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We study lower bounds of the packing density of a system of
nonoverlapping equal spheres in R

n, n ≥ 2, as a function of
the maximal circumradius of its Voronoi cells. Our viewpoint,
using Delone sets, allows us to investigate the gap between
the upper bounds of Rogers or Kabatjanskii-Levenstein and the
Minkowski-Hlawka type lower bounds for the density of lattice-
packings, without entering the fundamental problem of con-
structing Delone sets with Delone constants between 2−0.401

and 1. As a consequence we provide explicit asymptotic lower
bounds of the covering radii (holes) of the Barnes-Wall, Craig,
and Mordell-Weil lattices, respectively BWn, A

(r)
n , and MWn,

and of the Delone constants of the BCH packings, when n goes
to infinity.

1. INTRODUCTION

The maximal packing density of equal spheres in R
n

has received a lot of attention [Rogers 64, Goodman
and O’Rourke 97, Cassels 59, Martinet 96, Conway and
Sloane 88, Oesterlé 90, Gruber and Lekkerkerker 87,
Zong 99]. Similar problems are encountered in coding
theory, data transmission, combinatorial geometry, and
cryptology [Hoffstein et al. 01]. We will consider the
problem through the context of Delone sets. We will
give explicit lower bounds of the density of a Delone set
as a function of n and its so-called Delone constant R

expressing the maximal size of its holes.
Blichfeldt, Rogers, Levens̆tein, Sidel’nikov, Kabatjan-

skĭi, and Levens̆tein [Goodman and O’Rourke 97, Gruber
and Lekkerkerker 87, Conway and Sloane 88] have given
upper bounds of the packing density, while lower bounds
of the latice-packing density were given by Minkowski,
Davenport-Rogers, Ball [Ball 92], etc. (see Section 2).
In between the situation is considered fairly vague. The
present paper contributes to our knowledge of the range
between both types of bounds although the fundamental
problem, far from obvious, of constructing Delone sets of
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very small Delone constant, namely less than 1, is not
considered here.

For this we will recall the language of uniformly dis-
crete sets and Delone sets instead of that of systems of
spheres. A discrete subset Λ of R

n is said to be uni-
formly discrete if there exists a constant r > 0 such that
x, y ∈ Λ, x �= y implies ‖x − y‖ ≥ r. Thus a uniformly
discrete set is either the empty set, a subset {x} reduced
to one element, or, if it contains at least two points, they
satisfy such an inequality. If r is equal to the minimal in-
terpoint distance inf{‖x− y‖ | x, y ∈ Λ, x �= y}, Λ is said
to be a uniformly discrete set of constant r of R

n. Uni-
formly discrete sets of constant 1 will be called UD-sets
and the set of UD-sets will be denoted by UD (with-
out mentioning the dimension n of the ambient space).
There is a one-to-one correspondence between the set SS,
of systems of equal spheres of radius 1/2, and the set
UD: Λ = (ai)i∈N ∈ UD is the set of sphere centres of
B(Λ) = {ai + B | i ∈ N} ∈ SS where B(z, t) generi-
cally denotes the closed ball centred at z ∈ R

n of radius
t > 0, and B := B(0, 1/2). We will take 1/2 in the sequel
for the common radius of spheres to be packed and will
consider UD-sets instead of systems of equal spheres of
radius 1/2.

Let Λ ∈ UD. The density of the system of spheres
B(Λ) is defined by

δ(B(Λ)) := lim sup
R→+∞

[
vol

((⋃
i∈N

(ai + B)
) ⋂

B(0, R)
)

vol(B(0, R))

]
.

Let us denote by L the space of (n-dimensional) lat-
tices of R

n. We will denote:

δ := sup
Λ∈UD

δ(B(Λ)), δL := sup
Λ∈L∩UD

δ(B(Λ))

and will call them respectively the packing density and
the lattice-packing density.

A UD-set Λ is said to be a Delone set if there exists
a constant R > 0 such that, for all z ∈ R

n, there exists
an element λ ∈ Λ such that ‖z − λ‖ ≤ R (property of
relative denseness of Besicovitch). If Λ is a Delone set,
then R(Λ) := supz∈Rn infλ∈Λ ‖z−λ‖ is called the Delone
constant of Λ. Let Rc = Rc(n) := inf{R(Λ)|Λ ∈ UD}.
This lower bound is an invariant of the ambient space
which is only a function of n and the Euclidean metric
on R

n. We will call it the Delone covering constant.
In Section 2, we will recall the asymptotic expressions

of the classical upper bounds of the packing density and
the lower bounds of the lattice-packing density, when n

goes to infinity.

In Section 3, we will recall known lower bounds of the
minimal hole constant, in the case of lattice packings,
and state some results concerning lower bounds of Rc in
the general case of arbitrary packings.

The Delone constant of a Delone set Λ ∈ UD is the
maximal circumradius of the Voronoi cells in the Voronoi
decomposition of space by Λ (Section 3); if Λ is a lattice,
it is the covering radius of the lattice, if Λ is a nonperiodic
UD-set, it is the “maximal size of the holes in Λ.” In
Section 4, we will prove Theorem 1.1.

Theorem 1.1. Let n ≥ 2. If Λ is a Delone set of R
n of

Delone constant R, then

(2R)−n ≤ δ(B(Λ)) ≤ δ for all Rc ≤ R. (1–1)

Let us denote µn(R) := (2R)−n. The (2R)−n depen-
dence of the expression of µn(R) with n is very important
and constitutes a key result. It allows us to study the
minimal asymptotic values of the Delone covering con-
stant Rc(n) when n tends to infinity. Namely, we will
prove Theorem 1.2.

Theorem 1.2. For all ε > 0 there exists n(ε) such that for
n > n(ε), Rc(n) ≥ 2−0.401 − ε.

Remark 1.3. Theorem 1.2 asserts the existence of an infi-
nite collection of middle-sized Voronoi cells in any densest
or saturated packing of equal spheres of R

n of radius 1/2
of circumradii greater than

2−0.401 + o(1) = 0.757333... + o(1).

The small values of R between the bound
√

2
2

√
n

n + 1

and 1 are discussed in Section 3
In Section 5, as an application of Theorem 1.1, we will

obtain explicit lower bounds as a function of n of the
covering radii (holes) of known lattices, namely Barnes-
Wall BWn, Craig A

(r)
n , Mordell-Weil MWn, and of the

Delone constants of BCH packings.
In Section 6, we will show the pertinency of the lower

bound µn(R), and “its continuity with R” by comparing
it to known classical asymptotic bounds. The construc-
tion of Delone sets with very small Delone constants is a
difficult problem which is not considered here. Concern-
ing lattice packings, our results give credit to the con-
jecture stating that (recall that the space UD depends
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cn 2−n/2 (c a const.) Blichfeldt [Blichfeldt 29]
n
e

2−n/2 Rogers [Rogers 58]

2(−0.5096+o(1))n Sidel’nikov [Sidel’nikov 73]

2(−0.5237+o(1))n Levens̆tein [Levens̆tein 79]

2(−0.5990+o(1))n Kabatjanskĭi and Levens̆tein [Kabatjanskĭi and Levens̆tein 78]

TABLE 1. Upper bounds of δ as a function of n.

upon n): for all ε > 0, there exists nL(ε) such that for
n > nL(ε) and for all (n-dimensional) lattices L ∈ UD,
R(L) ≥ 1 − ε.

2. ASYMPTOTIC BEHAVIOUR OF THE UPPER
BOUNDS OF δ AND OF THE LOWER BOUNDS
OF δL

The upper bounds of δ, as a function of n, are recalled in
Table 1, the best one being the one of Kabatjanskĭi and
Levens̆tein ([Rogers 64], [Gruber and Lekkerkerker 87,
Section 19 and Section 38, pages 390–391], [Conway and
Sloane 88, Chapters 1 and 9], [Zong 99, Chapter 3]).

Their asymptotic expressions, when n goes to infinity,
all exhibit a dominant exponential term of the type 2−αn

where α is close to 1/2. As for lower bounds, non-trivial
lower bounds of the packing constant δ do not seem to
exist yet (see Section 6); [Elkies 00a]). The basic re-
sult is concerned with lattice packings: the Conjecture
of Minkowski (1905) proved by Hlawka [Cassels 59, Gru-
ber and Lekkerkerker 87] states

ζ(n)
2n−1

≤ δL (2–1)

where ζ(n) =
∑∞

k=1 k−n denotes the Riemann ζ-
function. Proofs of this lower bound do not provide ex-
plicit constructions of very dense lattices. This lower
bound was improved by Davenport and Rogers [Dav-
enport and Rogers 47] who gave: (ln

√
2 + o(1))n 2−n,

for n sufficiently large, and by Ball [Ball 92] who re-
cently obtained better: 2(n − 1)ζ(n)2−n. For details,
see [Goodman and O’Rourke 97], Chapter VI in [Cas-
sels 59], Chapter 9 in [Conway and Sloane 88], [Gruber
and Lekkerkerker 87], or [Zong 99]. One can remark that
these asymptotic expressions all exhibit a dominant ex-
ponential term in 2−α′n with α′ = 1, and that there exists
a close similarity between the asymptotic expressions of
the lower and upper bounds and Theorem 1.1. Theorem
1.1 will allow to “go continuously” in some sense from the
first type (“α � 1/2” case) to the second type (“α′ = 1”
case) of bounds; see Section 6

3. LOWER BOUNDS OF THE MINIMAL HOLE
CONSTANT RL(n) AND OF THE DELONE
COVERING CONSTANT RC(n)

Bounds for the (lattice-)packing density are obviously
linked to holes. Let us recall some definitions. If a lat-
tice Λ ∈ UD of R

n is a Delone set of Delone constant
R, then classically the quantity R is called the covering
radius of Λ. Given a UD-set Λ := {λi}, to each element
λi ∈ Λ is associated its local cell C(λi,Λ), also denoted
by C(λi,B(Λ)), defined by the closed subset (not neces-
sarily bounded), called Voronoi cell at λi,

C(λi,Λ) :=
{

x ∈ R
n|‖x − λi‖ ≤ ‖x − λj‖

for all j �= i

}
.

As soon as Λ is a Delone set of Delone constant R >

0(R < +∞), all the Voronoi cells at its points are
bounded closed convex polyhedra. In this case, for all
λi ∈ Λ, we have

C(λi,Λ) :=
{

x ∈ R
n|‖x − λi‖ ≤ ‖x − λj‖

for all j �= i with ‖λj − λi‖ < 2R

}
.

By definition the circumradius of the Voronoi cell at λi is
ρi := maxv ‖λi − v‖ where the supremum (reached) is
taken over all the vertices v of the Voronoi cell C(λi,Λ)
at λi and the Delone constant R of Λ is equal to maxi ρi.
The elements z ∈ R

n lying at a distance R(Λ) of Λ will
be called (spherical) deep holes (or deepest holes) of Λ.
The other vertices of Voronoi cells will be called holes.

In the particular case of a lattice L the covering ra-
dius R(L) is the circumradius of the Voronoi cell of the
lattice L at the origin. Any vertex of this Voronoi cell
at a distance of L less than R(L) from L is called shal-
low hole [Conway and Sloane 88]. All the vertices of the
Voronoi cell of a lattice at the origin may be simulta-
neously deepest holes when this Voronoi cell is highly
symmetrical [Verger-Gaugry 97].

Let us define the minimal hole constant by

RL = RL(n) := min
L∈UD∩L

R(L)

over all lattices L of R
n which are UD-sets. Its deter-

mination is an important problem, already mentioned by
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n = 3 Böröczky [Böröczky 86] =
√

5/(2
√

3) � 0.645497...

n = 4 Horvath [Horvath 82] = (
√

3 − 1)31/4/
√

2 � 0.68125...

n = 5 Horvath [Horvath 82] =
�

9 +
√

13/(2
√

6) � 0.72473...
n ≥ 2 Rogers [Rogers 50] < 1.5

n ≥ 2 Henk [Henk 95] ≤ √
21/4 � 1.1456...

n >> 1 Butler [Butler 72] ≤ n(log2 ln n+c)/n = 1 + o(1) (c is a constant)

TABLE 2. Minimal hole constant RL(n) for lattice-packings of spheres of radius 1/2 in R
n.

Fejes-Toth [Fejes-Toth 79]. It corresponds to the small-
est possible holes in lattice packings L + B. Our knowl-
edge about it is comparatively limited and the lattices
for which the covering radius is equal to the minimal
hole constant are unknown as soon as n is large enough.
In Table 2 we summarize some values and known upper
bounds of RL(n).

The following theorem is fundamental but non-
constructive.

Theorem 3.1. (Butler.) [Butler 72]

RL(n) ≤ 1 + o(1) when n is sufficiently large.

This leads to the following question:

Question 3.2. For all ε > 0, does there exist n0(ε) such
that the inequality RL(n) ≥ 1−ε holds for all n ≥ n0(ε)?

If the answer to this fundamental question is yes,
then Butler’s Theorem [Butler 72] would imply that
RL(n) = 1+o(1). Then this result would be a very impor-
tant step towards a proof of the conjecture stating that
the strict‘ inequality “δ > δL” holds for n large enough.
The affirmative answer to Question 3.2 is a conjecture
[Conway and Sloane 88]. Consequently, the search for
lower bounds of RL(n) is crucial.

The lower bound
√

2/2 + o(1) for RL(n) when n is
large enough was given by Blichfeldt (see [Butler 72,
page 722]). Let us note that the normalized (see Sec-
tion 5) Leech lattice Λ24/

√
N(Λ24) [Elkies 00b] has a

small value of its covering radius by the theorem of Con-
way, Parker, and Sloane (in [Conway and Sloane 88,
Chapter 23]): R(Λ24/

√
N(Λ24)) =

√
2/2. In low dimen-

sion, this value is rarely reached [Conway and Sloane 88].
In general, for lattices, the information about its holes
is limited (see Chapter 22 by Norton in [Conway and
Sloane 88]) because of the difficulty of computing ex-
plicitely the Voronoi cells of a lattice from the lattice
itself when n is large.

Let us now turn to the notion of saturation, linked to
the possible filling of holes. We will say that a UD-set

Λ is saturated, or maximal, if it is impossible to add a
sphere to B(Λ) without destroying the fact that it is a
packing of spheres, i.e., without creating an overlap of
spheres. The set SS of systems of spheres of radius 1/2,
is partially ordered by the relation ≺, defined by

Λ1,Λ2 ∈ UD, B(Λ1) ≺ B(Λ2) ⇐⇒ Λ1 ⊂ Λ2.

By Zorn’s Lemma, maximal sphere packings exist. The
saturation operation of a sphere packing consists of
adding spheres to obtain a maximal sphere packing. It is
fairly arbitrary and may be finite or infinite. Note that
it is not because a sphere packing is maximal (saturated)
that its density is equal to δ.

Let XR ⊂ UD be the subset of Delone sets of De-
lone constant R > 0 of R

n. By saturating a De-
lone set of Delone constant R > 0 we will always ob-
tain a Delone set of constant less than 1, but not a
Delone set of Delone constant = Rc in general. Let
R(s) := sup{R(Λ) | Λ saturated}. It is obvious that
1/2 ≤ Rc < R(s) ≤ 1, Rc(n) ≤ RL(n) and that the
subset of saturated Delone sets of R

n is included in⋃
Rc≤R≤R(s) XR. More precisely we have the following

facts.

Lemma 3.3.

(i) R(s) = 1;

(ii) Rc(n) ≥
√

2
2

√
n

n+1 =
√

2
2 (1 + O(1/n)) for n large.

Proof:

(i) Let us assume R(s) < 1 and that R(s) is the Delone
constant of a saturated Delone set Λ. We will obtain
a contradiction. Then there exists z ∈ R

n such that
infλ∈Λ ‖z − λ‖ = R(s). Up to a translation, we may
assume z = 0. Let ε > 0 be small enough such that
(1 + ε)R(s) < 1. Let η ∈ (3, 4) such that the system
of spheres
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B
(
Λ ∩ B(0, ηR(s))

)
:= {B(c1, 1/2), . . . , B(cm, 1/2)}

(with m ≥ 1) is such that ‖hcj‖ < ηR(s) for all
j = 1, 2, . . . ,m and all h ∈ [1, 1 + ε).

Now let h ∈ (1, 1 + ε) and let us cre-
ate the new Delone set Λh from Λ as fol-
lows: first, Λh ∩ B(0, ηR(s)) is exactly equal
to the set {hc1, hc2, . . . , hcm} so that, “in-
side” the ball B(0, ηR(s)), B (

Λh ∩ B(0, ηR(s))
)

=
{B(hc1, 1/2), . . . , B(hcm, 1/2)}. For constructing
B (

Λh ∩ (
R

n \ B(0, ηR(s))
))

, we take any infinite
packing B1 of balls of radius 1/2 centred at points
which lie in R

n \ B(0, ηR(s)) so that: (1)B1 ∪
B (

Λh ∩ B(0, ηR(s))
)

is a packing of balls of R
n, and

(2) B1 is saturated. We obtain the Delone set Λh ∈
UD defined by B(Λh) := B1 ∪ B (

Λh ∩ B(0, ηR(s))
)
.

We will take ε small enough such that all the
Voronoi cells at the points hcj , with j = 1, 2, . . . ,m

and h ∈ [1, 1 + ε), have a circumradius always
strictly less than 1 (this is always possible be-
cause of the continuity of the maps defining the ver-
tices of Voronoi cells as functions of the centres of
balls). Since the restriction of the system of balls
B(Λh) to the portion of space outside the cluster
{B(hc1, 1/2), . . . , B(hcm, 1/2)} ∪B(0, ηR(s)), is sat-
urated, all the Voronoi cells at the centres of the
balls of B1 have a circumradius ≤ R(s) < 1.

Then, on one hand, since the distance between 0
and Λh is hR(s) > R(s), for h > 1, the Delone set
Λh has a Delone constant strictly greater than R(s).
Hence it is not saturated, by definition of R(s). On
the other hand, since all the Voronoi cells of Λh, at
the centres of balls located “outside” and “inside”
B(0, ηR(s)), have a circumradius strictly less than
1, it is impossible to add a sphere at any of their
vertices to saturate Λh, and therefore there is no
place in R

n to add a ball of radius 1/2 to saturate
Λh. Contradiction.

In the case where the supremum R(s) =
sup{R(Λ) | Λ saturated} is not reached, let us still
assume that R(s) < 1 and let us show the contra-
diction. Then, necessarily [Verger-Gaugry 01], there
exist a sequence of points (zi)i≥1 and a sequence of
Delone sets (Λi)i≥1 such that: ‖zi‖ tends to +∞
when i goes to infinity with the property that, for
all ε > 0 there exists i0(ε) such that i ≥ i0(ε) im-
plies R(s) − ε ≤ infλ∈Λi

‖zi − λ‖ ≤ R(s). Let Ri

be the Delone constant of Λi. We now take ε small
enough in order to have 1/R(s) > 1/(1 − ε/R(s)).
It corresponds to values of i large enough. Then, as
above, we will consider a new Delone set Λh,i created
from Λi by a local dilation of scalar factor h about
the point zi. When 1/R(s) > h > 1/(1 − ε/R(s))
then hRi ≤ hR(s) < 1 and hRi ≥ h(R(s) − ε) >

(R(s) − ε)/(1 − ε/R(s)) = R(s). As above, we obtain
a Delone set Λh,i which is such that its Delone con-
stant is strictly greater than R(s) and strictly smaller
than 1, thus not saturated and impossible to satu-
rate. Contradiction.

(ii) Let us show that, if Λ is a Delone set of R
n of con-

stant R, n ≥ 1, then
√

2
2

√
n

n+1 ≤ R. This inequal-

ity comes from an inequality of Blichfeldt (Lemma
1 in [Rogers 64, page 79]; or [Blichfeldt 29]) since
the distance from the centre of a Voronoi cell to
any point of its (n − i)-dimensional plane, in the
Voronoi decomposition of space by Λ, is at least
1
2

√
2i

i+1 for all 1 ≤ i ≤ n. Taking i = n in the above
inequality gives the result. Note that in the con-
structions of Rogers, packings of equal ball of radius
1, and not 1/2, are considered; this justifies the fac-
tor 1/2 in front of the expression.

We will call
√

2/2 the Blichfeldt bound.
If n = 1, XRc

= X1/2 is not empty since it contains Z.
If n = 2, the set XRc

= X 1√
3

is not empty since it con-
tains the lattice generated by the points with coordinates
(1, 0) and (1/2,

√
3/2) in the plane (extreme lattice) in

an orthonormal basis [Kerschner 39]. What happens for
n ≥ 3? The set X√

2
2

√
n

n+1
is certainly empty since, as

soon as n ≥ 3, the minimal Voronoi cell is not tiling
the ambient space periodically [Rogers 64]. (McLaugh-
lin’s Theorem is cited in [Hales 00, Oesterlé 99, Verger-
Gaugry 01, Hales 97a], and for n = 3 [Hales 97b].)

Question 3.4. For which values of n and R is XR not
empty?

This fairly old question (see [Ryshkov 75]) is partially
answered by Theorem 1.2.

4. PROOFS OF THEOREMS 1.1 AND 1.2

Proof of Theorem 1.1: Let Rc ≤ R and T > R be a
real number. If Λ is a Delone set of constant R of R

n,
then (B(0, R) + Λ)∩B(0, T ) covers the ball B(0, T −R).



52 Experimental Mathematics, Vol. 14 (2005), No. 1

Hence, the number of elements of Λ ∩ B(0, T ) is at least
((T − R)/R)n. On the other hand, since all the balls
of radius 1/2 centred at the elements of Λ ∩ B(0, T ) lie
within B(0, T +1/2), the proportion of space they occupy
in B(0, T + 1/2) is at least

(
T − R

R

)n vol(B(0, 1/2))
vol(B(0, T + 1/2))

=
(

T − R

2R(T + 1/2)

)n

.

When T tends to infinity the above quantity tends to
(2R)−n which is a lower bound of the density δ(B(Λ)).

Proof of Theorem 1.2: Let σKL(n) = 2−0.599n be the
upper bound of Kabatjanskĭi-Levens̆tein of the packing
density δ. By Theorem 1.1 we deduce that, with Rc ≤
R ≤ 1,

µn(R) ≤ δ ≤ 2−0.599n.

Raising this equation to the power 1/n gives readily 2R ≥
20.599 + o(1) that is R ≥ 2−0.401 + o(1).

5. ASYMPTOTIC BEHAVIOUR OF HOLES IN
SEQUENCES OF LATTICES AND PACKINGS

The expression of the bound µn(R) will be used to com-
pute a lower bound of the Delone constant of a Delone
set, or a lower bound of the covering radius of a given
lattice L ∈ UD ∩ L, when its density and its minimal
interpoint distance are known.

In the case of a lattice L, the minimal interpoint dis-
tance of L is the square root of the norm N(L) of the
lattice [Martinet 96]. We will consider the normalized
lattice

1√
N(L)

L

instead of the lattice L to apply the preceding con-
siderations with packings of spheres of common radius
1/2. The situation is similar for a Delone set which
will be normalized by its minimal interpoint distance.
We will denote by dens(L) := δ(B(L/

√
N(L))) (The-

orem 1.7 in [Rogers 64]) the density of the system of
spheres L + B(0,

√
N(L)/2) if L is a lattice and by

dens(Λ) := δ(B(Λ/n(Λ))) (Theorem 1.7 in [Rogers 64])
the density of the system of spheres Λ + B(0, n(Λ)/2) if
Λ is a Delone set of minimal interpoint distance n(Λ).

Let us observe that, for all Delone sets Λ and all non-
negative scalar factors λ such that Λ ∈ UD and λΛ ∈ UD,
the equality R(λΛ) = λR(Λ) holds. Then, from Theorem
1.1, we readily obtain the following inequalities:

(i)
n(Λ)

2
dens(Λ)−1/n ≤ R(Λ), for all Delone sets Λ ∈

UD of minimal interpoint distance n(Λ), and

(ii)

√
N(L)
2

dens(L)−1/n ≤ R(L), for all lattice L ∈
UD ∩ L of norm N(L).

In the sequel the following notations will be used:
tL :=

√
N(L) t̃L with t̃L := 1

2 dens(L)−1/n; and tΛ :=
n(Λ) t̃Λ with t̃Λ := 1

2 dens(Λ)−1/n for L and Λ as above.
Let us now apply these inequalities to some known se-

quences of lattices and packings, as given by [Conway and
Sloane 88, Chapters 5 and 8] and [Martinet 96, Chap-
ter V], to obtain an estimation of the size of the deep
holes.

5.1 Leech Lattice

For the Leech lattice Λ24 in R
24 the density δ(Λ24) =

π12/479001600 = 0.001930... and the covering radius
R(Λ24/

√
N(Λ24)) =

√
2/2 are both known [Conway and

Sloane 88, Elkies 00a]. We obtain tΛ24 = 0.6487.... This
numerical value is within 10% of the true value 0.707....
This estimation of the size of the deep hole in Λ24 is fairly
realistic.

5.2 Barnes-Wall Lattices

The density of the Barnes-Wall lattice BWn ([Leech 64],
[Conway and Sloane 88, page 234 or page 151]), in R

n,

n = 2m, m ≥ 2, is equal to 2−5n/4nn/4πn/2/Γ(1 + n/2).
The norm N(BWn) is equal to n ([Leech 64, page 678]).

Proposition 5.1. Let n = 2m with m ≥ 2. The covering
radius R(BWn) ≥ tBWn

of the Barnes-Wall lattice BWn

is such that the size of its (deepest) hole tends to infinity
as (and better than)

tBWn
:=

2−1/4

√
πe

n3/4 (1 + o(1))

when n goes to infinity.

Proof: Raising the equation

2−5n/4nn/4πn/2/Γ(1 + n/2) = δ(B(BWn/
√

n)) = µn(t)

to the power 1/n and allowing n to tend to infin-
ity leads easily to the claimed asymptotic expression
of tBWn/

√
n as a function of n. The multiplication of

tBWn/
√

n = ˜tBWn
by the minimal interpoint distance√

n gives the claimed lower bound tBWn
of the covering

radius R(BWn) of BWn.
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5.3 BCH Packings

In this section, the reference will be [Conway and
Sloane 88, page 155]. Let n = 2m,m ≥ 4. The packings
of equal spheres considered below are obtained using ex-
tended BCH codes in construction C of length n. They
are not lattices. There are two packings (a and b) which
use two different codes of the Hamming distances. Let
us denote the second one by Pnb. Its density dens(Pnb)
satisfies

log2 dens(Pnb) � −1
2
n log2 log2 n, as n → +∞

and its minimal interpoint distance is [Conway and
Sloane 88, page 150] n(Pnb) =

√
γ 2a with γ = 2 and

a = [(m − 1)/2]. We deduce the following proposition.

Proposition 5.2. Let n = 2m with m ≥ 4. The Delone
constant R(Pnb) ≥ tPnb

of the BCH packing Pnb tends to
infinity as (and better than)

tPnb
= 2−

1
2+[(−1+log2 n)/2]

√
log2 n (1 + o(1))

� 1√
2

log2 n (1 + o(1))

when n goes to infinity.

The proof can be made with the same arguments as
in the proof of Proposition 5.1.

5.4 Craig Lattices

These lattices are known to be among the densest
ones (see [Martinet 96, pages 163–171], [Conway and
Sloane 88, pages 222–224]). The density dens(A(r)

n ) of
the Craig lattice A

(r)
n , n ≥ 1, r ≥ 1, in R

n is at least

(r/2)n/2

(n + 1)r−1/2

πn/2

Γ(1 + n/2)
,

with equality if the norm of the lattice is 2r. The norm of
Craig lattices is not known in general and lower bounds of
N(A(r)

n ) were obtained by Craig (see [Martinet 96, Ba-
choc and Batut 92, Craig 78]). The determination of
N(A(r)

n ) is equivalent to the so-called Tarry-Escott prob-
lem in combinatorics and does not seem to be solved yet.
However, for some values of n and r this norm is known.

Theorem 5.3. Let n ≥ 2.

(i) [Craig 78] If n+1 is a prime number p and r < n/2,
then N(A(r)

n ) ≥ 2r.

(ii) [Bachoc and Batut 92] If n + 1 is a prime number p

with r a strict divisor of n = p − 1, then N(A(r)
n ) =

2r.

Bachoc and Batut [Bachoc and Batut 92] made an
exhaustive investigation of Craig lattices for the prime
numbers p ≤ 23. The equality N(A(r)

p−1) = 2r holds for
r = 1, r = 2, r = 3 and also for r = (p + 1)/4 with
p ≡ 3 mod 4. This last case was proved by Elkies (cited
in [Gross 90]), from the general theory of Mordell-Weil
lattices developed by Elkies and Shioda concerning the
groups of rational points of elliptic curves over function
fields [Shioda 92]. The equality N(A(r)

p−1) = 2r was also
proved to be true for p ≤ 37 and r ∈ [1, p+1

4 ] [Martinet 96,
page 169], but wrong for higher values of p.

Using the assertion (ii) in Theorem 5.3 we obtain the
following proposition.

Proposition 5.4. Let n ≥ 2 such that n + 1 is a prime
number and r a strict divisor of n. Then, the covering
radius R(A(r)

n ) ≥ t
A

(r)
n

of the Craig lattice A
(r)
n is such

that the size of its (deepest) hole tends to infinity as (and
better than)

t
A

(r)
n

:=
1√
2πe

√
n(1 + o(1))

when n goes to infinity.

Let us remark that t
A

(r)
n

is independent of r when n is
large enough.

As shown by Propositions 5.1 and 5.4 the deep holes of
the Barnes-Wall and Craig lattices, BWn and A

(r)
n , have

sizes which goes to infinity with n (r fixed). In order to
allow comparison between them and with Butler’s The-
orem (Theorem 3.1), we have to consider the normalized
lattices

1√
n

BWn and
1√
2r

A
(r)
n ,

assuming that n is such that n+1 is a prime number. In
the first case, the covering radius tends to infinity with n

leaving no hope to obtain very dense packings of spheres
from the lattices BWn when n is large enough. In the
second case, since

t
A

(r)
n /

√
2r

=
1

2
√

πe

√
n

r

we see that t
A

(r)
n /

√
2r

> 1 if r < 1
4πe n. Let us recall,

from Theorem 3.1, that the existence of very dense lat-
tices (of minimal interpoint distance one) of covering ra-
dius as close as 1 is expected. Therefore we can expect
to find very dense Craig lattices satisfying this condi-
tion when r = r(n) is a suitable function of n and large
enough, namely: r(n) > 1

4πe n for which the lower bound
t
A

(r)
n /

√
2r

of R(A(r)
n /

√
2r) is then less than unity. On the
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other hand, the density dens(A(r)
n ) reaches its maximum

when r is the integer the closest to n
2 ln(n+1) (obtained by

cancelling the derivative of dens(A(r)
n ) with respect to r,

with n fixed, assuming that the norm of the lattice A
(r)
n

is exactly 2r).
Since n

2 ln(n+1) ≤ 1
4πe n, as soon as n is large enough

(for n ≥ e2πe − 1), a good compromise for the value of r,
assuming that the norm of the lattice A

(r)
n is exactly 2r,

would be r := the smallest integer > 1
4πe n.

Question 5.5. Do there exist normalized Craig lattices

A
(r)
n /

√
N(A(r)

n )

(for general n and r) which exhibit a Delone constant
(covering radius) smaller than 1?

5.5 Mordell-Weil Lattices

We will refer here to the class of Mordell-Weil lattices
given by the following theorem of Shioda [Shioda 91, The-
orem 1.1].

Theorem 5.6. [Shioda 91] Let p be a prime number such
that p + 1 ≡ 0(mod 6) and k any field containing Fp2 .
The Mordell-Weil lattice E(K) of the elliptic curve E

y2 = x3 + 1 + up+1 (5–1)

defined over the rational function field K, where K =
k(u), is a positive-definite even integral lattice with the
following invariants:

rank = 2p − 2

det = p
p−5
3

N(E(K)) = p+1
3

centre density ∆ = ( p+1
12 )p−1

p(p−5)/6

kissing number ≥ 6p(p − 1).

Recall that the centre density ∆ is the quotient of the
density of the lattice divided by the volume πn/2/Γ(1 +
n/2) of the unit ball of R

n. Such a lattice in R
2p−2,

denoted by MWn with n = 2p − 2, has a minimal inter-
point distance equal to

√
(p + 1)/3 and a density equal

to dens(MWn) = ∆πp−1

Γ(p) . We deduce that

t̃MWn
� 1

2

√
π

(Γ(p))1/(2p−2)

(
p+1
12

)1/2

p(p−5)/(12(p−1))

�
√

π e

4
√

3
p−1/12 � 2−2+1/12

√
π e√
3

n−1/12.

This value goes to zero while

tMWn
� 21/12

√
π e

12
√

2
n5/12

goes to infinity when p (or n) tends to infinity. This result
indicates that the deep holes of the normalized Mordell-
Weil lattice MWn/

√
N(MWn) are in fact very shallow,

and probably may be bounded above independently of n.
This leads to the following question.

Question 5.7. Do there exist normalized Mordell-Weil
lattices MWn/

√
N(MWn) which exhibit a Delone con-

stant (covering radius) smaller than 1?

6. COMMENTS AND CONJECTURE

The lower bound µn(R) of δ is particularly interesting
for saturated Delone sets of Delone constant R of R

n,
that is for R ≤ R(s). Since R(s) = 1 by Lemma 3.3,
we readily obtain a lower bound for δ which is 2−n

[Elkies 00a, Elkies 00b]. More generally, the lower bound
µn(R) exhibits a dependence with n which is in

(2R)−n = 2−n(1+log2 R).

Taking R = R(s) = 1, gives a 2−n dependence typical
of the Minkowski-Hlawka type lower bounds of δL, while
taking R =

√
2/2 (the Blichfeldt bound, Lemma 3.3)

provides a 2−n/2 dependence typical of the Rogers bound
σn. In between, all values of R are formally possible but
the range is limited (Theorem 1.2).

Here the viewpoint does not include explicit con-
structions. Working with packings of spheres arising
from Delone sets for which we only control the con-
stant R would seem, a priori, to give more freedom to
the constructions. Very dense packings are likely to
occur with ‘almost-touching’ spheres everywhere, that
is from Delone sets of Delone constants R, as small
as possible, close to Rc(n). The corresponding kissing
numbers deduced from all the local clusters of spheres
would lie between the Coxeter-Böröczky/ Kabatjanskĭi-
Levens̆tein upper bounds [Böröczky 78, Kabatjanskĭi and
Levens̆tein 78] and the lower bound of Wyner [Wyner 65],
probably closer to the upper bounds. Local arrangements
of spheres in a densest sphere packing can be extremely
diversified (see [Hales 00, Hales 97a, Hales 97b] on Hales-
Ferguson Theorem, for n = 3).

In this sense, Theorem 1.1 gives a partial answer to
old expectations when R lies between Rc(n) and 1. In-
deed, recall [Gruber and Lekkerkerker 87, page 391]:
“the best known upper and lower bounds for δ differ by
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FIGURE 1. Upper bounds of the packing density δ and lower bounds of the lattice-packing density δL. The R-dependent
lower bounds µn(R) are plotted for R = 2−0.401, 0.8, 0.85, 0.90, 0.95, 0.99, 1.5 as a function of the dimension n.

Type Name log2 ∆

constructions Barnes-Wall BW65536 180224
B65536 290998

η(Λ32) 295120

Craig A
(2954)
65536 297740

(existence) lower bounds Minkowski-Hlawka 324603
of δL Davenport-Rogers 324616

Ball 324620

µ65536(R) R = 1.5 286266
R = 1.0 324602

lower bounds R = 0.99 325553
from Theorem 1.1 R = 0.95 329452

R = 0.90 334564
R = 0.85 339968
R = 0.80 345700

R = 2−0.401 350882

upper bounds Kabatjanskĭi-Levens̆tein 350882
Levens̆tein 355818

of δ Sidel’nikov 356742
Rogers 357385

TABLE 3. Table 1.4 of [Conway and Sloane 88, Chapter 1] to which we have added the lower bounds µ65536(R) for
different values of R (the values of the centre density log2 ∆ are recomputed from the original references).
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a factor which is approximately 2n/2. This means that
the problem of closest packing of spheres is still far from
its solution (except for low values of n).” Also recall
[Rogers 64, page 9]: we were still, up till now, in the
situation where “There remains a wide gap between the
results of the Minkowski-Hlawka type, . . ., and the results
of Blichfeldt type, . . . .”

In Figure 1 we plot the R-dependent bound µn(R)
for several values of R, the upper bounds of Rogers,
Sidel’nikov, Levens̆tein, Kabatjanskĭi-Levens̆tein; the
lower bounds of Davenport-Rogers, Ball, and of
Minkowski-Hlawka, as a function of the dimension n. All
values between these two types of bounds can be reached
by µn(R) when R is suitably chosen below 1.

The curve n → µn(R) for R = 1 is slightly below the
Minkowski-Hlawka bound. When R is greater than 1,
the curves n → µn(R) are entirely below the Minkowski-
Hlawka bound. On the contrary, when R < 1 is close to
unity, the curve µn(R) lies below the Minkowski-Hlawka
bound up till a certain value of n and then, as expected,
dominates it asymptotically. When 2−0.401 < R < 1
lies far enough from 1 the entire curve n → µn(R) lies
strictly between the two types of bounds (Kabatjanskĭi-
Levens̆tein and Minkowki-Hlawka).

Theorem 1.2 does not say anything about the fre-
quency and the density of such middle-sized Voronoi cells
of circumradius R approximately equal to 2−0.401 in a
general saturated Delone set of R

n of constant R when
n is sufficiently large, in particular in the densest ones.

To allow comparison with known results in literature
and to follow Conway and Sloane [Conway and Sloane 88]
we have taken n fairly large, namely n = 65536. To ap-
preciate the pertinency of the formula given by Theorem
1.1 we have reproduced in Table 3 the Table 1.4 of [Con-
way and Sloane 88, Chapter 1] and added therein the
values of the centre density ∆ deduced from µ65536(R)
for R = 2−0.401, 0.8, 0.85, 0.90, 0.95, 0.99, 1.0, 1.5. The
value of (the logarithm in base 2 of) the centre density
∆ computed from µ65536(R) now sticks to the Kabat-
janskĭi-Levens̆tein’s bound when R is at its asymptotic
maximum R = 2−0.401. Is this value reached by the De-
lone constant of a Delone set?

When n is large enough, the sensitivity of µn(R) to the
Delone constant R can be perceived by the following com-
parison (see Table 3): the centre density 324602 relative
to the bound µ65536(1) is slightly below the lower bound
324603 of Minkowski-Hlawka, as expected, whereas the
centre density 325553 relative to µ65536(0.99) is slightly
above the best lower bound 324620 of Ball. This gives
credit to the conjecture (see Question 3.2 for a precise

formulation) that lattices do not exhibit a covering ra-
dius less than 1 when n is sufficiently large.
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