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for improving reproducibility of computational re-

Acknowledgements sults and for avoiding duplication of work. In fact,

References these standard generators have been chosen fairly
Electronic Availability arbitrarily in each case, but they are always chosen
so that they are easy to reconstruct in (as far as
possible) any representation.

Here we develop these ideas further, in the con-
text of the simple group Js. This group was chosen
firstly because it has an outer automorphism group
of order 2, which introduces extra complications,
and secondly because it is reasonably small (it has
order 50,232,960) so we can do quite a large num-
ber of calculations in the group. Our main aims at

this stage are:

1. To pass from J3:2 to Js and (as far as possible)
vice versa.

2. To find words in the standard generators for
each group, giving representatives for each of
the conjugacy classes of elements.

3. To find words in the standard generators which
generate representatives of each of the conju-
gacy classes of maximal subgroups.

Eventually we hope to develop a computerised li-
brary of sporadic simple groups [Suleiman et al.],
containing matrix and permutation representations
of each group, as well as their covering groups and
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automorphism groups, and a whole series of proce-
dures for finding interesting subgroups, elements,
and so on. The groups J;, M4, Ru, Coz, Coso,
J2, Msy and their automorphism groups have been
treated in this way by P. G. Walsh [1994]. His pro-
cedures have been implemented in Cayley [Can-
non 1984], and implementations in Magma [Can-
non and Playoust 1993] and GAP [Schonert et al.
1994] are planned. The present paper is designed
as a case study for this development, to help clar-
ify our ideas about what such a library should con-
tain, what is feasible and what is not, and to ex-
plore some possible avenues for extensions to the
library. See the section on Electronic Availability
at the end of this article.

2. STANDARD GENERATORS FOR J;:2

Our initial idea for standard generators for J5:2
was to take the rationally rigid triple of conju-
gacy classes (2B,3B,8B). In other words, we took
g1 € 2B and ¢, € 3B such that g;g» € 8B. (Here
we follow [Wilson] in using (g1, 92) generically to
denote a pair of standard generators for whatever
group is under consideration.) This defines the pair
(91, 92) up to conjugacy, and it can be shown that
(91,92) = J3:2. The most obvious problem with
this is that there are two classes of elements of or-
der 8 in the outer half of J3:2, called 8 B and 8C,
and in some representations it is very difficult to
distinguish them. We therefore abandoned the idea
of using a rationally rigid triple, as rational rigid-
ity seems to be of more theoretical than practical
importance.

Instead there are two much more crucial practi-
cal issues. The first is to maximise the probability
of obtaining a conjugate of (g1, g2) at each attempt.
If g9 € Xand g, € Yand x € X and y € Y,
where X, Y are two conjugacy classes in the group
G, then the probability that (z,y) is conjugate to

(gla 92) is just

[Ca(g)lCa(g2)|
Glz@e)

Clearly we want to maximise this probability, sub-
ject to the constraint that (g1, ¢92) = G.

The second issue is to make it as easy as possible
to distinguish the standard generators from any
non-conjugate pair of elements of the group. This
is not usually much of a problem if the first issue
has been satisfactory dealt with.

After some experimentation we decided to take
g1 € 2B, g2 € 3A, with g9, of order 24. There
are still two classes of elements of order 24 in J3:2,
but each is an algebraic conjugate of the other.
The symmetrised structure constants, which may
be defined by

(6(X,Y, Z) = ZX )()

x€Irr(G)

withxz € X,y €Y and z € Z, are

€J3:2(2B, 3A, 24A) — §J3:2(2B, 3A, 24B) —

(Thus these triples are rigid, but not rationally
rigid.) Given a pair (a,b) of old standard gener-
ators (that is, a € 2B, b € 3B, with ab € 8B), we
found that e = (abab*ab(ab®)?)® € 3A. By mak-
ing several conjugates of a and e we eventually
found pairs (c,e) and (d,e), given by ¢ = a(®’
and d = a(®° | with the following properties:

e c € 2B, e € 3A, ce has order 24, and [c, e] has
order 9.

e d € 2B, ec 34, de has order 24, and [d, e] has
order 17.

It is easy to check also that (c,e) = (d,e) = J5:2.
In this way we have found representatives for
both triples of type (2B,3A4,24), and we choose
arbitrarily the first to be our standard generators
for J3:2. As we shall see later, we may choose the
notation so that ce € 244 and de € 24B. We give
in Table 1 two 18 x 18 matrices over GF(2), repre-
senting preimages of these (new) standard genera-
tors of J3:2 in the smallest matrix representation of
3-J3:2. At the referee’s suggestion, these matrices
are given in a basis such that the GF(4)-structure
of the representation for the subgroup 3-J; is easily



000100000000000000 100001101111010011
001000000000000000 010011011010110010
010000000000000000 001001100110100011
100000000000000000 000111011101010010
101011000000000000 001101011110001001
111101000000000000 001011111001000111
101000110000000000 110110011011110000
111100010000000000 101101110110100000
011111111100000000 110110000100011001
100101010100000000 101101001100110111
110111110011000000 101111000011101100
011001010001000000 011010000010011000
101000111111110000 001100001101000011
111100010101010000 001000001011000010
101011001111001100 101010101001101110
111101000101000100 010101010111011001
010000110011111111 111010110100010111
100000010001010101 100101101100111110
g1=¢ g —e€

TABLE 1. Standard generators for 3°J3:2

visible. Each 2 x 2 block of a matrix in this sub-
group can be interpreted as an element of GF(4) by
the identifications 0 = (00), 1= (10), w = (1 1),

00 01 10
w = (]7), so that we get 9x9 matrices over GF(4).

3. UPWARDS COMPATIBILITY

Our old standard generators for J;:2 have been
available in a prerelease version of a computer li-
brary of groups [Suleiman et al.] for some time,
and some work may have been based on them. We
therefore found words in the new generators that
give conjugates of the old ones, so that such work
will still be easily reproducible.

Given our standard generators c, e, we found that
(cece?)® € 3B, and if we define o' = ¢*° and
b = ((cece?)®)(<e)’ | the pair (a',b') is conjugate to
(a,b). To prove this, we took the original gener-
ators (a,b) and made new generators (a’,b’) from
them as described. Then we put both (a,b) and
(a’,b") into standard form (“standard basis”) as
described in [Parker 1984], and observed that the
representing matrices for (a’,b') were identical to
those for (a,b).
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Also, if we define d' = ce® and ¢’ = e(c”)’ then
(d',€') is conjugate to (d,e).

4. STANDARD GENERATORS FOR J;

As standard generators for the simple group J; we
decided to take g; € 24 and g, € 3A such that
(9192)*° = 1. Since the symmetrised structure con-
stants are

€5,(2A,3A,194) = £;,(24,3A4,19B) = 2,

there are four such pairs of generators up to conju-
gacy. This reduces to just two pairs of generators
up to automorphisms. We found one pair as (f,g)
where f = (ce)!? and g = e®**", and the second as
(f,h), where h = g¥9)*. We then have

o fe2A,g€3A, (f9)* =1, [f,g] has order 9,
o fe2A,he3A, (fh)*® =1, [f,h] has order 17.

We choose arbitrarily the first of these to be our
standard generators for Js.

5. FROM J; TO J;:2

The problems here are of quite a different kind from
those considered elsewhere in this paper. There we
are working within a particular group, looking for
various elements and subgroups. Here we have to
go outside the starting group J3, and look inside a
larger “universal” group for an element extending
Js3 to J3:2. If we start with a permutation represen-
tation of J3 of degree n, the appropriate universal
group is the symmetric group of degree n. If we
start with a matrix representation of degree d over
GF(q), the appropriate group is GL4(q).

Our standard generators for J; were defined by
f €24, g € 34, (fg9)* = 1, with [f, g] of order
9. This defines the pair (f,g) uniquely up to au-
tomorphisms, but there are two conjugacy classes
of such pairs in the simple group J;. Note that
Flg = (9f) 1 = ((f9) 1), 50 f 1g " has order
19, and

[F e ="rfaf 'g t=(f"g fe)
=[f, g1 1,
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fa(fgfg®)? € 84
fgfg®> € 9ABC

TABLE 2.
the given element belongs to, as determined below.

so [f7*,¢g7'] has order 9. Thus f~! € 24, g7! €
34, (f~'¢g™H'* =1, and [f~*,g7'] has order 9, so
(7497 = (f,¢?) is also a pair of standard gen-
erators for J;. However, if we (arbitrarily) choose
the notation so that fg € 194, then f~'g~! is con-
jugate to (fg)™', so f~'g™' € 19B. This means
that (f~',¢~') is automorphic to (f,g), but not
conjugate to (f,g).

The crucial step in the construction of J3:2 is
therefore to find an element 7 of the universal group
conjugating (f,g) to (f*,g7%).

In the context of matrix groups, there is a well-
known method, based on the standard basis con-
cept introduced in [Parker 1984]. In essence, a ma-
trix B is found that conjugates f and g to standard
form F' and G, say. Similarly, we find C' that con-
jugates f ! and g ! to F and G. Then 7 = BC™!
conjugates (f,g) to (f ¢ '), and (f,g,7) is iso-
clinic to J3:2. It may not be equal to J3:2, because
we may have introduced some additional elements
centralizing J3, but it is usually straightforward to
get rid of such elements. A similar idea can be used
with permutation groups.

Finally, one can find words in the generators
f, g, 7 that are conjugate (modulo the centre of the
group) to the standard generators c,e of J3:2 de-
fined above. For example, here we may take ¢’ = 7

and €' = (fg*)~*g(fg*)*.

6. CONJUGACY CLASSES OF ELEMENTS

First we find generators for the maximal cyclic sub-
groups, and later we consider problems of algebraic
conjugacy.

(ce?)?(ce)® € 84
cece?(ce)Sce?ce(ce?)* € 8C

TABLE 3.
in boldface.

(ce)*e(ce)’e € 10AB
(ce®)?(ce)? € 12B

(f9)*gfa(fg*)? € 10AB
((£9)°9(£9)°9)*fg € 124

Representatives of the maximal cyclic subgroups of J3. We indicate in boldface the actual class that

(ce)'’e € 15AB
(ce)’e € 18ABC

Representatives of the maximal cyclic subgroups of J3:2. As in Table 2, the actual class is printed

(f9)*9fa(fg*)? € 15AB
(fg9)%9 € 17AB

fg€19AB

In J;, the maximal cyclic subgroups are as fol-
lows: 84, 9ABC, 10AB, 12A, 156AB, 17AB, and
19AB. In terms of the standard generators (f, g),
we have representatives as in Table 2.

In J3:2, the maximal cyclic subgroups are 84,
10AB, 15AB, 19AB, 8C, 12B, 18ABC, 24AB,
34AB. In terms of the standard generators (c,e),
we have representatives as in Table 3. (Note that
each of 194AB, 15AB and 10AB is a single conju-
gacy class.)

If we consider only the information about con-
jugacy classes given in the Atlas of Finite Groups
[Conway et al. 1985], we can choose most of these
classes arbitrarily. There are just two provisos: we
should be consistent between J; and J;:2, and our
choice should be consistent with the power maps
(specifically, the square of class 10A and the cube
of class 15A are both 5B rather than 5A4, so the
choices of 104 and 15A are not independent).

In the Atlas of Brauer Characters [Jansen et al.
1995], however, much more precise definitions of
the conjugacy classes are used (see also [Wilson
1993]). In particular, a distinction is made be-
tween the three classes 94, 9B and 9C, and be-
tween the classes 17A and 178, in the 19-modular
character table of J;. Using the character tables
in [Jansen et al. 1995] and explicitly calculating
the traces of elements in the 110-dimensional rep-
resentation over GF(19), we find that (fg)3g €
17A and fgfg* € 9B, so ((fg)*g)® € 17B, and
(fgfg?)? € 9C and (fgfg*)* € 9A. No distinction
is made between the other pairs of algebraically
conjugate classes, so we can choose fg € 194 and

(ce)?(ce?)? € 19AB
ce € 24AB

(ce)®e € 34AB



(f9)*gfg(fg?)* € 10A without loss of generality.
Then we are forced to have (fg)*gfg(fg?)?* € 15B,
using the 18-dimensional representation over GF(9)
to distinguish the two classes of elements of order
five.

Similarly, in J3:2 the three sets of classes 34A/ B,
24A/B and 18A4/B/C are distinguished in the 19-
modular table. We find in the same way as before
that (ce)®e € 34B, ce € 244, and (ce)’e € 18B.
The classes 194AB, 15AB and 10AB are actually
single classes in J3:2, so no problem arises there.
A complete set of words giving representatives for
all the conjugacy classes of elements is given in
Tables 4 and 5.

class word class word

1A f? 9C (fafg*)?

24 f 104 (fg9)*gfa(fg?)?
34 g 10B ((f9)*qf9(fg?)?)*
3B (fafg*)® 124 ((f9)%9(f9)%9)*fyg
44 (fe(f9fg®)?)? 154 ((f9)*9f9(fg°))?
54 ((fg9)*gfg(fg°)*)* | 15B  (f9)°9f9(fg®)?
5B ((f9)*gfg(fg?)?)?* | 174 (f9)g

64 (((F9)%9(f9)%9)*f9)* | 17B ((f9)%9)?
8A f9(fafg®)? 194 fg

94 (fafg*)* 198 (f9)~!

9B fafg’

TABLE4. Words for conjugacy classes of elements in J3.

class word class word
14 c? 9C ((ce)®e)?
24 (ce)'? 10AB (ce)*e(ce)?e
2B c 124 (ce)?
3A e 12B (ce?)?(ce)?
3B ((ce)®e)® 15AB (ce)%
4A (ce)® 174 ((ce)®e)®
4B ((ce?)2(ce)?)? 17B ((ce)3e)?
5AB  ((ce)*e(ce)?e)? 184 ((ce)se)s
6A (ce)* 18B (ce)Se
6B ((ce)®e)® 18C ((ce)®e)”
84 (ce?)?(ce)® 19AB  (ce)?(ce?)?
8B (ce)? 24A ce

8C  cece?(ce)Sce’ce(ce?)* | 24B (ce)”
94 ((ce)®e)* 34A ((ce)®e)?
9B ((ce)®e)® 34B (ce)3e

TABLE 5. Words for conjugacy classes of elements in J3:2.
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7. MAXIMAL SUBGROUPS OF J;:2

We have already seen how to obtain standard gen-
erators for Js; from standard generators for J3:2.
The other maximal subgroups of J;:2 are:
Ly(16):4,  2%(3x As5).2, 10:18,  Ly(17) x 2,

(3 X Mm):2, 32.31+2.SD16, 21,+4S5, 22+4(53 X 53)
(see [Conway et al. 1985], or [Finkelstein and Rud-
valis 1974; Wilson 1985]).

With a group of this size, the easiest way to find
copies of most of these subgroups is by a random
search. For example, if © € 24 and y € 4B, we
can estimate the probability that z and y gener-
ate L5(16):4 as being approximately 1 in 50. An
example of such a pair of generators is given in
Table 6.

Similarly, 2*(3 x As).2 and 3%2.3'72.5D4 can be
generated by elements x € 2B and y € 4B, with
reasonable probabilities. The subgroup 19:18 is
rather more difficult to find: with a random search
of this kind the best we can do is to take x € 2B
and y of order 9, giving a probability around 1 in
300. Similarly we can generate 22T4(S3; x S3) by
elements x € 4B and y € 6B.

Two of the subgroups, namely L,(17) x 2 and
21448, are involution centralisers, for which an-
other method is available, which is often quicker,
although it tends to produce longer words. Take
for example the case L»(17) x 2, which is the cen-
traliser of a 2B-involution. We start with a ran-
dom element of order 34, such as (ce)e, so that
((ce)®e)'™ € 2B. Then we take another involution
(preferably not conjugate to the first one) such as
(ce)'* € 2A. Then these two involutions gener-
ate a dihedral group of order 4n, for some n, and
the central involution of this dihedral group clearly
commutes with our original involution. In this case
we found that ((ce)3e)'"(ce)'? had order 8, so its
fourth power is the required centralizing involu-
tion. It turned out that this element, together with
the original element of order 34, was enough to gen-
erate the whole involution centraliser.

The remaining maximal subgroup is (3 x Mjg):2.
To generate such a group we used a method similar
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subgroup generators
Js (66)12 ecece’
L,(16):4 ((ce(cece?)?)?)ee (ce(cece2)2)(ce2)5
19:18 cecece? (cece?)((ee)* (cece?)?)°
24:(3 x As).2 c (ce(cece?)?)(ee)™
Ly (17) x 2 ((ce)'?((ce)e)1T)* (ce)e
(3 x Myg):2 (uwv)? (uvuv?)2uv? ce
32.31%2.8Dy5 c(ee)® (06(66662)2)(062)3
21446, (Cece2 (ce)'2)17 ce
2214(83 x S3) (ce(cece?)?)( ™ ((ce)?(cece?)2ce?) ()’

TABLE 6. Words for maximal subgroups of J3:2. The symbol u stands for ((ce)'2)(®*")* and v stands for (ce)®.

to the one we used to find involution centralisers.
We took an element z of order 24, whose eighth
power is an element 2® € 3A and looked at groups
(z®,y) where y is a random element in 24. We
found such a group of order 48, in which it was
easy to find an involution z inverting z®, such that
(x,2) = (3 x Myp):2.

8. MAXIMAL SUBGROUPS OF |,

The same principles apply here. All maximal sub-
groups were found by random searches, apart from
the involution centraliser.

It is worth remarking that for the time being
we have contented ourselves with finding arbitrary
generators for a representative of each class of max-
imal subgroups. However, it is obviously desir-
able to have some kind of standardisation of the

subgroup generators as well. This seems to be
quite a tall order in general, but if the subgroup
is (almost) simple, then we can go some way to-
wards this. For example, one might wish to take
generators for Ly(17) and L2(19) to be images of
the “standard” generators (7(1) (1)) and (71 (1)) for
SLy(p), though we have not done this here.
It might also be worth considering more care-
fully which representative of a conjugacy class to
give, but as yet there seem to be no clear reasons
for choosing one rather than another. A related
issue is compatibility between subgroups of J3 and
subgroups of J3:2. For example, we may wish to
arrange matters so that if we make the subgroups
J3:2 > J3 > Ly(17) and J3:2 > Lo(17) x 2 >
L,(17), then we end up with the same generators
for the same subgroup Ly(17) in both cases. Again,
we have not done this here, but these ideas are

subgroup generators
Ly(16):2 f (f9(F9fg*)*)°®
L,(19) 1 ((fgfg*)*)Us"
L»(19) I ((fg*fg)*) "
24:(3 x As5) (fafg?)? g(Fa™®
L,(17) fots ((fgfg*))o"
(3 x Ag):2 f9 g(fgz)2
32.3112:8 FU9’ (fg(fafg?)?)Fe™°
211445 (f9)°fo*fa(fa*)*  ((fo(fafg*)*)*((f9)*9fe(fg*)*)"*)®
22743 % 53) oo ((f9fg*(F9)*(Fg*Fg(Fg*)2)?))) o))"

TABLE 7.

Words for maximal subgroups of Js.



explored further by P. G. Walsh [1994]. Indeed, all
of these ideas could obviously be taken a lot fur-
ther, but we feel at this stage it is preferable not
to be too prescriptive.

9. REPRESENTATIONS OF J;:2

The easiest place to start making representations
of J; and of the triple cover and automorphism
group, is with the 18-dimensional representation
of 3'J3:2 over GF(2) given in Table 1. The skew
square of this representation has degree 153, which
contains the two 36-dimensional irreducibles for
3 J3:2, as well as the 80-dimensional irreducible for
J3:2. Other 2-modular representations can then
be made using the Meat-Axe in usual way [Parker
1984].

Some primitive permutation representations can
be made as the actions on certain orbits of vectors
in the 18-dimensional space. For example, the rep-
resentation of J3 of degree 20520, on the cosets of
L,(17) x 2, can be made by looking at the 61560
images of the (unique) fixed vector of an element
of order 34. Similarly the representation of degree
23256, on the cosets of (3 x Mi):2, and the repre-
sentation of degree 43605, on the cosets of

22+4:(53 X Sg),

can be found by looking at the action on suitable
orbits of vectors. Once this is done, we can make
representations in other characteristics by chop-
ping up these permutation representations with the
help of the condensation method [Wilson 1993].
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