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Consider the collection of all integer partitions whose part sizes

lie in a given set. Such a set is called monotone if the generating

function has weakly increasing coefficients. The monotone

subsets are classified, assuming an open conjecture.

1. INTRODUCTIONSuppose P is a set of positive integers, and let anbe the number of integer partitions of n whose partsizes lie in P . It is well known [Andrews 1976] thatthe generating function for the sequence an is
FP (q) = 1Xn=0 anqn = Yp2P 11� qp :Bateman and Erd�os [1956] found necessary andsu�cient conditions on P so that the k-th dif-ference of the sequence an is asymptotically pos-itive. In this paper we consider k = 1. We seek astronger conclusion, namely that an+1 � an for alln > 1, or, equivalently, that all of the coe�cientsin (1 � q)FP (q) past the linear term are nonneg-ative. A set P of positive integers satisfying thiscondition is called monotone.Let n be the smallest element of P . Clearly anyP containing 1 is monotone, so we can assumen > 1. If P is monotone, the coe�cient of qn+1in (1 � q)FP (q) is nonnegative, and we must haven+1 2 P . In fact, it is easy to see in this way thatfn; : : : ; 2n � 1g � P . In Theorems 3.5 and 3.6we classify all monotone P with n � 6, assumingConjecture 2.2 below.A set P is called asymptotically alternating ifthere exists a large enough k so that the k-th dif-ferences of an alternate in sign. We classify theasymptotically alternating sets P in Theorem 5.2.
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We shall use NN to denote nonnegative terms ina power series F (q), and SPP(qa) to denote strictlypositive terms past qa. For example, we have �q+1=(1� q2) = 1� q+NN and q3=(1� q) = SPP(q2).
2. THE CONJECTUREIn this section we concentrate on properties of thefunction fn;m(q) = 1� qQmi=n(1� qi) :We formulate a conjecture on fn;m(q) below, anduse it to classify monotone sets P in Section 3.We are particularly interested in the values of mfor which fn;m(q) = 1 � q + NN, because P =fn; : : : ;mg is monotone for such m.
Proposition 2.1. We havefn;1(q) = 1� q +NN = 1� q +NN+SPP(q3n+1):
Proof. Applying the q-binomial theorem [Andrews1976], we obtainfn;1(q) = (1� q) 1Xk=0 qnkQki=1(1� qi)= 1� q + qn + q2n1� q2 + 1Xk=3 qnkQki=2(1� qi)= 1� q +NN+SPP(q3n+1): �
Conjecture 2.2. If n > 1 is an odd integer , we havefn;2n�1(q) = 1 � q + NN. If , in addition, n � 7,then fn;2n�1(q) = 1� q +NN+SPP(q3n+4):If n > 1 is even, thenfn;2n+1(q) = 1� q +NN+SPP(q3n+7):It is easy to see that the even part of this conjecturefollows from the odd part. If hn;m(q) = fn;m(q) �1 + q = NN, thenhn;2n+1(q) = 11� qn (hn+1;2n+1(q) + qn � qn+1):If n is even, hn+1;2n+1(q) contains qn+1. This showsthat hn;2n+1(q) = NN, and that hn;2n+1(q) = NN+

SPP(q3n+7) for n � 6. One can prove the casesn = 2 and n = 4 separately.A natural way to prove Conjecture 2.2 for agiven n is to use the asymptotics to verify the largecoe�cients, and check the small coe�cients sepa-rately. For this one needs an e�ective bound forthe positivity of the large coe�cients. In turns outthat a recurrence relation can �nd this e�ectivebound empirically, using Mathematica or a tradi-tional programming language.
Proposition 2.3. Conjecture 2.2 holds for n � 37.
Proof. We verify the case of n odd. Let ak(n; n+ i)denote the number of partitions of k into parts ofsize n; : : : ; 2n � 1 whose largest part is n + i, for0 � i � n� 1. We must show that�(k) = n�1Xi=0 (ak(n; n+ i)� ak�1(n; n+ i)) � 0for k � 2. By removing this largest part, we have

ak(n; n+ i) = iXj=0 ak�n�i(n; n+ j): (2.1)

Suppose that, by applying (2.1) recursively to �(k),we can express �(k) as the sum of �(k � t) with anonnegative linear combination of aj(n; n+ i)'s. Ifwe verify that �(2); : : : ; �(t+ 1) � 0, then Conjec-ture 2.2 holds.For example, if n = 3, we have�(k) = �(k � 20) + ak�21(3; 3);and we check that �(2); : : : ; �(21) � 0. This is fea-sible as long as t = t(n) does not grow too rapidlywith n. Empirically, we �nd t(n) = (2n�2)(2n�1).If the smallest part is used to generate a recur-rence analogous to (2.1), the empirical result ist(n) = n(n + 1) if 3 does not divide n, otherwiset(n) = 4n(n + 1). In this way Conjecture 2.2 wasveri�ed for n � 37. �We shall need the lemma below in the next section.
Lemma 2.4. If n � 7 is an odd integer , the coe�-cient of q6n+1 in fn;2n�1(q) is at least 2.
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Proof. The q-binomial theorem implies thatfn;2n�1(q) = 1� q + 1Xk=1hn+ k � 1k iq(1� q)qnk:The only terms in this expression that contributeto q6n+1 are k = 4 and k = 5. It is easy to see thatthe desired coe�cient is equal to the coe�cient ofq2n+2 in q(1�q2)(1�q3)(1�q4) � 1(1�q2)(1�q4)(1�q6)+ 1(1�q4)(1�q6)(1�q8)(1�q10) :An elementary injection shows that this coe�cientis at least 2, for n � 7 odd. We do not give thedetails. �
3. MONOTONE SUBSETSIn this section we use Conjecture 2.2 to classify themonotone subsets P , in Theorems 3.5 and 3.6. Formost of this section we shall assume that n is odd.Basically we need a method to change the set Pfrom an interval fn; : : : ; 2n � 1g to a larger classof sets. The lemma below accomplishes this.
Lemma 3.1. Suppose thatH(q) = 1� q +NN+SPP(qa);and H(S; q) = H(q)Qs2S(1� qs) ;where S is any set of positive integers. If s � a forall s 2 S, then H(S; q) = 1� q +NN.
Proof. We must show that g(S; q) = H(S; q)� 1 +q = NN. An easily veri�ed recurrence for b =2 S isg(S [ fbg; q) = 11� qb (g(S; q) + qb � qb+1): (3.1)For S the empty set, g(?; q) is positive past qa,thus positive at qb+1. So (3.1) implies g(fbg; q) =NN+SPP(qb+1), and the argument follows for �-nite S by induction on jSj. If S is in�nite, tocheck that the coe�cient of qj is nonnegative, we

apply the �nite part this lemma for the �nite setS \ fx : x � jg. �We next �nd monotone sets P from Lemma 3.1and Conjecture 2.2.
Proposition 3.2. If Conjecture 2.2 is true, then P =fn; : : : ; 2n � 1g [ Q is monotone, where n � 7 isodd and Q is any subset of f3n+ 4; 3n+ 5; : : :g.Suppose that P is monotone and satis�es fn; : : : ;2n � 1g � P � fn; : : : ; 3n � 2g. It is easy tosee that if an even number e � 2n is in P , thenso is e + 1. The next proposition shows that thiscondition characterizes such monotone sets P .
Proposition 3.3. If Conjecture 2.2 is true, then P =fn; : : : ; 2n�1g[E[O is monotone, where n � 7 isodd , E and O are subsets of f2n; : : : ; 3n�2g con-taining even and odd elements, respectively , andthe translate E + 1 is contained in O.
Proof. Suppose n � 7 is odd, and put, for anysubset S � f2n; 2n+ 1; : : :g,g(n; S) = fn;2n�1(q)Qs2S(1� qs) � 1 + q:The coe�cients of fn;2n�1(q) up to q3n+4 can be ex-plicitly found, so that Conjecture 2.2 implies that
g(n;?) = qn+(n�3)=2Xi=0 q2n+2+2i+q3n+3+SPP(q3n+4):

(3.2)To go from g(n;?) = NN to g(n; E [ O) = NNwe add either a single odd a or consecutive entriesa and a+ 1, one being even and the other odd. Inthe �rst case we haveg(n; S [ fag) = qa � qa+1 + g(n; S)1� qa ; (3.3)for a =2 S, while in the second we haveg(n; S [ fa; a+ 1g) = qa1� qa + q2a+2 � qa+2 + g(n; S)(1� qa)(1� qa+1)
(3.4)for a; a + 1 =2 S. We see from (3.2) that g(n;?)contains all of the even powers of q from 2n+ 2 to
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3n � 1. If a is odd, (3.3) implies that g(n; fag) isnonnegative and contains all of the even powers ofq from a+2 to 3n� 1. If the smallest element a ofE [O is even, (3.4) implies that g(n; fa; a+1g) isnonnegative and contains all of the even powers ofq from a+ 3 to 3n� 1. We continue by induction,noting that the single negative term in (3.3) and(3.4) is an even power past the new term whichis added, and thus is always cancelled. All of theother coe�cients must increase. We obtaing(n; E [O) = NN+SPP(q3n+4) (3.5)for n � 7 odd. �
Proposition 3.4. If Conjecture 2.2 is true and n � 7is odd , then P = fn; : : : ; 2n � 1g [ E [ O [ Qis monotone, where E, O, and Q are in Proposi-tions 3.2 and 3.3.
Proof. This follows from (3.5) and Lemma 3.1. �Suppose we generalize Proposition 3.4 to the casewhere n � 7 is odd, P = fn; : : : ; 2n�1g[E[O[A,and A � f3n�1; 3n; 3n+1; 3n+2; 3n+3; 3n+4g:From (3.5) we know thatg(n; E [O) = NN+SPP(q3n+4):We will use (3.3), (3.4), and analogous versions forthree and four in a row (see (3.6) and (3.7) below)to conclude thatg(n; E [O [A) = NN+SPP(q3n+4);for the appropriate sets A.From (3.2) there is exactly one term in g(n;?)from q3n to q3n+4, namely +q3n+3. For g(n; E [O [ A), the possible new partitions in this rangewhose di�erences we must take are:� f3n� 1g,� f3ng; fn; 2ng,� f3n+ 1g; fn; 2n+ 1g; fn+ 1; 2ng,� f3n + 2g; fn; 2n + 2g; fn + 1; 2n + 1g; fn + 2;2ng,� f3n + 3g; fn; 2n + 3g; fn + 1; 2n + 2g; fn + 2;2n+ 1g; fn+ 3; 2ng,

� f3n + 4g; fn; 2n + 4g; fn + 1; 2n + 3g; fn + 2;2n+ 2g; fn+ 3; 2n+ 1g; fn+ 4; 2ng.If 3n� 1 2 A, nonnegativity implies either 2n 2 Eor 3n 2 A. If 2n 2 E we use (3.3) with a =3n � 1 to get strict positivity past 3n + 4. Thecase where 3n � 1 =2 A and 3n 2 A is done bythe same argument. If 3n � 1 and 3n 2 A we use(3.4), and must check the coe�cient of q3n+1 ing(n; E [ O [ f3n � 1; 3ng). Again we must haveeither 3n+1 2 A or 2n+1 2 O. If 2n+1 2 O, then(3.4) gives strict positivity past 3n+ 4. Otherwise3n� 1; 3n; 3n+ 1 2 A, and we useg(n; E [O [ fa; a+ 1; a+ 2g)= qa(1� qa)(1� qa+2) + q2a+4(1� qa+1)(1� qa+2)+ q3a+3 � qa+3 + g(n; E [O)(1� qa)(1� qa+1)(1� qa+2) (3.6)for a = 3n � 1. If 2n + 2 2 E, the term q3n+2appears in g(n; E [O), and (3.6) implies thatg(n; E [O [ f3n� 1; 3n; 3n+1g) = NN+SPP(q3n+4):If 2n + 2 =2 E, clearly we must have 3n � 1; 3n;3n+ 1; 3n+ 2 2 A. This time we useg(n; E [O [ fa; a+ 1; a+ 2; a+ 3g)= qa(1� qa)(1� qa+2)(1� qa+3)+ q2a+4 + q3a+3(1� qa)(1� qa+1)(1� qa+2)+ q2a+6 + q4a+7 � qa+4 � q2a+3 + g(n; E [O)(1� qa)(1� qa+1)(1� qa+2)(1� qa+3)
(3.7)for a = 3n � 1. Since g(n;?) contains q3n+3, theqa+4 term is cancelled in (3.7). From Lemma 2.4,g(n;?) contains at least +2q6n+1; thus g(n; E[O)does also, and (3.7) implies thatg(n; E [O [ f3n� 1; 3n; 3n+ 1; 3n+ 2g)= NN+SPP(q3n+4):Finally, if 3n+3 2 A, we must have either 2n+4 2E or 3n+4 2 A, and we retain strict positivity pastq3n+4.
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Applying Lemma 3.1, we have proved the maintheorem.
Theorem 3.5. If Conjecture 2.2 is true, the mono-tone subsets P whose minimum value n is odd,n � 7, are P = fn; : : : ; 2n � 1g [ E [ O [ A [ Q,where� E is a set of even integers from f2n; : : : ; 3n�2g,� O is a set of odd integers from f2n; : : : ; 3n�2gsuch that E + 1 � O,� A is a subset of f3n�1; : : : ; 3n+3g such that if3n+ i 2 A for i 6= 2, then either 3n+ i+ 1 2 Por 2n+ i+ 1 2 P , and� Q is a subset of f3n+ 4; 3n+ 5; : : :g.For even values of n, the coe�cient of q3n+1 eas-ily implies 2n + 1 2 P . The analog of (3.2) forn � 6 that follows from Conjecture 2.2 isfn;2n�1(q)1� q2n+1 = 1� q + qn + q2n+1 + n=2Xi=0 q2n+4+2i+ 2q3n+6 + SPP(q3n+7): (3.8)A complicated injection proves that (3.8) also holdsfor n = 4. Completely analogous arguments basedupon (3.8) yield the next theorem. We do not needan even version of Lemma 2.4, because the largestgap in (3.8) from 3n+2 to 3n+6 has width 2, notwidth 4, as in (3.2).
Theorem 3.6. If Conjecture 2.2 is true, the mono-tone subsets P whose minimum value n is even,n � 4, are P = fn; : : : ; 2n� 1; 2n+ 1g [ E [ O [A [Q, where� E is a set of even integers from f2n + 2; : : : ;3n+ 1g,� O is a set of odd integers from f2n + 2; : : : ;3n+ 1g such that E + 1 � O,� A is a subset of f3n + 2; : : : ; 3n + 6g such thatif 3n + 2i 2 A then either 3n + 2i + 1 2 P or2n+ 2i+ 1 2 P , and� Q is a subset of f2n; 3n+ 7; 3n+ 8; : : :g.Propositions 2.1, 3.2 and 3.3 imply that fn;m(q) =1� q +NN if

� m 2 f2n� 1; 2n+1; 2n+3; : : : ; 3n� 2; 3n� 1;3n; : : : ;1g for n odd, or� m 2 f2n+1; 2n+3; 2n+5; : : : ; 3n+1; 3n+2;3n+ 3; : : : ;1g for n even.We cannot prove a weaker version, namely thatfor any �xed n, there is some �nite m for whichfn;m(q) = 1� q+NN. Nonetheless, we do have thefollowing result:
Proposition 3.7. Suppose n is odd . If fn;m(q) = 1�q+NN for some m = m0 � 3n�2, then fn;m(q) =1� q +NN for all m > m0.
Proof. Upon addingm0+1, from (3.1), we need onlyshow that the coe�cient of qm0+2 in fn;m0(q)�1+qis � 1. But this coe�cient equals the coe�cient ofqm0+2 in fn;1(q). From the proof of Proposition 2.1we havefn;1(q) = 1�q+qn+ q2n1� q2+ q3n(1� q2)(1� q3)+NN;and any term past q3n+1 appears with coe�cient �1 in the fourth summand. Since n is odd, q3n+1 andq3n�1 appear in the third summand. Clearly q3nappears in the fourth summand. So m0 � 3n � 3is su�cient. However, we already know that m0 =3n� 3 fails, so m0 � 3n� 2. �
4. INJECTIONSThe most natural proof of Conjecture 2.2 would bean injection from partitions of k�1 into partitionsof k. We have found such injections for n � 9, butnot for general n. One may also change Conjec-ture 2.2 to an equivalent injection on larger sets byusing the q-binomial theorem. For example,1� q + qn + 1Xk=2 qknQki=2(1� qi)= fn;m(q)�1 + 1Xk=1 qk(m+1)Qki=1(1� qi)�:An injection from the set representing the secondterm on the right side to the set for the left side isequivalent to Conjecture 2.2. One may hope that



36 Experimental Mathematics, Vol. 3 (1994), No. 1

large values of m would make an injection easierto �nd.One may also begin withfn;n+1(q) = 11� qn � q1� qn+1 ;all of whose terms are known, and try adding n+2;n + 3; : : : ; 2n � 1, to reach Conjecture 2.2. Weuse an injection to completely classify the negativeterms for fn;n+2(q).
Theorem 4.1. Suppose n = 2l+1 > 1 is odd . All ofthe coe�cients in fn;n+2(q) are at least �1. More-over the coe�cient of qk is �1 if and only ifk = an+ b(n+ 2) + 1;where 0 � b = nj + r for 0 � r � l � 1, and0 � a � a+ j � r.For example, if n = 5, then r = 0 gives k = 1, andr = 1 gives k = 8; 13; 43 as the four negative termsof f5;7(q).
Proof. We construct an injection from partitionsof k � 1 whose parts are from fn; n + 1; n + 2g,to partitions of k whose parts are from fn; n + 1;n+ 2g.First, if n + 1 is a part, add 1 to it to create apart of size n + 2. So we assume n + 1 is not apart, and the partition is na(n + 2)b. We need apartition of an + b(n + 2) + 1 into parts of size nand n+ 1.Let b = nj + r, where 0 � r � n � 1. De-�ne the injection by mapping an+ b(n+ 2) + 1 tona+j+n�r(n+1)nj+2(r�l) if r � l, and to na+j�r�1�(n+1)nj+2r+1 if 0 � r � l�1. It is routine to checkthe map is an injection where it is well de�ned. Itis not well de�ned if and only if the multiplicity ofn in the second case is negative. These are the co-e�cients stated in Theorem 4.1, because they yielddistinct integers for an+ b(n+ 2) + 1. �
5. RELATED QUESTIONSIt is natural to ask when fn;n+m(q)=(1�q) is strictlypositive.

Theorem 5.1. There is an integer partition of k intoparts of size fn; n+ 1; : : : ; n+mg for all
k � nhn+m� 2m i:Moreover , this bound is best possible.

Proof. The q-binomial theorem implies, in terms ofq-binomial coe�cients,
fn;n+m(q)=(1� q) = 1Xi=0hm+ ii iqqin:If i � [(n+m�2)=m], the degree of the q-binomialcoe�cient is at least n�1, so all terms between qinand q(i+1)n�1 appear. �Friedman and Zeilberger [1993] proved that the co-e�cients of f2n;2n+2j(q)(1� q)jalternate in sign, so P = f2n; : : : ; 2n + 2jg isasymptotically alternating. The next theorem clas-si�es the asymptotically alternating sets P .

Theorem 5.2. P = fa1; : : : ; ang is asymptotically al-ternating if and only if �2 � �j for all j, where �jis the number of indices i such that j j ai.(As usual, k j n means that k divides n.)
Proof. We shall use the following fact from [Hardyet al. 1988]. If p(q) is a real polynomial such thatp(0) = 1 and p(q) > 0 for q < 0, there exists aninteger a such that the coe�cients of (1 � q)ap(q)alternate in sign.First assume that �2 � �j for all j. Let

p(q) = (1� q)n��2(1� qa1a2:::an)�2Qni=1(1� qai) :
It is easy to check using cyclotomic polynomialsthat p(q) is a polynomial in q with p(0) = 1, andthat p(q) has no negative real roots. Thus thereexists an integer a > 0 such that (1 � q)ap(q) is
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alternating, or equivalently (1+ q)ap(�q) has non-negative coe�cients. Since a1a2 : : : an is even, wesee that (1 + q)n��2+aQni=1(1� (�q)ai)has nonnegative coe�cients. Replacing q by �qgives the �rst part of the theorem.Next, suppose that �2 < �j for some j. Wecan assume that �j is maximized, so that j mustbe odd. We show that the coe�cients cannot bealternating, by showing that the leading terms inthe asymptotic expansion for the coe�cients arenot alternating for a large.The leading term in the partial fractions decom-position for the rational function is A=(1 � !q)�j ;where ! is primitive j-th root of 1, andA = (1� !�1)aQjjai aiQj-ai(1� !�ai) :The absolute value of the coe�cient of qk is a poly-nomial in k, whose leading term is����A!kk�j�1(�j � 1)! ����:We �rst determine which primitive j-th roots !maximize this quantity. Putting ! = exp(2�im=j),we �nd jAj = c(2 sin(�m=j))a;where c is a constant independent of a. If a islarge enough, the largest value of jAj occurs if m =12(j � 1), which is primitive. If there are manyvalues of j that maximize �j, the largest such j

with m = 12(j � 1) gives the largest value of jAj.Let J denote the largest of these values of j.Adding these two terms, we see that the sign ofthe coe�cient of qk, for large k, is the same as thatof cos��k(J � 1)J + '�;where ' is an angle independent of k. This impliesthat the sign behavior of the large coe�cients isdetermined modulo J , not modulo 2. �There is also a version of Theorem 5.2 that allowsnumerator factors. Odlyzko [1988] proved that thek-th di�erence for P = f1; 2; : : :g is initially alter-nating, and then immediately nonnegative, for alllarge values of k.
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