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A (geometric) hyperplane of a geometry is a proper subspace
meeting every line. We present a complete list of the hyper-
plane classes of the symplectic dual polar space DW (5, 2). The-
oretical results from Shult, Pasini and Shpectorov, and the au-
thor guarantee the existence of certain hyperplanes. To com-
plete the list, we use a backtrack algorithm implemented in
the computer algebra system GAP. We finally investigate what
hyperplane classes arise from which projective embeddings of
DW (5, 2).

1. INTRODUCTION

A partial linear space is a geometry in which two points
lie on at most one line. A subspace of a geometry is a
point set that contains each point of a line l if it meets
l in at least two points. A geometric hyperplane, or for
short, a hyperplane, of a geometry Γ is a proper subspace
meeting every line. We denote collinearity by ⊥, and if
P is a point, then P⊥ is the set of points collinear with P

including P . Moreover, if Γ is a geometry of diameter d,
i.e., its collinearity graph has diameter d, then for a point
P of Γ, the set of points of Γ at distance i from P , i =
1, 2, ..., d, is denoted by Γi(P ); e.g., P⊥ = Γ1(P ) ∪ {P}.

The aim of this paper is to find up to isomorphism
all hyperplanes of the dual polar space DW (5, 2), which
is the smallest thick dual polar space of rank 3. This
research has been motivated by the quest for hyperplanes
of the duals of polar spaces. Throughout this paper, ∆
is the dual of a finite polar space Π of finite rank n.
The elements of type i of ∆ are the (n − i)-dimensional
singular subspaces of Π; e.g., the points of ∆ are the
maximal, i.e., (n − 1)-dimensional, singular subspaces of
Π. Incidence in ∆ is symmetrized containment induced
from Π. The elements of type 3 of ∆ are called quads
since the point-line residue Res−∆(α) of a quad α of ∆ is
a generalized quadrangle. The point-line residue is the
dual of the generalized quadrangle Res+

Π(α) consisting
of the submaximal and maximal singular subspaces of Π
containing the (n − 3)-dimensional singular subspace α
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of Π. If ∆ is finite, its quads are generalized quadrangles
of order (s, t) and ∆ belongs to the diagram

• • • . . . • •
s t t t t

points lines quads

.

If H is a hyperplane of a geometry Γ, an element η of
Γ of type at least 2 is either contained in H or H ∩ η is
a hyperplane of η. Let H be a hyperplane of the dual
polar space ∆. If α is a quad of ∆ not contained in H,
then α∩H is a hyperplane of the generalized quadrangle
Res−∆(α). It is well known that hyperplanes of general-
ized quadrangles are of one of the following three types
(for reference, see [Payne and Thas 84, Section 2.3.1]):

• the perp P⊥ of a point,

• a full subquadrangle which is a hyperplane, or

• an ovoid, i.e., a set of mutually noncollinear points
meeting every line.

If α is a quad of ∆ such that α ∩ H = P⊥ ∩ α for some
point P of α, then α is called singular and the point
P ∈ α with α ∩ H = P⊥ ∩ α the deep point of α with
respect to α. If α ∩ H is a subquadrangle, we call α a
subquadrangular quad. If α ∩ H is an ovoid of α, then α

is called ovoidal. We call a point R of H deep if R⊥ ⊂ H.
Note that in general, a deep point with respect to some
quad is not deep.

A hyperplane H of a dual polar space of rank at least
3 is called locally singular (or locally subquadrangular or
locally ovoidal) if all quads of ∆ \H are singular (or sub-
quadrangular or ovoidal, respectively). In each of these
cases, H is called locally uniform, otherwise locally non-
uniform.

The Singular Hyperplane. One example of a hyperplane
of a dual polar space is the singular hyperplane. A dual
polar space of rank n is a near 2n-gon, i.e., a partial
linear space of diameter at most n such that, for each
point P and line l, there is a unique point on l nearest
to P . Hence, if D is a point of a dual polar space ∆,
the points of ∆ at nonmaximal distance from D form
a hyperplane. This hyperplane is locally singular and
called the singular hyperplane with deepest point D. Row
1 of Table 1 contains its combinatorics.

The uniform hyperplanes of the dual polar space
DW (5, q) and the dual geometry of the symplectic polar
space W (5, q) are completely known by theoretical classi-
fication results of Shult [Shult 92], Pasini and Shpectorov
[Pasini and Shpectorov 01], and Cooperstein and Pasini
[Cooperstein 03]. We present them in Section 2.

For nonuniform hyperplanes, very little is known. The
author has shown in [Pralle 01], that if H is a nonuniform
hyperplane of a finite dual polar space, then there exists
a singular quad. Moreover, he has classified in [Pralle 02]
the nonuniform hyperplanes of dual polar spaces of rank
3 without subquadrangular quads. Of the three families
of such hyperplanes, only one exists in DW (5, 2):

The Extension of an Ovoid of a Quad. If ω is a quad of ∆
and Ω is an ovoid of the generalized quadrangle Res∆(ω),
then the point set H = ∪X∈ΩX⊥ is a hyperplane of ∆.
This hyperplane contains the quad ω, the quads meeting
ω are singular and the quads disjoint from ω are ovoidal.
In Table 1, H appears in the fourth row. If G is the
action of Sp(6, 2) on DW (5, 2), the stabilizer of H in G

acts transitively on the points of ∆ − H and has three
orbits in H. This hyperplane stabilizes the ovoid Ω, the
complement ω − Ω of the quad ω, and the point set of
H ∩ (∆ − ω).

Note that the singular hyperplane of a dual polar space
of rank 3 with deepest point P is similar to the just
described hyperplane consisting of the neighbours of an
ovoid of a quad. If σ is a quad on P , then the singu-
lar hyperplane H with deepest point P consists of the
points of ∆ collinear with the perp P⊥ ∩ σ of P in the
quad σ. More generally, if Γ is a dual polar space of rank
n and if H0 is a hyperplane of an element of type n − 1,
the set of points H =

⋃
X∈H0

X⊥ is a hyperplane of Γ.
Since generalized quadrangles have three different kinds
of hyperplanes, there is a third hyperplane of this form
in the dual polar space ∆ of rank 3 if quads of ∆ admit
subquadrangles which are hyperplanes.

The Extension of a Subquadrangle of a Quad. If σ is a
quad and Σ is a subquadrangle of σ, then H =

⋃
X∈Σ X⊥

is a hyperplane of ∆. This hyperplane appears in row 5
of Table 1.

To get an idea of the variety of nonuniform hyper-
planes of dual polar spaces, the aim of this paper is to find
up to isomorphism all hyperplanes of the smallest thick
dual polar space of rank 3 that is the dual DW (5, 2) of the
symplectic polar space W (5, 2). By means of a backtrack
search with the computer algebra system GAP [Gap 00],
we have constructed the whole subspace lattice contain-
ing a given subspace S0 and reduced the lattice up to
isomorphism. Since, by [Pralle 01], nonuniform hyper-
planes require at least one singular quad, and since the
nonuniform hyperplanes without subquadrangular quads
are known by [Pralle 02], we start with a subspace S0

meeting one quad τ in the perp of a point and one quad σ
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in a subquadrangle. The algorithm generates subspaces
containing S0 such that τ and σ do not change their
hyperplane intersection, i.e., τ remains singular and σ

subquadrangular for all subspaces generated.
We remark that, for DW (5, 2) there is another ap-

proach to finding all of its hyperplanes: if a geometry Γ is
projectively embeddable by a morphism e : Γ → PG(V ),
we say a geometric hyperplane H of Γ arises from the
embedding e if there exists a hyperplane H of PG(V )
such that H = e−1(H ∩ e(Γ)). By Ronan [Ronan 87], if
Γ is embeddable and has exactly three points on every
line, then all hyperplanes of Γ arise from its universal
embedding eun : Γ → PG(V ). Since DW (5, 2) is embed-
dable, the hyperplanes of DW (5, 2) arise from its uni-
versal embedding eun : DW (5, 2) → PG(14, 2) (for eun

see Li [Li 01]). Thus, the hyperplane classes of DW (5, 2)
may be represented by the intersection of eun(DW (5, 2))
and a representative of every orbit of the hyperplanes of
PG(14, 2) under the action of Sp(6, 2).

In general, geometric hyperplanes of embeddable
geometries do not arise from an embedding. For such
geometries, our backtrack algorithm still works to find
all hyperplane classes.

The dual polar space DW (5, 2) admits projective em-
beddings in PG(d, 2), 7 ≤ d ≤ 14, that are all quotients
of the universal embedding into PG(14, 2). Three of
them are particularly interesting. We present them in
Section 5.2 and investigate what hyperplane of DW (5, 2)
arises from each of these three embeddings. It turns
out that there are indeed hyperplane classes of DW (5, 2)
arising from its universal embedding which cannot be
generalized for q > 2, since the universal embedding of
DW (5, 2) is essentially different from the universal em-
bedding of DW (5, q) for q > 2.

Our main results are presented in Table 1, the geo-
metric description of all hyperplane classes of DW (5, 2)
and their embeddings. In Section 2, we present the
known results about uniform hyperplanes of dual po-
lar spaces. Section 4 is devoted to the nonuniform hy-
perplanes of DW (5, 2). The existence of two of them
is explained by the theoretical results in [Pralle 01]
and [Pralle 02]. The algorithm for the determi-
nation of the remaining, so far unknown, classes
of hyperplanes of DW (5, 2) is described in Sec-
tion 3. In Section 4, we present, geometrically,
the newly found nonuniform hyperplanes with an
aim not only to present combinatorial properties
of the hyperplanes. These descriptions may serve for geo-
metric generalizations of families of hyperplanes of which
our algorithm has found only the smallest member in

DW (5, 2). In Section 5, we focus on the embeddings of
DW (5, 2) and its hyperplanes.

Before presenting Table 1, we note the combinatorics
of finite dual polar spaces and, in particular, those of
DW (5, 2). Let ∆ be a finite dual polar space of rank n

such that the point-line residues of its quads are gener-
alized quadrangles of order (s, t). Then ∆ has

• (s + 1)(st + 1) · · · (stn−1 + 1) points,

• (st + 1) · · · (stn−1 + 1)(tn−1 + . . . + t + 1) lines,

• (st2 + 1) · · · (stn−1 + 1)(tn−1 + . . . + t + 1)(tn−2 +
. . . + t + 1)/(t + 1) quads,

• tn−1 + . . . + t + 1 lines per point, and

• (tn−1 + . . . + t + 1)(tn−2 + . . . + t + 1)/(t + 1) quads
per point.

The dual polar space DW (5, 2) has parameters s =
t = 2 and rank 3, thus it has 135 points, 315 lines, 63
quads, three points per line, and seven lines and seven
quads per point forming a Fano plane. The point-line
residues of the quads are symplectic generalized quad-
rangles DW (3, 2) ∼= W (3, 2) (note W (3, q) is self-dual
for even q, see [Payne and Thas 84, Section 3.2.1]).

If S is a subspace of ∆, we say a point P of S has order
o with respect to S if there are o lines on P contained in
S. In DW (5, 2), points can have orders o ∈ {0, ..., 7}.

In Table 1, each row contains the combinatorial prop-
erties of a hyperplane H of one of the twelve classes of
hyperplanes of DW (5, 2). The second column contains
the number of points of H, the third the number of lines
contained in H. Columns 4, 5, ..., 11 contain the numbers
of points of H of order 0, 1, ..., 7, respectively, i.e., if P is
a point counted in column 4+i for i = 0, ..., 7, then P has
order i and P⊥∩H has 2i+1 points. In the two columns
following the order of the stabilizer of H, the number of
orbits of the stabilizer of H in the action G of Sp(6, 2) on
the complement DW (5, 2)−H of the hyperplane H of the
dual polar space DW (5, 2) and the number of orbits of
G on H are given. The last column displays from which
embedding the hyperplane arises. The hyperplanes with
esp arise from the spin embedding and consequently from
any embedding; those with egr do arise from the Grass-
mann embedding, which is the universal embedding of
DW (5, q) for q ≥ 3, but do not arise from any embed-
ding of lower dimension than the Grassmann embedding;
and the hyperplanes with eun arise only from the univer-
sal embedding of DW (5, 2) into PG(14, 2).

We conclude this introduction with another remark
about hyperplanes of a geometry Γ with three points on
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1. 71 91 56 15 7 56 10752 3 1 esp

2. 63 63 63 63 12096 1 1 esp

3. 105 210 105 28 35 40320 1 1 eun

4. 55 35 40 10 5 1 30 32 3840 3 1 egr

5. 87 147 6 72 9 13 18 32 2304 3 1 egr

6. 81 126 54 27 9 27 27 1296 2 1 eun

7. 73 98 12 48 13 4 24 27 8 384 5 3 eun

8. 71 91 2 38 30 1 3 28 24 8 192 6 3 egr

9. 65 70 30 30 5 1 35 15 12 240 4 2 eun

10. 63 63 12 39 12 31 16 16 192 5 5 egr

11. 65 70 2 21 42 28 21 14 336 4 3 eun

12. 57 42 8 42 7 28 7 28 1344 3 4 eun

TABLE 1. Combinatorics of the 12 classes of hyperplanes of DW (5, 2).

every line. If H1 and H2 are different hyperplanes of Γ,
then the complement H := H1∆H2 of their symmetric
difference H1∆H2 is also a hyperplane. Let H1, ...,H12

be hyperplanes of DW (5, 2) such that Hi is a represen-
tative of the hyperplane class of row i of Table 1. So,
H1 is a singular hyperplane with deepest point D, H2

a split Cayley hexagon H(2) (see Section 2), H3 a lo-
cally subquadrangular hyperplane (see Section 2), H4

the extension of an ovoid Ω of a quad ω, and H5 the
extension of a subquadrangle Σ of a quad σ. Then
H6, ...,H12 may be expressed as H6 = H3∆H5 with
σ ⊂ H3, H7 = H1∆H3 with D ∈ H3, H8 = H1∆H4 with
D ∈ H4 \ ω, H9 = H3∆H4 with ω ⊂ H3, H10 = H1∆H4

with D 
∈ H4, H11 = H2∆H3, and H12 = H1∆H3 with
D 
∈ H3.

2. THE UNIFORM HYPERPLANES OF DW (5, 2)

In this section, we present the known classes of uniform
hyperplanes of finite dual polar spaces. Three of them are
hyperplanes of the dual symplectic polar space DW (5, q)
and appear in the first three rows of Table 1.

The Singular Hyperplanes. As mentioned in Section 1,
for every dual polar space ∆ and every point P of ∆,
the points of ∆ at nonmaximal distance from P form the
singular hyperplane H with deepest point P . If we de-
note the action of Sp(6, 2) on ∆ by G, then StabG(H) is
flag-transitive on the complement ∆−H. More precisely,
G fixes the deep point P and stabilizes and acts transi-
tively on the point sets ∆i(P ), i = 1, 2, 3. The singular
hyperplane is the first row of Table 1.

The Split Cayley Hexagons H(2). By Shult [Shult 92]
and Pralle [Pralle 02, Theorem 1], in a dual polar space ∆
of rank 3, only one locally singular hyperplane exists be-
sides the singular hyperplane. It is a split Cayley hexagon
H(K) and ∆ is the dual of an orthogonal parabolic polar
space Q(6,K) (for reference, see Van Maldeghem [Van
Maldeghem 98, Section 2.4]). Since W (5, 2) ∼= Q(6, 2),
the split Cayley hexagon H(2) also occurs in our list of
hyperplanes of DW (5, 2). It is the second hyperplane
in Table 1. The stabilizer of H(2) in Sp(6, 2) is the
Lie group G2(2). It is flag-transitive on both H(2) and
∆ − H(2).

The Locally Subquadrangular Hyperplanes. In [Pasini
and Shpectorov 01], Pasini and Shpectorov prove that
there are only two families of locally subquadrangular
hyperplanes in finite dual polar spaces. One of them
is an example in the dual of the Hermitian polar space
DH(6, 4), hence it does not appear in our list of hyper-
planes of DW (5, 2). The other family is an infinite se-
ries of locally subquadrangular hyperplanes of which the
smallest member appears in our list of hyperplanes of
DW (5, 2): if Π0

∼= Q+(2n − 1, 2), n ≥ 3, is a hyper-
plane of Π = D∆ ∼= Q(2n, 2), then the maximal singular
subspaces of Π not contained in Π0 are the points of a
hyperplane of ∆. The (n − 3)-subspaces of Π0 are sub-
quadrangular quads of ∆−H, and the (n− 3)-subspaces
of Π−Π0 are quads of ∆ contained in H. For n = 2, this
hyperplane is the third in Table 1.

No Ovoid in DW (5, 2). Supposing finiteness and flag-
transitivity on ∆−H, Pasini and Shpectorov [Pasini and
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Shpectorov 01] prove the nonexistence of locally ovoidal
hyperplanes or briefly, ovoids of dual polar spaces. With
an earlier result of Shult (see [Pasini and Shpectorov 01,
Section 2.8]), Cooperstein and Pasini [Cooperstein 03]
prove the nonexistence of ovoids in DW (5, q) without
supposing flag-transitivity.

3. THE ALGORITHMIC APPROACH

In Sections 1 and 2, we presented the hyperplanes of dual
polar spaces known by theoretical classification results.
There are five of them in ∆ = DW (5, 2) which are given
in rows 1–5 of Table 1. To find all hyperplanes of ∆ non-
isomorphic to these five, we have constructed the lattice
of all subspaces of ∆ containing an appropriate start sub-
space S0 by means of a backtrack algorithm implemented
in the computer algebra system GAP.

The Start Subspace S0. As mentioned in Section 1, hy-
perplanes of ∆ not isomorphic to one of the known and
already presented hyperplanes are nonuniform and force
one quad to be singular and one to be subquadrangu-
lar. Hence, the input for the algorithm is a subspace S0

consisting of a grid Q of a quad σ and the perp P⊥ ∩ δ

of a point P in a quad δ which has a line in common
with σ, and a set A of points of ∆ such that the point
set A ∪ S0 is a subspace consisting of a singular quad δ

and a subquadrangular quad σ. The output of the algo-
rithm is a reduced list H of all hyperplanes containing
S0 intersecting A trivially.

The backtrack algorithm was used with two different
start spaces to find all hyperplanes. First, one chooses σ

and δ such that l ⊂ H, and second, one supposes l 
⊂ H.
After having found in the first run all hyperplanes having
a singular and a subquadrangular quad sharing a line be-
longing to H, the second run returns all hyperplanes such
that the line of intersection of any intersecting singular
and subquadrangular quad does not belong to H.

The Backtrack Algorithm. Backtrack algorithms are well
known. Our algorithm has three main steps in each turn
of the backtrack loop. In the first, it generates subspaces,
in the second, it calculates canonical representatives for
the newly generated subspaces, and in the last, it adds
each of these representatives either to the backtrack or
the hyperplane list if the lists do not yet contain any
subspace isomorphic to this subspace.

Generating Subspaces. Let G be the automorphism
group of ∆, i.e., the action of Sp(6, 2) on the dual
polar space ∆. For every subspace Si of the back-
track list L, if there are m orbits of the stabilizer

StabG(Si) of Si on the complement ∆ \ Si, the algo-
rithm generates the subspaces Si+j = 〈Si, xj〉 contain-
ing Si and a representative point xj of the jth orbit
for j = 1, ...,m (in the algorithm scheme below, this is
OnePointExtensions(Si, StabG(Si))).

If Si+j contains a point of A, then Si+j is rejected since
it may not contain both a singular and a subquadrangular
quad.

Canonical Representatives. To test for isomorphism be-
fore adding a subspace cand to a list, there are essen-
tially two solutions. Before adding a subspace cand

to a list, one should test whether cand is isomorphic
to any of the list members R by searching for an
isomorphism in G mapping cand onto R. In GAP,
RepresentativeAction(G, cand,R) returns an element
in G that maps cand onto R, if one exists, and fail oth-
erwise. The search for an isomorphism in a group is very
time consuming. Therefore, before using the group ac-
tion, one compares the combinatorial properties of cand

and R. Only if they coincide, one looks for isomorphisms.
However, the complexity of the algorithm is O(n2), where
n is the length of the list.

The other approach is not to add cand to the list, but
instead add a canonical representative C(cand) of it. To
determine representatives is expensive, but the compari-
son of C(cand) with each element of the list is just testing
equality. Hence the complexity of the algorithm is only
O(n). We have chosen this way and describe the calcu-
lation of a canonical representative C(cand) in Section
3.1.

Adding a Candidate to a List. If a subspace Si+j gen-
erated by OnePointExtensions is a hyperplane, then
the algorithm adds C(Si+j) to the list H of hyper-
planes if it is not yet contained in H (in the scheme
of the algorithm below, this function is denoted by
AddReduced(H,C(Si+j))). If Si+j is a hyperplane, then
C(Si+j) is not added to L since hyperplanes are maximal
subspaces, and the extensions of a hyperplane would be
the whole point set which is not a hyperplane. Thus the
algorithm has the following basic form which is a stan-
dard backtrack algorithm:

H := [ ];
L := [S0];
n := 1;
while n ≤ Length(L) do

T := OnePointExtensions(L[n], StabG(L[n]));
for S in T do

if S ∩ A = ∅ then
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C(S) := CanonicalRepresentative(G,S);
if IsHyperplane(S) then

AddReduced(H,C(S));
else AddReduced(L,C(S));

n := n + 1;
return(H);

3.1 Canonical Representative

In this section, we describe how to determine a canonical
representative of a subspace S. Our implementation of
∆ uses the permutation representation of Sp(6, 2) on the
point set P = {1, ..., 135}. The main tool for canonical
representatives is the following: let the power set of P
be ordered lexicographically. For a subset X ⊂ P and a
subgroup U of G = Aut(∆), set SmallestImage(U,X) =
min{Xg | g ∈ U} as the smallest image of X under the
action of U with respect to the lexicographic order. In
our implementation, besides the smallest image of X un-
der U with respect to the lexicographic order, the func-
tion SmallestImage(U,X) returns the element g ∈ U

mapping X onto its smallest image and also the stabi-
lizer of the smallest image in U .

One could apply SmallestImage(·, ·) to the subspace
S in which we search for a canonical representative and
the full automorphism group G. But the larger the set or
the group is, the harder it is to find the smallest image.
Therefore, we want to inspect more geometric properties
of S that are hidden in the automorphism group G of
∆ without determining the stabilizer StabG(S). We first
order the point set of S according to the order defined
in Section 1. If o lines on a point P of S are contained
in S, then P has order o. The points of S fall in one
to eight subsets S0, ..., S7, where Si is the set of points
of order i in S. Since the amount of work to be done
by SmallestImage(·, ·) depends on the set and group
size, we order S0, ..., S7 increasingly by their cardinali-
ties. Then we start with the smallest of these sets, say
Si, to determine its smallest image S′

i under G. Next, we
determine the smallest image of the second smallest set,
say Sj , under the action of the stabilizer StabG(S′

i) which
we know already from SmallestImage(G,Si). Note that
already in the second step, the group is much smaller and
the point set often only slightly bigger. Continuing this
process, we finally get a canonical representative C(S) of
the subspace S.

4. THE NONUNIFORM HYPERPLANES OF DW (5, 2)

This section is devoted to the geometric description of the
hyperplanes of ∆ = DW (5, 2) found by our computer

search. As mentioned, they are nonuniform containing
both singular and subquadrangular quads.

For completeness, we recall the two nonuniform hy-
perplanes known by theoretical classification results and
already presented already in Section 1: the extensions of
an ovoid or a subquadrangle of a quad consisting of the
neighbours of, respectively, an ovoid or a subquadrangle
of a quad of ∆ where the subquadrangle is a hyperplane
of the quad.

For the ease of notation, we define −-lines (respec-
tively, +-lines). If H is a hyperplane of a dual polar
space ∆ and l is a line of ∆, then l is called a −-line (re-
spectively, +-line) with respect to H if l is (respectively,
is not) contained in H. This terminology is motivated by
the study of affine dual polar spaces, the complements of
hyperplanes of dual polar spaces. A line of the affine dual
polar space ∆ − H is a +-line of ∆ with respect to H,
whereas a line contained in H, not in ∆−H, is a −-line
of ∆ with respect to H.

We remind the reader that a point P ∈ H is called
deep if P⊥ ⊂ H. Moreover, a quad is called deep if it is
contained in H.

If G denotes the action of Sp(6, 2) on the dual polar
space ∆, then the automorphism group of the affine dual
polar space ∆−H or, equivalently, of the hyperplane H is
the stabilizer N of H in G. In the geometric description
of the hyperplanes, we also note the orbits of N in H and
∆ − H.

4.1 A Subspace of H Acting as a Dual Polar Space

The hyperplane H consists of 81 points, of which 27 have
order 6 and 54 have order 4. There are nine deep, 27 sub-
quadrangular, and 27 singular quads. The combinatorics
of this hyperplane are in row 6 of Table 1.

The set H of points of order 6 of H is a connected
subspace of ∆ with a line set L of 27 lines. Let P be the
set of quads contained in H. With incidence inherited
from the polar space Π ∼= W (5, 2) dual of ∆, consider the
incidence structure Π0 := (P,L,H) as a substructure of
Π. Then, the elements of H are planes of Π and each such
plane is incident with three points of P and three lines
of L forming a triangle. The residue of a point P ∈ P in
Π0 consists of six lines and nine planes on P forming a
dual grid.

More precisely, Π0 is a short-lined polar space of or-
der (1, 1, 2). The 27 lines of L cover 36 points of Π, of
which, as mentioned, the nine points of concurrency of
lines of L correspond to the nine quads of ∆ contained
in H. The 27 remaining points on the lines of L are the
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subquadrangular quads of ∆. The singular quads are the
27 points of Π on no line of L.

The group N acts transitively on ∆ − H and has the
two orbits H and H− H on H.

4.2 A Star-Similar Hyperplane H Missing a Deep Point

The combinatorics of the hyperplane H are in row 7 of
Table 1. The orders of the 73 points of H are 2, 4, and
6. There are 13 points of order 6, 48 of order 4, and 12
of order 2. There are four deep, 27 subquadrangular, 24
singular, and eight ovoidal quads.

The 13 points of order 6 form a singular subspace P
of ∆, i.e., there is one point of the 13, say P , such that
the subspace P consists of the points on six of the seven
lines through P . The seventh line on P , say l, is a +-line.
The four deep quads contain P , and the three remaining
quads on P are subquadrangular.

Through each point X ∈ P − {P}, there are −-lines
through P , four lines each consisting of X and two points
of order 4 of H and one line consisting of X and two
points of order 2 of H. The 12 points of order 2 of H are
the points of H in the three subquadrangular quads on
P which are not collinear with P .

If Q is one of the 16 points of H at distance 3 from P ,
then Q has order 4, and exactly one quad on Q is ovoidal,
comprising the three +-lines through Q. The remaining
six quads on Q are subquadrangular.

The eight ovoidal quads are those meeting (the unique
+-line) l (through P ) and not containing P . If ω is such
an ovoidal quad, it has three points of H at distance 2
from P , which have order 4 according to the above, and
it has two points at distance 3 from P , which have order
4 as mentioned in the previous paragraph. Thus, the 16
points of H at distance 3 from P belong uniquely to the
eight ovoidal quads meeting l \ {P} in a single point.

Since N stabilizes the sets of points of H of the same
order, it fixes the point P and the point set ∆1(P ) ∩ H

of the 12 remaining points of H of order 6 on which it
acts transitively. Since N fixes P , it stabilizes the sets
∆i(P ) of points at distance i from P for i = 1, 2, 3. Since
there are 16 points of H at distance 3 from P of order
4, 32 points of ∆2(P ) ∩ H of order 4, and 12 points of
∆2(P ) ∩H of order 2, and since N has five orbits on H,
these sets are orbits of N .

The three orbits of N on ∆−H are l\{P}, ∆2(P )−H,
and ∆3(P ) − H.

4.3 A Star-Like Hyperplane H with Ovoidal Quads

The hyperplane H has 71 points of which one is deep,
30 have order 5, 38 order 3, and two lie on just one line.

This hyperplane’s combinatorics may be found in row 8
of Table 1. There are three deep, 24 subquadrangular,
28 singular, and eight ovoidal quads.

Let P be the unique deep point of H. The two points
of order 1 are collinear on a line l through P . There are
three lines l1, l2, l3 through P such that the six points of
(l1∪ l2∪ l3)\{P} have order 3. The remaining three lines
through P , say g1, g2, g3, consist of P and two points of
order 5.

The three quads contained in H contain P . Clearly,
they do not contain l since the three quads on l are singu-
lar with deep point P . Moreover, the three deep quads do
not contain a common line, but intersect pairwise in three
distinct lines. These intersection lines are g1, g2, and g3

since the points on g1, g2, g3 have order ≥ 5, which fol-
lows from the fact that each of g1, g2, g3 belongs to two
deep quads. Hence, each of l1, l2, l3 belongs to a unique
deep quad, and the remaining quads on l1, l2, and l3 are
singular with deep point P .

The points in the deep quads not in l1 ∪ l2 ∪ l3 have
order 5. These are all 30 points of H of order 5.

As in Section 4.2, the eight ovoidal quads are the quads
meeting l in a single point distinct from P . They do not
meet any of the deep quads, thus they meet H in points of
order 3. Together, the union of the ovoidal quads meets
H in 2 · (4 · 4 + 1) = 34 points of which 32 have order 3,
namely all except the two points on l. Moreover, these
32 points of order 3 have distance 3 from P . Together
with the six points of order 3 on l1, l2, l3, these are all
points of order 3 of H, and we have described all points
in H.

Since P is the unique deep point, N stabilizes the
sets ∆i(P ) for i = 0, 1, 2, 3. Moreover, fixing the sets
of points of the same order, N stabilizes the point sets
(l1∪ l2∪ l3)\{P}, (g1∪g2∪g3)\{P}, and l\{P}. Hence
N has at least four orbits on ∆0(P )∪∆1(P ). The 24 re-
maining points of order 5 are the points of the deep quads
not collinear with P , hence they belong to ∆2(P ). Since
the ovoidal quads contain points of H at distance 3 from
P and since we know N has six orbits on H, one of
them is ∆2(P ) ∩ H, which is the set of 24 points of
order 5 at distance 2 from P , and the other is ∆3(P )∩H,
which is the set of 32 points of order 3 at distance 3
from P .

Since P⊥ ⊂ H and since N stabilizes the line l

on P , N stabilizes the points of ∆ − H collinear
with a point on l and it stabilizes the sets ∆2(P ) and
∆3(P ). Hence, the three orbits of N on ∆ − H are the
points of ∆2(P )−H collinear with a point on l, the points
of ∆2(P )−H collinear with no point on l, and ∆3(P )−H.
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4.4 An Almost-Deep Ovoid in a Deep Quad

The hyperplane H has 65 points of which five have or-
der 6, 30 order 4, and 30 order 2. This hyperplane is
given in row 9 of Table 1. There are one deep quad, 15
subquadrangular, 35 singular, and 12 ovoidal quads.

Let δ denote the deep quad. The five points P1, ..., P5

of order 6 form an ovoid Ω of δ. The remaining ten points
of δ have order 4. For i = 1, ..., 5, denote the unique +-
line through Pi by li. The 15 subquadrangular quads are
the quads on the lines l1, ..., l5. Thus, on each line h of
δ, there exists exactly one subquadrangular quad. The
third quad on h is singular with deep point h∩Ω. Hence,
there are exactly 15 singular quads meeting δ.

First, we consider the points of H not in δ collinear
with a point of Ω and second, those of H collinear with
a point X of δ \Ω. Let h1, h2, h3 be the three −-lines on
P1 not in δ. By the above, the three quads containing
the +-line l1 are subquadrangular, hence each of them is
spanned by l1 and one of h1, h2, h3. The other quads on
each of h1, h2, h3 are singular with P1 as the deep point.
Thus the points on h1, h2, h3 distinct from P1 have order
2. Similarly, the points collinear with Pi, i = 2, ..., 5, not
on li and not contained in δ have order 2. Together, these
are the 30 points of H of order 2.

Now, let X be a point of δ\Ω. Then X has order 4 and
there is a unique −-line g on X not contained in δ. The
three quads on g are subquadrangular since they have two
−-lines on X, namely g and the line of intersection with
δ. Thus the two points of g\{X} have order 4. Similarly,
each of the ten points of δ \ Ω is collinear with exactly
two points of H not in δ that have order 4. Together,
these are the 20 remaining points of H of order 4.

For the quads disjoint from δ, consider a point R ∈
(h1 ∪ h2 ∪ h3) \ {P1}. By the above, it has order 2 and
the two −-lines are contained in a subquadrangular quad
meeting δ. Thus two of the four quads on R disjoint
from δ are singular, whereas the other two quads do not
contain any −-line through R, hence they are ovoidal.
Since (h1∪h2∪h3)\{P1} consists of six points and since
each quad meets (h1 ∪ h2 ∪ h3) \ {P1} in exactly one
point, there are 6 · 2 = 12 ovoidal and singular quads
disjoint from δ. The remaining eight quads disjoint from
δ meeting P⊥

1 in a point on the +-line l1 are singular.
The four orbits of N on H are the ovoid Ω of the

unique deep quad δ, the points of δ−Ω, the set of points
of H collinear with points of Ω, and the set of points of
H collinear with a point of δ − Ω but not in δ. The two
orbits of N on ∆ − H are the points of ∆ − H collinear
with a point of Ω and the remaining points of ∆ − H.

4.5 A Tangential Hyperplane H of the Polar Space Π

The 63 points of the hyperplane H have orders 1, 3, and
5. There are 12 points on just one line, 39 points of order
3, and 12 points of order 5. H contains no deep quad, 31
quads are singular, 16 quads are subquadrangular, and
16 are ovoidal. The combinatorics of H are noted in row
10 of Table 1.

The points of order 1 are mutually noncollinear, and
the same holds for the points of order 5.

There exists a unique singular quad α with deep point
D such that all points of α ∩ H have order 3.

If σ 
= α is a quad on a −-line h through D, then σ is
singular since h is a line in σ∩H containing the point D

that belongs to no other −-line in σ apart from h. Thus,
its deep point R is one of h \ {D}. If σ′ is the third
singular quad on h, its deep point is the remaining point
on h.

Let m be a +-line of α through R. Then the quads
containing m are singular, since they intersect the singu-
lar quad σ with deep point R in −-lines. Thus, all 31
quads meeting α including α are singular.

Considering the polar space Π ∼= W (5, 2) dual of ∆,
the singular quads are the points collinear with the point
α, hence the tangential hyperplane α⊥. The remaining
16 ovoidal and 16 subquadrangular quads are the points
of the affine space A := PG(5, 2) \ α⊥.

Through each point of ∆1(D)∩α pass two −-lines not
in α. On each of these twelve lines of H not contained in
α and meeting α, there lies one point of order 1 and one
point of order 5. The remaining 32 points of H not in α

have order 3 and distance 3 from D.
Let l be one of the two −-lines through R not in α.

Let P be the point of order 5 on l and Q be the point of
order 1 on l. The four quads containing Q but not l are
ovoidal. The four quads through P not containing l are
subquadrangular, since they intersect the two singular
quads on l with deep point P in −-lines and the one
singular quad on l with deep point R in +-lines.

Finally, let X be a point of H \ α with πα(X) /∈ H,
i.e., X is at distance 3 from D. Then X has order 3.
There are three subquadrangular quads and one ovoidal
quad disjoint from α on X (recall that the three quads
on X meeting α are singular).

In the polar space Π, X is a totally isotropic plane
of the affine space A intersecting the hyperplane α⊥ of
PG(5, 2) in a line not through the point α. The three
subquadrangular quads through X are three of the four
affine points, say S1, S2, S3, of the plane X, and the single
ovoidal quad on X is the fourth affine point O of X.
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Clearly, the three affine lines of X joining S1, S2, and S3

belong to H, whereas the three affine lines joining O with
one of S1, S2, S3 are not contained in H.

Since α is the unique singular quad all of whose points
have order 3, N stabilizes α and fixes its deep point D.
Hence, N stabilizes the sets ∆i(D) for i = 0, ..., 3 and
their intersections with α. On H, N has the five orbits
{D}, ∆1(D) ∩ H = α ∩ H − {D}, the set ∆3(D) ∩ H

of the remaining 32 points of order 3 of H, and the two
sets of points of H of order 1; these partition ∆2(D)∩H.
Similarly on ∆−H, N has the orbits ∆2(D)∩α, ∆2(D)−
(H ∪α), and ∆3(D)−H, and the set ∆1(D)−α falls in
two orbits. The set ∆1(D) − α consists of the points on
the four +-lines through D not belonging to α. N acts
transitively on these lines and has two orbits on their
points, i.e., each of the two orbits of N in ∆1(D) − α

consist of one point on each of the four +-lines through D.

4.6 Two Isolated Points

The combinatorics of the hyperplane H are collected in
row 11 of Table 1. H has two points on no −-line, say
P1 and P2 at distance 3 from each other, 21 points of
order 2, and 42 points of order 4. There are 28 singular,
21 subquadrangular, and 14 ovoidal quads of which the
ovoidal quads are those on P1 and P2.

Let ω be a (ovoidal) quad on P1, and let X be the
point πω(P2). There are three points of ω∩H at distance
2 from both P1 and P2, namely those collinear with X.
Each of these three points is contained in a unique ovoidal
quad on P2. Hence, there are 3 · 7 = 21 points of H each
belonging to two ovoidal quads, hence the points have
order at most 2. Thus, the points of H at distance 2
from both P1 and P2 are precisely the 21 points of order
2. Note they are mutually noncollinear.

The previously unconsidered fifth point Q of ω∩H has
distance 3 from P2, and ω is the only ovoidal quad on Q.
Q is one of the remaining 42 points of H of order 4. Thus,
the four lines on Q not in ω are contained in H. The six
quads through Q distinct from ω are subquadrangular,
since each of them contains one +-line of ω and two of
the −-lines through Q not in ω.

Since in each quad on P1, respectively P2, there is
exactly one point of H at distance 3 from P2, respectively
P1, there are 14 such points in H. So far, we have taken
into account only points of H at distance at most 2 from
one of P1 or P2. In ∆, there are exactly 28 points at
distance 3 from both P1 and P2. These are the remaining
28 points of H of order 4. If R is one of them, then
there are four singular and three subquadrangular quads

containing R, and R is the deep point of one of these
singular quads.

The four orbits of N on H are {P1, P2}, the 21 points
of order 2 forming the set ∆2(P1)∩∆2(P2), the 14 points
of order 4 forming the set (∆2(P1)∩∆3(P2))∪ (∆2(P2)∩
∆3(P1)) ∩ H, and the remaining 28 points of H of order
4 building the set ∆3(P1) ∩ ∆3(P2).

On ∆ − H, N has the three orbits

(∆1(P1) ∪ ∆3(P2)) ∪ (∆1(P2) ∪ ∆3(P1)),

(∆1(P1) ∪ ∆2(P2)) ∪ (∆1(P2) ∪ ∆2(P1)),

and

((∆2(P1) ∪ ∆3(P2)) ∪ (∆2(P2) ∪ ∆3(P1))) − H.

4.7 Subquadrangular Quads through a Point

The hyperplane H consists of eight isolated points pair-
wise at distance 2, 42 points of order 2, and seven points
of order 6. There exists a point P of ∆ not in H such
that the points of order 6 form the set P⊥ ∩H. No quad
is contained in H, there are 28 ovoidal, 28 singular, and
seven subquadrangular quads. The combinatorics may
be found in the last row of Table 1.

The seven subquadrangular quads are the quads on P .
The three points P⊥ ∩H ∩ σ of order 6 belonging to one
quad σ on P build a triad of the generalized quadrangle
σ and an ovoid of the grid σ ∩ H.

If ω is an ovoidal quad, then it contains two isolated
points and three points of order 2.

Since the seven points of order 6 have pairwise distance
2, they partition the set of 42 lines of H. Thus, each line
of H lies in a quad with P . Since the quads on P are the
subquadrangular quads and P does not belong to H, the
subquadrangular quads also partition the line set of H.
Moreover, each line of H consists of one point of order
6 and two points of order 2. The points on lines of ∆
through points of H of order 6 not belonging to P⊥ are
the 7 · (6 · 2)/2 = 42 points of H of order 2.

On a point of order 2 of H on two −-lines l1, l2, there
are one subquadrangular and six singular quads with
deep points the four points of order 6 on l1 and l2.

Note for each pair of an isolated point Q and a point
R of order 6, Q and R have distance 3.

Since N has three orbits on H and H contains points
of three different orders, the points of H of the same
order form an orbit.

Since the points of order 6 of H have the unique center
P , P is fixed by N and N stabilizes the sets ∆i(P ) for
i = 0, 1, 2, 3. Since N has four orbits on ∆ − H, the sets
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∆0(P ) = {P}, ∆1(P ) − H, . . . ,∆3(P ) − H are exactly
the orbits of N on ∆ − H.

5. HYPERPLANES ARISING FROM AN EMBEDDING

A linear embedding of a geometry Γ is an injective map-
ping e : Γ → PG(V ) into the projective space PG(V ) of
a vector space V such that

• e(X) ≤ e(Y ) if and only if X ≤ Y for all elements
X,Y ∈ Γ,

• e(X) = 〈{e(P ) | P point of X}〉, and

• V = 〈{e(P ) | P point of Γ}〉.
An embedding eun : Γ → PG(V ) is called universal if
for any other embedding e : Γ → PG(W ) there exists
a homomorphism ϕ : PG(V ) → PG(W ) such that e =
ϕ ◦ eun.

A hyperplane H of an embeddable geometry Γ arises
from the embedding e : Γ → PG(V ), if there exists a hy-
perplane h of PG(V ) such that H = e−1(h ∩ e(Γ)). A
very interesting question about a hyperplane is whether
or not it arises from an embedding. For instance, the
singular hyperplanes of dual polar spaces arise from em-
beddings. The dual polar space ∆ = DW (2n − 1, 2),
n ≥ 2, has projective embeddings into projective spaces
of dimension d with 2n − 1 ≤ d ≤ (2n+1)(2n−1+1)

3 − 1 (see
[Pasini 03, Section 9.1]), whereas for q > 2, DW (2n−1, q)
has a unique embedding in PG(

(
2n
n

)− (
2n

2n−2

)− 1, q) (see
[Cooperstein 98]). We present the embeddings in Section
5.1 and investigate in Section 5.2 from which embedding
the hyperplanes of DW (5, 2) arise.

5.1 The Embeddings of DW (5, 2)

From the projective embeddings of DW (5, 2), three are
of particular interest:

• the universal embedding eun : DW (5, 2) →
PG(14, 2),

• the Grassmann embedding egr : DW (5, 2) →
PG(13, 2), and

• the spin-embedding esp : DW (5, 2) → PG(7, 2).

The universal embedding of a linear point-line geometry
Γ = (P,L) with three points on each line maps P into the
projective space PG(Ṽ ) over the factor space Ṽ = W/U

where W is the F2-vector space with basis the point set P
and with U the subspace of W generated by all vectors
a1 + a2 + a3 if {a1, a2, a3} form a line. For DW (5, 2),

Ṽ has projective dimension 15 [Li 01]. Obviously, this
construction works only for q = 2.

Let V = F
6
2 be the vector space with the alternating

form f defining the polar space Π ∼= W (5, 2) dual of ∆.
The universal embedding of the symplectic dual polar

space DW (5, q) with q > 2 is induced by the embed-
ding of the Grassmannian of planes of PG(5, q) [Coop-
erstein 98]. It clearly is also an embedding for q = 2.
The points of ∆ ∼= DW (5, q) are the planes of Π, hence
they are certain points of the Grassmannian of planes of
PG(5, q). The lines of the Grassmannian of planes are
the pairs {A,B} for subspaces A < B ≤ PG(V ) with
dim(A) = 1 = dim(B) − 2. The embedding of DW (5, q)
induced by the embedding of the Grassmannian of planes
of PG(5, q) in PG(

∧3
V ) = PG(19, q) maps the planes of

W (5, q) in a 13-dimensional subspace of PG(
∧3

V ) (see,
for instance, [Pralle 02, Section 2]).

The spin-embedding esp of DW (5, q) exists only for
even q since it is a consequence of the isomorphism
W (5, q) ∼= Q(6, q) for q even. Considering Q(6, 2)
as a nondegenerate hyperplane of the orthogonal space
Q+(7, 2) of rank 4, each singular plane of Q(6, 2) belongs
to exactly one member of each of the two classes M1

and M2 of singular maximal subspaces of Q+(7, 2). Con-
versely, each element of M1 and M2 intersects the hyper-
plane Q(6, 2) of Q+(7, 2) in a singular plane of Q(6, 2). A
triality of Q+(7, 2) is a morphism of order 3 that maps the
points of Q+(7, 2) onto one of the two classes of maximal
subspaces, say M1, M1 onto M2, M2 onto the points,
and the singular lines onto the singular lines, and that
preserves incidence. The product of these embeddings
is the spin-embedding of W (5, 2) into Q+(7, 2). It can
also be established through the Grassmann embedding
egr by factorizing a suitable six-dimensional subspace of
the codomain V = F

14
2 .

If eun : ∆ = DW (5, 2) → Ṽ is the universal em-
bedding, Ṽ has a one-dimensional subspace N such that
every 2-subspace of Ṽ containing N meets eun(∆) in at
most one point. The codomain V of the Grassmann em-
bedding is the factor space Ṽ /N . Thus, if H is a hyper-
plane arising from egr, it arises from eun as well. Simi-
larly, as the codomain of the spin-embedding is a factor
space of the codomain of egr, a hyperplane arising from
esp also arises from egr and eun.

As mentioned, the Grassmann embedding is the uni-
versal embedding of DW (5, q) for q > 2 [Cooperstein 98].
The dimension of the universal embedding is bigger than
that of the Grassmann embedding only for q = 2. Hence,
hyperplanes of our list in Table 1 arising from the uni-
versal embedding eun but not from the Grassmann em-
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bedding will not generalize as hyperplanes arising from
an embedding for q > 2.

5.2 Hyperplane Properties Induced by the Embeddings

By [Ronan 87, Corollary 2 of Theorem 1], if an embed-
dable geometry has three points on every line, then all
its hyperplanes arise from its universal embedding.

Proposition 5.1. All hyperplanes of DW (5, 2) arise
from eun.

In the following, we prove the assertions in the last col-
umn of Table 1, i.e., from which of the three embeddings
esp, egr, eun of least dimension the hyperplane classes
arise.

Proposition 5.2. If H is a hyperplane arising from the
spin embedding esp, then its points may have orders 3
or 7.

Proof: For a point P of ∆, the spin-embedding esp : ∆ →
Q+(7, 2) maps the projective plane Res∆(P ) onto a pro-
jective plane of the quotient PG(6, 2) ∼= PG(7, 2)/esp(P )
which is singular with respect to the quadric Q(6, 2) in-
duced by Q+(7, 2) on PG(7, 2)/esp(P ). Considering a
hyperplane of PG(7, 2) in PG(7, 2)/esp(P ), the hyper-
plane intersects the plane π in a line or contains it. Thus
in ∆, either three or seven lines through P belong to H.

Corollary 5.3. Only the locally singular hyperplanes of
DW (5, 2) listed in Table 1 in rows 1 and 2 arise from the
spin embedding.

Proof: The singular hyperplane of DW (5, 2) with deepest
point P consists of the planes of W (5, 2) that have a
point in common with the plane P of W (5, 2). Under
the spin-embedding esp, these planes are mapped onto
the tangential hyperplane esp(P )⊥ of Q+(7, 2).

The split Cayley hexagon H(2) may be represented
by a hyperplane section of O+(7, 2) [Van Maldeghem 98,
Theorem 2.4.10]. Hence, this hyperplane (row 2 in Table
1) arises from esp.

Because of the conditions on the point orders accord-
ing to Proposition 5.2, by Table 1 none of the other hy-
perplanes of DW (5, 2) arise from esp.

Proposition 5.4. If H is a hyperplane arising from the
Grassmann embedding egr, its points may have orders 1,
3, 5, or 7.

Proof: Let P be a point of H. The Grassmann em-
bedding egr induces an embedding eP : Res∆(P ) →
PG(5, 2) of the projective plane Res∆(P ) = PG(2, 2)
of lines and quads containing P into PG(5, 2), which is
the Veronesean embedding of PG(2, 2) [Pasini 03, The-
orem 9.3 and Section 6.1]. The hyperplane sections of
the Veronesean variety are conics of PG(2, 2). A conic of
PG(2, 2) consists of either one point, three points (a line
or a nondegenerate conic), five points (two lines), or all
seven points. Hence, there are either one, three, five, or
seven lines through P in H.

Corollary 5.5. Only the hyperplane classes of DW (5, 2)
listed in Table 1 in rows 4, 5, 8, and 10 arise from the
Grassmann embedding egr but not from esp.

Proof: By Propositions 5.2 and 5.4, the listed hyperplane
classes are the only ones with appropriate point orders.
To check that they arise from egr, we have implemented
the Grassmann embedding egr : DW (5, 2) → PG(13, 2)
by means of the computer algebra program GAP [Gap
00]. As one could also prove theoretically by means of
the descriptions of the hyperplane classes in Section 4, it
turns out that the images of the mentioned hyperplanes
under egr span only hyperplanes of PG(13, 2).

In particular, the hyperplane classes not mentioned
in Corollaries 5.3 or 5.5 do not generalize as hyperplane
classes of DW (5, q) for q > 2 since the universal embed-
ding of DW (5, q) for q > 2 is the Grassmann embedding
egr : DW (5, q) → PG(13, q).
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