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We propose an improvement upon the standard algorithm for

computing the kernel of a polynomial map, assuming that the

map sends monomials into monomials. Rather than computing

a Gröbner basis in the joint polynomial ring, and then selecting

only the elements of interest, we show that a moderate number

of iterations of the Buchberger algorithm in the variables of the

domain suffices.

1. INTRODUCTIONWe are interested in calculating a �nite basis forthe kernel of a ring homomorphism � : Kx ! Kybetween polynomial rings Kx := K[x1; : : : ; xn] andKy := K[y1; : : : ; ym]. It is well known [Adams andLoustaunau 1994; Conti and Traverso 1991] thatthis can be accomplished applying the Buchbergeralgorithm [Buchberger 1985] over the polynomialring Kx;y := K[x1; : : : ; xn; y1; : : : ; ym].Unfortunately, the complexity of the Buchbergeralgorithm is a strongly increasing function of thenumber of variables. Hence, it would be usefulto �nd an algorithm operating on Kx alone. Themain result of this paper is that this can indeed bedone in the special case in which the map � is theextension of a semigroup homomorphism. We willsee that in this case a moderate number (boundedby b 12nc) of Buchberger algorithms over Kx is suf-�cient to �nd a basis for ker�, and, hence, that fora large number of variables the proposed algorithmwill be more e�cient than the standard algorithm.For general information on Gr�obner bases, see[Buchberger 1985; Cox et al. 1991].The proposed algorithm has many applications,e.g., in the area of integer programming [Conti
c
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and Traverso 1991; Natraj et al.; Thomas; Hostenand Sturmfels 1994] as well in the realm of sam-pling from conditional distributions [Diaconis andSturmfels].We start by shortly reviewing the standard solu-tion in Section 2. In Section 3 we then present thenew algorithm together with some examples. Fi-nally, in Section 4 the running times of these twoalgorithms are compared and the results are dis-cussed.
2. THE SOLUTION BY MEANS OF A GRÖBNER BASIS

OVER Kx;yLet fj = �(xj) 2 Ky and 
j = xj � fj 2 Kx;y, forj = 1; : : : ; n. Denote by hf: : :gi the ideal generatedby f: : :g.
Lemma 2.1. Let G be a (reduced) Gr�obner basis forhf
1; : : : ; 
ngi in Kx;y with respect to a term orderthat eliminates the y variables. Then G0 = G\Kxis a (reduced) Gr�obner basis for ker�.
Proof. The Elimination Theorem [Cox et al. 1991,p. 114] implies that G0 is a (reduced) Gr�obner basisfor hf
1; : : : ; 
ngi \ Kx. The claim then followssince hf
1; : : : ; 
ngi is equal to the kernel of the(unique) homomorphic extension �e : Kx;y ! Kyof �, for which �e(xj) = fj and �e(yi) = yi. �
Example 2.2. Let � : K[x1; : : : ; x4]! K[y1; y2] mapx1; : : : ; x4 into y31, y21y2, y1y22, and y32, respectively,so that 
1 = x1 � y31, etc. ThenG = f�x23 + x2x4;�x2x3 + x1x4;�x22 + x1x3;x4 � y32;�x4y1 + x3y2;�x3y1 + x2y2;�x2y1 + x1y2; x3 � y1y22; x2 � y21y2; x1 � y31gis the reduced Gr�obner basis for hf
1; : : : ; 
4gi withrespect to lex order, y1 > y2 > x1 > � � � > x4.Hence,G0 = f�x23 + x2x4; �x2x3 + x1x4; �x22 + x1x3gis the reduced Gr�obner basis for ker� with respectto lex order, x1 > � � � > x4.
Example 2.3. Let � : K[x1; : : : ; x6] ! K[y1; : : : ; y4]map x1; : : : ; x6 to, respectively, y21y32y53 , y51y22y33y4,

y41y42y23y4, y1y23y44, y1y53y34, and y22y24. The reducedGr�obner basis G for hf
1; : : : ; 
6gi with respect tolex order y1 > � � � y4 > x1 > � � � > x6 consists of1180 elements, andG0 = fx103 x64 � x92x5x116 ; x141 x204 � x2x63x195 x86;x163 x185 � x141 x82x144 x36; x263 x175 � x141 x172 x84x146 ;x363 x165 � x141 x262 x24x256 ; x463 x44x155 � x141 x352 x366 gis the reduced Gr�obner basis for ker� with respectto lex order x1 > � � � > x6.Note that the above procedure requires the calcu-lation of a Gr�obner basis G of hf
igi in Kx;y, butthe actual solution G0 is then just a small subset ofG, namely G0 = G \Kx. This is especially appar-ent in the second example, where jGj = 1180 andjG0j = 6.
3. THE SOLUTION BY MEANS OF GRÖBNER BASES

OVER KxHere we present an alternative way to calculateker� when �(xj) is a monomial in Ky for everyj = 1; : : : ; n. The solution is gradually built up bya repeated application of the Buchberger algorithmover Kx (as opposed to Kx;y). The e�ciency of theproposed algorithm is based on the (empirical) factthat the complexity of the Buchberger algorithmgrows strongly in the number of variables, so thatfor a large number of variables it is more e�cientto calculate a moderate number of Gr�obner basesover Kx instead of one over Kx;y. This is especiallytrue for the memory requirements of the proposedalgorithm (see Example 2.3).Let Mx denote the set of all monomials in Kx,and likewise My. Let fj = �(xj) and assume thatfj 2 My, for j = 1; : : : ; n. Note that all the infor-mation about � is contained in the m � n matrixM , with nonnegative integer entries, given by theexponents of the monomials f1; : : : ; fn.We use the usual compact multi-index notationfor monomials: e.g., for � = (�1; : : : ; �n) 2 N n ,the symbol x� denotes the monomial x1�1 : : : xn�n .Denote by log the isomorphism between Mx and



Di Biase and Urbanke: An Algorithm to Calculate the Kernel of Certain Polynomial Ring Homomorphisms 229

N n given by log x� := � for � 2 N n . There is asimilar map from My to Nm , which, by a slightabuse of notation, we will denote by log also.Let M 2 Nm�n be de�ned by Mi;j = (log fj)i,where Mi;j is the entry of M in row i, column j.This matrix de�nes a Z-linear mapping �� : Zn !Zm , by the usual row-by-column multiplication:��(u) :=Mu:A Z-basis for ker�� can be calculated using avariant of an algorithm that calculates the Smithnormal form of an integer basis [Cohen 1993, p. 72].The connection between ker� and ker�� is con-veyed by a map ' : Zn ! Kx, which will bepresently de�ned.For u 2 Z de�ne u+ and u� by u+ = max(u; 0)and u� = max(�u; 0). These de�nitions extendnaturally to elements in Zn if we apply them com-ponentwise. Note that if u 2 Zn then u+; u� 2 N n ,and that (�u)+ = u� and (�u)� = u+. Now forany u 2 Zn we de�ne'(u) := xu+ � xu� :Any binomial (di�erence of monomials) p = x� �x�, where �; � 2 N n , can be written (in a uniqueway) as p = x� � x� = mp'(up), where mp 2 Mxand up 2 Zn . We will write p+ for x�, and p� forx�. Then clearly p+ = x� = mpxup+ and p� =x� = mpxu�p . Let �0 denote the natural partialorder on N n obtained by forming the product of ncopies of N with its natural order. If �; � 2 N n , wedenote by �_� the �0-smallest element of N n suchthat � �0 � _ � and � �0 � _ �. In symbols,(� _ �)j = maxf�j; �jg for j = 1; : : : ; n:We set x� _ x� = x�_�.
Lemma 3.1. Let p and q be binomials in Kx. Thenp� _ q+p� p+ p� _ q+q+ q = mp;q '(up + uq) (3.1)for some mp;q 2Mx.
Proof. Note that up�(up+uq)+ = �uq�(up+uq)�.Therefore the left-hand side equals

p� _ q+p� (p+ � p�) + p� _ q+q+ (q+ � q�)= p� _ q+p� p+ � p� _ q+q+ q�= xup+(u�p +log(mp))_(u+q +log(mq))� x�uq+(u�p +log(mp))_(u+q +log(mq))= x��x(up+uq)+ � x(up+uq)��= x�'(up + uq);where�=up�(up+uq)++(u�p +log(mp))_(u+q +log(mq))=�uq�(up+uq)�+(u�p +log(mp))_(u+q +log(mq)):To see that � 2 N n note that (u�p + log(mp)) _(u+q +log(mq)) is increasing (with respect to �0) inmp and mq. Hence, it su�ces to show that � 2 N nin the case mp = mq = 1. Using the facts thatu�p _ u+q = u�p + (u+q � u�p )+ and (up + uq)+ =(u+p � u�q )+ + (u+q � u�p )+, we get that � = u+p �(u+p � u�q )+ and, hence, � 2 N n . �Note that the S-polynomial [Cox et al. 1991, p. 82]of p and q, as well as the reduction of p with re-spect to q (if possible), can be written in the formof equation (3.1). This shows that if we calculatethe Gr�obner basis of a set of elements of the formmi'(ui), where mi 2 Mx and ui 2 Zn , each ele-ment of this Gr�obner basis will also have this form,since this calculation can be done by computing asequence of S-polynomials (possibly) followed byreductions. This can be seen in Examples 2.2 and2.3 (each 
j is a binomial in Kx;y). We also havethe following special case. (The support of � 2 N n ,denoted by supp�, is the set of indices for whichthe corresponding component of � is not zero.)
Corollary 3.2. Let p = '(up); q = '(uq) for someup; uq 2 Zn . If suppu+p and suppu�q are disjoint(or suppu�p is disjoint from suppu+q ) then'(up + uq) 2 h'(fup; uqg)i:
Proof. From Lemma 3.1 with mp = mq = 1 wehave (using the same notation as in the previousproof) � = u+p � (u+p � u�q )+. The hypothesis on
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the supports implies that (u+p � u�q )+ = u+p and,hence, � = 0. �
Example 3.3. Let u = (1;�2; 3;�1) = u+ � u� =(1; 0; 3; 0)� (0; 2; 0; 1) and v = (2; 1; 0;�2) = v+ �v� = (2; 1; 0; 0)� (0; 0; 0; 2). Sincesuppu+ \ supp v� = f1; 3g \ f4g = ?;it follows from Corollary 3.2 that'(u+ v) = '((3;�1; 3;�3)) = x31x33 � x2x34belongs to hfx1x33�x22x4; x21x2�x24gi. Indeed, thisbinomial equals x21(x1x33�x22x4)+x2x4(x21x2�x24).In the next theorem we see that the connectionbetween ker�� and ker� rests on the fact that ker�is the ideal generated by '(ker��).
Theorem 3.4. ker� = h'(ker��)i:
Proof. It is simply based on a telescopic identity.Details can be found in [Herzog 1970]. �If K is a basis for ker�� consisting of k elements(to simplify notation, we will use K to denote abasis for ker�� as well as the matrix in Zk�n whoserows are the vectors in K), then it is not true ingeneral that '(K) will be a set of generators forh'(spanK)i, as the next example shows.
Example 3.5. Let � be as in Example 2.2. ThenM = � log(f1)1 log(f2)1 log(f3)1 log(f4)1log(f1)2 log(f2)2 log(f3)2 log(f4)2 �= � 3 2 1 00 1 2 3 �:Calculating a Z-basis for ker�� we getK = � 1 �1 �1 1�1 2 �1 0 �:Hence, '(K) = fx1x4 � x2x3; x22 � x1x3g and, cal-culating the reduced Gr�obner basis with respect tolex order, x1 > � � � > x4, we get the setG = fx2x23 � x22x4; �x2x3 + x1x4; x22 � x1x3g:

Since this (reduced and therefore unique) Gr�obnerbasis does not equal the Gr�obner basis we calcu-lated in Example 2.2, we conclude that h'(K)i isstrictly contained in h'(spanK)i.
Example 3.6. There are many equivalent choices forK. More precisely, if A 2 Zk�k and detA = �1,then K 0 = AK is an equivalent basis (spanK 0 =spanK), and we write K 0 � K. Conversely, anytwo equivalent bases are related in this way. Hence,we may ask if there always exists a K 0 � K suchthat h'(K 0)i = h'(spanK)i. Again the previousexample shows that this is not true.But there is an important special case in which'(K) is already su�cient to generate h'(spanK)i.
Theorem 3.7. Let K 2 N k�n . Thenh'(K)i = h'(spanK)i:
Proof. Let gi, i = 1; : : : ; k, denote the rows of K.It su�ces to prove that if '(v) 2 h'(K)i and i 2f1; : : : ; kg then '(v � gi) 2 h'(K)i, since any u 2spanK can be achieved in this way by starting withv = 0. Hence, assume '(v) 2 h'(K)i. Note thatgi 2 N n , so that supp g�i \supp v+ = ?. Therefore,by Corollary 3.2,'(v + gi) 2 h'(fv; gig)i � h'(K)i:To prove that '(v�gi) 2 h'(K)i, note that v�gi =v + (�gi), and thatsupp(�gi)+ \ supp v� = supp g�i \ supp v� = ?:�In general, given a K 2 Zk�n there will not exist aK 0 � K such that K 0 2 N k�n . Nevertheless we canalways �nd an equivalent basis with all base vec-tors lying in the same orthant, as the next lemmashows.
Lemma 3.8. Let K 2 Zk�n . Then there exists aK 0 � K such that each column of K 0 is either inN k or in (�N )k .
Proof. First note that, if the j-th column ofK is thezero k-tuple, the j-th column of any K 0 � K is an
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element of N k (being also the zero vector). Hence,without loss of generality, we can assume that eachcolumn of K contains at least one nonzero entry. Ifwe can show that there exists a K 0 � K such thatsome row of K 0 has all nonzero entries then byadding suitable (positive) multiples of this row toall other rows (thereby not changing the row space)we can generate the desired equivalent matrix. Tosee that such a K 0 exists, consider the setfi : 1 � i � n and jKj;ij > 0g;called the support of the j-th row of K and de-noted by supp gj. De�ne K 0 by g01 = g1 and g0j =gj + aj�1g0j�1 for j = 2; : : : ; k, where aj�1 is anyinteger such that supp g0j = supp gj [ supp g0j�1 (forinstance, aj�1 = 1 + maxi jgj;ij). Clearly K 0 � Kand supp g0k = k[j=1 supp gj = f1; : : : ; ng:Therefore all components of g0k are nonzero. �
Example 3.9. Let � be as in Example 2.2 and Ex-ample 3.5. ThenM = � 1 �10 �1 �� 1 �1 �1 1�1 2 �1 0 �= � 2 �3 0 11 �2 1 0 �is an equivalent basis for ker�� with both rows inthe same orthant.
Lemma 3.10. Let K 2 Zk�n , and assume there ex-ists a �nite set U � spanK such that h'(U)i =h'(spanK)i. If G is the reduced Gr�obner basis forh'(U)i (with respect to some �xed order <) thenG = '( ~U) for some ~U � spanK.
Proof. By the remark following Lemma 3.1, each el-ement g in the reduced Gr�obner basis has the formg = m'(u) for some m 2 Mx and u 2 spanK.Assume that m 6= 1 for some g 2 G. Now, '(u) 2h'(U)i implies that '(u) (and, hence, g) is re-ducible by G n fgg, contradicting the fact that Gwas already reduced. �

For j 2 f1; 2; : : : ; ng de�ne Tj : Zn ! Zn as theoperator that switches the sign of the jth compo-nent of the vectors in Zn . Further, if p 2 Kx hasthe form p = '(u) for some u 2 Zn , we de�neTj(p) = '(Tju).
Theorem 3.11. Let K 2 Zk�n and assume that thereexists a �nite set U � spanK such that h'(U)i =h'(spanK)i. If G is the reduced Gr�obner basis forh'(U)i, with respect to a term order that eliminatesxj, then hTjGi = h'(span(TjK))i.
Proof. First observe that, by Lemma 3.10, there isa �nite subset ~U � spanK such that G = '( ~U).Thus TjG = '(Tj ~U) is well de�ned. Moreover,since Tj ~U � span(TjK), we havehTjGi � h'(span(TjK))i:To prove the other inclusion, let u 2 spanK. SinceG is a Gr�obner basis, there exists a g 2 G that givesrise to a head reduction of '(u). Without loss ofgenerality, we may assume that '(u) = xajp�q andg = xbjr � s, where a; b 2 N , a � b and p; q; r; s aremonomials in K[x1; : : : ; xj�1; xj+1; : : : ; xn]. Thusp = rm for some m 2 K[x1; : : : ; xj�1; xj+1; : : : ; xn]and'(u) = xajp� q = (xbjr � s)xa�bj m+ (xa�bj sm� q)= gxa�bj m+ '(~u) ~m;where ~m is a monomial inK[x1; : : : ; xj�1; xj+1; : : : ; xn];~u 2 spanK by Lemma 3.1, and the leading term of'(~u) is strictly smaller (with respect to the chosenterm order) than the leading term of '(u). Wehave '(Tju) = p� xaj q and Tjg = r � xbjs. Hence,'(Tju) = p� xaj q = (r � xbjs)m+ (sm� xa�bj q)xbj= (Tjg)m+ '(Tj~u)xbj ~m:We see that '(Tju) 2 hTjGi will follow from'(Tj~u) 2 hTjGi:The latter follows by induction, from the obser-vation that the same procedure can be applied to
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'(~u) (since ~u 2 spanK) and that the leading termof '(~u) is strictly smaller than the leading term of'(u). �We are now ready to describe our algorithm tocalculate ker�. Let K be a basis for ker��. ByLemma 3.8 there exists an equivalent basis K 0 suchthat each column of K 0 is either in N n or in (�N )n.Let J � f1; 2; : : : ; ng be the index set of all columnswith negative entries, and let K 0J be the matrix ob-tained fromK 0 by reversing all signs in the columnsindexed by J . By Theorem 3.7,h'(K 0J)i = h'(spanK 0J)i:If J = ? we are done. If J 6= ?, let j be any ele-ment of J . Theorem 3.11 enables us to derive from'(K 0J) a �nite set of generators for h'(spanK 0Jnfjg)i.Compute the Gr�obner basis for '(K 0J) with respectto a term order that eliminates xj and apply theoperator Tj to it. Proceeding recursively, we cancalculate a �nite set of generators for '(spanK 0J),which by Theorem 3.4 equals ker�.
Summary of the Algorithm. 1. Calculate a basis Kfor ker��.
2. Find an equivalent basis K 0 such that all rowsof K 0 lie in the same orthant.
3. Let J be the index set of all columns with neg-ative entries and let K 0J be the matrix obtainedfrom K 0 by reversing the signs of the columnsindexed by J .
4. Let GJ = '(K 0J).
5. Until J = ?, repeat this: Take j 2 J and letGJnfjg be the result of Tj operating on the re-duced Gr�obner basis for GJ with respect to aterm order that eliminates xj; then let J  J n fjg.
6. Output G?, a generating set for ker�.
Example 3.12. Let � be as in Examples 2.2, 3.5,and 3.9. Then Gf2g = '(K 0f2g) = '(T2K 0) =fx1x22x3 � 1; x21x32x4 � 1g. Calculating a Gr�obnerbasis of Gf2g with respect to lex order, x2 > x1 >x3 > x4, we getf�x24x1+x33; x4�x2x23; �x4x1x2+x3; �1+x1x22x3g:

Hence, G? := T2Gf2g = f�x24x1 + x33; x2x4 � x23;�x4x1 + x2x3; �x22 + x1x3g is a generating set forker'. Calculating a reduced Gr�obner basis of G?with respect to lex order x1 > � � � > x4, we obtainf�x23 + x2x4; �x2x3 + x1x4; �x22 + x1x3g, whichagrees with our previous result derived in Example2.2.
Example 3.13. Let � be as in Example 2.3. Then

M = 0BB@ 2 5 4 1 1 03 2 4 0 0 25 3 2 2 5 00 1 1 4 3 2
1CCA ;

K = � 0 �9 10 6 �1 1114 8 �16 14 �18 3 � ;K 0 = � 0 �9 10 6 �1 1114 �10 4 26 �20 �19 � :Hence,Gf2;5;6g = '(K 0f2;5;6g)= fx92x103 x64x105 x116 � 1; x141 x102 x43x264 x205 x196 � 1g:Calculating a Gr�obner basis of Gf2;5;6g with respectto lex order x6 > x1 > : : : > x5 and then applyingT6 we get the following set Gf2;5g:fx612 x1463 � x1541 x1724 x2015 ;�x232 x543 + x561 x624 x735 ;�x981 x1104 x1285 + x382 x923 x6;�x421 x284 x555 + x152 x383 x26;�x82x163 + x141 x144 x185 x36;�x281 x344 x375 + x72x223 x56;�x141 x2x204 x195 + x63x86;�x92x103 x64x5 + x116 g:In the same way we can calculate Gf2g, which has22 elements, and �nally G?, with 14 elements. Cal-culating a Gr�obner basis of G? with respect to lexorder x1 > � � � > x6 one can check that this resultcoincides with the one derived in Example 2.3.
4. SIMULATION RESULTS AND DISCUSSIONThe proposed algorithm requires the determinationof at most b 12nc Gr�obner bases over Kx. Basedon the (empirical) fact that the complexity of theBuchberger algorithm is a strongly growing func-tion of the number of variables, we conclude that it
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is in general more e�cient to evaluate b 12nc Gr�ob-ner bases over Kx than one Gr�obner basis overKx;y. In the special cases where either ker�� (hencealso ker�) is trivial or ker�� is spanned by a singleelement in Zn , no determination of a Gr�obner basisis required in the proposed algorithm; more gener-ally, we observe that the starting point of the pro-posed algorithm is a collection of binomials, whosecardinality is equal to the nullity of a generic linearmap from Zn to Zm : namely, maxfn�m; 0g.Table 1 compares the running times of the stan-dard versus the proposed algorithm for some pa-rameters of n and m. For each pair (n;m) thetime listed is the median of the running times, inseconds, of 500 random examples, where each entryin the matrixM was chosen independently accord-ing to a uniform distribution on the set f0; : : : ; 5g.The simulation was performed on a NeXT com-puter (25Mhz, 20MBytes of RAM) using Math-ematica [Wolfram 1991] (which uses lex order) toperform the Gr�obner basis calculations and PARI[Batut et al. 1993] to perform the calculation of theinteger kernel.From this table we see that for all listed casesbut the case (n;m) = (6; 2) the proposed algorithmperforms better than the standard algorithm. Asexpected, the di�erence in performance becomesthe more signi�cant the larger m is compared ton. Beside the signi�cant decrease in running time,the proposed algorithm also requires a signi�cantlysmaller amount of memory. For the mapping givenin Example 2.3 the largest intermediate Gr�obnerbasis required for the proposed algorithm has 22elements, compared to 1180 elements that the stan-dard algorithm requires.The listed running times could be further re-duced in several ways. Instead of using Mathemat-ica to perform the Gr�obner basis calculation, onecould use Macaulay [Bayer and Stillman], whichis signi�cantly faster. More substantially, all oc-curring ideals are toric ideals, for which special-ized Buchberger algorithms have been investigated[Conti and Traverso 1991; Hosten and Sturmfels1994]. These speedups apply to the standard as

(n;m) standard alg. present alg.(3; 2) 0.233 0.015(3; 3) 0.383 0.015(4; 2) 0.433 0.298(4; 3) 1.350 0.015(4; 4) 2.450 0.015(5; 2) 0.883 0.864(5; 3) 4.300 0.681(5; 4) 11.333 0.031(5; 5) 19.117 0.015(6; 2) 1.450 2.046(6; 3) 10.433 3.279(6; 4) 43.283 1.448(6; 5) 93.950 0.046(6; 6) 190.233 0.031
TABLE 1. Comparison of running times betweenthe standard and the present algorithms. Timeslisted are in seconds, and represent the medianrunning times of 500 random examples where eachentry of M is independent and uniformly distrib-uted in the set f0; : : : ; 5g.

well as to the proposed algorithm. There are atleast two more potential ways in which the pro-posed algorithm can be made more e�cient. First,it is known that the lexicographical ordering is ingeneral not very e�cient, so a potential improve-ment would be to replace lex order by a more ef-�cient order which eliminates xj. Secondly, in theabove simulations no special e�ort was made tochoose a speci�c K 0 from the many possible equiv-alent bases in order to minimize the subsequentcalculations.Although the original task of the proposed algo-rithm was to compute the kernel of a polynomialmap, assuming that the map sends monomials intomonomials, the algorithm also applies to ring ho-momorphisms � : Kx ! Ky;y�1 , where Ky;y�1 :=K[y1; : : : ; ym; y�11 ; : : : ; y�1m ]: For these maps, the en-tries of the corresponding matrix M will be inte-gers (rather than non negative integers), but thealgorithm works as well.
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Finally, we observe that in the standard methodone could use the FGLM algorithm [Marinari et al.1993], which given a Gr�obner basis with respect toa certain ordering produces a basis with respect toanother ordering. Since hf
1; : : : ; 
ngi is alreadya Gr�obner basis (with respect to any term orderthat eliminates the x variables), one could applythis FGLM algorithm to hf
1; : : : ; 
ngi to computea Gr�obner basis with respect to a term order thateliminates the y variables, rather than computingthis basis from scratch. But it seems that no sub-stantial improvement in running times results fromthis approach. Further, this approach is limited tothe original case where the map sends monomialsinto monomials, and does not extend to the moregeneral case.
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