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We discuss the relationship between polygonal knot energies
and smooth knot energies, concentrating on ropelength. We
show that a smooth knot can be inscribed in a polygonal knot
in such a way that the ropelength values are close. For a given
knot type, we show that polygonal ropelength minima exist and
that the minimal polygonal ropelengths converge to the minimal
ropelength of the smooth knot type. A subsequence of these
polygons converges to a smooth ropelength minimum. Thus,
ropelength minimizations performed on polygonal knots do, in
fact, approximate ropelength minimizations for smooth knots.

1. INTRODUCTION

Many researchers have defined energy functions on
smooth and polygonal knots. One of the initial objec-
tives of mathematicians was to find a canonical flow from
any unknot to a planar circle. In theoretical terms, this
goal has not been realized; however, in practice, several
polygonal energy functions have been successful in flow-
ing very complicated unknots to a circle.

Knot energies have also become of increasing inter-
est to scientists. Energy minimizing conformations cap-
ture information related to observed physical knotting
and the statistical behavior of large ensembles of knots.
For example, the average crossing number of ropelength
minimized conformations is nearly linearly related to the
gel speed of some DNA knots under certain experimental
conditions [Katritch et al. 96, Stasiak et al 96, Stasiak
et al. 98]. Furthermore, the Möbius energy and ro-
pelength energy of minimized conformations (and their
respective writhes) appear to be quantized over differ-
ent families of knots [Cerf and Stasiak 00, Pierański and
Przbyl 01, Hoidn et al. 02].

It is difficult to produce energy minimizing smooth
curves. The only explicit description of nontrivial en-
ergy minimizing curves is in [Cantarella et al. 02], where
the authors describe ropelength minimizing C1,1 confor-
mations for a class of simple links. Typically, one relies
on computer simulation to flow knots to nearly optimal
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conformations. This is possible with the use of polygo-
nal energies, which attempt to approximate the behav-
ior of their smooth counterparts. The energy optimizing
polygons are assumed to be similar to energy optimizing
smooth knots. However, there are no theorems which
prove that optimal polygons converge to optimal smooth
curves. We prove this result for the ropelength energy.

We concentrate on the ropelength defined for C2 knots
in [Litherland et al. 99] (and subsequently extended
to C1,1 knots in [Durumeric et al. 97, Gonzalez and
Maddocks 99, Cantarella et al. 02]) and the polygo-
nal ropelength defined in [Rawdon 98, Rawdon 00]. To
distinguish between the quantities, throughout this pa-
per smooth always means C1,1 and smooth ropelength is
ropelength defined on C1,1 knots. Similarly, polygonal
ropelength means ropelength defined on piecewise-linear
knots. Section 2 contains background information on the
smooth and polygonal ropelength energies. In Section
3, we describe the algorithm for inscribing C1,1 knots in
polygons that is used throughout the paper. Sections
4 and 5 contain new characterization theorems for the
smooth and polygonal injectivity radius. These are used
to prove the main theorem in Section 6: The injectiv-
ity radius of a polygon and its inscribed smooth knot
are close. In Section 7, we compute upper bounds for
the ropelength of smooth knot types. In Section 8, we
show that the ropelengths of n-edge polygonal optima
converge to the minimal ropelength of a smooth knot
type as n → ∞ and that a subsequence of the polygo-
nal ropelength minima converges to a smooth ropelength
minimum.

2. BACKGROUND INFORMATION

Given two feet of one-inch radius rope, is it possible to
tie a nontrivial knot? Smooth ropelength was defined
in [Buck and Orloff 95, Litherland et al. 99] to try to
answer this question. Litherland et al. showed that one
needs at least 5π inches of idealized rope to tie a non-
trivial knot. Research in [Cantarella et al. 02] and Diao
[Diao 03] improved this bound to 2π(2+

√
2) ≈ 21.45 and

24, respectively. However, computer simulations suggest
that one needs ≈ 32.76 inches to tie a trefoil [Katritch et
al. 96, Stasiak et al. 98, Millett and Rawdon 03].

Many ropelength energies have been defined for
smooth curves [Krötenheerdt and Veit 76, Diao et al.
97, Kusner and Sullivan 98, O’Hara 98, Diao et al.
98a, Diao et al. 99, Gonzalez and Maddocks 99, Du-
rumeric et al. 97] and for polygons [Katritch et al.
96, Stasiak et al 96, Kusner and Sullivan 98, Rawdon

98, Diao et al. 99, Gonzalez and Maddocks 99, Rawdon
00]. For this paper, we concentrate on the smooth ro-
pelength energy defined in [Litherland et al. 99] and the
polygonal ropelength defined in [Rawdon 98, Rawdon 00].
The smooth ropelength energy models rope as a non-self-
intersecting tube with a knot as its core. For complete-
ness, we include these definitions and some properties of
these energies.

Definition 2.1. For a C1 knot K and x ∈ K, let Dr(x)
be the disk of radius r centered at x lying in the plane
normal to the tangent vector at x. Let

R(K) = sup{r > 0 : Dr(x)∩Dr(y) = ∅ for all x �= y ∈ K}.
The quantity R(K) is called the injectivity radius or
thickness radius of K. Define the ropelength of K to
be

ρ(K) = Length(K)/R(K) ,

where Length(K) is the arclength of K.

The injectivity radius is the radius of a thickest tube
that can be placed about the knotted core without self-
intersection. Note that in some of the literature, the
thickness refers to the diameter of this thickest tube, in
which case the ropelength is half of what we use here.

Suppose we are given an impenetrable tube of suffi-
cient length so that the tube can be tied in a knotted
conformation. There are two types of interactions be-
tween the tube’s normal disks that restrict the possible
conformations of the core curve. First, the tube cannot
bend too quickly, a restriction on the curving of the core.
Second, two distal (with respect to arclength) points in
the core cannot be any closer than twice the radius of
the tube, a restriction on the distance between pairs of
points that are bounded away from the diagonal of K×K.
These intuitive observations are captured by the quanti-
ties below and the subsequent lemma.

Definition 2.2. For a C2 knot K with unit tangent map
T , let MinRad(K) be the minimum radius of curvature
of the points of the knot. The doubly critical self-distance
is the minimum distance between pairs of points on the
knot whose chord is perpendicular to the tangent vectors
at the both of the points. In other words, let

DC(K) = {(x, y) ∈ K × K : T (x) ⊥ xy ⊥ T (y), x �= y},
where xy is the chord connecting x and y. Define the
doubly critical self-distance by

dcsd(K) = min{‖x − y‖ : (x, y) ∈ DC(K)},
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where ‖ · ‖ is the standard R
3 norm. We call a pair

(x, y) ∈ DC(K) a doubly critical pair.

There is a fundamental relationship between R(K),
MinRad(K), and dcsd(K).

Lemma 2.3. Suppose K is a C2 knot. Then R(K) =
min

{
MinRad(K), dcsd(K)

2

}
.

Proof: See [Litherland et al. 99].

After reworking the definition of MinRad, one can
extend Lemma 2.3 to include C1 curves. The following
is taken from [Durumeric et al. 97]. For a C0 function
f : R → R

3, define the dilation of f by

dil(f) = sup
{‖f(s) − f(t)‖

|s − t| : s, t ∈ R, s �= t

}
.

Note that if K is a C2 knot parameterized by arclength
with unit tangent map T , then MinRad(K) = 1/dil(T ).
Thus, the dilation gives a generalization for MinRad to
knots that are C1. Since MinRad and 1/dil(T ) are equal
for C2 knots, we use MinRad to denote 1/dil(T ) for all
C1 knots. In the case that a knot is C1, but not C1,1,
dil(T ) = ∞, in which case MinRad is assumed to be
0. In this paper, we are mainly interested in C1,1 knots,
in which case dil(T ) is finite and MinRad is positive.
Alternate, but equivalent, approaches for defining the
ropelength of C1,1 knots are explored in [Gonzalez and
Maddocks 99, Cantarella et al. 02].

The dilation is similar to the distortion, another knot
energy, defined in [Gromov 83] and studied in [O’Hara
92a, O’Hara 92b, Kusner and Sullivan 98]. We are using
the dilation of the unit tangent map, not of a parameter-
ization of a smooth knot as is the case in those papers.
Our goal in using dilation is only to extend the definition
of MinRad to C1,1 knots.

Lemma 2.4. Suppose K is a C1 knot. Then R(K) =
min

{
MinRad(K), dcsd(K)

2

}
. Furthermore, if K is C1,1,

then R(K) > 0.

Proof: See [Cantarella et al. 02] or [Durumeric et al. 97].

It is standard protocol to use energy functions that
are scale-invariant (since we are mainly interested in the
“shape” of the optima) and have infinite barriers between
knot types. Clearly, ropelength satisfies these properties.

In [Rawdon 98, Rawdon 00], the polygonal injectivity
radius and polygonal ropelength functions were defined
in the spirit of the characterizations in Lemmas 2.3 and
2.4.

Suppose P is an n-edge polygonal knot. We include a
list of notation used throughout this paper.

• Let {v0, · · · , vn−1} be the vertices of P . For conve-
nience, we implicitly take all subscripts modulo n.

• Let {e0, · · · , en−1} be the edges of P , where ei is the
edge connecting vi to vi+1.

• Let |ei| be the length of the edge ei.

• Let angle(vi) be the measure of the turning angle at
vi (see Figure 1).

• Let θmax be the maximum of the turning angles.

• Given a knot K, polygonal or smooth, and x ∈ K,
let dx : K → R be defined by dx(y) = ‖x − y‖.

• Let arc(x, y) be the minimum arc distance between
x and y.

Definition 2.5. For a vertex vi on an n-edge polygonal
knot P , let

Rad(vi) =
min{|ei−1|, |ei|}
2 tan

(
angle(vi)

2

)

and
MinRad(P ) = min

i=0,··· ,n−1
Rad(vi).

Note that Rad(vi) is the radius of a circular arc that can
be inscribed at vi so that the arc is tangent to both edges
adjacent to vi and the arc intersects the shorter adjacent
edge at its midpoint (see Figure 1).

We call y a turning point for x if dx changes from
increasing to decreasing or from decreasing to increasing
at y. Let

DC(P ) = {(x, y) ∈ P × P : x �= y turning points of

dy and dx, respectively}.

Define the doubly critical self-distance of P as

dcsd(P ) = min{‖x − y‖ : (x, y) ∈ DC(P )}.

We call a pair (x, y) ∈ DC(P ) a doubly critical pair,
similar to the smooth case.
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Definition 2.6. For a polygonal knot P , let

R(P ) = min
{

MinRad(P ),
dcsd(P )

2

}

(polygonal injectivity radius)
and

ρ(P ) = Length(P )/R(P ) (polygonal ropelength).

In [Rawdon 98, Rawdon 00], it was shown that for
finer and finer inscribed polygonal approximations of a
smooth knot K, the injectivity radius and ropelength of
the polygons converge to the respective values of K.

3. INSCRIBING SMOOTH KNOTS IN POLYGONS

In Theorem 8.3, we show that polygonal ropelength min-
ima converge to smooth ropelength minima. Thus, opti-
mizing polygons do indeed show us the structure of the
smooth optima. Alternate approaches for finding smooth
energy optima using smooth curves are explored in [Kim
and Kusner 93, Smutny and Maddocks 03]. In this
section, we present the algorithm for inscribing smooth
knots in polygonal knots and state the main result of this
paper.

Proposition 3.1. For a given n-edge polygonal knot
P , a C1,1 curve K can be inscribed in P in such a
way that MinRad(K) = R(P ) and the maximum of
the minimum distance between a point on P to K is
≤ R(P )

(
sec

(
θmax

2

) − 1
)
. Furthermore, there exists a bi-

jection from P to K so that for each pair x′ ∈ P and
x ∈ K, we have ‖x − x′‖ ≤ R(P )

(
sec

(
θmax

2

) − 1
)
.

v
angle(v)

v

Rad(v)

angle(v)

Rad(v)

FIGURE 1. An arc of a circle of radius Rad(v) can be
inscribed so that the arc is tangent at the midpoint of
the shorter adjacent edge. On the left, the two adjacent
edges have identical length, so the arc intersects both
edges tangentially at the midpoints. On the right, the
arc intersects the longer edge short of the midpoint.

Proof: Recall from Definition 2.5 that an arc αi of a cir-
cle of radius Rad(vi) can be inscribed at vi such that αi

is tangent to ei−1 and ei and intersects the shorter adja-
cent edge at the midpoint. Since R(P ) ≤ MinRad(P ) ≤
Rad(vi), an arc of radius R(P ) can be inscribed at vi tan-
gent to ei−1 and ei. The points of intersection between
αi and the edges will be no further away from vi than
the midpoints of the edges (see Figure 2).

Let K be the result of inscribing arcs of radius R(P )
in P and removing the bypassed corners. Since there
is no overlapping of adjacent inscribed arcs (although
they could meet in a C1 fashion at a midpoint), K is
well defined as a (possibly self-intersecting) closed curve.
The curve K is the union of arcs of radius R(P ) and
(possibly) straight line segments meeting tangentially, so
K is C1 and piecewise C2. Thus, K lies in the cate-
gory of C1,1 curves. By this construction, we have that
MinRad(K) = R(P ).

For each x on the inscribed curve K, we define a
unique point x′ on P . If x is on a line segment, let x′ = x.
Otherwise, x lies on an arc, say αi, whose center is Ci.
Let x′ be the intersection of the ray

−−→
Cix with ei−1 ∪ ei

(see Figure 2). Simple trigonometric calculations show
that

‖x − x′‖ ≤ R(P )
(

sec
(

θmax

2

)
− 1

)
.

The inscribed curve K is the object of study in this
paper. Our main result is that we can find an explicit
bound for R(K) in terms of R(P ) and θmax, the maxi-
mum turning angle of P . For polygons with sufficiently
large R(P ) and sufficiently small θmax, we can guarantee
that R(K) > 0, so K is truly a knot; furthermore, when
θmax � 96◦, we show that P and K have the same knot
type.

Note that at a vertex vi, one could inscribe a circular
arc of radius r ≤ Rad(vi) and still have a well-defined
smooth knot. Larger values of r increase the distance
between x and x′. We want P and K to be close to
each other, so r should be small to minimize this error.
However, MinRad(K) is the minimum arc radius used
in inscribing K in P , which we want as large as possible.
We choose r = R(P ) to minimize the distance between x

and x′ without adversely affecting the injectivity radius
of K (which we want to be close to R(P )).

The following is the main result of this paper.

Theorem 3.2. Suppose P is a polygonal knot. Then there
exists a C1,1 knot K inscribed in P such that

R(P ) − R(P )
(

sec
(

θmax

2

)
− 1

)
≤ R(K) ≤ R(P ).
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x

x’

Ci

FIGURE 2. A smooth knot is inscribed in a portion of a polygon.

The proof of Theorem 3.2 is in Section 6. The proof
relies on new characterization theorems for both R(K)
and R(P ).

4. CHARACTERIZATION THEOREMS FOR R(K)

In this section, we prove alternate characterizations for
the injectivity radius of smooth knots. These lemmas are
similar to the characterizations in Section 2. The goal is
to replace dcsd with a different term which lets us better
understand the relationship between the polygon and its
inscribed smooth curve.

Recall that dcsd is the minimum distance between
pairs of points in DC(K), the set of doubly critical pairs.
The set DC(K) is a subset of K×K bounded away from
the diagonal. We will replace DC(K) with other sub-
sets of K × K defined in terms of total curvature and
arclength.

We begin by reviewing an alternate characterization
of R(P ) from [Rawdon 98, Rawdon 00] which utilizes the
total curvature between two points on a polygon. The
main theorem relies on a similar result for smooth knots
which appears at the end of this section.

Definition 4.1. Let P be a polygonal knot and p �= q ∈ P .
For each of the two arcs connecting p and q, sum the
turning angles between p and q (and in the case that p

and/or q is a vertex, including angle(p) and/or angle(q)).
Let tc(p, q) be the smaller of the two quantities.

Lemma 4.2. Let TC(P ) = {(p, q) ∈ P ×P : tc(p, q) ≥ π}.
Then

R(P ) = min
{

MinRad(P ), min
(p,q)∈TC(P )

‖p − q‖
2

}
.

Proof: See [Rawdon 00].

We want to extend this result to C1,1 knots. However,
we must be careful in defining the total curvature for
C1,1 knots. For a C2 knot K, the total curvature of K is
simply the integral of the scalar curvature function. In
[Milnor 50], the definition of total curvature is extended
to incorporate all continuous curves. Milnor defines the
total curvature of a C0 arc to be the supremum, over all
inscribed polygons, of the sum of the turning angles of
the polygon.

Definition 4.3. For a pair of points x, y on a C1,1 knot
K, let tc(x, y) be the minimum total curvature between
the two points in the sense of Milnor.

While our notion of total curvature (Definition 4.1)
agrees with Milnor’s notion on C1,1 arcs and polygo-
nal arcs with nonvertex endpoints, our definition differs
slightly for polygonal arcs with a vertex endpoint. When
an endpoint of a polygonal arc is a vertex, we include
that vertex angle in measuring the total curvature of the
arc. This does not pose any problems in this work.

The following three lemmas and theorem simplify the
proof of the new characterization. We first show that a
certain amount of total curvature is necessary to achieve
a doubly critical pair.

Lemma 4.4. For points x and y on a C1,1 knot K, if
tc(x, y) < π, then (x, y) is not a doubly critical pair.

Proof: If (x, y) is a doubly critical pair and tc(x, y) < π,
then the union of the arc on which tc(x, y) < π with the
chord xy forms a closed curve with total curvature (in
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the sense of Milnor) less than 2π, which is a contradiction
[Milnor 50].

Next, we bound the total curvature between points on
a C1,1 knot in terms of arclength and MinRad.

Lemma 4.5. For a C1,1 knot K, let MaxCurv(K) =
dil(T ) = 1/MinRad(K). Then

∠(T (x), T (y)) ≤ MaxCurv(K) · arc(x, y),

tc(x, y) ≤ MaxCurv(K) · arc(x, y), and

tc(K) ≤ MaxCurv(K) · Length(K),

where ∠(T (x), T (y)) is the angle between the tangent vec-
tors T (x) and T (y).

Proof: See [Durumeric et al. 97].

We use Schur’s Theorem, which compares the chord
distance of a space curve with that of a planar reference
curve, to bound the distance between pairs of points in
subsets of K×K. This form of Schur’s Theorem appears
in [Chern 67].

Lemma 4.6. (Schur’s Theorem for Piecewise Smooth
Curves.) Let C and C∗ be two piecewise smooth curves of
the same length, such that C, together with the chord con-
necting its endpoints, forms a simple convex plane curve.
Let s be the arclength parameter for C and C∗. Let κ(s)
be the curvature of C at a regular point, a(s) the an-
gle between the oriented tangents at a vertex, and denote
corresponding quantities for C∗ by the same notations
with asterisks. Let d and d∗ be the distances between the
endpoints of C and C∗, respectively. Then, if

κ∗(s) ≤ κ(s) and a∗(s) ≤ a(s),

we have d∗ ≥ d. In other words, less curving implies
greater endpoint distances, so long as the reference curve
is planar.

The following characterization is used in the proof of
the next theorem.

Lemma 4.7. Let A(K) = {(x, y) ∈ K × K : arc(x, y) ≥
πMinRad(K)}. For a C1,1 knot K,

R(K) = min
{

MinRad(K), min
(x,y)∈A(K)

‖x − y‖
2

}
.

Proof: If arc(x, y) < πMinRad(K), then tc(x, y) <

πMinRad(K) · MaxCurv(K) = π and Lemma 4.4 says
that (x, y) cannot be a doubly critical pair. Thus,

min
(x,y)∈A(K)

‖x − y‖ ≤ dcsd(K).

If MinRad(K) ≤ min(x,y)∈A(K)
‖x−y‖

2 , then R(K) =
MinRad(K) ≤ dcsd(K)/2 and the result follows.

Otherwise, min(x,y)∈AK

‖x−y‖
2 < MinRad(K). Sup-

pose arc(x, y) = πMinRad(K). By comparing the
arc between x and y with a semicircle of radius r =
MinRad(K) and applying Schur’s Theorem, we get that
‖x−y‖ ≥ 2MinRad(K). Since ‖x−y‖

2 ≥ MinRad(K) on
the boundary of A(K), the minimum distance between
pairs of points in A(K) is attained on an open set and,
thus, must be realized at a doubly critical pair. In other
words, R(K) = dcsd(K)

2 = min(x,y)∈A(K)
‖x−y‖

2 .

We now prove the C1,1 version of Lemma 4.2.

Theorem 4.8. Let TC(K) = {(x, y) ∈ K ×K : tc(x, y) ≥
π}. For a C1,1 knot K,

R(K) = min
{

MinRad(K), min
(x,y)∈TC(K)

‖x − y‖
2

}
.

Proof: If tc(x, y) < π, then (x, y) cannot be a doubly
critical pair by Lemma 4.4. Thus,

min
(x,y)∈TC(K)

‖x − y‖ ≤ dcsd(K).

If MinRad(K) ≤ min(x,y)∈TC(K)
‖x−y‖

2 , then R(K) =
MinRad(K) ≤ dcsd(K)/2 and the result holds.

Otherwise, min(x,y)∈TC(K)
‖x−y‖

2 < MinRad(K).
Since TC(K) ⊆ A(K), we have min(x,y)∈A(K)

‖x−y‖
2 ≤

min(x,y)∈TC(K)
‖x−y‖

2 < MinRad(K). Thus, dcsd(K) =
min(x,y)∈A(K) ‖x − y‖ ≤ min(x,y)∈TC(K) ‖x − y‖ ≤
dcsd(K).

We can now describe the basic structure of the proof of
Theorem 3.2. On the inscribed knot K, MinRad(K) =
R(P ). So if MinRad(K) ≤ dcsd(K)/2, then R(K) =
R(P ). If dcsd(K)/2 < MinRad(K), we need to show
that dcsd(K) ≈ dcsd(P ). If a pair (x, y) realizes dcsd(K)
and tc(x′, y′) ≥ π on P , then the theorem follows imme-
diately.

While the total curvature between x, y ∈ K is close to
the total curvature of the corresponding points x′, y′ ∈ P ,
they need not be identical. The total curvature of a
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polygonal arc is the sum of the turning angles at the ver-
tices on the arc (including the first and/or last point if it
is a vertex). The total curvature between x′, y′ ∈ P is the
minimum of the total curvature along the two arcs join-
ing the points. Thus, total curvature accumulates along
an arc of a polygon as a jump function at the vertices.
However, on a smooth curve, total curvature accumulates
continuously as the tangent vector turns.

In fact, on a polygon P with inscribed smooth knot
K, there exist x0, y0 ∈ K such that tc(x0, y0) < tc(x′

0, y
′
0)

and x1, y1 ∈ K such that tc(x′
1, y

′
1) < tc(x1, y1). This

behavior occurs near vertices. For example, suppose f is
an arclength parameterization of K such that f(a)′ and
f(b)′ (the points on P associated to f(a) and f(b)) are
vertices with a < b and tc(f(a), f(b)) realized on the arc
from f(a) to f(b). The total curvature tc(f(a), f(b)) <

tc(f(a)′, f(b)′) since the smooth knot has not completed
the full turning of the circular arc inscribed at the two
vertices. On the other hand, for small ε > 0, the total
curvature tc(f(a + ε), f(b − ε)) > tc(f(a + ε)′, f(b − ε)′)
since the smooth curve has accumulated some of the total
curvature from the two circular arcs that has not yet
registered as total curvature on the polygon arc.

The critical case for the proof of Theorem 3.2 occurs
when dcsd(K)/2 < MinRad(K) and R(K) is realized
at a pair (x, y) with tc(x, y) ≥ π but tc(x′, y′) < π. In
such a situation, one would expect the distance from x′

to y′ to be close to 2MinRad(P ). One can show that
the vertices preceding x′ and following y′, say v0 and vk,
have total curvature at least π. Thus,

R(K) =
‖x − y‖

2

≥ ‖v0 − vk‖
2

− (two edge lengths)

− R(P )
(

sec
(

θmax

2

)
− 1

)

≥ R(P ) − (two edge lengths)

− R(P )
(

sec
(

θmax

2

)
− 1

)
.

This argument bounds R(K) below, but the error of two
edge lengths is not necessary. We can improve the error
by proving a new characterization of R(P ).

5. CHARACTERIZATION THEOREMS FOR R(P )

In this section, we use a different definition of the total
curvature on P to prove a characterization of R(P ). This
is the last piece needed for the proof of the main theorem.
We begin by defining tc∗.

Definition 5.1. For a polygonal knot P with K inscribed
via Proposition 3.1, let tc∗(x′, y′) = tc(x, y). In other
words, the new measure of the total curvature between
two points on P is the total curvature between the cor-
responding points of K.

In the proofs of the last section, we used the fact that
when the total curvature between two points is exactly
π, the distance between the points is at least 2 MinRad.
Thus, when R(K) is realized by dcsd, the minimum dis-
tance over TC(K) and A(K) is realized at a doubly crit-
ical pair. The following lemma establishes this result for
polygons using tc∗.

Lemma 5.2. Suppose P is a polygonal knot with inscribed
smooth knot K via Proposition 3.1. If tc∗(x′, y′) = π,
then ‖x′ − y′‖ ≥ 2R(P ).

Proof: Let x′, y′ ∈ P such that tc∗(x′, y′) = π. Consider
an arc of P which realizes tc∗(x′, y′) = π and the corre-
sponding arc on K. With the intent of applying Schur’s
Theorem, we create planar reference curves, called CP

and CK , for the arcs of P and K. The arc of P contains
a set of vertices, say {v1, · · · , vk} (do not include x′ or
y′ in this list), connecting a set of edges, {e1, · · · , ek−1}.
Let e0 be the line segment from x′ to v1 and ek the line
segment from vk to y′. Construct a planar oriented arc
CP as follows:

• Let p0 = (0, 0).

• Let p1 be the point (‖x′ − v1‖, 0).

• Let p2 be the point lying above the x-axis such that
−−→p1p2, makes a turning angle (counterclockwise) of
angle(v1) with the vector −−→p0p1 and ‖p1−p2‖ = ‖v1−
v2‖.

...
...

• Let pi be the point such that −−−−→pi−1pi, makes a turning
angle (counterclockwise) of angle(vi) with the vector
−−−−−→pi−2pi−1 and ‖pi−1 − pi‖ = ‖vi−1 − vi‖.

...
...

• Let pk+1 be the point such that −−−−→pkpk+1, makes a
turning angle (counterclockwise) of angle(vk) with
the vector −−−−→pk−1pk and ‖pk − pk+1‖ = ‖vk − y′‖.

Then CP has identical angles and edge lengths as the arc
of P . We construct CK similarly so that it is based at the
origin with the initial tangent pointing in the direction
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(1, 0) and so that the curvature of CK is identical to the
arc of K, with the turning of the tangent vector occurring
counterclockwise in the plane. Then CK lies in the region
of the plane with y ≥ 0.

We now show that the endpoint distance of CK is at
least 2R(P ). Let S be the semicircle of radius R(P ) with
center (0, R(P )) lying in the first-quadrant. The semicir-
cle S has an endpoint distance of 2R(P ) and the tangents
of S all have a non-negative y-component. Since the arc
CK is just a semicircle with (possibly) some straight line
segments inserted so that CK is C1,1, the tangents of CK

also all have a non-negative y-component. Furthermore,
the endpoint distance of CK is at least as large as the
y-coordinate difference between the endpoints. Since all
of the tangents of CK have a non-negative y-component,
the y-coordinate difference of CK is at least as large as
the y-coordinate difference of S, which is 2R(P ). Thus,
the endpoint distance of CK is at least 2R(P ).

By the construction of CK , one can translate and ro-
tate CP such that CK is inscribed in CP just as if we
were inscribing a smooth curve in CP via the algorithm
in Proposition 3.1. Translate and rotate CP so that CK

is inscribed in CP . Then the initial point of CP must
lie on the nonpositive portion of the y-axis. Further-
more, the final point of CK must have its tangent in
the direction (−1, 0) (parallel to the x-axis) on the line
y = M ≥ 2R(P ). By the construction of the inscribed
smooth curve CK , the final point of CP must lie on a ver-
tical line containing the final point of CK and lie above
y = M . Thus,

endpoint distance of CP ≥ y-coordinate difference

of endpoints of CP

≥ y-coordinate difference

of endpoints of CK

≥ 2R(P ).

Thus, by Schur’s Theorem, the endpoint distance of
the original arc of P must be at least as large as the
endpoint distance of CP , i.e., ‖x′ − y′‖ ≥ 2R(P ).

We now prove the characterization theorem for R(P ).

Theorem 5.3. Let B(P ) = {(x′, y′) ∈ P × P :
tc∗(x′, y′) ≥ π or tc(x′, y′) ≥ π}. For a polygonal knot
P ,

R(P ) = min
{

MinRad(P ), min
(x′,y′)∈B(P )

‖x′ − y′‖
2

}
.

Proof: Notice that since TC(P ) ⊆ B(P ),

min
(x′,y′)∈B(P )

‖x′ − y′‖ ≤ min
(x′,y′)∈TC(P )

‖x′ − y′‖ ≤ dcsd(P ).

If MinRad(P ) ≤ min(x′,y′)∈B(P )
‖x′−y′‖

2 , then R(P ) =
MinRad(P ) ≤ dcsd(P )/2 and the result holds.

Suppose min(x′,y′)∈B(P )
‖x′−y′‖

2 < MinRad(P ). Now
TC(P ) is closed by [Rawdon 00] and TC∗(P ) = {(p, q) ∈
P × P : tc∗(p, q) ≥ π} is also closed. Thus, B(P ) =
TC(P ) ∪ TC∗(P ) is closed. The boundary of B(P ) is
contained in the union of the boundaries of TC(P ) and
TC∗(P ). On ∂(TC(P )), ‖x′ − y′‖ ≥ 2MinRad(P ) by
[Rawdon 00] and on ∂(TC∗(P )), ‖x′ − y′‖ ≥ 2R(P )
by the Lemma 5.2. If min(x′,y′)∈B(P )

‖x′−y′‖
2 < R(P ),

then the minimum is realized on the interior of B(P ),
in which case the minimum must be realized at a dou-
bly critical pair. But this contradicts the assump-
tion that min(x′,y′)∈B(P )

‖x′−y′‖
2 < R(P ). Thus, if

min(x′,y′)∈B(P )
‖x′−y′‖

2 < MinRad(P ), then

min
(x′,y′)∈B(P )

‖x′ − y′‖
2

=
dcsd(P )

2
= R(P ).

We have the tools to prove the main result of this
paper.

6. THE MAIN THEOREM

We use the characterizations from the last two sections
to bound the injectivity radius of the inscribed smooth
knot. We also show that when the maximum turning
angle θmax is sufficiently small, the knots P and inscribed
K have the same knot type.

We begin with the proof of Theorem 3.2.

Proof of Theorem 3.2: Let K be inscribed in P via the
algorithm of Proposition 3.1. For the upper bound, note
that MinRad(K) = R(P ), so R(K) ≤ R(P ).

The lower bound splits into two cases. First, note
that if MinRad(K) ≤ dcsd(K)/2, then R(K) =
MinRad(K) = R(P ).

For the second case, we assume dcsd(K)/2 <

MinRad(K). Thus, R(K) = dcsd(K)/2 =
min(x,y)∈TC(K)

‖x−y‖
2 by Theorem 4.8. Let (x0, y0) be

a pair in TC(K) realizing the minimum distance, that
is (x0, y0) ∈ TC(K) with R(K) = ‖x0−y0‖

2 . Then
tc∗(x′

0, y
′
0) = tc(x0, y0) ≥ π and (x′

0, y
′
0) ∈ B(P ). Thus,

‖x′
0 − y′

0‖ − 2R(P )
(

sec
(

θmax

2

)
− 1

)
≤ ‖x0 − y0‖

= 2R(K) (6–1)
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by Proposition 3.1. Since (x′
0, y

′
0) ∈ B(P ),

R(P ) ≤ ‖x′
0 − y′

0‖
2

. (6–2)

Dividing (6–1) by two and combining with (6–2) yields

R(P ) − R(P )
(

sec
(

θmax

2

)
− 1

)
≤ R(K).

If P is ropelength minimized and “looks” fairly
smooth, one would expect that P and K have the same
knot type. We show, in fact, that P and K have the same
knot type when θmax � 96◦. In the subsequent sections,
we are mainly interested in “thick” polygons with many
edges, in which case θmax will be close to 0.

Theorem 6.1. If P is a polygonal knot with K inscribed
in P as in Proposition 3.1 and θmax < 2 arcsec

(
3
2

)
, then

P and K have the same knot type.

Proof: At each vertex of P , we have inscribed an arc
to create K. This construction creates dented triangles
between P and K (see Figure 3). If no two dented trian-
gles intersect, then the knot types of P and K are iden-
tical. We show that dented triangles are disjoint when
θmax < 2 arcsec

(
3
2

)
by proving that K is “thick” enough

so that the polygon P , and thus, the dented triangles, lie
inside the tube of radius R(K) about K.

By Theorem 3.2, R(K) > R(P )
(
2 − sec

(
θmax

2

))
.

Thus, for all r < R(K) and each pair x �= y ∈ K, the
normal disks of radius r centered at x and y are dis-
joint. By Proposition 3.1, for all x ∈ K and correspond-
ing x′ ∈ P , we have ‖x − x′‖ ≤ R(P )

(
sec

(
θmax

2

) − 1
)
.

Since θmax < 2 arcsec
(

3
2

)
, R(K) > ‖x−x′‖. Thus, when

r = R(P )
(
sec

(
θmax

2

) − 1
)
, each x′, and thus each point

of each dented triangle, lies on a unique normal disk.
Since these normal disks do not intersect, the dented tri-
angles do not intersect and P and K have the same knot
type.

We have now shown that we can inscribe a smooth
knot K in a sufficiently thick polygon P so that R(P ) ≈
R(K) and P and K have the same knot type. In the
following section, we use these results to compute upper
bounds on the smooth ropelength of different knot types.

7. COMPUTATION OF UPPER BOUNDS ON
SMOOTH ROPELENGTH

We can determine true upper bounds for the ropelength
of smooth knot types. Let P be a ropelength minimized

FIGURE 3. The shaded portion between the polygon and
the inscribed arc is the dented triangle from the proof of
Theorem 6.1.

polygon of a given knot type K. We apply Theorem 3.2
to obtain a lower bound for the injectivity radius of the
inscribed smooth knot K. If θmax is sufficiently small
(which it will be if P is sufficiently thick and has enough
edges), Theorem 6.1 says that K also has knot type K.
The minimal smooth ropelength within K is at most the
ropelength of K since K is one conformation within the
knot type. We are not claiming that K is ropelength min-
imal or even that we know the exact ropelength of the
inscribed knot K. Rather, by bounding ρ(K) from above,
we know that a smooth ropelength minimum within K
must have ropelength smaller than our computed upper
bound. The inscribed smooth knot has shorter arclength
than the polygon (we bypassed some corners); the com-
putations reflect the true length of the smooth inscribed
knot.

We computed upper bounds for the smooth rope-
length of all prime knots through nine crossings. The
starting conformations were provided by Pierański, who
has computed minimizing polygonal conformations for
knots with many edges [Katritch et al. 96, Katritch
et al. 97, Pierański 98] using the efficient SONO algo-
rithm [Pierański 97, Pierański 98]. While the SONO al-
gorithm does not explicitly minimize the polygonal rope-
length discussed here, ropelength minimizing conforma-
tions tend to be very close to SONO minimized polygons
(see [Stasiak et al. 98] and [Millett and Rawdon 03] for
a comparison).

We use a deterministic ropelength minimizing algo-
rithm to insure (up to the maximum reliability of double
calculations) that each knot is vertex-critical, that is no
small perturbation in the x, y, or z directions reduces
the ropelength. We believe that each conformation is
near a global minimum, but there is currently no known
criteria for determining whether a knot is at a global
minimum. To check for vertex-criticality, we search the
tangent space for small perturbations that reduce the ro-
pelength. The tangent space of a polygon is spanned
by the 3n perturbations determined by moving each ver-
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Knot Edges Poly ρ Bound Knot Edges Poly ρ Bound

31 160 32.80 32.90 98 400 80.78 81.14

31 654 32.76 32.77 99 392 80.43 80.85

41 208 42.19 42.33 910 392 79.97 80.33

51 232 47.30 47.51 911 400 81.61 81.98

52 240 49.59 49.73 912 400 80.35 80.71

61 280 56.85 57.11 913 400 80.96 81.33

62 280 57.19 57.44 914 400 80.32 80.73

63 288 58.28 58.48 915 408 82.32 82.70

71 304 61.66 61.89 916 400 80.33 80.67

72 320 65.08 65.36 917 400 81.46 81.90

73 312 64.06 64.35 918 400 82.24 82.68

74 320 65.33 65.63 919 408 82.36 82.72

75 320 65.41 65.70 920 424 86.73 87.31

76 328 65.91 66.17 921 400 81.31 81.64

77 328 65.81 66.09 922 400 81.23 81.60

81 352 71.22 71.43 923 400 81.47 81.84

82 352 71.58 71.91 924 400 81.17 81.54

83 352 71.27 71.56 925 400 81.37 81.85

84 352 72.15 72.41 926 400 81.56 81.94

85 360 72.36 72.70 927 408 82.72 83.21

86 360 72.60 72.93 928 400 81.87 82.25

87 360 72.39 72.63 929 400 82.75 83.45

88 360 73.54 73.88 930 408 82.09 82.46

89 360 72.63 72.96 931 400 81.84 82.22

810 360 73.58 73.86 932 400 81.95 82.34

811 376 76.35 76.70 933 408 83.03 83.37

812 368 74.27 74.61 934 408 82.62 82.99

813 360 73.00 73.29 935 400 80.50 80.85

814 368 74.55 74.93 936 400 81.21 81.57

815 376 74.50 74.82 937 400 81.73 82.10

816 368 75.13 75.47 938 408 82.06 82.43

817 368 74.74 75.08 939 416 85.14 85.55

818 368 75.12 75.44 940 400 82.26 82.67

819 304 61.16 61.35 941 400 81.73 82.11

820 312 63.74 64.11 942 344 69.74 70.02

821 320 65.70 65.91 943 352 71.86 72.20

91 376 76.01 76.43 944 352 71.89 72.23

92 392 79.57 79.92 945 368 75.16 75.51

93 392 78.71 79.05 946 344 69.09 69.35

94 384 78.54 78.84 947 368 75.29 75.61

95 392 79.95 80.32 948 368 74.58 74.94

96 400 80.30 80.65 949 368 74.14 74.50

97 400 82.10 82.65

TABLE 1. Knot type, number of edges used, polygonal
ropelength, and computed upper bound for the smooth
ropelength.

tex in the positive and negative x, y, and z directions.
The minimizing algorithm perturbs the vertices in each
of these directions and accepts knots with decreasing ro-
pelength. The size of the perturbation is slowly brought
to zero. Failure to improve the ropelength under any
of these perturbations insures that the knot is vertex-

critical up to the maximum reliability of the computa-
tions. Thus, the final conformations provide reasonable
approximations to ropelength minima.

Table 1 contains the knot type, number of edges used,
polygonal ropelength of the conformation after the min-
imizing algorithm was run, and the computed upper
bound for the ropelength of the inscribed smooth knot
(which is an upper bound for the minimum ropelength
of the knot type).

Notice that the difference between the polygonal rope-
length and the upper bound is at most ≈ 1/2%. The tre-
foil is included twice: with 160 edges and with 654 edges.
The additional edges help the trefoil achieve both a lower
polygonal ropelength and a smaller error (≈ 0.003%).

8. LIMITING BEHAVIOR

One goal of this work is to justify the computer simula-
tions with polygonal energies. One would like to mini-
mize the energy of polygonal knots with increasing num-
bers of edges and say that the resulting energy values
of the polygons converge to the minimal energy of the
smooth knot type. In this section, we show that if one
can find a sequence of ropelength minimizing polygons
with increasing number of edges, then the limit of the
ropelengths is the minimum smooth ropelength. Fur-
thermore, a subsequence of the polygons converges to a
smooth ropelength minimizing conformation. We also
prove these results for a general smooth and polygonal
energy pair which satisfies more stringent properties.

Finding an actual energy minimizing polygon is prob-
lematic. The finite precision of computers limits the ac-
curacy of the computed energy values and the possible
vertex positions. Furthermore, one cannot check whether
a knot is actually in a global energy minimizing confor-
mation.

To complicate matters, Calvo [Calvo 98] has shown
that in the space of n-edge polygons, a knot type may
have more than one path component. For example, in the
space of six-edge polygonal knots, there are two com-
ponents of right-handed trefoils. However, when more
than one component of a knot type has been detected,
the components have been related by dihedral actions
on the numbering of the vertices, which does not result
in knots with different energies. It has not been deter-
mined whether there exist distinct components within
the same knot type that are not related by dihedral ac-
tions. Since the energy minimizations are done within
one component, the computations may not discover the
true minimal value in such a case. We believe that this
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a db

a d

c

bc

becomes

FIGURE 4. A portion of the knot collapses without af-
fecting Rad(b) or Rad(c).

behavior is likely only an issue when the number of edges
is near the minimal edge number or much of the knot-
ting is contained in a portion of the knot with few edges,
which is not the case here.

Thus, in practice, one can only guarantee that the
computation has yielded a vertex-critical knot, up to the
maximum reliability of the computer, that appears to
be near a global minimum. Our polygons simply serve
as comparison curves that let us estimate the minimum
ropelength of smooth curves. Still, the results of differ-
ent studies (using different minimization algorithms and
different starting configurations) [Katritch et al. 96, Ka-
tritch et al. 97, Stasiak et al. 98, Millett and Rawdon
03] are fairly consistent and we assume our polygons are
near optima.

Ropelength minimized polygons with many edges
yield smooth knots with the smallest error in Theorem
3.2. Asymptotically, we show the error tends to zero in
Theorem 8.3.

The space of polygonal knots explored in computa-
tions is Geo(n), an open subspace of R

3n consisting of
all n-edge nonsingular polygonal knots whose first ver-
tex is the origin. We cannot guarantee that a rope-
length minimizing conformation exists in each compo-
nent of Geo(n). Consider a sequence of polygons with
four collinear points converging to a polygon with three
collinear points, the middle of which is a double point
(see Figure 4). Since the turning angles at b and c are
0, Rad(b) = Rad(c) = ∞ throughout the deformation.
The conformation with the double point is not in Geo(n)
and is a point of discontinuity of polygonal ropelength
(in thinking of ρ as a function on R

3n), but could still be
the limit of decreasing ropelength polygons. Polygonal
ropelength could be refined to incorporate such confor-
mations, but it would make polygonal ropelength discon-
tinuous. This behavior has not been observed in any of
our calculations.

Even if we could show that each knot type and each
number of edges yields a polygonal ropelength minimiz-

ing conformation, this does not insure that the polygons
converge to a smooth curve. Consider a sequence of min-
imizing conformations. It is possible that one or more
pairs of adjacent edges could remain long (relative to
the rest of the edges) throughout the sequence. If the
angle between these edges is bounded away from zero,
this would keep

(
sec

(
θmax

2

) − 1
)
, and thus, the error of

Theorem 3.2 from approaching zero. We need that θmax

tends to zero in the sequence. By bounding the ratio of
the longest edge length to the shortest edge length, these
issues disappear.

Definition 8.1. For a given polygonal knot P , let
MaxEdge and MinEdge be the maximum and minimum
edge lengths of P . Let Geod(n), d ≥ 1, be the subspace
of Geo(n) consisting of polygons with MaxEdge

MinEdge ≤ d.
We call MaxEdge

MinEdge the edge distortion of P and denote it
EdgeDistor(P ). For polygons P and Q with vertices pi

and qi and turning angles θi and ϕi, respectively, define
the norm on Geo(n) by

‖P − Q‖ = max
i

‖pi − qi‖ + max
i

|θi − ϕi|.

Let Geo1
d(n) be the subspace of Geod(n) consisting of

polygons of total length 1.

Note that Geo1(n) consists of equilateral polygonal
knots and Geo∞(n) = Geo(n).

Theorem 8.2. For any 1 ≤ d < ∞ and fixed n, each path
component of Geod(n) contains a polygonal ropelength
minimizing conformation.

Proof: Let 1 ≤ d < ∞, n ∈ Z
+, and a path compo-

nent K ∈ Geod(n) be given. Since ropelength is scale-
invariant, we can restrict our study to Geo1

d(n). The
closure of Geo1

d(n) is compact in R
3n. Polygonal rope-

length is continuous in Geo(n) with the norm described
above [Rawdon 00], and thus, also in Geo1

d(n). Hence,
polygonal ropelength must attain a minimal value on the
closure of Geo1

d(n). We must insure that the minimum
does not occur at a singular polygon.

Suppose P is a singular polygonal knot lying in the
closure of Geo1

d(n). Since the edge distortion of P is
bounded by d, there are no consecutive double (or more)
vertices. So the polygon P must have two edges intersect-
ing. If the two edges are consecutive, then any sequence
of polygons converging to P has MinRad → 0. If the
edges are nonconsecutive, then any sequence of polygons
converging to P has dcsd → 0. In both cases, the rope-
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length becomes infinite and P could not be a ropelength
minimum.

In the space of C1,1 knots, [Cantarella et al. 02, Gon-
zalez et al. 02, Gonzalez and de la Llave 03] show that
ropelength minima exist for each knot type. For a given
knot type, we have several knots of interest:

• A unit-length ropelength minimizing C1,1 confor-
mation Kopt with arclength parameterization f :
[0, 1] → R

3.

• The sequence of inscribed polygons P opt
n with ver-

tices
{

f(0), f
(

1
n

)
, · · · , f

(
(n−1)

n

)}
.

• A sequence of polygonal ropelength minimizing con-
formations P d

n , for any 1 ≤ d < ∞.

• The sequence of C1,1 knots inscribed in P d
n via

Proposition 3.1, which we call Kd
n.

We show that in the limit, the ropelength values of all
of these knots are identical.

Theorem 8.3. For a given knot type and any 1 < d < ∞,

lim
n→∞ ρ(P d

n) = lim
n→∞ ρ(Kd

n) = lim
n→∞ ρ(P opt

n ) = ρ(Kopt).

Proof: Let 1 < d < ∞ and a knot type K be given.
Define Kopt, P opt

n , P d
n , and Kd

n as above. For this
proof, we normalize all these conformations such that
Length(Kopt) = 1 and Length(P d

n) = 1. Thus, for
the families of inscribed knots P opt

n and Kd
n, we have

Length(P opt
n ) < 1 and Length(Kd

n) < 1.
The proof of the theorem is:

lim
n→∞ ρ(P d

n) ≤ lim
n→∞ ρ(P opt

n ) (8–1)

= ρ(Kopt) (8–2)

≤ lim
n→∞ ρ(Kd

n) (8–3)

= lim
n→∞ ρ(P d

n) . (8–4)

We handle each of the inequalities and equalities sepa-
rately, although there is some overlap between the argu-
ments.

To prove (8–1), note that for n ≥ ρ(Kopt)
π , P opt

n has
the same knot type as Kopt by [Litherland et al. 99].
For n sufficiently large, we show that the edge distor-
tion of P opt

n is at most d. The curvature of Kopt is
bounded above by ρ(Kopt). If n ≥ ρ(Kopt)

π , then the
arclength between any two vertices of P opt

n (on Kopt) is

≤ πR(Kopt) ≤ πMinRad(Kopt). Thus, by Schur’s The-
orem, the chord distance between consecutive vertices of
P opt

n (i.e., the length of an edge of P opt
n ) is bounded be-

low by the distance between a pair of points of a circle of
radius R(Kopt) with the same arclength. In other words,

MinEdge(P opt
n ) ≥ 2R(Kopt) sin

1
2nR(Kopt)

.

Since chord length exceeds arclength,

MaxEdge(P opt
n ) ≤ 1

n
.

Thus,

EdgeDistor(P opt
n ) ≤ 1

2nR(Kopt) sin 1
2nR(Kopt)

and as n → ∞, EdgeDistor(P opt
n ) → 1. In particular,

for large enough n, EdgeDistor(P opt
n ) ≤ d.

Thus, for sufficiently large n, P opt
n has the same knot

type as P d
n in Geod(n) and since P d

n is a ropelength mini-
mum from Geod(n), we know that ρ(P d

n) ≤ ρ(P opt
n ). This

concludes the proof of (8–1).
The equality (8–2) is a result from [Rawdon 98, Raw-

don 00].
For (8–3), we want to use Theorem 6.1 to say that Kd

n

has the same knot type as P d
n and, thus, we must have

ρ(Kopt) ≤ ρ(Kd
n). We must first show that θn

max (i.e.,
θmax on P d

n) is smaller than 2 arcsec
(

3
2

)
for sufficiently

large n. In the following claim, we prove a stronger result
which we need for (8–4).

Claim 1: θn
max → 0 as n → ∞

Proof of Claim 1: For the polygon P d
n ,

R(P d
n) ≤ MinRad(P d

n) ≤ |ei|
2 tan

(
θn

max

2

) ,

where ei is the shorter of the edges adjacent to the vertex
realizing θn

max on P d
n . In particular,

R(P d
n) tan

(
θn

max

2

)
≤ MaxEdge(P d

n)
2

. (8–5)

Now (n − 1)MinEdge(P d
n) + MaxEdge(P d

n) ≤
Length(P d

n). Since MaxEdge(P d
n)

MinEdge(P d
n)

≤ d, we know that

MaxEdge(P d
n) ≤ dLength(P d

n)
n + d − 1

. (8–6)

We use this fact again later in the proof.
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For the sake of this claim, we know Length(P d
n) =

1 for each n and d is a fixed finite number. Thus
MaxEdge(P d

n) → 0 as n → ∞.
If we can bound R(P d

n) from below, then θn
max → 0

by (8–5). For sufficiently large n, R(P opt
n ) is bounded

below and P opt
n is an element of Geod(n). Since P opt

n is
inscribed in Kopt, Length(P opt

n ) < Length(Kopt) = 1 =
Length(P d

n). Since ρ(P d
n) is minimal, R(P d

n) > R(P opt
n )

and R(P d
n) is bounded below for sufficiently large n.

Thus, θn
max → 0 as n → ∞. This concludes the proof

of Claim 1.

We proceed to (8–4). We do this in two parts: First,
we show Length(Kd

n)/Length(P d
n) → 1 and then show

R(Kd
n)/R(P d

n) → 1.

Claim 2: Length(Kd
n)

Length(P d
n)

→ 1.

Proof of Claim 2: For a fixed n, the polygon P d
n and

Kd
n agree on some (possibly nonexistent) straight seg-

ments, but Kd
n will be shorter near the vertices. At a

vertex v, suppose e is the shorter of the adjacent edges.
Then the length of the arc of Kd

n inscribed near v is
(R(P ) angle(v)). The length of P d

n in the same region
is

(
2R(P ) tan

(
angle(v)

2

))
. The greatest difference be-

tween the length of P d
n and the length of Kd

n occurs when
the turning angle is largest. Thus,

Length(Kd
n) ≥ Length(P d

n) − nR(P d
n)

×
(

2 tan
(

θn
max

2

)
− θn

max

)
.

When x < 1, one can show that 2 tan(x/2) − x ≤ x3

10 .
Thus,

Length(Kd
n) ≥ Length(P d

n) − nR(P d
n)

(
(θn

max)3

10

)
.

Assume that n is sufficiently large so that θn
max < 1.

We want to bound nR(P d
n) θn

max.
We have

nR(P d
n) θn

max ≤ 2nR(P d
n) tan

(
θn

max

2

)

≤ nMaxEdge(P d
n) by (8–5)

≤ Length(P d
n)

nd

d + n − 1
by (8–6)

< d since Length(P d
n) = 1.

Thus,

Length(Kd
n) ≥ Length(P d

n) − d

10
(θn

max)2.

We also know that Length(Kd
n) ≤ Length(P d

n). Dividing
by Length(P d

n) (which has been normalized to be 1), we
get

1 − d (θn
max)2

10
≤ Length(Kd

n)
Length(P d

n)
≤ 1 .

Thus, limn→∞
Length(Kd

n)
Length(P d

n)
= 1. This concludes the proof

of Claim 2.

Claim 3: limn→∞
R(K)
R(P ) = 1.

Proof of Claim 3: By Theorem 3.2, 2 − sec
(

θn
max

2

)
≤

R(K)
R(P ) ≤ 1 . Thus, limn→∞

R(K)
R(P ) = 1. This concludes the

proof of Claim 3.

By Claims 2 and 3,

lim
n→∞ ρ(P d

n) = lim
n→∞

Length(P d
n)

R(P d
n)

= lim
n→∞

Length(Kd
n)

R(Kd
n)

= lim
n→∞ ρ(Kd

n)

as desired.

The proof of Theorem 8.3 should generalize to other
energy functions. We include a proof here for a class of
energy functions. The ropelength energy does not satisfy
hypothesis (2) below and hypothesis (3) of Theorem 8.4,
which is why we did the analysis with Geod(n).

Let K be a space of knots. Following the definitions
from [Diao et al. 98b], a function E : K → R is a charge
energy function if it satisfies the following properties:

1. E is continuous.

2. E tends to infinity for any sequence of knots con-
verging to a singular knot.

3. E is invariant under scale changes and rigid motions
of space.

Note that the Möbius energy does not satisfy the sec-
ond condition of charge energy function because of its
Möbius invariance. We can then state a generalization of
Theorem 8.3.

Theorem 8.4. If E is a charge energy function and

1. a smooth energy optimum, Kopt, exists for each knot
type,

2. E(P opt
n ) → E(Kopt), where P opt

n is the polygon
whose vertices are equally distributed with respect to
arclength on Kopt,



300 Experimental Mathematics, Vol. 12 (2003), No. 3

3. within each path component of Geo(n), a polygonal
energy optimum, Pn, exists,

4. for sufficiently large N and all n ≥ N , there exists
a smooth knot Kn such that E(Kn) → E(Pn),

then

lim
n→∞E(Pn) = lim

n→∞E(Kn) = lim
n→∞E(P opt

n ) = E(Kopt).

Proof: We have E(Pn) ≤ E(P opt
n ) and E(Kopt) ≤

E(Kn). Thus,

lim
n→∞E(Pn) ≤ lim

n→∞E(P opt
n ) = E(Kopt)

≤ lim
n→∞E(Kn) = lim

n→∞E(Pn).

Finally, we show that a sequence of ropelength mini-
mizing polygons has a subsequence that converges to a
ropelength minimizing smooth knot. The following is
a reworking of Dai and Diao’s proof in [Dai and Diao
00]. They showed that under stronger conditions, a sub-
sequence of the polygonal minimizing conformations of
any polygonal energy must converge to a C1 knot.

Theorem 8.5. Let 1 < d < ∞ and any knot type be
given. If {P d

n} is a sequence of ropelength minimizing
conformations in Geo1

d(n) (for sufficiently large n), then
there is a subsequence {P d

nk
} such that P d

nk
→ Kopt in

the C0 topology, where Kopt is a ropelength minimizing
C1,1 conformation.

Proof: Let C1 consist of all C1 arclength parameteriza-
tions of unit-length knots with f(0) = (0, 0, 0) and

B(m) =
{

f : f ∈ C1,

∥∥∥∥f ′(t + h) − f ′(t)
h

∥∥∥∥ ≤ m,∀h �= 0
}

.

Dai and Diao showed that B(m) is a compact subset of
C1. Let Kd

n be the C1,1 knot inscribed in P d
n via Proposi-

tion 3.1, normalized to length one. Let fn be an arclength
parameterization of Kd

n and m = sup ρ(P d
n). Since ρ(P d

n)
converges to ρ(Kopt), the constant m is finite. Since
1/R(P d

n) = 1/MinRad(Kd
n) = dil(f ′) ≤ ρ(Kd

n) ≤ m,
each fn ∈ B(m). Thus, there exists a subsequence {fnk

}
that converges to some f0 ∈ C1 under the C1 norm. Let
K0 be the C1 knot associated with f0. It is shown in
[Kusner and Sullivan 98, Cantarella et al. 02] that ro-
pelength is lower semicontinuous with respect to the C0

topology on the space of C0,1 knots. Thus,

ρ(K0) ≤ lim
n→∞ ρ(Kd

n).

But Theorem 8.3 says that limn→∞ ρ(Kd
n) = ρ(Kopt).

Thus, ρ(K0) = ρ(Kopt) and K0 must be a ropelength
minimum. With respect to the C0 topology, Proposition
3.1 tells us that ‖P d

n − Kd
n‖ → 0. Thus, P d

n → K0 in the
C0 topology.

We can prove a similar result for a general energy func-
tion. We need a definition from [Dai and Diao 00].

Definition 8.6. An energy function E defined on C1,1

knots is tight if E(K) > M
MinRad(K) for some constant

M > 0.

Theorem 8.7. If in addition to the hypotheses of Theorem
8.4, ‖Pn − Kn‖ → 0 in a C0 sense and E is a tight and
charge energy, then there exists a subsequence {Pnk

} such
that Pnk

→ Kopt in a C0 sense.

Proof: The requirement that E is tight guarantees that
the Kn lie in B(m) for some m. This rest of the argument
is similar to the proof of Theorem 8.5.

9. DISCUSSION

To be a proper discretization of a smooth knot energy,
the minimum energies of polygons should converge to the
minimum energy of the smooth knot type. One would
hope that the minimal energy polygonal conformations
(or a subsequence) would converge to a smooth energy
minimum as well. We have shown that polygonal rope-
length adequately discretizes smooth ropelength. This
behavior should not be unique to ropelength, although
it will likely be more difficult to bound the energy of
an inscribed smooth curve in terms of the energy of a
polygon for other energies. This is an area where further
research for other discrete energies would be valuable in
order to put a solid foundation under all of the computer
simulations we and others are doing. Other inscribing
algorithms may be more fruitful in such analysis.
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[Pierański 98] Piotr Pierański. “In Search of Ideal Knots.”
In Ideal Knots, pp. 20–41. River Edge, NJ: World Sci.
Publishing, 1998.
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