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It is well known that the nontorsion part of the unit group of
a real quadratic field X is cyclic. With no loss of generality
we may assume that it has a generator €9 > 1, called the
fundamental unit of X. The natural logarithm of € is called the
regulator R of K. This paper considers the following problems:
How large, and how small, can R get? And how often?

The answer is simple for the problem of how small R can be,
but seems to be extremely difficult for the question of how large
R can get. In order to investigate this, we conducted several
large-scale numerical experiments, involving the Extended Rie-
mann Hypothesis and the Cohen-Lenstra class number heuris-
tics. These experiments provide numerical confirmation for
what is currently believed about the magnitude of R.

1. INTRODUCTION

Let D denote a square-free integer and let X =
Q(V/D) be the quadratic field formed by adjoining
VD to the rationals Q. Set

7':{2 if D =1 mod 4,
1 otherwise.

Then A = (2/r)° D is the discriminant of K. If
w=3(A+ VA),

then
O=7Z+wZ

is the mazimal order (the ring of algebraic integers)
of X. If a € X we denote, as usual, the norm of «
by N(a) = aa, where a is the conjugate of a.

If O* is the group of units in O and A > 0,
we have O* = (—1,¢), for a uniquely determined
go > 1, called the fundamental unit of X. Let
R = log gy denote the regulator of K. Since gy € O,
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we have g9 = 1(z + yv/A), where z,y € Z. Also,
since ‘N(eo)‘ = €o|€o| = 1, it is easy to see that

co—1l<x<egy+1,

eo—1 eo+1

A <y< Tx
Thus z,y > 0, and the regulator provides us with a
good estimate for the value of log z and log(v/Ay).
Because of the importance of the fundamental unit,
particularly in characterizing all solutions of dio-
phantine equations of the form N(a) = k, where
a € O and k € Z, it is of considerable interest to

study the size of R.

When A = z% + 4, where 2{z, it is not difficult
to show that ep = (= + V/A). Thus, in this case,

we have
g0 = (VA -4+ VA)

and

R=log(:(VA -4+ VA)).

In general, since gy = 1(z + yv/A) with z,y > 0
and |eg€y| = 1, we have z = /y2A £ 4 and

B w/7112Aj:4+y\/Z> VA =4+ VA
N 2 - 2 '

o

Hence

R >log(}(VA -4+ VA)). (1.1)

Since z? + 4 is square-free infinitely often for odd
z (see [Nagell 1922], for example), we see that
equality in (1.1) is achieved infinitely often. Con-
sequently, we know just how small R can be as a
function of A.

The question of how large R can be is much more
difficult. By a result of Hua [1982, p. 329], we can
certainly say that

R < %A(%logA—i—l),
but this is not very near to a sharp bound like (1.1).
Thus, we are left with two questions:

(1) What is the largest value that R can attain as
a function of A?
(2) How often does R become that large?

Both questions turn out to be extremely difficult,
as we can see by examining the analytic class num-
ber formula

2Rh = VAL(1, xa). (1.2)
Here h is the class number of X and
L(17 XA) = l‘i_I)I}L(S, XA);

where the Dirichlet L-function is defined by

L(s,xa) = i XA(Sn) -TI(x- —X?ggp)>l. (1.3)

n
p

The character xa here is the Kronecker symbol
(A/n); the Euler product on the right of (1.3) is
taken over all the primes p. Thus, in order for R
to be large it is necessary for h to be small and
L(1,xa) to be large. How often h can be small
and how large (and how often) L(1, xa) can be are
very deep and difficult questions in number the-
ory. For example, the famous Gauss Conjecture as-
serts that h = 1 infinitely often, and the Extended
Riemann Hypothesis (ERH) provides us with quite
close bounds on L(1,xa).

This article contains the results of some numer-
ical experiments that we conducted in order to in-
vestigate problems (1) and (2). We first describe
a large-scale computational trial that we imple-
mented to verify the Cohen—Lenstra heuristics on
the distribution of the odd part of the class num-
ber. We will next discuss further numerical exper-
iments in which we attempted to see how closely
the bounds of [Littlewood 1928] and [Shanks 1973]
come to bracketing the value of L(1,xa).

2. COMPUTATION OF R

The basic idea we used in our computation of A
was to first compute R and then L(1,xa) to suf-
ficient accuracy that it is possible to use (1.2) to
determine the integer h. In this section we discuss
how we compute R using a version of Lenstra’s
idea [1982], as described in [Mollin and Williams,
p. 290].
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The first step of this process is to estimate the
value of L(1,xa). Here, instead of using a trun-
cated Euler product and Oesterlé’s results [1979]
to estimate the error as in [Mollin and Williams],
we use an idea due to Bach [Bach 1994]. This is
based on using a weighted average of truncated Eu-
ler products to compute an approximation S(Q, A)
of log L(1, xa) which, under the ERH, has relative
error O(log A/(v/Qlog@Q)). For some preselected
value of ) we compute

2Q-1

Z 1log1

Q-1
Zz—i—Q log(14+ Q) =
=0

and weights

L (Q@+)log(Q+))
: c@

According to the explicit version of [Bach 1994,
Theorem 9.2], under the ERH we have

log L(1,xA) — ZallogB (Q+1)| <AQ,A),
(2.1)
where
Alog A+ B
A(Q,A) = 2821 2 (2.2)
@8 = ova

A and B can be determined, depending on the
value of @), by using Table 3 in [Bach 1994]. Also,
B(z) is defined by the truncated Euler product

B = [[(1- B2

p<z p

where the product is taken over all primes p < .
One of the real bottlenecks in computing esti-
mates like

Q-1
S(@,8) =Y alog B(Q +1)

=0

is the evaluation of the many Kronecker (Legendre)
symbols (A/q). In order to accelerate this process,
we first note the easily shown identity

A -1
S(@Q,8)= > w(p) 10g<1 { Z{p)> :
p<2Q-1
where
1 for p < @,
w(p) = { Ol la; forQ<p<2Q-1.

Our technique of determining S(Q, A) consisted of
computing and storing in a large table the quad-
ratic residues and nonresidues and the values of
w(p)log(p/(p — 1)) and w(p)log(p/(p + 1)) for all
the primes p < 10000. We could then find the value
of w(p) log(p/(p—(A/p))) by little more than a sin-
gle table look-up for each prime p < 10000; thus,
we could easily evaluate

5(Q,A) = Z w(Pﬂ%(}%)

p<2Q-1

and then compute an estimate of L(1,xa) by a
single exponentiation.

After conducting some preliminary experiments
we found that a value of @ = 2000 was very of-
ten sufficient (for A < 10°) to estimate L(1, xa) in
order to establish h = 1. This is a huge improve-
ment over the truncated product method used in
[Stephens and Williams 1988], where all primes less
than 18000 had to be used in the estimate (com-
pared with only 4000 using Bach’s method). In
fact, we found that using @ = 5000 (i.e., primes
less than 10000) was often sufficient to establish
h < 3, and that this resulted in the best perfor-
mance of our algorithm.

For fixed Q and A, put £ = %\/Eexp(S(Q, A)).
Then hR ~ E. By using (1.2) and (2.1) we know
(under the ERH) that

|E — hR| < L?, (2.3)
where

L? = Emax{e*@®) — 1,1 - ¢ 4@A)
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In order to get some indication of the growth rate
of L (for @ = 5000), we evaluated it for prime
radicands D only, in various intervals: see Table 1.

interval max(L)  avg(L)

1 26.01440 10.73694
101 99.76966 50.64988
201 120.47460 61.27755
301 135.44843 68.64010
401 146.94061 74.26657
501 157.06318 78.86076
601 166.13391 82.86471
701 172.31836 86.53736
801 176.91473 89.52843
901 183.47702  92.59853
1000 191.06620 95.27484

TABLE 1. Growth of L. Here and throughout the
article, “interval ¢” is the set of all prime values
of D such that (i — 1) x 106 < D < i x 10°. The
second and third columns give the maximum and
average values of L found in each interval.

With the value of L computed above we calcu-
lated the regulator by using the modified version of
the second algorithm in [Mollin and Williams, § 7].
This algorithm determines a value for A*R < E +
L2, where h* is some integer. It then finds the value
of h* and thus R. In particular, if R < E/+/L, this
algorithm will determine R quickly. However, usu-
ally we have R > E/ V/L. In this case the set of all
primesq; =2,¢, =3, ...,¢, < B=+L+L>*/L/E
must be computed. It is then necessary to check
for each of these primes ¢ < B whether any re-
duced principal ideal a at a distance from a; = (1)
very close to h*R/q is such that a = a;. If so, ¢
divides h*; otherwise it doesn’t. If ¢|h* we must
also check the reduced principal ideals at distance
h*R/q* h*R/q, etc., until we find one equal to a,
at distance close to h*R/q*, but we do not find any
at distance close to h*R/q**!. Then ¢* exactly di-
vides h*: in symbols, ¢* || h*. Since h* < B, we
must ultimately find

h=1] e
=1

Of course, if we find that ¢* | h*, then h*/q* <
B/q*, allowing us to replace B by B/q”.

It was this latter process that we modified. For
each prime g, < B, instead of finding a reduced
principal ideal a,, such that §,,, the distance of a,,
from a; [Mollin and Williams, p. 285], is such that
0m ~ h*R/q,, we determine a reduced principal
ideal a;, such that

h*R h*R
< 05, <
Here 6; is that distance such that §; < L < 1.
We next produce a list J of reduced principal ideals
Otyy Otyy gy, - ., Og, such that a;, = az, 6y, = 26,
and

+ ;.

8t 2 <3h"R <6,

m—1

In order to determine h* R, the list T made up of
each reduced principal ideal a; and its distance 6,
such that é, < L had to be computed and stored;
hence, we may assume that this list is still in ex-
istence. If g, divides h*, then a; must be in T

and
k'R

u

d; + 0k

u

when a;, = a;. If, from the next prime, we have
an ideal a;,,, such that
h*R h*R
< 0j < —— + 6,
Qut1 Qu+1

we notice that, if we have a reduced principal ideal
a;, with distance §;, such that

h*R

o G Yvias
h*'R
i, < — O
M g hR
o SOt < =+

we can then set a;, to be a reduced ideal equivalent
to a;,a;,,, with 6;, =~ 6;, +9;,., and

h*R h*R
< 6;, <

u u

+ 0.
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Now suppose we let h*R/q, — 6;,,, = pd, and
put s = |p| 4+ 1. If we represent s in binary as

s=02"+b, 12"+ ...+,

where b, =1 and b; =0,1for j =0,1,2,...,7r -1,
then

86,5 = bT2T5t + b,,a_]_27‘716t —+ -+ boét.

In our list J we have 6;, ~ 26;,_,, so we can find
a;, with distance 6;, ~ pd; by simply computing a
reduced ideal equivalent to

H afj .

By—1

Thus, starting with u = n, we first find a reduced
principal ideal a;, with distance ¢;, ~ E/g,; we
can then determine a;, ,,a;, ,,... by the method
described above. Whenever we get a;, = a;, where
ar € T, then ¢, divides h*. We then replace F
by E/q, and B by B/q, and repeat the process,
starting at ¢,, until we find « such that ¢ | h*.
When this procedure has been done for all primes
q1,92,...,q, < B or B=1, we will have h*.

To ensure that this modified algorithm is in fact
faster than the unmodified algorithm or even Algo-
rithm 7.1 of [Mollin and Williams], we programmed
all three in C and ran them on an IBM RS6000/590
workstation. Algorithm 7.1 computes R with time
complexity O(D/4*¢); the unmodified algorithm
mentioned above and the modified version both ex-
ecute in time O(D'/5*¢) under the ERH. In both
of these cases the computed value of R is provably
correct; the ERH is needed only for the complexity
estimate. The modified version was always faster
than the unmodified version, and except for the
smallest values of D was the fastest overall. Algo-
rithm 7.1 was the best for small D.

3. EVALUATION OF h

For a given D with @ = 5000, put

VA exp(S(Q, A)))
2R ’

h = round (

where by round (z) we denote the nearest integer
to z. When A is large, say h > D8 it is often
very time-consuming to produce a new value for

S(Q,A) (with a larger @ value) such that

VA exp(S(Q, A))) _

h = round ( o7

This problem can, to a very large extent, be over-
come by first finding a factor h; of h such that h/h,
is small.

Since, by the heuristics of Cohen and Lenstra
[1983; 1984], we expect that the class group of K is
very frequently cyclic, finding such an h; is usually
not very difficult. We simply select an ideal a lying
over a prime g where (D/q) = 1. We then compute
a reduced ideal b ~ a*. Often b ~ (1), in which
case we can put m = h. If b # (1), we compute
b; ~ ba?, b_; ~ ba’ until we find b; ~ (1) or b_; ~
(1). In the first case we put m = h + i and in the
second we put m = h —i.

Since we were confining our attention to fields
with D < 10°, we were able to check for ideal prin-
cipality by searching an ordered list of all the re-
duced principal ideals. This technique was feasible
because fields with A relatively large (say h > 3)
have relatively few principal ideals.

The value of m here is very often the class num-
ber; however, we must search over all the divisors
of m to find the least k such that a* ~ (1). We now
know that k divides h. If k is too small, we repeat
the above process for other prime ideals and take as
our value of h; the least common multiple of all the
k values that we find. We did this until we found
hy > %}NL This was possible in all but a few cases
which were handled separately. We seldom had to
use more than one trial ideal, but occasionally as
many as 12 were needed.

We also experimented with using h* instead of
h. For fields with large h, the value of h* is usually
a better approximation to h than h; thus, fewer
ideal multiplications are needed to find m. How-
ever, when h is large, often R is determined imme-
diately from the list T [Mollin and Williams] and
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h* is never evaluated. Hence no significant savings
occurred on using h* instead of h.

Once the regulator R and a value for hy > h/3
had been determined, we used Algorithm 3.1 to
find h.

Algorithm 3.1 (Class Number of Q(\/B)). Input: A, the
discriminant of a real quadratic field.
Output: h and R.
e Set @ = 5000. Compute S(Q,A), R, and h; as
described above.
» Repeat:
o Compute F = v/Aexp(S(Q,A))/(2Rh,).
e Set hy = round (F) and k = F — hy.
o If A(Q,A) < log((ﬁz +1)/(he + |K])), output
h = hyh; and terminate; otherwise, set ) =
Q@ + 5000, recompute S(Q,A), and return to
beginning of loop.

Only very rarely did we have to go beyond the
@ = 5000 used in the initial approximation to
log L(1, xa) : typically, for less than 10 out of ap-
proximately 50000 fields examined in each interval,
as compared to less than 120 fields using truncated
Euler products with Q = 18000. A more significant
improvement is the maximum @ values required
in an interval, which are much smaller than those
required by the truncated product method. This
is important because Bach’s method requires the
whole approximation to be recomputed in these
cases, whereas a truncated product approximation
can be improved simply by adding more terms.
However, since we rarely require more accuracy
and, if we do, the @) value needed is usually fairly
small, our algorithm still runs faster using Bach’s
method. In these cases we used the usual Jacobi
algorithm to evaluate the Legendre symbols (A/q).
We emphasize here that the values of these class
numbers are dependent on the truth of the ERH;
however, given the discussion in [Shanks 1971], it
would be a most unusual event, should the ERH
be false, for any of the class numbers computed by
this technique to be incorrect, assuming that the
calculations are carried out correctly.

The algorithms for determining h; and h were
also coded in C and run on an IBM RS6000/590
workstation. Using Bach’s method, our algorithms
executed about 1.5 times as quickly as they did
using the truncated Euler product method.

4. THE COHEN-LENSTRA HEURISTICS

Let G be the class group of X and let G* be the odd
part of G. Cohen and Lenstra [1983; 1984] provide
some heuristics on the distribution of various G*.
For example, if we define

1
v =1 e o ey

| n

the probability that h* = |G"| is equal to k is

Prob(h* = k) = , (4.1)

where C' = .754458173 ... Since w(1l) = 1, we see
that this result would predict that h* = 1 about
75% of the time, a figure supported by the compu-
tations in [Stephens and Williams 1988]. In fact,
under this heuristic we would expect that the prob-
ability that h* exceeds z is

Prob(h* > z) =C Z m (4.2)
j>x J
j odd

Now, if we put

n>x
n odd

we can use standard analytic methods such as those
employed in [Landau 1936] to show that there exist
constants F; and F, such that

4.3)

1
W (z) :Ellogm—l—Ez—l—O( 051:),



Jacobson, Lukes and Williams: An Investigation of Bounds for the Regulator of Quadratic Fields 217

where

E1 = (20)71 = 7700(2)000,
Coo =[] ¢ +1) = 2.294856589 ...,
Meo(2) = [J (1 — 27%) = 288788095 ...

By using partial summation on (4.2) and the result
of (4.3) we get

logx)'

1
Prob(h* > z) = Y + O( 2

(4.4)
Thus, under the Cohen—Lenstra heuristics we’d ex-
pect that h* is most likely to be small. Since
Prob(h* = 1) ~ 2, we will write this as

1

. log
1 — Prob(h §x)=2m+2+0( 2 )

Thus we would expect that

1 1 log k
bl=3 (1—Prob(h*§k))+0( ) 49

a result that can be used to test the accuracy of
(4.4).

Let h(p) be the class number of the field Q(v/D),
where p is a prime. By using some further assump-
tions, Cohen was able to show that

> h(p)~ iz, (4.6)

p<z
p=1mod 4

a result conjectured by Hooley [1984] at about the
same time.

In order to test the validity of (4.1), (4.5) and
(4.6), we computed all the class numbers for all
the fields Q(v/ D) where D < 10° and all the fields
Q(/p) where p is a prime up to 10°. This computa-
tion of over 108 class numbers required just under
four weeks on the DECstation 5000/200. In order
to describe its results, we introduce some notation.

For a finite group G we define

£(G) = { 1 when |G| =k,

0 otherwise

Let D denote any square-free positive integer, and
let G*(D) represent the odd part of the class group

of Q(v/'D). Put

Di(z) ={D <z | D=1mod 4},
Dy(z) ={D <z | D #1mod4},
Pi(z)={p <z | p=1mod4, pprime},
Po(z) ={p <z | p=3mod4, pprime}.

Eor each D(z) € {D1(z), Da(z), P1(x), P2(x)}, de-

DeD(x ri(z)
rila) = == - @) = Gugy
1
1 1 = ri(x
t,<x>—§(1_sz(x)), si<w>—; i(2)
Also, put

H*(z)= ) R*(D).

deD(z)

Tables 2 and 3 provide values of g;(z) for various
choices of ¢ and = for A = 1 mod 4, A < 10% and for
A =p=1mod4 and p < 10°. The corresponding
tables for D(z) = Dy(z) and Py(z) are so similar
that in the interest of brevity we do not include
them here. Tables 4 and 5 provide values of ¢;(z)
for various choices of 4 and = and D(z) = Dy(x)
and Pi(z). Again, because of the similarity of
the corresponding tables for D(z) = Ds(z) and
Ps(z), we do not include them here. Finally, Ta-
ble 6 provides values for H*(z) and 8 H*(x)/z for
D(xz) = Pi(x). The table for D(x) = P2(x) is very
similar.

Notice that all of these results provide numeri-
cal support for the Cohen—Lenstra heuristics, and
in particular that small values of h* seem to oc-
cur infinitely often, even when we restrict the rad-
icands of the fields to prime values. In these cases,
of course, we have h = h*.
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T

q1()

g3(z)

gs(z)

gr(z)  qo(z)  qu(z) gor(x)

1000000
10000000
20000000
30000000
40000000
50000000
60000000
70000000
80000000
90000000

100000000

1.06119
1.03676
1.03178
1.02923
1.02752
1.02634
1.02541
1.02461
1.02389
1.02333
1.02284

0.85263
0.89604
0.90683
0.91246
0.91613
0.91893
0.92078
0.92235
0.92374
0.92480
0.92605

0.95644
0.99125
0.99465
0.99592
0.99663
0.99664
0.99588
0.99632
0.99637
0.99702
0.99695

0.94918 0.70424 0.90228 0.47347
0.99564 0.83023 0.97519 0.69086
1.00142 0.84625 0.98812 0.74718
1.00250 0.85705 0.99247 0.76587
1.00194 0.86264 0.99791 0.78753
1.00315 0.86638 0.99846 0.79660
1.00446 0.87092 0.99982 0.80705
1.00504 0.87567 1.00148 0.81494
1.00623 0.87874 1.00372 0.82014
1.00608 0.88182 1.00418 0.82863
1.00581 0.88409 1.00528 0.83205

TABLE 2.

Values of g;(z) for A =1 mod 4.

T

q1()

g3(z)

gs(z)

gr(z)  go(z) qu(z) qor(x)

1000000
10000000
20000000
30000000
40000000
50000000
60000000
70000000
80000000
90000000

100000000
200000000
300000000
400000000
500000000
600000000
700000000
800000000
900000000
1000000000

1.03912
1.02286
1.01992
1.01878
1.01746
1.01679
1.01614
1.01563
1.01515
1.01493
1.01468
1.01314
1.01241
1.01169
1.01122
1.01077
1.01045
1.01020
1.00998
1.00976

0.87049
0.91026
0.91885
0.92317
0.92762
0.93026
0.93257
0.93519
0.93662
0.93712
0.93864
0.94558
0.94866
0.95144
0.95334
0.95493
0.95583
0.95683
0.95777
0.95830

0.98999
1.00832
1.01125
1.00562
1.00621
1.00793
1.00686
1.00600
1.00488
1.00600
1.00478
1.00057
1.00118
1.00229
1.00100
1.00120
1.00199
1.00179
1.00186
1.00239

1.05015 0.74868 0.89694 0.80228
1.00988 0.89654 1.00820 0.83991
1.01036 0.89047 1.00770 0.87678
1.02080 0.89756 1.00138 0.88219
1.02143 0.89815 1.01307 0.89369
1.01899 0.90235 1.01437 0.89445
1.01727 0.90852 1.01408 0.90140
1.01803 0.91051 1.01274 0.90768
1.01891 0.91308 1.01263 0.90514
1.01489 0.91691 1.01078 0.89925
1.01335 0.91944 1.00665 0.90274
1.01216 0.92337 1.00713 0.90869
1.00676 0.92586 1.00590 0.91010
1.00406 0.92779 1.00362 0.91560
1.00519 0.93096 1.00409 0.91528
1.00534 0.93239 1.00461 0.92144
1.00608 0.93323 1.00523 0.92348
1.00619 0.93468 1.00506 0.92527
1.00629 0.93499 1.00509 0.92732
1.00646 0.93604 1.00508 0.92706

5. THE SIZE OF L(1, x)

TABLE 3.

Littlewood [1928] and Shanks [1973] have shown
that, under the ERH, we have

(140(1)) (¢1loglog A) ™' < L(1, xa)
<(140(1)) cyloglog A,

where ¢; and ¢, depend upon the parity of A:

(5.1)

Values of g;(z) for p =1 mod 4.

¢ =12¢"/7* and ¢y =2¢” when 21A,
¢p = 8¢"/n* and ¢y =€’ when 2|A.
In his numerical examination of (5.1), Shanks [1973]

defined for a fixed A the upper and lower Little-
wood indices as

ULI = L(1, xa)/ (c2 loglog A) ,
LLI = L(1, xa)c1 loglog A.
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T t1(z) t3(z) ts(z)

t7($) t9($) tll(m) t27(£IJ)

20000000 2.25667 4.64952 7.14116
30000000 2.23723 4.59746 7.02378
40000000 2.22443 4.56286 6.94593
50000000 2.21560 4.54032 6.89384
60000000 2.20874 4.52115 6.84708
70000000 2.20287 4.50462 6.81076
80000000 2.19765 4.48987 6.77728
90000000 2.19354 4.47810 6.75275
100000000 2.18998 4.46955 6.73308

1000000 2.50786 5.42530 8.91565 12.81041 17.88166 22.96408 109.6509
10000000 2.29561 4.75574 7.38079 10.02841 13.58368 16.60010 55.01249

9.61024 12.91103 15.64977 48.43620
9.40226 12.59204 15.19731 45.43814
9.26159 12.36781 14.88841 43.53718
9.17287 12.22767 14.68742 42.23651
9.09414 12.10904 14.52054 41.36938
9.03188 12.02043 14.39801 40.61104
8.97656 11.93639 14.28389 39.94645
8.93314 11.87337 14.19501 39.48465
8.89798 11.82131 14.12367 39.02412

TABLE 4. Values of ¢;(z) for A =1 mod 4.

T t1(z) t3(z) ts(z)

t7($) t9($) tll(l‘) t27($)

1000000 2.31449 4.69162 7.22253
10000000 2.19018 4.39240 6.59663
20000000 2.16904 4.34869 6.50789
30000000 2.16105 4.33701 6.46395
40000000 2.15178 4.32065 6.42954
50000000 2.14711 4.31417 6.42053
60000000 2.14260 4.30673 6.40077
70000000 2.13905 4.30460 6.39342
80000000 2.13576 4.29791 6.37521
90000000 2.13419 4.29391 6.36986
100000000 2.13247 4.29399 6.36629
200000000 2.12197 4.28339 6.33025
300000000 2.11706 4.27754 6.31934
400000000 2.11217 4.27035 6.30698
500000000 2.10902 4.26615 6.29396
600000000 2.10600 4.26107 6.28353
700000000 2.10388 4.25650 6.27594
800000000 2.10222 4.25425 6.27045
900000000 2.10075 4.25251 6.26689

1000000000 2.09927 4.24886 6.26053

9.92777 12.95470 15.41109 55.48867
8.67220 11.47744 13.64301 36.38335
8.52074 11.18966 13.23712 34.28533
8.47241 11.13404 13.14434 33.69292
8.41497 11.03731 13.03696 32.98149
8.39339 11.01621 13.01053 32.63839
8.35632 10.97404 12.95108 32.35346
8.34469 10.96322 12.93295 32.21378
8.31590 10.92319 12.87703 32.04356
8.29684 10.90465 12.84707 31.84695
8.28698 10.89705 12.82721 31.69778
8.22313 10.80130 12.69580 30.99612
8.19169 10.75619 12.63083 30.63904
8.16446 10.71624 12.57083 30.40868
8.14535 10.69473 12.54227 30.24493
8.12824 10.67037 12.50989 30.15319
8.11728 10.65447 12.48937 30.07765
8.10837 10.64429 12.47502 30.02542
8.10267 10.63557 12.46310 29.98853
8.09245 10.62169 12.44402 29.92182

TABLE 5. Values of ¢;(z) for p =1 mod 4.

If (5.1) is true, then as A increases, we would ex-
pect that extreme values of the ULI and LLI would
tend to approach 1.

In fact, Chowla [1949] has shown that, for any
positive & < 1, the inequalities ULI > 2(1 —¢) and
LLI < 2(1 — ¢) hold, each for an infinite sequence
of values of A. Furthermore, Joshi [1970] showed
that, if ¢ and d are relatively prime positive inte-
gers and 8 | d, then as A runs through prime values

congruent to ¢ mod d, we have

1—¢ 1-1/p
e ST

and

1-1/p

Lu <20 -9 [ =707

pld
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x H*(z) 8H*(z)/z
1000000 97521 0.78017
10000000 990162 0.79213
20000000 1988884 0.79555
30000000 2976321  0.79369
40000000 3984781  0.79696
50000000 4987508 0.79800
60000000 5987504 0.79833
70000000 6987254 0.79854
80000000 7972707 0.79727
90000000 8997355 0.79976
100000000 10010538 0.80084
200000000 20090934 0.80364
300000000 30153902 0.80410
400000000 40367003 0.80734
500000000 50551652 0.80883
600000000 60651064 0.80868
700000000 70801346 0.80916
800000000 80950648 0.80951
900000000 91082121 0.80962
1000000000 101284007 0.81027

TABLE6. Values of H*(z) for p =1 mod 4.

infinitely often. Thus, if A is a prime and A =5

mod 8, we would have

LLI < 3(1—¢)

infinitely often. Also, if A is a prime and A = 1

mod 8, we would have

ULL > (1 —¢)

infinitely often. Assuming that the size of L(1, xa)
and h are independent, this result (together with
the Cohen-Lenstra heuristics) suggests that we’d
have

R>(1- s)iczx/glog log A (5.2)
infinitely often. Figure 1 plots the frequency dis-
tribution of the values of

g E
VAloglog A
for all prime values of A = 1 mod 8, where 8 x

108 < A < 10°. The vertical line on this figure
intersects the Z axis at %02. Notice that a small

but not insignificant portion of the frequency dis-
tribution is to the right of this line. The results of
[Joshi 1970] are not as good as the extreme values
suggested by the truth of the ERH, and Figure 1
provides some evidence that a better result than
(5.2) might hold; thus, it is of some interest to
conduct a numerical investigation into how large
(small) the ULI (LLI) values can be.

Shanks tested (5.1) by attempting to produce
values of A for which he might have locally ex-
treme values for the LLI and ULI. For example, if
A =5mod 8 and (A/q) = —1 for all of the small
primes ¢ less than some bound p, then we would
expect by (1.3) that L(1, xa) would be small. On
the other hand, if A = 7 mod 8 and (A/q) =1
for all the primes ¢ < p, then we would expect
L(1,xa) to be large. Shanks made use of Lehmer’s
numerical sieving device, the DLS-157, to find such
special values of A. He found no ULI larger than
1; in fact, the largest ULI that he found was .7333.
Also, he found only a few LLI’s less than 1 (these
occurred for small values of A only). The values
of the LLI’s tended to remain stable on average,

frequency

60000 | -
50000 f  ° -
40000 [~ . -
30000 | "
20000 |

10000

e,
o
e,
o,

o.....

0.2 0.4 0.6 0.8 1
FIGURE 1. Frequency values of Z for A = p, with
p =1 mod 8 prime in the range 8 x 10® < p < 10°.
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or change very slowly; whereas the ULI’s tended
to increase very slowly for these special A values;
thus, these numerical trials lend support to (5.1).

We used a new sieving device, the MSSU, to ex-
tend Shanks’ computations. As this instrument
has been described in some detail elsewhere [Lukes
et al. 1995; Lukes et al. a], we will only mention
here that it conducts its search for the kind of num-
bers that we sought at the rate of over 4 x 10'? per
second, a considerably faster search rate than that
of the DLS-157. For D = 5 mod 8, we found all val-
ues of D such that 0 < D < 10" and (D/q) = -1
forq =3,5,7,...,199. For D = 1 mod 8 we found
all the values of D such that 0 < D < 4 x 10'°
and (D/q) = 1 for ¢ = 3,5,7,...,199 and for
D =6 mod 8 and D = —1 mod 4 we found
all the values of D such that 0 < D < 10! and
(D/q) =1 for ¢ = 3,5,7,...,199. We evaluated
the class number, regulator, and L(1,xa) for each
of the several thousand numbers that resulted by
using the Shanks heuristic [Mollin and Williams,
p.283]. We then selected the “L(1, xa)-lochamps”
and “LLI-lochamps” from the values of D = 5
mod 8, namely those D with the property that
their corresponding L(1,xa) value (or LLI value)
is less than that of any smaller D. From each of the
other sets of D values we selected the “L(1,xa)-
hichamps” and “ULI-hichamps,” those D with the
property that their corresponding L(1,xa) value
(or ULI value) is greater than that of any smaller
D in the same set. For these D with the most ex-
treme L(1, xa), LLI, and ULI values we computed
h, R, and L(1,xa) using the techniques of Sec-
tions 2 and 3. In every case the results were the
same as those produced by the Shanks heuristic.
The largest ULI we found is ULI = 0.741429825 . ..
(with L(1,xa) = 4.98741315 ..., h = 2), for

D = 2323617473234474719.

The least LLI we found is LLI = 1.24745080...
(with L(1,xa) = 0.158960540. .., h = 4), for

D =18974003020179917.

Since the techniques of Sections 2 and 3 for com-
puting h require the truth of the ERH, the fact
that both these techniques and the Shanks heuris-
tic give the same results increases our confidence
that the computed values are correct, even if the
ERH is false. Also, the Shanks heuristic is much
faster than the method of Sections 2 and 3, so it
provided us with a relatively quick way to examine
all the numbers produced by the sieve. Even if the
class numbers computed by the Shanks heuristic
are wrong, they will still be very close to the actual
value, and their corresponding L(1, xa) values will
be quite accurate. At any rate, we would only ex-
pect the Shanks heuristic to give erroneous results
for very large class numbers which, by the Cohen—
Lenstra heuristics [Cohen and Lenstra 1984], are
extremely rare.

Following Shanks we define the symbols aR,, and
(aN,) to represent the least integers congruent to
a modulo 8 such that

(a_R,,) =1 and (aNp) =-1
q q

for all odd primes ¢ < p. We computed tables
of aR, for a = 3,6,7 and aN, for a = 5. We
also computed similar tables of a R, and a/V, when
we added the extra constraint that aR, and alN,
be prime. We provide example tables here for the
combined results for the prime values of 3R, and
7R, and for the prime values of 5N,,, together with
the ULI and LLI values. Corresponding tables for
a = 1 can be found in the supplementary pages to
[Lukes et al. a]. Notice that the tendency for the
ULP’s is to very slowly increase and for the LLI’s
is to remain stable with minor fluctuations about
%. These tendencies were also displayed in all the
other tables. Thus, the results that we have ob-
tained completely support Shanks’ earlier findings
and therefore support the truth of (5.1). At least,
we have not found anything that would lead us to
believe that the ERH has been violated.
Although such values of D surely must exist, it
seems to be very difficult to produce a value of
D with a ULI close to 1. We attempted to do
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p R, R h L(l,x) UL

3 7 2.76865 1 1.04645 0.488140

5 19 5.82893 1 1.33724 0.512241

7 79 507513 3 1.71299 0.549523

11 331 36.25638 1 1.99283 0.567255

13 751 57.94214 1 2.11433 0.570617

17 1171 25.37280 3 2.22439 0.585134

19 7459 73.05341 3 2.53759 0.610832

23 10651 270.87206 1 2.62463 0.622710

29 18379 367.19773 1 2.70856 0.629349

31,37 78439 813.56346 1 2.90486 0.642576

41 399499 1890.86355 1 2.99159 0.631650

43 1234531 3537.86780 1 3.18412 0.653616

47,53 1427911 3841.39768 1 3.21468 0.657630

59 4355311 6958.99836 1 3.33454 0.665368

61 5715319 8109.80131 1 3.39226 0.673017

67 49196359 24407.90384 1 3.47987 0.662406

71 117678031 38495.70798 1 3.54866 0.665425

73 180628639 49263.42426 1 3.66548 0.682492

79,83 452980999 78083.74919 1 3.66877 0.673261
89,97 505313251 83941.62341 1 3.73419 0.684123
101,...,109 9248561191 127289.80150 3 3.97079 0.698473
113 152524816291 6690.84067 239 4.09457 0.696458
113,127,131 348113924239 2445102.46006 1 4.14415 0.698553
137 916716646759 3976755.53799 1 4.15347 0.693040

139 1086257787619 637789.47424 7 4.28360 0.713513

149 4606472154439 707977.15943 13 4.28823 0.704162

151 4726529308939 9447793.54167 1 4.34569 0.713422

157 35032713351619 8533304.31730 3 4.32515 0.697114
163,...,179 46257585588439  30459726.68748 1 4.47852 0.720076
181 251274765020899  23977422.86688 3 4.53784 0.719268

191 316934672172031  81024861.17467 1 4.55127 0.720036
193,...,229  2871159201832639  246120736.62994 1 4.59324 0.714308
233,...,263 632590969227841471 3833565622.42494 1 4.81993 0.722316

TABLE 7.

this by finding a D value with a large L(1,xa)
value. We used an unpublished idea of Lehmer
which he employed to find the 20 digit value of D
with a small L(1, A) value that appears in [Lehmer
et al. 1970, p. 439]. We examined numbers of the
form D = A+ BX, where B = Hf:j p;, for p; the
i-th prime, and (A/p;) = 1, for i = 5,5+ 1,...,
k. In our case we used B = 271 -277-...-313 =
5.277 x 10! and the least nonsquare value of A.
We then employed the MSSU to sieve on values of

3R, and 7TR,: least prime solutions.

X by using as moduli 8 and primes pi1,ps2, ..., Pm
with p,, < 269 such that A + X B = 6 mod 8 and

((A+ XB)/p:) = 1,

for ¢ = 1,2,...,m. Henri Cohen used the tech-
nique of [Cohen et al. 1993] to evaluate the L(1, xa)
values for some of these D values. The largest ULI
occurred for

D = 13208708795807603033522026252612243246,
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P N, R h  L(1,x) LLI
3 5 0.48121 1 0.430408 0.44355
5 53 1.96572 1 0.540024 1.61246
7,11 173 2567081 1 0.390910 1.38799
13 293 2.836656 1 0.331438 1.24669
17 2477 6.47234 1 0.260093 1.15802
19,23 9173 12.47223 1 0.260446 1.24696
29 61613 36.23370 1 0.291948 1.51764
31,37,41 74093 7.21597 5 0.265098 1.38758
43 170957 16.93918 3 0.245810 1.32491
47 360293 68.23691 1 0.227363 1.25504
53 679733 92.04349 1 0.223282 1.25592
59,61 2004917 48.29722 3 0.204656 1.18549
67 69009533 869.69643 1 0.209383 1.31182
71 138473837 1369.29769 1 0.232725 1.47713
73 237536213 1725.64096 1 0.223931 1.43508
79 384479933 2087.35754 1 0.212907 1.37580
83 883597853 3018.26471 1 0.203076 1.33041
89,...,113 1728061733 4021.14004 1 0.193463 1.28086
127 9447241877 1252.37753 7 0.180389 1.22431
131,137,139 49107823133 18804.68086 1 0.169715 1.17733
149 1843103135837 119080.85359 1 0.175427 1.26915
151,157 4316096218013 192239.83257 1 0.185066 1.35078
163,167 15021875771117 344898.80858 1 0.177975 1.31520
173,179 82409880589277 804942.51462 1 0.177339 1.33146
181 326813126363093 1551603.41110 1 0.171656 1.30445
191,193 390894884910197 1650908.48845 1 0.167002 1.27101
197 1051212848890277 547589.04349 5 0.168892 1.29600
199,211,223 4075316253649373 5291574.72421 1 0.165780 1.28593
227  274457237558283317  45653225.95687 1 0.174286 1.39371
229  443001676907312837 6097479.67224 9 0.164899 1.32287
233  599423482887195557 65388978.22854 1 0.168914 1.35780
239  614530964726833997 64783176.97206 1 0.165280 1.32880
241,...,263 637754768063384837 22908547.79705 3 0.172116 1.38410
TABLE8. 5N,: least prime solutions.
where L(1,xa) = 5.324999338... (h = 1). This is _ s < L(1,x) < csloglog A.

a large L(1, xa), but when we evaluate the ULI we
only get ULI = .669706597 ...

6. CONCLUSION

Elliot [Elliot 1969] has shown that if ¢ > 0 is given,
then there exist constants c¢3 and ¢, (depending on
) and a set S = S(z) for x > 2, such that for all
prime values of A <z, A ¢ S, we have

loglog A —

Furthermore, S has cardinality at most O(z®). In
view of the Cohen—Lenstra heuristics and the nu-
merical evidence presented above, this would seem
to permit us to conjecture that there exists an in-
finite set of values of A for which

VA
> —0r.
loglog A
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In fact it even appears that there must exist an
infinite set of values of A such that

R > VAloglog A.

At present the best result of this type is that of
Halter—Koch [Halter-Koch 1989] where it is shown
that there exists an infinite set of values of A such
that

R > log* A. (6.2)

This result is so much worse than (6.1) that it
should be possible (without appealing to the ERH
or the Gauss Conjecture) to get a better result than
(6.2).

REFERENCES

[Bach 1994] E. Bach, “Improved approximations for
Euler products”, unpublished manuscript, 1994.

[Chowla 1949] S. Chowla, “Improvement of a theorem
of Linnik and Walfisz”, Proc. London Math. Soc. 50
(1949), 423-429.

[Cohen et al. 1993] H. Cohen, F. Diaz y Diaz, and
M. Olivier, “Calculs de nombres de classes et de
régulateurs de corps quadratiques en temps sous-
exponentiel”, pp. 3546 in Séminaire de Théorie des
Nombres de Paris 1990-1991, Progress in Math. 108,
Birkh&user, Boston, 1993.

[Cohen and Lenstra 1983] H. Cohen and H. W.
Lenstra, Jr., “Heuristics on class groups”, pp. 26—
36 in Number Theory, CUNY, 1982 (edited by D.
V. Chudnovsky), Lecture Notes in Math. 1052,
Springer, New York, 1983.

[Cohen and Lenstra 1984] H. Cohen and H. W. Lenstra,
Jr., “Heuristics on class groups of number fields”,
pp- 33-62 in Number Theory, Noordwijkerhout, 1983
(edited by H. Jager), Lecture Notes in Math. 1068,
Springer, New York, 1984.

[Elliot 1969] P. D. T. A. Elliot, “On the size of L(1, x)”,
J. reine angew. Math. 236 (1969), 26-36.

[Halter-Koch 1989] F. Halter-Koch, “Reell-quadra-
tischer Zahlkorper mit grofler Grundeinheit”, Abh.
Math. Sem. Univ. Hamburg 59 (1989), 171-181.

[Hooley 1984] C. Hooley, “On the Pellian equation
and the class number of indefinite binary quadratic
forms”, J. reine angew. Math. 353 (1984), 98-131.

[Hua 1982] L. K. Hua, Introduction to Number Theory,
Springer, New York, 1982.

[Joshi 1970] P. T. Joshi, “The size of L(1,x) for
real nonprincipal residue characters x with prime
modulus”, J. Number Theory 2 (1970), 58-73.

[Landau 1936] E. Landau, “On a Titchmarsh-Ester-
mann sum”, J. London Math. Soc. 11 (1936), 242—
245.

[Lehmer et al. 1970] D. H. Lehmer, E. Lehmer, and
D. Shanks, “Integer sequences having prescribed
quadratic character”, Math. Comp. 24 (1970), 433-
451.

[Lenstra 1982] H. W. Lenstra, Jr., “On the Calculation
of Regulators and Class Numbers of Quadratic
Fields”, pp. 123-150 in Number Theory Days, Exeter,
1980, London Math. Soc. Lecture Note Series 56,
Cambridge U. Press, Cambridge, 1982.

[Littlewood 1928] J. E. Littlewood, “On the class
number of the corpus P(y/—k)”, Proc. London Math.
Soc. 27 (1928), 358-372.

[Lukes et al. 1995] R. F. Lukes, C. D. Patterson, and
H. C. Williams, “Numerical Sieving Devices: Their
History and Some Applications”, Nieuw Archief voor
Wiskunde (4) 13 (1995), 113-139.

[Lukes et al. a] R. F. Lukes, C. D. Patterson, and H.
C. Williams, “Some results on pseudosquares”, to
appear in Math. Comp.

[Mollin and Williams] R. A. Mollin and H. C. Williams,
“Computation of the class number of a real quadratic
field”, Utilitas Math. 41 (1992), 259-308.

[Nagell 1922] T. Nagell, “Zur Arithmetik der Poly-
nome”, Abh. Math. Sem. Univ. Hamburg 1 (1922),
179-194.

[Oesterlé 1979] J. Oesterlé, “Versions effectives du
théoreme de Chebotarev sous ’hypothése de Rie-
mann généralisée”, pp. 165-167 in Journées arith-
métiques, Luminy, 1978, Astérisque 61, Soc. math.
de France, Paris, 1979.

[Shanks 1971] D. Shanks, “Class number, a theory of
factorization and genera”, pp. 415440 in Number



Jacobson, Lukes and Williams: An Investigation of Bounds for the Regulator of Quadratic Fields 225

Theory Institute, Stony Brook, 1969, Proc. Symp. H. G. Diamond), Proc. Symp. Pure Math. 24, Amer.
Pure Math. 20, Amer. Math. Soc., Providence, 1971. Math. Soc., Providence, 1973.

[Shanks 1973] D. Shanks, “Systematic examination [Stephens and Williams 1988] A. J. Stephens and H. C.
of Littlewood’s bounds on L(1,x)”, pp. 267-283 in Williams, “Computation of real quadratic fields with
Analytic number theory, St. Louis, 1972 (edited by class number one”, Math. Comp. 51 (1988), 809-824.

Michael J. Jacobson, Jr., Department of Computer Science, University of Manitoba, Winnipeg, Manitoba, Canada
R3T 2N2 (jacobs@cs.uni-sb.de)

Richard F. Lukes, Department of Computer Science, University of Manitoba, Winnipeg, Manitoba, Canada
R3T 2N2 (rflukes@cs.umanitoba.ca)

Hugh C. Williams, Department of Computer Science, University of Manitoba, Winnipeg, Manitoba, Canada
R3T 2N2 (Hugh_Williams@csmail.cs.umanitoba.ca)

Received January 4, 1995; accepted in revised form August 8, 1995



