–1)

for every i ∈ Vk. The Bk are matrices of order |Vk+1| ×
|Vk| that contain the probabilities bk

ij of going from node
i ∈ Vk+1 to node j ∈ Vk via a backward edge. Again,
since G is stratum-regular,

bk
ij =

{
1/d−k+1, if (j, i) is a backward edge starting at i,

0, otherwise.

On the other hand, the backward transition probabilities
can be computed from the forward probabilities:

Bk = diag

(
1∑
i fk

i1

, . . . ,
1∑

i fk
i|Vk+1|

)
· FT

k ,

where FT
k denotes the transpose of Fk. Let i ∈ Vk+1.

There exists a j ∈ Vk such that (j, i) is a backward edge
starting at i, because the backward degree of node i is
d−k+1 > 0. For this j,

1
d−k+1

= bk
ij =

1∑
l f

k
li

· fk
ji =

1∑
l f

k
li

· 1
d+

k

.

Thus the sum ∑
l

fk
li =

d−k+1

d+
k

(7–2)

is independent of the node i. Let Q be the V0 × V0 block
of the power P 2L. To establish the statement of the
theorem, we must show that

lim
N→∞

QN
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exists and that all of its entries are equal to 1
m , where

m = |V0|.
In order to show that the limit exists, we shall show

first that Q = (qvv′)v,v′∈V0 has only positive entries (in
particular, the Markov chain defined by Q is a regu-
lar Markov chain): Let v, v′ ∈ V0 be nodes in the 0-
stratum. Since G is forward connected, there exists a
node w ∈ Vl(v,v′) such that v and v′ can be connected to
w by paths γ and γ′, respectively, that use only forward
edges. Construct a path from v to v′ with exactly 2L
steps as follows: First go from v to w using γ. Note that
l(v, v′) ≤ L. If l(v, v′) = L, then return from w to v′ go-
ing backward along γ′. If l(v, v′) < L, select any forward
edge starting at w, leading to some node w1 ∈ Vl(v,v′)+1.
Continue to select nodes w2, w3, . . . this way, until you
reach a node wL−l(v,v′) ∈ VL. Then

γw1w2 . . . wL−l(v,v′)−1wL−l(v,v′)wL−l(v,v′)−1 . . . w2w1γ
′
rev

is the required path. (Here, γ′
rev means γ′ in reverse

order.) Since there is a path going from v to v′ in exactly
2L steps, the probability qvv′ of going from v to v′ in 2L
steps is positive. Now the fundamental limit theorem for
regular Markov chains asserts that the limit

lim
N→∞

QN = Π

exists, and that all rows of Π are equal.
Lastly, we show that every row π of Π equals the uni-

form vector u = ( 1
m , 1

m , . . . , 1
m ). The row π is the unique

fixed probability vector determined by the equation

πQ = π.

Hence it suffices to show that the equation

uQ = u

holds. The matrix Q factors as

Q = F0F1 · · ·FL−1BL−1 · · ·B1B0.

We have

uF0 =

(
1
m

∑
i

f0
i1, . . . ,

1
m

∑
i

f0
i|V1|

)

=
(

1
m

d−1
d+
0

, . . . ,
1
m

d−1
d+
0

)
,

using (7–2), and inductively

uF0F1 · · ·FL−1 =
1
m

d−1
d+
0

d−2
d+
1

· · · d−L
d+

L−1

(1, . . . , 1).

At this point, one takes the first reverse step, yielding
the distribution

uF0F1 · · ·FL−1BL−1

= uF0F1· · ·FL−1

× diag

(
1∑

i fL−1
i1

, . . . ,
1∑

i fL−1
i|VL|

)
· FT

L−1

= uF0F1 · · ·FL−1 diag

(
d+

L−1

d−L
, . . . ,

d+
L−1

d−L

)
· FT

L−1

=
1
m

d−1
d+
0

d−2
d+
1

· · · d−L−1

d+
L−2

(1, . . . , 1) · FT
L−1

=
1
m

d−1
d+
0

d−2
d+
1

· · · d−L−1

d+
L−2

⎛⎝∑
j

fL−1
1j , . . . ,

∑
j

fL−1
|VL|j

⎞⎠
=

1
m

d−1
d+
0

d−2
d+
1

· · · d−L−1

d+
L−2

(1, . . . , 1),

using (7–1). Thus, inductively,

uQ = uF0F1 · · ·FL−1BL−1 · · ·B1B0 =
1
m

(1, . . . , 1) = u.

Let M3 be a closed 3-manifold. The Pachner graph
P (M) of M (sometimes called the “bistellar flip graph”)
is defined as follows. Its set of nodes consists of the iso-
morphism classes of triangulations of M , that is, its set of
nodes is

⋃
n Triangn(M). Two triangulations are joined

by an edge iff there is a Pachner move transforming one
into the other. In the following, we shall use the short-
hand notation Trn = Triangn(M). Given a triangulation
T of M with n tetrahedra, one can select any one of these
tetrahedra and perform a 1 → 4 move on it. Thus, in or-
der to create a rough model of the Pachner graph, we will
assume that the number dn,14 of 1 → 4 edges emanating
from a triangulation in Trn is proportional to n. Simi-
larly, we will assume that the numbers dn,23, dn,41, and
dn,32 of 2 → 3, 4 → 1, and 3 → 2 edges, respectively, are
proportional to n, say dn,s = λsn, s ∈ {14, 41, 23, 32}.

This type of regularity assumption is further moti-
vated by considering the symmetries of triangulations.
If there were substantial irregularity over Trn, then this
would mean that a substantial fraction of triangulations
T in Trn have the property that most, say, 1 → 4 moves
on T lead to the same isomorphism class of triangula-
tions in Trn+3. This in turn would mean that a sub-
stantial fraction of triangulations in Trn are highly sym-
metric, i.e., Aut(T ) is large. Suppose, for example, that
φ ∈ Aut(T ) and that φ maps a tetrahedron t1 in T to



Banagl: Combinatorial Random Walks on 3-Manifolds 377

some other tetrahedron t2. Then φ can be extended to
yield an isomorphism from the result of a 1 → 4 move on
t1 to the result of a 1 → 4 move on t2. Now in fact, how-
ever, this ubiquity of large automorphism groups cannot
be observed in practice. Even distinguished triangula-
tions, such as minimal ones, typically have small auto-
morphism groups.

To investigate Aut(T ), one observes that if a combi-
natorial manifold has a combinatorial symmetry φ, then
the links of a vertex v and its image φ(v) must be combi-
natorially equivalent. For instance, the only known tri-
angulation T of L(3, 1) with n = 54 has 12 vertices,
6 of which have Altshuler–Steinberg invariant 134784,
3 of which have Altshuler–Steinberg invariant 133056,
and the remaining 3 have Altshuler–Steinberg invariant
112320. Thus Aut(T ) is a subgroup of S6 × S3 × S3.
However, most of these symmetries cannot be realized
and the actual automorphism group is S3.

Naturally, the above degrees are related: The number
of edges between Trn and Trn+1 is equal to both |Trn | ·
dn,23 and |Trn+1 |·dn+1,32. The number of edges between
Trn and Trn+3 is equal to both |Trn | ·dn,14 and |Trn+3 | ·
dn+3,41. Thus

dn,14

dn+3,41
=

dn+2,23

dn+3,32

dn+1,23

dn+2,32

dn,23

dn+1,32
,

which implies
λ14

λ41
=
(

λ23

λ32

)3

(7–3)

for the proportionality constants. Note that λ14 > λ41,

since after selecting one tetrahedron, one can immedi-
ately perform a 1 → 4 move, but one must select three
neighboring tetrahedra such that all four tetrahedra sat-
isfy a certain condition (stated in Section 4) before one
can perform a 4 → 1 move. Then (7–3) implies that
λ23 > λ32 as well, which is consistent with experimental
observations. Note also that our model implies that the
size of Trn grows essentially exponentially with n. For
example, in terms of 2 ↔ 3 moves,

|TrN+k | = |TrN | N

N + k

(
λ23

λ32

)k

. (7–4)

Essentially exponential growth is indeed suggested by re-
sults available in dimension 2: Tutte [Tutte 62] proves
that the number of nonisomorphic triangulations of a tri-
angle is asymptotically equal to

1
16

(
3
2π

)1/2

k−5/2

(
256
27

)k+1

,

where 3k = r − 6 and r is the number of internal edges.
In order to stratify P (M), it would be most natural

to set Vn = Trn. While P (M) would thus be multipar-
tite, it would, however, not be stratified because a 1 → 4
move connects Vn to Vn+3 and not to Vn+1 as required.
Fix a number N of tetrahedra. If we are interested in
investigating triangulations of M with at least N tetra-
hedra, then we may associate to P (M) a stratified graph
SPN (M) = (V,E) in a natural way as follows: For k ≥ 0,
set

VN+k = TrN+k ∪ · · · ∪ TrN+3k+2

and
V =

⋃
k≥0

VN+k.

(These unions are to be disjoint.) For T, T ′ ∈ V, (T, T ′)
is an edge in E iff T ∈ Trn ⊂ VN+k, for some n and k,
and either T ′ ∈ Trn+1 ⊂ VN+k+1 and there is a 2 → 3
move transforming T into T ′, or T ′ ∈ Trn+3 ⊂ VN+k+1

and there is a 1 → 4 move transforming T into T ′. Then
SPN (M) is a stratified graph. (We do not reindex so
that VN becomes V0.) Lemma 4.3 implies that SPN (M)
is stratum-finite. Moreover, one expects SPN (M) to be
forward connected for the following reason: a PL struc-
ture on a manifold is a class of locally finite triangulations
that is closed under linear subdivision and such that any
two triangulations in it have a common subdivision. A
3-manifold has a unique PL structure. Thus any two tri-
angulations of a 3-manifold have a common subdivision.
It is a classic conjecture in topology that if two complexes
have isomorphic subdivisions, then they have isomorphic
subdivisions each obtained by a sequence of stellar subdi-
visions (with no welds being used). See [Lickorish 99, p.
311]. Thus the subdivisions can be reached using for-
ward Pachner moves only. Finally, our model of the
Pachner graph implies that SPN (M) is approximately
stratum-regular: on Trn ⊂ VN+k, the forward degree is
(λ14 + λ23)n, whence on VN+k the forward degree varies
between (λ14 +λ23)(N + k) and (λ14 +λ23)(N +3k +2).
Let µk and σ2

k denote mean and variance, respectively,
of the forward degree over VN+k. Neglecting the term
N/(N + k) in (7–4), we have

µk ≈
∫ λ(N+3k+2)

λ(N+k)

xs(x) dx

/∫ λ(N+3k+2)

λ(N+k)

s(x) dx,

where

λ = λ14 + λ23, s(x) = |TrN |eαx,

α = log
(

λ23

λ32

)
> 0.
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It follows that

λ(N + 3k + 2) − µk −→ 1
α

as k → ∞. Using the approximation

σ2
k ≈

∫ λ(N+3k+2)

λ(N+k)
(x − µk)2s(x) dx∫ λ(N+3k+2)

λ(N+k)
s(x) dx

,

and writing

µk = λ(N + 3k + 2) − 1
α

+ εk, εk → 0,

one obtains

σ2
k −→ 1

α2
=

1

log2
(

λ23
λ32

)
as k → ∞. In particular, the ratio of the variance of the
forward degree over VN+k to the forward degrees them-
selves goes to zero as k → ∞ and in this sense SPN (M)
is roughly stratum-regular. Then, according to Theo-
rem 7.7 applied to SPN (M), Algorithm 7.6 constructs
elements of VN uniformly.

There exist, of course, other methods for construct-
ing random triangulations. In dimension 2, Leibon [Lei-
bon 99] uses a procedure having its origin in Delaunay’s
“empty sphere” method [Delaunay 28] to obtain geodesic
triangulations of a surface Σ2 equipped with a Rieman-
nian metric g. Let δ > 0 be a number with δ < i

6 ,
where i is the injectivity radius of Σ2. Given a set
P = {p1, . . . , pn} of points on Σ2, put in a face for a
triple of these points or an edge for a pair of these points
if the triple or pair lies on a disk of radius less than
δ that contains none of p1, . . . , pn in its interior. This
yields an abstract simplicial complex KP , together with
a map R : |KP | → Σ2. Call P δ-dense if each open
δ-ball contains at least one pj and P has no four of its
points on a circle of radius less than min( i

6 , τ), where τ

is the strong convexity radius of Σ2. Leibon proves that
if δ < min( i

6 , τ) and P is δ-dense, then R is a homeomor-
phism. In order to construct random triangulations of
Σ2, Leibon puts random sets of points on Σ2 distributed
via a Poisson distribution relative to g. (He applies this,
for example, in giving a probabilistic proof of the Gauss–
Bonnet theorem.) In dimension 3, this method is not as
canonical as in dimension 2, since in dimension 3 there
are no natural geometric simplices and faces.

8. EXPERIMENTAL RESULTS

8.1 The 3-Dimensional Klein Bottle

The empirical density of the random variable C27(S3)
(i.e., maximal mean commute time of random walks on

triangulations of S3 with 27 tetrahedra) is shown in Fig-
ure 4. Its sample mean is

C27(S3) = 139.9.

Theorem 8.1. Suppose an unknown manifold M is tri-
angulated with 27 tetrahedra. If the maximal mean com-
mute time associated with the combinatorial random walk
on this triangulation is greater than or equal to 88, then
M is the 3-sphere.

Proof: Discrete geometry implies that when n = 27, M

has to be S3 or S2�S1. In fact, let us recall Theorem 4.1:
With the exception of S3, S2 � S1, and S2 × S1, which
have minimal triangulations with 5, 9, and 10 vertices,
respectively, every other triangulated 3-manifold has at
least 11 vertices. Now if n = f3 = 27, then f1 − f0 = 27
by (4–1). Walkup’s inequality (Theorem 4.2) states that

f1 ≥ 4f0 + γ(M).

If M is not S3, then γ(M) ≥ 0. Thus 27 ≥ 3f0, whence
f0 ≤ 9. Hence M must be S2 � S1.

Theorems 4.1 and 4.2 imply that any triangulation
T ∈ Triang27(S2 � S1) has f0 = 9, and consequently has
f -vector f = (9, 36, 54, 27). By [Altshuler and Steinberg
76] there is only one triangulation of S2 �S1 with this f -
vector. This unique triangulation T ∈ Triang27(S2 �S1)
has

er(T ) = 0.8056, C27(T ) = 87.01.

Thus, if C27 ≥ 88, then M is S3.

Heuristic 8.2. Suppose an unknown manifold M is tri-
angulated with 27 tetrahedra. Assume we know that the
maximal mean commute time associated with the com-
binatorial random walk on this triangulation is less than
or equal to 102. Then M is either the 3-sphere or S2�S1
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FIGURE 4. Commute time density on the 3-sphere with 27
tetrahedra.
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with probabilities

P(S3 | C ≤ 102) =
0.009 P(S3)

0.009 P(S3) + P(S2 � S1)
,

P(S2 � S1 | C ≤ 102) =
P(S2 � S1)

0.009 P(S3) + P(S2 � S1)
.

Verification of Heuristic 8.2: Let

U = Triang27(S
3),

V = Triang27(S
2 � S1).

First note that |V | = 1 as explained in the proof of The-
orem 8.1. This unique triangulation T ∈ V has

er(T ) = 0.8056, C27(T ) = 87.01.

Let Triang27 denote the finite, uniform probability space
of all triangulations of closed 3-manifolds with 27 tetra-
hedra. Then Triang27 has a partition

Triang27 = U ∪ V,

and the maximal mean commute time C27 is a random
variable on Triang27. We have to determine the (empiri-
cal) conditional probabilities

P(U | C27 ≤ 102), P(V | C27 ≤ 102).

Since |V | = 1 and this unique triangulation has C27 ≤
102, we have

P(C27 ≤ 102 | V ) = 1.

According to the empirical density of C27 on S3,

P(C27 ≤ 102 | U) = 0.009.

By Bayes’s theorem,

P(U | C27 ≤ 102)

=
P(C27 ≤ 102 | U) P(U)

P(C27 ≤ 102 | U) P(U) + P(C27 ≤ 102 | V ) P(V )

=
0.009 P(S3)

0.009 P(S3) + P(S2 � S1)
.

Similarly for P(V | C27 ≤ 102). �

8.2 Real Projective Space

The empirical density of the random variable C40(S3)
(i.e., maximal mean commute time of random walks on
triangulations of S3 with 40 tetrahedra) is shown in Fig-
ure 5, the density of C40(S2 � S1) is shown in Figure 6,
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FIGURE 5. Commute time density on the 3-sphere with 40
tetrahedra.

while Figure 7 displays the density of C40(S2 ×S1). The
following table records the sample means:

M C40(M)
S3 250.1

S2 � S1 180.9
S2 × S1 180

The densities strongly distinguish S3 from both S2 � S1

and S2 ×S1, but do not seem to detect a substantial dif-
ference between S2 �S1 and S2×S1. Heuristic 8.4 below
relies on assuming the validity of the following conjecture
in discrete geometry (see, for example, [Lutz 05]):

Conjecture 8.3. Walkup’s vertex-minimal triangula-
tion [Walkup 70] of RP 3 is unique with f-vector f =
(11, 51, 80, 40).

Heuristic 8.4. Suppose an unknown manifold M is trian-
gulated with 40 tetrahedra. Let C denote the maximal
mean commute time associated with the combinatorial
random walk on this triangulation. Then:

1. C < 120 or C > 135.

2. If C > 135, then M is S3, S2 � S1, or S2 × S1.

3. If C < 120, then M = RP 3.
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FIGURE 6. Commute time density on S2 �S1 with 40 tetra-
hedra.
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FIGURE 7. Commute time density on S2×S1 with 40 tetra-
hedra.

4. Assume we know for instance that C ≤ 162. Then
M is S3, S2 �S1, S2×S1, or RP 3 with probabilities

P(S3 | C ≤ 162) = 0.0023 P(S3)/p,

P(S2 � S1 | C ≤ 162) = 0.0957 P(S2 � S1)/p,

P(S2 × S1 | C ≤ 162) = 0.0777 P(S2 × S1)/p,

P(RP 3 | C ≤ 162) = P(RP 3)/p,

where

p = 0.0023 P(S3) + 0.0957 P(S2 � S1)

+ 0.0777 P(S2 × S1) + P(RP 3).

Verification of Heuristic 8.4: An argument similar to
that given in the verification of Heuristic 8.2 shows that
when n = 40, M has to be S3, S2 � S1, S2 × S1, or
RP 3. Here we have 40 = f3 = f1 − f0 ≥ 3f0 + γ(M)
with γ(M) ≥ 8 if M is not S3, S2 � S1, S2 × S1, or
RP 3. Thus f0 ≤ 10, which contradicts the fact that any
manifold not homeomorphic to S3, S2 � S1, or S2 × S1

needs at least 11 vertices to be triangulated.
Let

U = Triang40(S
3),

V = Triang40(S
2 � S1),

W = Triang40(S
2 × S1),

X = Triang40(RP 3).

Let Triang40 denote the finite uniform probability space
of all triangulations of closed 3-manifolds with 40 tetra-
hedra. Then Triang40 has a partition

Triang40 = U ∪ V ∪ W ∪ X,

and the maximal mean commute time C40 is a random
variable on Triang40. We have to determine the (empiri-
cal) conditional probabilities

P(U | C40 ≤ t), P(V | C40 ≤ t),

P(W | C40 ≤ t), P(X | C40 ≤ t),

for t = 135, 162.
Under the assumption that Conjecture 8.3 is correct,

X is a singleton: we have to show that if T ∈ X, then
the f -vector of T is f = (11, 51, 80, 40). The inequality

f1 ≥ 4f0 + γ(RP 3) = 4f0 + 7,

together with
40 = f3 = f1 − f0,

implies that f0 ≤ 11. On the other hand, Theorem 4.1
asserts that f0 ≥ 11, so that f0 = 11. Finally, general
properties of 3-manifold f -vectors (see (4–1)) yield f1 =
51, f2 = 80.

Walkup’s minimal triangulation T of RP 3, X = {T},
has maximal mean commute time C40(T ) = 119.42. This
establishes statement 2.

For t = 135, according to the empirical densities for
S3, S2 � S1, S2 × S1, shown in Figures 5–7, we have

{T ∈ Triang40(M) | C40(T ) < 135} = ∅

for M = S3, S2 �S1, S2×S1. Statements 1 and 3 follow.
The probabilities that the commute time is below 162

are, according to the experimental data,

pU = P(C40 ≤ 162 | U) = 0.0023,

pV = P(C40 ≤ 162 | V ) = 0.0957,

pW = P(C40 ≤ 162 | W ) = 0.0777,

pX = P(C40 ≤ 162 | X) = 1.

Consequently, with

p = pU P(U) + pV P(V ) + pW P(W ) + pX P(X),

we obtain the following Bayes formulas: for the sphere,

P(U | C40 ≤ 162) = pU P(U)/p ;

the 3-dimensional Klein bottle,

P(V | C40 ≤ 162) = pV P(V )/p ;

for S2 × S1,

P(W | C40 ≤ 162) = pW P(W )/p ;

and for projective space,

P(X | C40 ≤ 162) = pX P(X)/p .

�
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