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We confirm a conjecture, due to Grotschel, regarding the inter-
section vertices of two longest cycles in a graph. In particular,
we show that if G is a graph of circumference at least k + 1,
where k € {6,7}, and G has two longest cycles meeting in
a set W of k vertices, then W is an articulation set. Grot-
schel had previously proved this result for k € {3,4,5} and
shown that it fails for K > 7. As corollaries, we obtain results
regarding the minimum lengths of longest cycles in certain ver-
tex-transitive graphs. Our proofs are novel in that they make
extensive use of a computer, although the programs themselves
are straightforward.

1. INTRODUCTION

We consider the intersection vertices of two longest
cycles in a graph. (A cycle is a closed path with
no repeated vertices.) As remarked in [Grotschel
1984], a considerable amount of work has been
done regarding the length of longest cycles in vari-
ous graphs, but not much attention has been paid
to how these longest cycles intersect. The present
article confirms a conjecture posed in [Grotschel
1984], and can be regarded as a continuation of
that paper (which is the one we will have in mind
whenever we refer to Grotschel’s work below).

Grotschel considered graphs with two longest cy-
cles meeting in up to five vertices. His main result
was the following.

Theorem 1.1 [Grotschel 1984]. Let k € {1,2,3,4,5},
and let G be a graph with at least k + 1 vertices.
Suppose that G has two longest cycles meeting in
a set W of exactly k vertices. Then W is an artic-
ulation set of G.

Saying that W is an articulation set means that, if
we remove from G all vertices in W and all edges
incident on them, G becomes disconnected.
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One could, of course, ask what is the largest
number k for which Theorem 1.1 holds. However,
Grotschel produced a graph with more than 7 ver-
tices and two longest cycles of length 6 meeting in
a set W of exactly 6 vertices, where W is not an
articulation set: hence, this largest number is 5.

Grotschel shows in the proof of Theorem 1.1 that
the case when the longest cycles have length k is
straightforward, and that all interesting situations
arise when we assume that they have length at
least k + 1 (that is, that G has circumference at
least k+1). Grotschel also notes that the Petersen
graph P is a graph with 10 vertices where each
longest cycle is of length 9 and, moreover, P has
two longest cycles meeting in a set W of exactly
8 vertices that is not an articulation set. Hence,
the largest number for which a restricted version
of Theorem 1.1 to graphs of circumference at least
k + 1 might hold is certainly less than 8.

Grotschel conjectured that this restricted ver-
sion is true for kK = 6 and k = 7. We confirm this
conjecture. More precisely, we prove the following.

Theorem 1.2. Let k € {6,7} and let G be a graph
whose circumference is at least k+ 1. Suppose that
C and D are distinct longest cycles of G meeting
in a set W of exactly k vertices. Then W is an
articulation set of G.

The proof Groétschel gave of Theorem 1.1 consisted
in studying each different way in which the two
longest cycles can intersect. As one might expect,
as k increases, the number of cases to study rises
fast. When k& = 5 there are 4 different cases; how-
ever, when k = 6 there are 10, and when k£ = 7
there are 25. Therefore extrapolating this method
for k£ > 5 is impractical.

As we show, much of the labour can be removed
from the problem by employing a computer: a lot
of the cases to be considered melt away after the
computer analysis, and the remainder can easily
be resolved using the computational results and
some simple reasoning. Computer results may be
treated with scepticism by some, but in this case
the program is very simple to implement, and the

result can be easily duplicated by the reader. See
also the section on Electronic Availability at the
end of the article.

Before proceeding with the proof of Theorem 1.2,
we give an application of that result to the theory
of vertex-transitive graphs, as Groétschel did with
Theorem 1.1 (a graph is vertez-transitive if its au-
tomorphism group acts transitively on the set of
vertices). The fact that in Theorem 1.2 the graph
G has circumference at least k 4+ 1 means that our
applications do not mirror Grotschel’s exactly.

Babai [1979] showed that every k-connected ver-
tex-transitive graph G with n > 4 vertices has
a cycle of length greater than (3n)Y/2. (A graph
is k-connected if any articulation set has size at
least k.) Grotschel essentially used this result and
Theorem 1.1 to show that every k-connected ver-
tex-transitive graph G, for k € {3,4,5}, contains
a cycle of length greater than (kn)Y/2. To ob-
tain a similar result using Theorem 1.2, we need
to be sure that our k-connected vertex-transitive
graph, where k € {6, 7}, has circumference at least
k + 1. However, Babai’s result, quoted above, en-
sures that this is the case when k£ = 6 and n > 12,
and when £ = 7 and n > 17. Theorem 1.2 now
implies that, if k =6 and n > 12 or if kK = 7 and
n > 17, two longest cycles in a k-connected vertex-
transitive graph G (with n vertices) intersect in at
least k vertices. An easy modification of Babai’s
proof now yields:

Corollary 1.3. Let G be a k-connected vertez-transi-
tive graph with n vertices. If k =6 and n > 12, or
if k=7 and n > 17, then G has a cycle of length
greater than (kn)/2.

Also, vertex-transitive graphs are regular. By a re-
sult of Mader [1971] and Watkins [1970], the con-
nectivity of a connected d-regular graph is at least
2(d+1). Thus, using Corollary 1.3, we obtain:

Corollary 1.4. Let G be a connected vertez-transi-
tive graph with n vertices. If G is 8-reqular and
n > 12 then G has a cycle of length greater than
(6n)Y2, and if G is 10-regular and n > 17 then G
has a cycle of length greater than (Tn)*/2.
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2. THE BASIC STRATEGY

An undirected graph (hereafter, just a graph) is
written as G = (V, E'), where V denotes the set of
vertices and E the set of edges of G. Our graphs
do not have multiple edges or self-loops, except
when otherwise stated. A path in G is a sequence
of vertices such that each vertex is connected to
its successor (if it has one) by a vertex. A closed
path is defined likewise, with “successor” under-
stood modulo the length of the sequence. A simple
path is one on which every vertex appears at most
once. A cycle is a closed simple path. The circum-
ference of G is the length of a longest cycle in G. A
Hamiltonian cycle in G is a cycle passing through
every vertex of V. A graph is connected if any two
vertices are joined by a path. An articulation set
W in a graph G is a set of vertices whose removal
from G (along with any incident edges) causes the
resulting graph to be disconnected. A graph is k-
connected, for some k > 1, if it has no articulation
set of size less than k.

Let G = (V, E) be a graph with circumference at
least k£ + 1, where k € {6,7}, and suppose that C
and D are two longest cycles of G meeting in a set
W of k vertices (that is, C' and D have exactly the
k vertices of W in common). Our aim is to prove
Theorem 1.2. To do this we proceed as follows.

Let H(G) be the subgraph of G consisting of the
two cycles C and D. From this subgraph H(G)
construct another graph X (G), possibly with mul-
tiple edges, where X (G) has (a copy of) W as its
vertex set and there is an edge joining two vertices
z and y of X(G) if and only if there is a subpath
of C or a subpath of D joining z and y in H(G)
on which there are no vertices of W (apart from
z and y). In X(G) there are at most two edges
joining any pair of vertices of X(G). If there are
two such edges, we say they are parallel. In short,
the graph X (G) consists of two cycles of length &
on the same set of k vertices, intersecting in the
same fashion as do the cycles C' and D in G. Let
Y and Z be the cycles of X(G) corresponding to
the cycles C' and D of G.

The H -length of an edge zy of X (G) is the length
of the corresponding subpath connecting = and y
in H(G): we denote the H-length of the edge zy
by |zy| (so |zy| = |yz|). By hypothesis, there is an
edge e of Y and an edge f of Z whose H-lengths
are greater than 1. Hence, the subpaths of C' and
D corresponding to e and f, say p(e) and p(f),
each contain at least one vertex that is not in W.
If there is a path in G between such a vertex of
p(e) and such a vertex of p(f) that contains no
vertices of C and D (except for the end vertices)
we say that there is a simple link between the edges
e and f of X(G), and we write e ~ f. If there is a
sequence of simple links

e=e~e, e ~ey ..., 1 ~e,=f,

for some r > 0, we say that e and f are linked.

Our basic strategy is to assume that the set of
vertices W is not an articulation set of G and to
derive a contradiction. Suppose W is not an ar-
ticulation set of G. Then every edge of X(G) of
H-length greater than 1 must be linked to every
other edge of X(G) of H-length greater than 1.
Moreover, there must be a collection of simple links
from which these links can be constructed. We use
the computer and some simple reasoning to decide
which pairs of edges of X (G) can never be simply
linked and so to exhibit two edges in X (G) which
necessarily must have H-length greater than 1 but
which are not linked: thus we obtain a contradic-
tion. In more detail, our strategy consists of three
phases.

Phase A. Given the graph X(G), we use the com-
puter to try to ascertain whether two given edges
1y, and x,y, are not simply linked, as follows.
We first assume that the two edges are indeed sim-
ply linked and hope to obtain a contradiction (note
that this assumption implies that both of the edges
must have H-length greater than 1). We augment
the graph X (G) with the proposed simple link by
(a) removing the edges z,y; and z,y, from X (G);
(b) introducing two new vertices z; and 2z, into
X (@) and including the edges x;21, 21Y1, T222 and
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22Yo; and (c) including two edges z12; in X (G) (re-
call that X (G) may have multiple edges).

Let the edges z;y; and z,y» correspond to the
subpaths p(z1y1) and p(z2ys) of H(G). This aug-
mentation of X (G) corresponds to assuming that
there is a path p in the graph G from a vertex
in p(z1y1) to a vertex in p(zay2) (where neither of
these vertices is a vertex of W) that has no ver-
tices in common with C and D (the path p has
been represented twice in X (G)).

Note that X (G) now has k+2 vertices and 2k+4
edges, with each vertex having degree 4. We now
use the computer to check whether there is a Ham-
iltonian cycle present in X (G) the removal of which
leaves another Hamiltonian cycle remaining. If
X (G) does consist of two such Hamiltonian cycles,
the graph G clearly has two cycles C' and D' such
that every edge of C' and D appears in one of C’
and D', and also such that the edges of the path
p appear in both C' and D'. Hence, the combined
lengths of the cycles C' and D’ of G is at least
as great as the combined lengths of the cycles C
and D plus twice the length of the path p. This
yields a contradiction as C' and D are assumed to
be longest cycles in G: hence, the edges xz,y; and
T2y cannot be simply linked.

Consequently, by following the above procedure
for every potential simple link, we end up with a
set of simple links from which the set of actual sim-
ple links must be drawn. In fact, we do not need
to follow the above procedure for every potential
simple link as there are some lemmas (to be given
in Section 3) which allow us to immediately elimi-
nate some of these simple links: this cuts down on
computation time (as discussed in Section 3).

As an example with k& = 5, let X(G) be the
graph in Figure 1, left, where W = {1,2,3,4,5}
and the edges of X(G) are 12, 12, 14, 15, 23, 23,
34, 35, 45 and 45.

Suppose we augment X (G) with the potential
simple link 237 ~ 457 (we distinguish between
the edges of a parallel pair by adding appropri-
ate subscripts). See Figure 1, right. Then there is
a pair of Hamiltonian cycles (1,2,6,7,5,3,4) and

i~
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FIGURE 1. The graph X(G) and an augmenta-
tion. The edges of the cycle Y are solid, and those
of Z are dashed. For ease of readability, we only
show one edge 67, but there are in fact two such
edges.

(1,2,3,6,7,4,5), as required; one contains the edge
12 of Y, the other the edge 12 of Z. Hence, 237 ~
455 cannot be a simple link. In fact, in this case
the computer tells us that the only potential simple
links are 12 ~ 34, 12 ~ 35, 14 ~ 23 and 15 ~ 23.
(By saying that 12 ~ 34 is a potential simple link
we mean that potentially 12y ~ 34y, 12y ~ 345,
12, ~ 34y and 125 ~ 345 are simple links: we
adopt this convention throughout.) For this ex-
ample, one can easily obtain, using the lemmas
alluded to above, a contradiction to our initial hy-
pothesis that W is not an articulation set; but we
will persevere with this simple example as an aid
to our explanations of Phases B and C below.

Phase B. Let S be our reduced set of potential sim-
ple links. If e is some edge of X (G) that is not
involved in any of the simple links in S, we may
assume that it has H-length 1, for otherwise W is
an articulation set of G. Also, for each edge e of
X (G), we form the set of edges of X (G) reachable
from e using the simple links of S, and we denote
this set by R(e). If @ # R(e) # R(f) # @, for two
edges e and f of X(G), we may assume that ei-
ther all the simple links of X (G) come from those
involved in building R(e) or from those involved
in building R(f) (otherwise, there will be edges of
H-length 1 in R(e) and R(f), and these edges can
never be linked).

More formally, we form the graph K whose ver-
tices are the edges of X (G) and where there is an
edge joining e and f, say, if there is a simple link
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e ~ fin S. We then find the connected compo-
nents of this graph K and consider the sets of sim-
ple links corresponding to each connected compo-
nent in turn. The upshot is that we have a number
of cases to consider, one for each set of simple links
corresponding to some connected component of K
(note that these sets of simple links are pairwise
disjoint). The point of considering sets of simple
links corresponding to the different connected com-
ponents of K in turn is that we are able to cut down
the computation time and also to reduce a more
complicated case to at least two simpler subcases
(assuming that K has more than one connected
component).

Returning to the example of Figure 1, the set of
potential simple links is partitioned into sets

{12 ~ 34,12~ 35} and {14 ~ 23, 15 ~ 23},

each set to be considered in turn.

Let S be the set of simple links corresponding to
some connected component of K. For each simple
link in S in turn, we augment X (G) with this sim-
ple link, as we did in Phase A above, and enumer-
ate every possible cycle in (the augmented) X (G).
For each cycle, we write an expression involving
variables corresponding to the H-lengths of the
edges of this cycle for its total H-length, remem-
bering that we could well have knowledge pertain-
ing to which edges of X(G) necessarily have H-
length 1. This expression, by definition, must be
at most the total H-length of the cycle Y and also
at most the total H-length of the cycle Z of X (G).
Hence, for each cycle of X(G), we obtain two in-
equalities: one saying that the total H-length of
this cycle is at most the total H-length of the cy-
cle Y, and one saying that it is at most the total
H-length of the cycle Z. Collecting all these in-
equalities together, for every cycle in X(G), we
obtain a set of inequalities I. We then use the
computer to decide whether this set of inequalities
I has a solution in nonzero natural numbers. If no
such solution exists, we can deduce that the simple
link with which we augmented X (G) cannot exist.

Hence, after all phases of our analysis, we will be
left with some sets of simple links Si,Ss,..., Sk
and the knowledge that the simple links involved
in X(G) must come entirely from S; or entirely
from S, or ... or entirely from S;. It turns out
that in most cases we can easily then obtain a con-
tradiction to our initial hypothesis that W is not
an articulation set.

Returning to our example above, suppose that
we augment X (G) with the potential simple link
12; ~ 34 as in Figure 2. We may assume that
every edge of X (@), with the exception of 12y, 16,
26, 35, 37, 47 and 67, has H-length 1. The cycle
(1,2,3,5,4,7,6) yields the inequalities

[12y-|4|35]+ 47|+ |67|+|16|+2 < |12y |+ 37|+ 47|+ 3,
|12y | +|35|+]47|+ 67| +|16]|+2 < |16]+|26|+|35| +3,

and the cycle (1,6,2,3,7,4,5) yields

16|+ 26|+ |37|+ 47 +3 < [12y | +|37] + |47 +3,
16|+ 26|+ [37| + 47| +3 < [16]+|26] +|35]| + 3.

There are also inequalities |12y > 1, |16] > 1,
|26] > 1, 35| > 1, |37| > 1, |47| > 1, and |67 >
1, as well as similar inequalities for every other
cycle of X(G). It is easy to see that the set of
11 inequalities above (and so the full set) does not
have a solution; thus there cannot be a simple link
12, ~ 34.

We remark that we could omit Phase A of our
strategy by simply augmenting X (G) with each po-
tential simple link, in turn, and enumerating all
the cycles to obtain a set of inequalities. How-
ever, Phase B of our strategy is computationally

FIGURE2. The graph X(G), augmented with the
simple link 125 ~ 34.
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intensive and, in any case, it is preferable to limit
Phase B computations to a minimum (see Sec-
tion 3). Hence, we include Phase A to eliminate
unnecessary Phase B computations.

Phase C. As mentioned above, the computation in
Phases A and B is enough to settle most cases.
However, in order to keep any subsequent reason-
ing simple, for some cases we prefer to use results
from a third phase of computation, Phase C. Recall
that after Phases A and B we are left with a set of
potential simple links for X (G). We now augment
X (G) with a pair of potential simple links simul-
taneously, as we did in Phase A, and check to see
whether the augmented X (G) consists of two dis-
joint Hamiltonian cycles. This analysis provides
us with information as to whether certain pairs
of potential simple links can occur simultaneously.
However, it is not appropriate to do this for every
pair of potential simple links, as we now explain.

By saying that we augment X (G) with two po-
tential simple links simultaneously, we mean that
we augment X (G) with the first potential simple
link as we did in Phase A, and then we augment the
augmented X (G) with the second potential sim-
ple link, also as we did in Phase A. Complications
might arise, however: firstly, the two potential sim-
ple links might share a common edge of X (G); sec-
ondly, the two paths in G corresponding to our two
potential simple links might not be internally dis-
joint, so we are not justified in augmenting X (G)
as we have described. If our two potential simple
links share a common edge of X (G), there are three
ways in which to augment X (G) once we have in-
cluded the first simple link: consequently, to avoid
unnecessary complication, we do not apply Phase
C computation to any pair of potential simple links
that share a common edge of X (G). (Note that this
does not make a pair of potential simple links such
as 12y ~ 34 and 125 ~ 35 in the above example
exempt from Phase C computation.)

Also, for the same reason, we only apply Phase
C computation to a pair of potential simple links
when we can be sure that it cannot be the case that

the paths in G corresponding to these two potential
simple links are not disjoint.

Continuing still with the example above, sup-
pose that we wanted to augment X (G) with the
potential simple links 12y ~ 34 and 12, ~ 35
simultaneously. We can be sure that any paths
in G corresponding to these potential simple links
cannot have a vertex in common, for otherwise we
would have a simple link 12y ~ 125, which is for-
bidden. Hence, 12y ~ 34 and 125 ~ 35 fall under
the remit of Phase C computation. After the Phase
C computation we can easily settle all cases.

Note that our strategy only depends upon the
graph X (G) corresponding to some graph G and
two longest cycles C' and D. That is, only a finite
number of such graphs X (G) can arise. We be-
gin our analysis by using the computer to generate
all nonisomorphic graphs X (G) when k& € {6,7},
and then we apply our strategy for each X(G) in
turn. Doing this yields a proof (albeit computer-
dependent) of Theorem 1.2. In fact, in many cases
we need not apply every phase of the strategy, be-
cause a contradiction is often immediate from the
computational results of an earlier phase (and pos-
sibly some simple reasoning).

3. REMARKS ON THE COMPUTATIONS

Given the strategy expounded in the previous sec-
tion, we have made a conscious decision to keep the
programs implementing this strategy as straight-
forward as possible. Whilst our programs are prob-
ably not as elegant or fast as they could be, they
are easy to read and understand, and the time
taken to achieve our goals is reasonable. More-
over, since we are only concerned with the results
of these programs (which in principle won’t need
to be run again), there is no need for exhaustive
optimizations.

The preliminary step of generating the different
nonisomorphic cases for X(G) for k € {6,7} is
achieved by brute force; for example, a graph X (G)
is augmented with a simple link, and whether the
resulting graph is a disjoint union of two Hamil-
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tonian cycles is checked by enumerating all Hamil-
tonian cycles of the graph, removing them in turn
and checking to see whether a Hamiltonian cycle
remains. This is one of the more computationally
intensive parts of the strategy, so we use the fol-
lowing lemmas to eliminate some situations (these
lemmas are also used in the subsequent analysis).

Lemma 3.1. Suppose e and f are parallel edges in
X(G). Then e and f have the same H -length.

Lemma 3.2. Suppose e and f are edges in X (G) with
e in the cycle Y and f in the cycle Z. If e and f
have at least one verter in common, they are not
simply linked.

Lemma 3.3. Suppose e and f are parallel edges in
X(G) and g is another edge, distinct from both e
and f. Then we cannot have both e ~ g and f ~ g.

Lemma 3.4. If P, and P, are pairs of parallel edges
in X(Q), there is at most one simple link between
an edge of P, and an edge of P,.

Lemmas 3.1, 3.2 and 3.3 are proved in [Grotschel
1984], and Lemma 3.4 can be proved using very
similar reasoning. (The results of the computa-
tion in Phase A are given in full in Appendix A of
[Stewart and Thompson 1994]|. Note that we also
partition sets of potential simple links into sub-
sets corresponding to connected components of the
graph K: see Section 2.)

The computation in Phase B is essentially split
into two parts: the enumeration of the cycles of
some graph, and the solution of the resulting set of
inequalities. The enumeration of cycles is as usual
done by brute force, and for checking whether there
is a solution to a set of inequalities we use Mathe-
matica [Wolfram 1991]. Whenever this could be ac-
complished relatively easily, we dispensed with par-
ticular cases by using the above lemmas and some
simple reasoning. In particular, we tried to limit
the use of Mathematica, for two reasons: whilst
we may feel confident that code written by us does
what it is supposed to, we have no way to guarantee
the reliability of a program written in Mathemat-
ica; and running Mathematica programs is time-

consuming. (The results of the computation in
Phases B and C are given in [Stewart and Thomp-
son 1994, Appendices B and CJ).

4. THE DIFFERENT CASES

Given the method detailed above, it would not be
difficult for readers to write the appropriate pro-
grams themselves and so prove Theorem 1.2. Con-
sequently, rather than present a complete proof for
every case of Theorem 1.2, we highlight here the
most difficult cases and leave the others as an exer-
cise. Those readers disinclined to exercise may al-
ways consult [Stewart and Thompson 1994], where
a complete analysis is given. Henceforth, we do not
explicitly refer to Lemmas 3.1-3.4.

For k = 6, the most problematic case is when
Y =(1,2,3,4,5,6) and Z = (1,2,3,4,6,5). The
potential simple links remaining after the compu-
tation in Phase A are 12 ~ 34, 12 ~ 45, 12 ~ 46,
15 ~ 23, 15 ~ 34, 16 ~ 23, 16 ~ 34, 23 ~ 45,
23 ~ 46, and 23 ~ 56.

Now suppose [12| > 1. We must have 12 ~ 34
and either 12 ~ 45 or 12 ~ 46, but not both. If
12 ~ 45, in order that 12y be linked to 12z, we
must have 23 ~ 45. However, according to Phase C
computation, 12 ~ 34 and 23 ~ 45 cannot exist si-
multaneously, which yields a contradiction. We ob-
tain a similar contradiction when 12 ~ 46. Hence,
|12| = 1 and, by symmetry, |34| = 1.

Lemma4.1. SupposeY and Z are cycles of the form
(1,2,...), and let i,j ¢ {1,2} be such that the edge
17 is not in Z and 2j is not in'Y . If|12| < 2, there
18 no simple link 11 ~ 27.

Proof. Augment X (G) with the simple link 17 ~ 27,
as we did in Phase A, from a vertex 8 on 1¢ to a
vertex 9 on 2j. Compare the H-length of Y with
that of the cycle obtained from Y by replacing the
edge 12 with the edges 18,89 and 29: this yields a
contradiction. The other case is similar. O

By Lemma 4.1, we have 15 » 23, 16 ~ 23, 23 ~ 45
and 23 ~ 46. Hence, 23] = 1, which yields a
contradiction.
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For k = 7, the most problematic case is when
Y =(1,2,3,4,5,6,7) and Z =(1,2,3,4,5,7,6).

The potential simple links remaining after Phase
A computation are 12 ~ 35, 12 ~ 45, 12 ~ 56,
12 ~ 57, 16 ~ 23, 16 ~ 24, 16 ~ 34, 16 ~ 35,
16 ~ 45, 17 ~ 23, 17 ~ 24, 17 ~ 34, 17 ~ 35,
17 ~ 45, 23 ~ 56, 23 ~ 57, 23 ~ 67, 24 ~ 56,
24 ~ 57, 24 ~ 67.

If |34] > 1, without loss of generality 16 ~ 34y
and 17 ~ 34z: but these two simple links cannot
exist simultaneously and so |34| = 1. Similarly,
|67] = 1.

Suppose that |12| > 1 and that 12y ~ 35 and
127 ~ b56: note that no other simple links in-
volve 12. In order that 12y be linked to 124, it
must be the case that 56 is involved in some other
simple link; but the Phase C computation tells us
that this is impossible and so it cannot be the case
that 12y ~ 35 and 125 ~ 56. By proceeding sim-
ilarly, no matter which two simple links involving
12 we choose, we always obtain a contradiction:
thus [12| = 1.

By Lemma 4.1, 16 ~ 24 and 17 ~ 23. Also, by
proceeding as we did in the proof of Lemma 4.1,
16 ~ 23 and 17 ~~ 24. Hence, the set of simple
links must be a subset of either of the two sets

{16 ~ 35, 16 ~ 45, 17 ~ 35, 17 ~ 45},
{23 ~ 56, 23 ~ 57, 24 ~ 56, 24 ~ 57}.

Without loss of generality we may suppose that it
is a subset of the first of these sets. By Lemma 4.1,

16 ~ 35 and 17 = 45, and the Phase C computa-
tion tells us that 16 ~ 45 and 17 ~ 35 cannot
occur simultaneously. If 16 ~ 45, comparing the
H-length of the cycle (1,6,7,5,4,3,2) with that of
Y yields that |16] = 1, from which we obtain a
contradiction. The case when 17 ~ 35 is similar.
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ELECTRONIC AVAILABILITY

Our programs are available by anonymous ftp from the
host info.swan.ac.uk, in directory /pub/compsci/cycles.
See also [Stewart and Thompson 1994].
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