
Experimental Evaluation of Euler Sums
David H. Bailey, Jonathan M. Borwein and Roland Girgensohn

CONTENTS

1. Introduction

2. Numerical Techniques

3. Experimental Setup and Optimizations

4. Integer Relation Detection Algorithms

5. Applications of the PSLQ Algorithm

6. Experimental Results

7. Conjectures

Acknowledgments

References

Borwein was supported by NSERC and the Shrum Endowmentat Simon Fraser University.Girgensohn was supported by a DFG fellowship.

Euler expressed certain sums of the form1Xk=1�1 + 12m + � � �+ 1km�(k + 1)�n,

where m and n are positive integers, in terms of the Riemann

zeta function. In [Borwein et al. 1993], Euler’s results were

extended to a significantly larger class of sums of this type,

including sums with alternating signs.

This research was facilitated by numerical computations us-

ing an algorithm that can determine, with high confidence,

whether or not a particular numerical value can be expressed

as a rational linear combination of several given constants. The

present paper presents the numerical techniques used in these

computations and lists many of the experimental results that

have been obtained.

1. INTRODUCTIONIn response to a letter from Goldbach, Euler con-sidered sums of the form1Xk=1�1 + 12m + � � �+ 1km� (k + 1)�n;and was able to give explicit values for certain ofthese sums in terms of the Riemann zeta function�(t) = P1k=1 k�t. For example, Euler found anexplicit formula for the case m = 1, n � 2. Littlehas been done on this problem in the interveningyears (see [Berndt 1985] for some references).In April 1993, Enrico Au-Yeung, an undergrad-uate at the University of Waterloo, brought to theattention of one of us the curious fact that1Xk=1�1 + 12 + � � �+ 1k�2 k�2 = 4:59987 : : :
� 174 �(4) = 17�4360 ;
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based on a computation to 500,000 terms. Thisauthor's reaction was to compute the value of thisconstant to a higher level of precision in order todispel this conjecture. Surprisingly, a computationto 30 and later to 100 decimal digits still a�rmedit. (Unknown to us at that time, de Doelder [1991]had proved a related result from which the aboveidentity follows.)Intrigued by this empirical result, we computednumerical values for several of these and similarsums, which we have termed Euler sums. We thenanalyzed these values by a technique, presented be-low, that permits one to determine, with a highlevel of con�dence, whether a numerical value canbe expressed as a rational linear combination ofseveral given constants. These e�orts producedeven more empirical evaluations, suggesting broadpatterns and general conjectures. Ultimately wefound proofs for many of these experimental re-sults.

The classes of Euler sums that we will considerare listed in Table 1. Explicit evaluations of someof the constants in these classes are presented withproofs in [Borwein and Borwein 1994] and [Bor-wein et al. 1994]. Table 2 contains a summaryof these results, including some already known toEuler. Results for alternating sums are also givenin [Borwein et al. 1994].Variants of the sums de�ned in Table 1 can beevaluated by using these results. For example, forall m � 1 and n � 2 one can write1Xk=1�1 + 12m + � � �+ 1km�k�n= 1Xk=0�1 + 12m + � � �+ 1(k + 1)m�(k + 1)�n
= 1Xk=1�1 + 12m + � � �+ 1km�(k + 1)�n + 1Xk=1 k�m�n= �h(m;n) + �(m+ n):

sh(m;n) = 1Xk=1�1 + 12 + � � �+ 1k�m(k + 1)�n for m � 1; n � 2
sa(m;n) = 1Xk=1�1� 12 + � � �+ (�1)k+1k �m(k + 1)�n for m � 1; n � 2
ah(m;n) = 1Xk=1�1 + 12 + � � �+ 1k�m(�1)k+1(k + 1)�n for m � 1; n � 1
aa(m;n) = 1Xk=1�1� 12 + � � �+ (�1)k+1k �m(�1)k+1(k + 1)�n for m � 1; n � 1
�h(m;n) = 1Xk=1�1 + 12m + � � �+ 1km�(k + 1)�n for m � 1; n � 2
�a(m;n) = 1Xk=1�1� 12m + � � �+ (�1)k+1km �(k + 1)�n for m � 1; n � 2
�h(m;n) = 1Xk=1�1 + 12m + � � �+ 1km�(�1)k+1(k + 1)�n for m � 1; n � 1
�a(m;n) = 1Xk=1�1� 12m + � � �+ (�1)k+1km �(�1)k+1(k + 1)�n for m � 1; n � 1

TABLE 1. De�nitions of the Euler sums considered.
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sh(2; 2) = 32 �(4) + 12 �2(2) = 11360�4sh(2; 4) = 23 �(6)� 13 �(2)�(4) + 13 �3(2)� �2(3) = 3722680�6 � �2(3)�h(2; 2) = 12 �2(2)� 12 �(4) = 1120�4�h(2; 4) = �6�(6) + 83 �(2)�(4) + �2(3) = �2(3)� 42835�6sh(1; n) = �h(1; n) = 12n�(n+ 1)� 12 n�2Pk=1 �(n� k)�(k + 1)sh(2; n) = 13n(n+ 1)�(n+ 2) + �(2)�(n)� 12n n�2Pk=0 �(n� k)�(k + 2)+ 13 n�2Pk=2 �(n� k) k�1Pj=1 �(j + 1)�(k + 1� j) + �h(2; n)�h(2; 2n� 1) = � 122n2 + n+ 1�(2n+ 1) + �(2)�(2n� 1) + n�1Pk=1 2k�(2k + 1)�(2n� 2k)sh(2; 2n� 1) = 16 (2n2 � 7n� 3)�(2n+ 1) + �(2)�(2n� 1)� 12 n�2Pk=1(2k � 1)�(2n� 1� 2k)�(2k + 2)+ 13 n�2Pk=1 �(2k + 1) n�2�kPj=1 �(2j + 1)�(2n� 1� 2k � 2j)for m odd, n even:�h(m;n) = 12��m+nm �� 1��(m+ n) + �(m)�(n)� m+nPj=1 �� 2j�2m�1 �+ � 2j�2n�1 ���(2j � 1)�(m+ n� 2j + 1)for m even, n odd:�h(m;n) = � 12��m+nm �+ 1��(m+ n) + m+nPj=1 �� 2j�2m�1 �+ � 2j�2n�1 ���(2j � 1)�(m+ n� 2j + 1)
TABLE 2. Some explicit evaluations of Euler sumsSimilarly, let hk = Pkj=1 j�1 and h0 = 0. Then,for all n � 2,1Xk=1�1 + 12 + � � �+ 1k�2k�n= 1Xk=0h2k+1(k + 1)�n

= 1Xk=0�hk + 1k + 1�2(k + 1)�n
= 1Xk=0h2k(k + 1)�n + 2 1Xk=0hk(k + 1)�n�1

+ 1Xk=0(k + 1)�n�2= sh(2; n) + 2sh(1; n+ 1) + �(n+ 2):

2. NUMERICAL TECHNIQUESIt is not easy to na��vely compute numerical val-ues of any of these Euler sums to high precision.Straightforward evaluation using the de�ning for-mulas, to some upper limit feasible on present-daycomputers, yields only about eight digits accuracy.Because the integer relation detection algorithmdescribed in Section 4 requires much higher preci-sion to obtain reliable results, more advanced tech-niques must be employed.We present here a reasonably straightforwardmethod that is generally applicable to all Eulersums discussed in this paper. It involves the com-pound application of the Euler{Maclaurin summa-tion formula [Abramowitz and Stegun 1972, p. 806;Atkinson 1989, p. 289; Knuth 1973, p. 108], which
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can be stated as follows. Suppose f(t) has at least2p + 2 continuous derivatives on (a; b). Let D bethe di�erentiation operator, let Bk denote the k-thBernoulli number, and let Bk(�) denote the k-thBernoulli polynomial. ThenbXj=a f(j) = Z ba f(t) dt+ 12(f(a) + f(b))
+ pXj=1 B2j(2j)!(D2j�1f(b)�D2j�1f(a))+Rp(a; b); (2.1)where the remainder Rp(a; b) is given [Atkinson1989, p. 289] by

Rp(a; b) = �1(2p+ 2)! Z ba B2p+2(t� [t])D2p+2f(t) dt:We will start by demonstrating the method inthe computation of sh(m;n). Let h(k) =Pkj=1 j�1and f(t) = t�1. Note that limk!1(h(k)� ln k) is Eu-ler's constant . By (2.1),h(k) = ln k + 12 + 12k�1+ pPj=1 B2j2jk2j � pPj=1B2j2j +Rp(1; k):
Since jB2k(t)j � jB2kj for all k and for jtj � 1[Abramowitz and Stegun 1972, p. 805], the remain-der Rp(1; k) has a well-de�ned limit Rp(1;1) as kapproaches in�nity. We therefore have  = 12 �pPj=1 B2j2j +Rp(1;1), which gives
h(k) =  + ln k + 12k + pXj=1 B2j2jk2j �Rp(k;1):

NowjRp(k;1)j = ����Z 1k B2p+2(t� [t])t�2p�3 dt����� jB2p+2j(2p+ 2)k2p+2 ;

so that the remainder in the expression for h(k)is no greater than the �rst term omitted in thesummation. We can then write, for example,h(k) =  + ln k + 12k � 112k2 + 1120k4� 1252k6 + 1240k8 � 1132k10+ 69132760k12 � 112k14 + 36178160k16+O(k�18):We will use �h(k) to denote this particular approx-imation (without the error term). It is an unfor-tunate fact that �h cannot be extended to a validin�nite series. The di�culty is that for any �xedk, the Bernoulli coe�cients eventually become verylarge and the series diverges. On the other hand,it is clear that for any �xed number of terms, ap-proximations such as �h become ever more accurateas k increases to in�nity.Now consider
sh(m;n) = 1Xk=1�1 + 12 + � � �+ 1k�m(k + 1)�n:

Let c be a large integer, and letg(t) = �hm(t)(t+ 1)�n:Applying (2.1) again, we can write
sh(m;n) = cXk=1�1 + 12 + � � �+ 1k�m(k + 1)�n

+ 1Xk=c+1�1 + 12 + � � �+ 1k�m(k + 1)�n
= cXk=1 hm(k)(k + 1)�n + Z 1c+1 g(t) dt+ 12g(c+ 1)� 9Xk=1 B2k(2k)!D2k�1g(c+ 1)+O(c�18): (2.2)
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This formula suggests the following computationalscheme. First evaluate explicitly the sumcXk=1 hm(k)(k + 1)�n
for c = 108, using a numeric working precision of150 digits. Then perform the symbolic integrationand di�erentiation steps indicated in (2.2). Fi-nally, evaluate the resulting expression, again usinga working precision of 150 digits. The �nal resultshould be equal to sh(m;n) to approximately 135signi�cant digits.The di�culty and cost of performing the requi-site symbolic integration and di�erentiation opera-tions can be greatly reduced by approximating g(t)as follows: expand �hm(t), the numerator of g(t),into a sum of individual terms; write (1 + t)�n ast�n(1 + t�1)�n; expand (1 + t�1)�n using the bi-nomial theorem to 18 terms; multiply together theresulting numerator and denominator expressions;and �nally omit all terms in which the exponent oft�1 is greater than 18. The result is a linear sumof terms of the form t�p lnq(t) for modest-sized in-tegers p and q.Of course, even more accurate results can be ob-tained by utilizing more terms in the Euler{Mac-laurin expansions, although the cost of the requiredsymbolic manipulation correspondingly increases.The determination of the optimal balance betweennumeric and symbolic calculations, and of the num-ber of Euler{Maclaurin terms (at both steps) re-quired for various levels of precision, is an interest-ing problem in its own right. However, we foundthat only minor tuning of the above scheme, basedon simple timing and accuracy experiments, suf-�ced for the cases we studied.For alternating Euler sums, the scheme is a bitmore complicated. Euler{Maclaurin summationworks badly for alternating series, because oscil-lations lead to large high-order derivatives. Thesolution is to e�ectively split the summation intotwo, one positive and one negative. Consider, forinstance, the sum sa(m;n). We can write

sa(m;n) = 1Xk=1�1� 12 + � � �+ (�1)k+1k �m(k + 1)�n
= 1Xk=1� kXj=1 12j � 1 � k�1Xj=1 12j�m 1(2k)n+ 1Xk=1� kXj=1 12j � 1 � kXj=1 12j�m 1(2k + 1)n= 1Xk=1�rk + 12k�m 1(2k)n + 1Xk=1 rmk(2k + 1)n ;whererk = kXj=1 12j � 1 � kXj=1 12j = kXj=1 12j(2j � 1) :The Euler{Maclaurin formula (2.1) can then be ap-plied �rst to obtain a highly accurate approxima-tion to rk, and then to evaluate the two remainingouter summations.Another approach for alternating Euler sums isto apply the Boole summation formula [Borweinetal. 1989], which deals speci�cally with alternatingsums.

3. EXPERIMENTAL SETUP AND OPTIMIZATIONSWe have performed many computations of the typedescribed. The integrations and di�erentiations re-quired in (2.2) can be handled by a symbolic math-ematics package such as Maple [Char et al. 1991]or Mathematica [Wolfram 1991]. The explicit sum-mation of the �rst c terms, as indicated in (2.2),could be performed by utilizing the multiple preci-sion facility in the Maple or Mathematica packages.However, we found that the MPFUN multiple pre-cision package and translator developed by one ofus [Bailey] was signi�cantly faster for this purpose.Whatever software is used, this explicit summa-tion is a very expensive operation. For example,the evaluation of sh(3; 4) to 108 terms, using MP-FUN with 150-digit precision arithmetic, requirestwenty hours on a Crimson Silicon Graphics work-station. Such runs can be made, but clearly this ispressing the capabilities of current workstations.
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MPFUN is available on vector supercomputerssuch as those manufactured by Cray Research, Inc.However, for the modest precision levels typical ofthese problems (100 to 200 decimal digits), the re-sulting vector lengths are too short to yield thehigh performance these systems are capable of. Onthe other hand, multiple precision calculations ofthis type are well suited for RISC processors, be-cause they are well behaved in cache memory sys-tems.These considerations suggest that, in principle,a highly parallel computer based on RISC proces-sors could be e�ectively employed for computingthese explicit sums. However, at �rst glance thesecomputations appear not to possess any signi�cantopportunity for parallelism, since evidently boththe inner and outer sums must be simultaneouslyaccumulated.Fortunately, there are algorithms that e�cientlyexploit parallelism. The basic idea is simple: sup-pose, say, that we wish to compute sh(m;n) using(2.2), and thus need to sum hm(k)(k + 1)�n up tok = c. If the parallel system has P processor nodes,and c = JP , each processor stores a length-J runof values of k�1, then adds these values togetherand combines the sum with the accumulated sumfrom the preceding processors. More precisely:
Algorithm 1 (Parallel Summation). Suppose given Pparallel processor nodes, each with an associatedarray rp of length J + 1 and storage cells hp andsp, for 1 � p � P . All oating-point storage andarithmetic is assumed to be done in multiple pre-cision. We compute

S = JPXk=1 hm(k)(k + 1)�n
as follows:� Initialize by setting H  0 and S  0.� For p 1 to P , in parallel:� Set hp  0 and sp  0.� For j  1 to J , set rp;j  1=k (where k =j + (p� 1)J), and hp  hp + rp;j .� Set rp;J+1  1=(1 + pJ).

� For p 1 to P , sequentially:� Set H 0  H, H  H + hp, and hp  H 0.� For p 1 to P , in parallel:� For j  1 to J :� Set hp  hp + rp;j and sp  sp + hmp rnp;j+1.� For p 1 to P , sequentially:� Set S  S + sp.Note that, as stated, the algorithm maintains allthe c = JP inverses at once in the array r. In atypical computation one may have c = 108, and therequired amount of memory per node may not beavailable on some highly parallel computers. Thisdi�culty can be remedied by setting up an outerloop: we write c = IJP and run the algorithm suc-cessively for each block k 2 [(i � 1)JP + 1; iJP ],where 1 � i � I. (Naturally, H and S are main-tained from one iteration to the next instead ofbeing initialized to 0, and the value assigned torp;j is 1=k wherek = j + (p� 1)J + (i� 1)JP:)Upon completion of I iterations, S is the desiredoverall sum.This algorithm has been implemented on an In-tel Paragon parallel computer at NASA Ames Re-search Center, using MPFUN. For m = 3 and n =4 in 150-digit precision arithmetic, with P = 128,J = 213 and I = 100 (so that c = 104; 857; 600),the program took only 971 seconds. This is 110times faster than the time required by a straight-forward serial algorithm that exercises only onenode of the Paragon, and 40 times faster than thesame algorithm running on one processor of a CrayYMP, using MPFUN tuned for the Cray. It maybe possible, by reorganizing the computation, toachieve higher performance on the Cray; thus cau-tion should be exercised when interpreting this last�gure. But these results nonetheless con�rm thatAlgorithm 1, running on a highly parallel RISC su-percomputer, is a highly e�cient and cost-e�ectivesolution to the problem of computing the explicitsums required in (2.2).
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4. INTEGER RELATION DETECTION ALGORITHMSLet x = (x1; x2; : : : ; xn) be a vector of real num-bers. We say that x possesses an integer relationif there exist integers ai not all zero such thata1x1 + a2x2 + � � �+ anxn = 0:By an integer relation algorithm we mean an algo-rithm that is guaranteed (provided the computerimplementation has su�cient numeric precision) torecover the vector of integers ai, if it exists, or toproduce bounds within which no integer relationcan exist.The problem of �nding integer relations among aset of real numbers was �rst studied by Euclid, whogave an iterative algorithm which, when applied totwo real numbers, either terminates, yielding anexact relation, or produces an in�nite sequence ofapproximate relations. The generalization of thisproblem for n > 2 has been attempted by Euler,Jacobi, Poincar�e, Minkowski, Perron, Brun, andBernstein, among others. However, none of theiralgorithms has been proved to work for n > 3, andnumerous counterexamples have been found.The �rst integer relation algorithm with the de-sired properties mentioned above was discoveredby Ferguson and Forcade [1979]. In the interven-ing years a number of other integer relation algo-rithms have been discovered, including a variant ofthe original algorithm [Ferguson 1987], the LLL al-gorithm [Lenstra et al. 1982], the HJLS algorithm[Hastad et al. 1988], which is based on LLL, andthe PSOS algorithm [Bailey and Ferguson 1989].Recently a new algorithm, known as the PSLQalgorithm, was developed by Ferguson and one ofus [Ferguson and Bailey 1991]. It appears to com-bine some of the best features separately possessedby previous algorithms, including fast run times,numerical stability, numerical e�ciency (that is, itsuccessfully recovers a relation when the input isknown to only limited precision), and a guaranteedcompletion in a polynomially bounded number ofiterations. We present here a simpli�ed but equiv-alent version of PSLQ. The proof of the algorithm

and notes for e�cient implementations are givenin [Ferguson and Bailey 1991].
Algorithm 2 (PSLQ). Let x be the the input real vec-tor of length n, and let nint denote the nearest in-teger function (for exact half-integer values, de�nenint to be the integer with greater absolute value).Let  = p4=3. Let A and B be n � n matrices,and H an n� (n� 1) matrix.
Initialization� Set A and B to the identity.� For k  1 to n, compute sk  qPnj=k x2j .� For k  1 to n, set yk  xk=s1 and sk  sk=s1.� (Initialize H ) For i 1 to n:� for j  i+ 1 to n� 1, set Hij  0;� if i � n� 1, set Hii  si+1=si;� for j  1 to i� 1, set Hij  �yiyj=(sjsj+1).� (Perform full reduction on H while updating y, A, B)For i 2 to n:� for j  i� 1 to 1 by �1:� set t nint(Hij=Hjj) and yj  yj + tyi;� for k  1 to j, set Hik  Hik � tHjk;� for k  1 to n, set Aik  Aik � tAjk andBkj  Bkj + tBki.
Main loop� Repeat until precision is exhausted or a relationhas been detected (see termination test at theend):� Select m such that ijHiij is maximal when i =m.� (Perform block reduction on Hwhile updating y, A,B) For i m+ 1 to n:� for j  min(i� 1; m+ 1) to 1 by �1:� set t nint(Hij=Hjj) and yj  yj + tyi;� for k  1 to j, set Hik  Hik � tHjk;� for k  1 to n, set Aik  Aik � tAjk andBkj  Bkj + tBki.� Exchange entries m and m + 1 of y, corre-sponding rows of A and H, and correspondingcolumns of B.� If m � n� 2, update H as follows:
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� Set t0  pH2mm +H2m;m+1, t1  Hmm=t0and t2  Hm;m+1=t0.� For i  m to n, set t3  Him, t4  Hi;m+1,Him  t1t3 + t2t4, Hi;m+1  �t2t3 + t1t4.� (Norm bound) Set M  1=maxj jHjj, where Hjdenotes the j-th row of H. There can exist norelation vector whose Euclidean norm is lessthan M .� (Termination test) If the largest entry of A exceedsthe level of numeric precision used, then preci-sion is exhausted. If the smallest entry of they vector is less than the detection threshold, arelation has been detected and is given in thecorresponding column of B.Regarding the termination test, it sometimes hap-pens that a relation is missed at the point of po-tential detection because the y entry is not quiteas small as the detection threshold being used (thethreshold is typically set to the \epsilon" of theprecision level). When this happens, however, onewill note that the ratio of the smallest and largesty vector entries is suddenly very small, providedsu�cient numeric precision is being used.The actual probability distribution of this ratiois not known for the PSLQ algorithm. Most likely,however, the probability of this ratio being lessthan " is closely approximated by a modest-sizedconstant times ". This is because the entries of thevector y are related to the iterates of the continuedfraction algorithm, which are distributed accordingto the Kuzmin distribution [Knuth 1981, p. 346].In a normal run of PSLQ, prior to the detection ofa relation, this ratio is seldom smaller than 0:01.Thus if this ratio suddenly decreases to a very smallvalue, such as 10�20, it is almost certain that a re-lation has been detected|one need only adjust thedetection threshold for the algorithm to terminateproperly and output the relation. When detectiondoes occur, this ratio may be thought of as a \con-�dence level" of the detection.In practice, the PSLQ algorithm is very e�ec-tive in �nding relations. For example, in testsdescribed in [Ferguson and Bailey 1991], relations

were detected for input vectors in dimensions up ton = 82, the coe�cients of the relation having sizeup to 1014. As a general rule, one can expect todetect a relation with coe�cients of size 10m for aninput vector of dimension n if the input is knownto somewhat greater than mn digit precision, andprovided that computations are performed usingat least this level of numeric precision.
5. APPLICATIONS OF THE PSLQ ALGORITHMInteger relation detection algorithms have a num-ber of applications in computational mathematics.One is to �nd out whether or not a given constant�, whose value can be computed to high precision,is algebraic of some degree n or less. This is doneby computing the vector x = (1; �; �2; : : : ; �n) tohigh precision and then applying an integer rela-tion algorithm to the vector x. If a relation isfound, this integer vector is precisely the set of co-e�cients of a polynomial satis�ed by �. When arelation is not found, the resulting bound meansthat � cannot possibly be the root of a polynomialof degree n, with coe�cients of size less than theestablished bound. Even negative results of thissort are often of interest.One of us has performed several computationsof this type [Bailey and Ferguson 1989], establish-ing, for example, that if Euler's constant  sat-is�es an integer polynomial of degree 50 or less,the Euclidean norm of the coe�cients must exceed7� 1017. Computations of this sort have also beenapplied to study a certain conjecture regarding theRiemann zeta function. It is well known [Borweinand Borwein 1987] that �(2), �(3) and �(4) equal,respectively,
3 1Xk=1 1k2� 2kk � ; 52 1Xk=1 (�1)k�1k3� 2kk � ; 3617 1Xk=1 1k4� 2kk � :This has led some to suggest that

�(5) = Z5 1Xk=1 (�1)k�1k5� 2kk �
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for Z5 a simple rational or algebraic number. Un-fortunately, integer relation calculations [Bailey]have established that if Z5 satis�es a polynomialof degree 25 or less, the Euclidean norm of the co-e�cients must exceed 2� 1037.The present application of Euler sum constantsis well suited to analysis with integer relation algo-rithms. We will present but one example of thesecomputations. Considersa(2; 3) = 0:156166933381176915881035909687 : : :(see Table 1 for the de�nition). Based on expe-rience with other constants, we conjectured thatthis constant satis�es a relation involving homoge-neous combinations of �(2), �(3), �(4), �(5), ln(2),Li4( 12) and Li5( 12), where Lin(x) =P1k=1 xkk�n de-notes the polylogarithm function. The numericalvalues of these constants, to 30 decimal digits, are:�(2) = 1:644934066848226436472415166646 : : :�(3) = 1:202056903159594285399738161511 : : :�(4) = 1:082323233711138191516003696541 : : :�(5) = 1:036927755143369926331365486457 : : :ln(2) = 0:693147180559945309417232121458 : : :Li4( 12) = 0:517479061673899386330758161898 : : :Li5( 12) = 0:508400579242268707459108849258 : : :The terms involving these constants with degree�ve (see Section 7 for the de�nition of this term)are the following: Li5( 12), Li4( 12) ln(2), ln5(2), �(5),�(4) ln(2), �(3) ln2(2), �(2) ln3(2), �(2)�(3). Whensa(2; 3) is augmented with this set of terms, allcomputed to 135 decimal digits accuracy, and theresulting vector of length 9 is input to the PSLQalgorithm, the relation (480;�1920; 0; 16; 255; 660;�840;�160; 360) is detected at iteration 390. Solv-ing this relation for sa(2; 3), we obtain the formulasa(2; 3) = 4Li5( 12 )� 130 ln5(2)� 1732 �(5)� 118 �(4) ln(2)+ 74 �(3) ln2(2) + 13 �(2) ln3(2)� 34 �(2)�(3)= 4Li5( 12 )� 130 ln5(2)� 1732 �(5) + 11720�4 ln(2)+ 74 �(3) ln2(2) + 118�2 ln3(2)� 324�2 �(3)

(recall that �(2n) = (2�)2njB2nj=(2(2n)!) for n in-teger).When the relation is detected, the minimum andmaximum y vector entries are 1:60 � 10�134 and5:98� 10�29, whose ratio is of the order of 10�105.Thus the con�dence level of this detection is veryhigh.Although we were using 135-digit input valuesand 150-digit working precision when we �rst de-tected this relation, the fact that the maximumy-vector entry is only 10�29 at detection impliesthat such high levels of numeric precision are notrequired in this case. Indeed, the relation can besuccessfully detected by the PSLQ algorithm us-ing only 50-digit input values and 50-digit workingprecision.
6. EXPERIMENTAL RESULTSMany special cases of the proven results listed inTable 2 were �rst obtained using the experimentalmethod presented in Sections 2-4. In addition, wehave obtained a number of experimental identitiesfor which formal proofs have not yet been found.Table 3 lists some of them.It should be emphasized that the results in Ta-ble 3 are not established in any rigorous mathemat-ical sense by these calculations. However, in eachcase the \con�dence level" (see Section 3) of thesedetections is better than 10�50, and in most casesis in the neighborhood of 10�100. Table 3, togetherwith the results in [Borwein et al. 1994], gives allvalues of sh(m;n) form+n � 7 andm+n = 9, andall values of the alternating sums for m + n � 5.Some of these identities can be proved by ad hocmethods, based on [Lewin 1981]; they are indicatedwith an asterisk.In many other cases we were not able to obtaina formula for the Euler sum explicitly in terms ofvalues of the Riemann zeta, logarithm and poly-logarithm functions, but we were able to obtainrelations involving two or more Euler sums of thesame degree (where by \degree" we mean the sumof the indices m and n of the constant). Some of
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�sh(3; 2) = 152 �(5) + �(2)�(3)�sh(3; 3) = � 3316 �(6) + 2�2(3)sh(3; 4) = 11916 �(7)� 334 �(3)�(4) + 2�(2)�(5)sh(3; 6) = 19724 �(9)� 334 �(4)�(5)� 378 �(3)�(6) + �3(3) + 3�(2)�(7)sh(4; 2) = 85924 �(6) + 3�2(3)sh(4; 3) = � 1098 �(7) + 372 �(3)�(4)� 5�(2)�(5)sh(4; 5) = � 292 �(9) + 372 �(4)�(5) + 334 �(3)�(6)� 83 �3(3)� 7�(2)�(7)sh(5; 2) = 185516 �(7) + 33�(3)�(4) + 572 �(2)�(5)sh(5; 4) = 8909 �(9) + 66�(4)�(5)� 429524 �(3)�(6)� 5�3(3) + 2658 �(2)�(7)sh(6; 3) = � 307312 �(9)� 243�(4)�(5) + 20974 �(3)�(6) + 673 �3(3)� 6518 �(2)�(7)sh(7; 2) = 13470136 �(9) + 156978 �(4)�(5) + 2955524 �(3)�(6) + 56�3(3) + 32874 �(2)�(7)�sa(2; 2) = 6Li4( 12 ) + 14 ln4(2)� 298 �(4) + 32 �(2) ln2(2)�sa(2; 3) = 4Li5( 12 )� 130 ln5(2)� 1732 �(5)� 118 �(4) ln(2) + 74 �(3) ln2(2) + 13 �(2) ln3(2)� 34 �(2)�(3)�sa(3; 2) = �24Li5( 12 ) + 6 ln(2) Li4( 12 ) + 920 ln5(2) + 65932 �(5)� 28516 �(4) ln(2) + 52 �(2) ln3(2) + 12 �(2)�(3)�ah(2; 2) = �2Li4( 12 )� 112 ln4(2) + 9948 �(4)� 74 �(3) ln(2) + 12 �(2) ln2(2)�ah(2; 3) = �4Li5( 12 )� 4 ln(2) Li4( 12 )� 215 ln5(2) + 10732 �(5)� 74 �(3) ln2(2) + 23 �(2) ln3(2) + 38 �(2)�(3)�ah(3; 2) = 6Li5( 12 ) + 6 ln(2) Li4( 12 ) + 15 ln5(2)� 338 �(5) + 218 �(3) ln2(2)� �(2) ln3(2)� 1516 �(2)�(3)�aa(2; 2) = �4Li4( 12 )� 16 ln4(2) + 3716 �(4) + 74 �(3) ln(2)� 2�(2) ln2(2)�aa(2; 3) = 4 ln(2) Li4( 12 ) + 16 ln5(2)� 7932 �(5) + 118 �(4) ln(2)� 1�(2) ln3(2) + 38 �(2)�(3)�aa(3; 2) = 30Li5( 12 )� 14 ln5(2)� 181364 �(5) + 28516 �(4) ln(2) + 218 �(3) ln2(2)� 72 �(2) ln3(2) + 34 �(2)�(3)
TABLE 3. Experimentally detected identities. Those marked with an asterisk have been formally proved.these relations are shown in Table 4. This is nota complete list; we have obtained numerous otherrelations of this type. The con�dence level of eachof these relations is better than 10�25. These rela-tions are nonredundant, in the sense that for eachone no relation involving fewer constants can bedetected (we check this by repeating the runs witheach constant removed in turn).In still other cases we were not successful in �nd-ing relations, but we were able to obtain bound re-sults from the PSLQ program that exclude a largeclass of potential relations among the list of candi-date terms. These results do not conclusively provethat there is no such relation, only that if one ex-ists, the Euclidean norm of its coe�cients must be

larger than a certain bound. Some of these \nega-tive" results are listed in Table 5.One interesting byproduct of the bound resultsin Table 5 is that there are no modest-sized inte-ger relations among homogeneous products of �(k)with degree 12 or less (see Section 7), except ofcourse the well-known relations when all k are evenintegers.The bound result for ah(1; 5) in Table 5 con-�rms the observation in [Borwein et al. 1994] thatah(1; n), which equals �h(1; n), does not appear topossess an explicit evaluation when n is odd andgreater than three. The bound results for �h(2; 6)and �h(2; 8) con�rm the observation in [Borwein etal. 1994] that �h(2; n) does not appear to possess
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84549sh(1; 7)+211468sh(2; 6)+148902sh(3; 5)�13360sh(4; 4)�1978sh(5; 3)�127�(8)+336�(3)�(5)�120�(2)�2(3)�24sh(2; 6)�96sh(3; 5)�2718587sh(1; 8)�164525664sh(2; 7)�178042944sh(3; 6)�88947862sh(4; 5)+3863940sh(5; 4)+672100sh(6; 3)�5138sh(1; 8)�566656sh(2; 7)�624016sh(3; 6)�316988sh(4; 5)+6480sh(5; 4)+33605�(3)�(6)�14269408sh(1; 9)+2578470sh(2; 8)+2815376sh(3; 7)+5814550sh(4; 6)+6238884sh(5; 5)+3938912sh(6; 4)+1122784sh(7; 3)�1860sh(8; 2)+63164285�(10)321�(10)�440�2(5)�720�(3)�(7)�80�2(3)�(4)+560�(2)�(3)�(5)�40sh(2; 8)+160sh(3; 7)�1691755503sh(1; 10)�3172589688sh(2; 9)+837511504sh(3; 8)�7302717576sh(4; 7)�13958660016sh(5; 6)�12910466064sh(6; 5)�7099332912sh(7; 4)�1773212688sh(8; 3)+658360sh(9; 2)+53491434679�(11)�21868248971�(2)�(9)�589�(11)+322�(5)�(6)+756�(4)�(7)+254�(3)�(8)�336�2(3)�(5)�368�(2)�(9)+80�(2)�3(3)�16sh(3; 8)�48sh(4; 7)70663�(12)�165840�(5)�(7)�121616�(3)�(9)�33168�2(3)�(6)+5528�4(3)+49752�(2)�2(5)+99504�(2)�(3)�(7)�16584sh(2; 10)+22112sh(3; 9)1152sa(2; 4)+640sa(3; 3)�7680 ln(2) Li5(1=2)+64 ln6(2)�1881�(6)+7440�(5) ln(2)�1680�(4) ln2(2)�1120�(3) ln3(2)+864�(3)�(3)�640�(2) ln4(2)�432�(2)�(3) ln(2)
TABLE 4. Expressions that have been experimentally found to vanish.an explicit evaluation for n even and greater thanfour.The numerical values of the various Euler sumconstants, which were used to obtain the resultslisted in Tables 3{5, were computed as described inSections 2 and 3. The explicit sum in formula (2.2)was computed using Algorithm 1 (or its equivalentfor alternating sums), on the Intel Paragon parallelcomputer system, with P = 128, J = 213, I = 100.The symbolic operations indicated in (2.2) wereperformed in Maple. The �nal numerical valueswere checked by comparing them with the valuesobtained from Algorithm 1 (or equivalent) withI = 99 instead of 100.

7. CONJECTURESIt is not known whether closed-form evaluationsof the type listed in Table 3 exist for all of thevarious classes of Euler sums studied in this paper.It is possible that such formulas always exist and

could be uncovered by the techniques described inthis paper, if one could only deduce the form of themissing terms. We present this as an open questionfor further research.One principle we have observed in this work isthat in every case where we have obtained a re-lation, this relation has always involved homoge-neous terms, in the sense that the degree m + nof each term involved in the relation is the same.(For these purposes, the degree of �(k) is taken tobe k, as is the degree of Lik( 12), while that of ln(2)is taken as one.)Although we believe this principle may hold ingeneral, we have no idea how to prove it. We there-fore present it as a conjecture. However, since itis important to limit the number of constants in-put to the PSLQ algorithm in order to enhancethe possibility of detecting a relation, we have of-ten used this principle in selecting the candidateconstants.
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Set of constants that do not appear to be linked by a relation Boundsh(2; 6); �(8); �(3)�(5); �(2)�2(3) 7:06� 1041sh(3; 5); �(8); �(3)�(5); �(2)�2(3) 4:31� 1041sh(4; 4); �(8); �(3)�(5); �(2)�2(3) 1:63� 1040sh(2; 8); �(10); �2(5); �(3)�(7); �2(3)�(4); �(2)�(3)�(5) 1:28� 1026sh(3; 7); �(10); �2(5); �(3)�(7); �2(3)�(4); �(2)�(3)�(5) 3:03� 1026sh(4; 6); �(10); �2(5); �(3)�(7); �2(3)�(4); �(2)�(3)�(5) 3:33� 1024sh(3; 8); �(11); �(5)�(6); �(4)�(7); �(3)�(8); �2(3)�(5); �(2)�(9); �(2)�3(3) 2:01� 1017sh(4; 7); �(11); �(5)�(6); �(4)�(7); �(3)�(8); �2(3)�(5); �(2)�(9); �(2)�3(3) 1:89� 1017sh(2; 10); �(12); �(5)�(7); �(3)�(9); �(3)�(4)�(5); �2(3)�(6); �4(3); �(2)�2(5); �(2)�(3)�(7) 1:43� 1015sh(3; 9); �(12); �(5)�(7); �(3)�(9); �(3)�(4)�(5); �2(3)�(6); �4(3); �(2)�2(5); �(2)�(3)�(7) 8:21� 1014sh(4; 8); �(12); �(5)�(7); �(3)�(9); �(3)�(4)�(5); �2(3)�(6); �4(3); �(2)�2(5); �(2)�(3)�(7) 1:06� 1015sh(1; 9); sh(2; 8); sh(3; 7); sh(4; 6); sh(5; 5); sh(6; 4); sh(7; 3); sh(8; 2) 2:31� 1016sh(1; 10); sh(2; 9); sh(3; 8); sh(4; 7); sh(5; 6); sh(6; 5); sh(7; 4); sh(8; 3); sh(9; 2) 1:05� 1015sh(1; 10); sh(2; 9); sh(3; 8); sh(4; 7); sh(5; 6); sh(6; 5); sh(7; 4); sh(8; 3); sh(9; 2); �(11) 6:54� 1013sh(1; 11); sh(2; 10); sh(3; 9); sh(4; 8); sh(5; 7); sh(6; 6); sh(7; 5); sh(8; 4); sh(9; 3); sh(10; 2) 6:77� 1013sh(1; 11); sh(2; 10); sh(3; 9); sh(4; 8); sh(5; 7); sh(6; 6); sh(7; 5); sh(8; 4); sh(9; 3); sh(10; 2); �(12) 2:67� 1011ah(1; 5) plus A6 (see caption) 7:29� 1010sa(2; 4) plus A6 6:08� 1010sa(3; 3) plus A6 5:95� 1010sa(2; 5) plus A7 2:63� 106sa(3; 4) plus A7 4:73� 106sa(2; 5); sa(3; 4); sa(4; 3); sa(5; 2) plus A7 3:16� 105�h(2; 6); �(8); �(3)�(5); �(2)�2(3) 6:81� 1041�h(3; 5); �(8); �(3)�(5); �(2)�2(3) 6:26� 1041�h(2; 8); �(10); �2(5); �(3)�(7); �2(3)�(4); �(2)�(3)�(5) 3:92� 1026�h(3; 7); �(10); �2(5); �(3)�(7); �2(3)�(4); �(2)�(3)�(5) 2:78� 1024
TABLE 5. Relation exclusion bounds. The right-hand column gives the minimum Euclidean norm of anypossible integer relation involving the listed constants. The abbreviations used are: A6 = fLi6( 12 ); ln(2) Li5( 12 );ln2(2) Li4( 12 ); ln6(2); �(6); �(5) ln(2); �(4) ln2(2); �(3) ln3(2); �2(3); �(2) ln4(2); �(2)�(3) ln(2)g; A7 = fLi7( 12 );ln(2) Li6( 12 ); ln2(2) Li5( 12 ); ln3(2) Li4( 12 ); ln7(2); �(7); �(6) ln(2); �(5) ln2(2); �(4) ln3(2); �(3) Li4( 12 ); �(3) ln4(2);�(3)�(4); �2(3) ln(2); �(2) Li5( 12 ); �(2) ln5(2); �(2)�(5); �(2)�(3) ln2(2)g.
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The modular properties of the sums �h(m;n) arebeing investigated by D. Zagier (private communi-cation). His work provides an alternate, abstractproof that �h(m;n) evaluates in terms of zeta func-tions if m+ n is odd. This corresponds to our re-sults and still leaves the casem+n even as an openproblem.
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