Computation of Self-Similar Solutions for

Mean Curvature Flow
David L. Chopp

CONTENTS

1. Introduction

2. The Algorithm

3. Tests for Self-Similarity

4. Experimental Results

5. Conclusion and Future Work:

Work supported in part by a National Science Foundation
Fellowship, by the Office of-Naval Research under contract
N0001493WX22029, by DARPA/AFOSR under contract
F-49620-87-C-0065, and by the Applied Mathematical Sciences
Subprogram of the Office of Energy- Resea.rch U.s. Depa.rtment
of Energy. under contract DE-AC03-76SF00098.

We describe a numerical algorithm to compute surfaces that
are approximately self-similar under mean curvature flow. The
method restricts computation to a two-dimensional subspace
of the space of embedded manifolds that is likely to contain a
self-similar solution. '

Using the algorithm, we recover the self-similar torus of An-
genent and find several surfaces that appear to approximate
previously unknown self-similar surfaces. Two of them may
prove to be counterexamples to the conjecture of uniqueness
of the weak solution. for mean curvature flow for surfaces.

1. INTRODUCTION

Curves and surfa.ces that change. by a sumla.nty
transformation under mean curvature flow have be-
come a focus of attention in the study of this type

of flow. Apart from their intrinsic interest, there
appears to be a link between singularities in motion
by mean curvature and self-similar shapes. This
connection is displayed by Grayson’s result [1987]
that curves in R? shrink to round points under mo-
tion by curvature. This can be rephrased by saying
that every closed embedded curve in R? flows to-
ward a self-similar solution as it approaches singu-
larity, and that a circle is the only such self-simijar
solution.

For two-dlmensmnal manifolds in R®, the prob-
lem is much more difficult and not as well under-
stood. However, recent results mdlcate that self-
similar solutions and singularities are. connected
here as well. For example, Huisken [1984] showed
that convex manifolds shrink to spheres under mo-
tion by mean curvature. Grayson [1989] was able
to prove that the convexity condition is necessary.
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Recently, Angenent [1992) proved the existence of
a self-similar torus, then ‘used that torus to give
an alternative proof that the convexity condition
is necessary. This demonstrates the utility of self-
similar solutions in the study of singularities. The
best result showing the link between self-similarity
and singularity is by Huisken [1991), who proves
that if the curvature at a singularity is bounded
by ¢(T — t)~!/2, where t is time, T is the time of
singularity and c is a constant, then the surface
evolves towards a self-similar surface at the point
of singularity.

A second theoretical question involves the weak
solution for mean curvature flow. It is known that,
for self-intersecting plane curves, the weak solu-
tion for curvaturedevelops a nonempty interior at
the point of self-intersection. But Grayson'’s result
shows that a smooth curve will not self-intersect,
and henge not develop an interior.

We may ask the same question about higher-
dimensional surfaces flowing by mean curvature.
For instance, it is known that a fat torus of rev-
olution develops a singularity in the center of the
hole as it evolves towards a sphere, while a skinny
torus evolves towards a circle as the cross-sectional
area goes to zero (see Section 2.2). It was once
conjectured that a torus with an initial ratio on
the boundary of these two regimes would develop
an interior. However, the discoveries by Angenent
and Huisken have shown that this particular torus
evolves instead into a self-similar torus. Whether
a smooth injtial surface can develop an interior re-
mains an opéen question, but we believe that two
examples given below (Sections 4.4 and 4.6) may
lead to an affirmative answer.

In related work, some progress on the occurence
of singularities and evolution past singularities for
surfaces of revolution has been made recently [Alt-
shuler et al. 1993].

Currently, very few examplés of two-dimensional
embedded self-similar solutions for motion by mean
curvature have been proved to exist, all of them be-
ing surfaces of revolution. In this paper, we design
a numerical algorithm to-compute approximations

to other self-similar solutions, and give strong nu-
merical evidence that these are good approxima-
tions.

We describe the algorithm in Section 2, includ-
ing a modified form of the differential equation for
motion by mean curvature. In Section 3 we discuss
ways of testing the reliability of the results. Sec-
tion 4 displays several examples of surfaces com-
puted by the algorithm, and Section 5 concludes
with a discussion of future research directions.

2. THE ALGORITHM

2.1. Overview

The algorithm we use is based upon ‘the level set
method for propagating interfaces introduced by
Osher and Sethian {1988]. The numerical methods
which led up to the level set method can be found
in [Sethian 1985), and for a review of numerical
methods for curvature flow see [Sethian 1989]. The
theoretical aspects of this method were studied by
Evans and Spruck {1991; 1992]. For further theo-
retical work, see also [Chen et al. 1991; Evans et
al. 1992; Falcone et al. 1990; Giga and Goto 1992].
The level set method has been applied to a num-
ber of other applications: see, for example, [Chopp
1992; 1993; Chopp and Sethian 1993; Sethian and
Strain 1992).

We give a brief overview of the level set method
as it applies here. The idea is to represent the
evolving two-dimensional manifold as the level set
(for each t) of a function p of z € R® and ¢t. In
symbols, the surface at time ¢t is

Sx(t) = {z € R : p(z,t) = A}

Motion by mean curvature can now be expressed
in terms of ¢ by

¢t(x’ t) = Hw(x)t) ||V<p(:z:,t)||,

where H,(z,t) is the mean curvature of the level
set S,(z.)(t) containing z at time t. Notice that
this equation does not depend upon the value of
the level set: each surface moves according to its
own mean curvature. In this way, a whole family
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of initial surfaces—-the level sets S)(0)—evolves by
mean curvature simultaneously. It is this property
that is at the heart of our algorithm.

2.2. The Search for Self-Similar Surfaces: An Example

We introduce the method using the problem of
finding a self-similar torus. Let.M be the space
of all compact two-dimensional differentiable man-
ifolds embedded in R®, modded out by the group of
similarity transformations (that is, the group gen-
erated by rigid motions and uniform scalings).

Let C be the circle of radius one and center at the
origin in the xy-plane, and define S,(0) as the tube
of radius A around C in R3. The family S,(0), for
A € (0,1), is a one-parameter subspace of M. For
each ), let S,(t) be the result of moving S,(0) by
mean curvature to time ¢, and define T), as the time
to singularity for the initial surface S, (0). The set

U={(\t): A€ (0,1),t€[0,T))} c R?

parametrizes the subspace of M consisting of sur-
faces that arise by mean curvature flow from some

5,(0) (Figure 1).

t=T),

S;(t)
$x(0)

O —

A=0
FIGURE 1. In the space M of embedded surfaces

modulo similarities, this is the subspace that can

be reached by mean curvature flow from the round
tori Sy (0)

Next, let p(A,t) be the fatness of the torus Sx(t),
defined as the ratio of the height in-the z-direction

to the radius of the hole (Figure 2). (This defini-
tion, of course, depends on the fact that the surface
remains symmetric about the z-axis and through
the ry-plane). We have p(A,0) = A/(1 = A). For A

c—-— -

-
|

FIGURE2. By definition, p(}, t) is the ratio mp/m,
for the torus p(A,¢t).

small, p(A, t) starts near zero and decreases with t,
approaching 0 as t — T,: the torus gets ever skin-
nier, and at time T turns into a circle. Conversely,
for A near one, p(\,t) starts large and increases in
time, approaching co as t — T): the torus gets fat-
ter, and develops a singularity at the center. Thus
p(A,t) records the way in which a singularity de-
velops.

There is a critical value )\ on the boundary of
the two regimes: as t — T, the ratio p(A,t) ap-
proaches infinity if A > )Ag, and approaches zero if
A < Ag. Because we have continuous initial data, it
is reasonable to hope that, for A critical, p(Xo, £) is
asymptotically constant, approaching some finite
constant pp > 0. Thus, our picture of U including
trajectories should look like Figure 3. Our goal,
then, is to locate A.

In general, this is hard to do. Regardless of how
small |A — Xo] > 0 is, p(), t) diverges from p(Ag, )
as t — T: the system is unstable. Figure 4 illus-
trates this divergence by showing several trajecto-
ries of p(A, t) for the tori S, (t) evolving under mean
curvature flow. ’

Therefore, we must find some other means of lo-
cating the trajectory p(Ao, t). If the curvature.does
not blow up too fast, it is-reasonable to conclude
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p(X0,0) P(AO,TAD)

t=TA°

FIGURE3. Qualitative diagram of the (t, p) plane,

with the trajectories p(A, t) for various A. The tra-

jectory A = ) is the only one that tends to a finite
(nonzero) value of p.

-

% ‘ ] B 2 3

FIGURE 4. Computed trajectories of Sy (t) under
mean curvature flow. Each time unit in the hori-
zontal axis represents 10* iterations.

that (9p/3t)(A\o,t) — 0 as t — T),. Thus one
strategy for finding Ay is to keep track, as t pro-
gresses, of a value L of A for which (8p/8t)(L,t) =
0. This defines a curve L(t). If the surface Si(t)
tends toward a limit, this limit is the candidate
self-similar solution.

2.3. The General Algorithm

We now give the details of the general method.
In this more general context, we again select a
one-parameter family of initial surfaces S\(0), the

level sets of some function ¢(z,0). We then con-
sider (conceptually) the two-parameter family of
surfaces Si(t), with t € [0,7)), and pick some
function p(A,t) depending on the shape of S,(t),
to replace the ratio m,/m, of Figure 2.

Recall that the level set formulation for curva-
ture flow can be expressed as

e = H, ||Vl
We define a new function 1 as

e t) = 2L

where o(t) is a stretching function and L(t) is a
level set switching function, both defined below.
Differentiating this equation with respect to ¢ and
combining with (2.1) produces a new partial dif-
ferential equation for -
o'(t) ,
Y= P (- VY —2(y + L(t))) + Hy V9l - L'(t)
(2:2)
Here Hy is the mean curvature of the level surface
of ¥ that goes through (z,t).

The functions o(t) and L(t) are determined dy-
namically. We choose o(t) so that the zero set of
% has constant volume for all t. If we assume the
interior of a surface is given by ¢(z,t) < 0, and let

V() = Vol(e(,)(0) = [ av,

{z:p(2,2) <0}

(2.1)

we get (
Vv t) 1/3
O(t) = (_V(—O))
80 that
o) _ Vit)
a(t) ~ 3V(Y)

The functional V’(t)/3V (t) is independent of scale,
8o we can evaluate it using v instead of ¢. We
approximate it numerically by assuming $(z,t) =
¥(z,t) and then letting ¢(z, t) low by mean curva-
ture alone (i.e., with o kept fixed) to @(z,t + At).
By looking at the change of volume from this flow,
we can compute V’(t)/3V(t). This approximation
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is convenient because it is easy to separate the cur-
vature flow part of the evolution for 4 from the
stretching and level switching part, as we will show.

The level function L(t) is defined by the equation

dp
5 (L(2),1) =0

This is the L(t) discussed at the end of Section 2.2.

We compute ¥(z,t) numerically in a three step
explicit scheme. The three steps are summarized as
follows, where ¥, := Y(Tijk, t,) and At = t, 1 —tn:

o Set Y41 — Yn + "V'd’n” H(¢n)At'

o Set Vo1 «— Voly;;;(0) and V, — Vol 4,1(0).
Find L4 such that p has the same value for
the L,;-level surfaces of 1, and ,.,,.

e Correct ¥n41 by adding

Voar1 —Va
3V,

The first step is identical to the standard explicit
numerical implementation of (2.1). This is where
the curvature flow terms appear. In the second
step, o(t) and L(t) are determined according to
information obtained in the first step. The third
step makes the corrections to ¥ needed to take
into account stretchmg and level set shifting, Note
that combining the first and third steps results in
a strmghtforward explicit discretization of (2.2).

In all cases, we use central differencing to com-
pute spatial derivatives, except for the term z- V1),
where we use upwind differencing:

,x'V’lﬁn

(- Vn —2(¥n+L,)) — (Lns1 — Ln).

= ma.x(O, ml)Dl_’d)n + min((); xl)D}ﬂ//ﬂ.
+ max(0, 22) D2 4, + min(0, ;) D3 ),
+ m&X(O, xa)Did’n + min(01 CC3)D3_¢",,

where Di"/’n = :t(¢(x(li1)jk’ n) w(muka n))/Am
and so on. This follows the discretization usedin
[Osher and Sethian 1988].

If we apply this algorithm to the same initial
conditions ‘that produced Figure 4, the trajectories
are transformed to those in Figure 5. The dashed
line represents: the:zero set of 4 which will be our
computed self-similar surface as ¢ approaches T),.

0 1 2 3
FIGURE 5. Trajectories of the level sets of i for

the torus example, computed using the algorithm
of Section 2.3 (compare Figure 4).

We conclude this section with two refinements
to the algorithm just described.

2.4. Delay of Level Switching

Recall that (Op/0t)(Ag,t) — 0 as t — T),; but
this is expected only in a neighborhood of T),. In
practice, the value of A that makes (8p/8t)(), 0)
vanish may be quite far from )y, causing numerical
problems for small ¢t. For that reason, we make a
preliminary estimate of Ao, say Iy, using bisection,
and replace the updating of L(t) in the second step
of the algorithm by:

e Find ! such that p has the same value for the
L, ,-level surfaces of ¥, and ¥, 4,. If |L,, =] <
€y set Lpy) «— l; otherwise set L4, « lo.

Thls amendment delays tne traversing of level sets
until ¢ is in a neighborhood of T),. We can see why
this is a necessary precaution for small ¢ by looking
at Figure 4. ‘The function p(L(t),t), which is not
shown but is sandwiched between those trajecto-
ries going to +o00 and those going to 0, may not
have a zero slope until long after ¢ = 0. For some
computations, this can lead the function L(t) too
far astray.
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2.5. Time Scale and Reinitialization

It is worth noting that the equation of motion used
here differs from the equations used by Huisken
and others. In our equations we have not used
rescaling in time to prevent singularity in finite
time. This is for two reasons: we do not have a
means of accurately computing the time of singu-
larity for a given surface, and we must complete
the computation in finite time.

This also means that at the time of singularity
T, the computation must go unstable. We can-
not compute all the way up to time T, but must
stop short. We find that finer grids preserve sta-
bility longer than coarser ones, but the length of
stability is also dependent upon the surface we are
computing.

To compensate for this shortcoming, we period-
ically use reinitialization of the level set function
¥..:-When the calculation is approaching the time

of smgulanty, we stop the computation and restart
using the current zero set Z as the initial surface.
The function ¢ is then computed using the signed
distance function from Z. The gain from reinitial-
ization decreases rapidly with each use, so a typical
computation will use as few as one reinitialization
and no more than ten.

3. TESTS FOR SELF-SIMILARITY

Figure 6 compares cross-sections for the exact self-
similar torus [Angenent 1992] and for an approx-
imate one computed using our algorithm. The
graph shows good agreement. For cases where an
exact solution is not known, we will use two other
tests for self-similarity. Applying these tests to the
approximate torus solution gives a benchmark for
comparison.

‘We start with a simple condition easily shown
to be sufficient for self-similarity. We follow the

argument ‘presented in [Huisken 1991]. Suppose
that I’y is a two-manifold such that
1
Hiz)=—=z'n (3.1)

2T

0.5

0.5 1 1.5 2

~0.5 "t

FIGURE 6. Experimental (dots) and theoretical
(curve) cross-sections for self-similar torus.

for each point z € 'y, where n is the unit normal
to I’y at z, and T is some constant. Define

t VaT o

Then
(4r)" = _VIT_
') " T -t
so that the family I, represents a trajectory of the
mean curvature flow. This shows that T is a self-
similar solution to the flow. T is the time to sm—
gularity for I'g.

This suggests the following test for self-similarity
under the flow. We plot z - n versus H for points
sampled evenly on the surface of interest. If the
surface is self-similar, the points lie on a straight
line, with slope 2T". For an approximately self-
similar surface S, we estimate the goodness of the
fit by least squares: the estimated slope is

Hy-n=—Hn,

C - Eﬁl ed B L]
T H

and the (scale-invariant) error estimate is

s iG]

il

For a self-similar torus computed on a rectangular
grid of dimensions 120 x-120.x- 60, the computed
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-1.5

1
FIGURE 7. Plot of \/—5 z - n versus vCH; for torus.

error is E. = 0.007596 (Figure 7). We consider that
a surface is-near self-similarity if E is of this order
of magnitude.

Surfaces that fail this test tend to show points
not tending towards collinearity and there is no
improvement with time step or grid refinement (see
Figure 24, for example).

Another test, applicable to compact surfaces, is
to take the computed solution and evolve it accord-
ing to the usual mean curvature flow. A self-similar
solution should retain its shape for a considerable
time as it shrinks.

4. EXPERIMENTAL RESULTS

We now turn to several experiments made with the
algorithm of Section 2.3. For each one we describe
the ratio function p(\,t) and the initial level sets,
which will always be defined as equidistant sets
from a certain initial surface. Most of the result-
ing surfaces appear to be self-similar under mean
curvature flow; we show pictures of the surface and
the results from the tests just discussed.

4.1. The Cube

Figure 9 shows a surface of genus five that we call
the cube. Itis obtained by applying the algorithm
to the following data. For the initial zero level set
So(0) we take the boundary of a ball with three

cylindrical holes drilled along the coordinate axes
(Figure 8 and Figure 10, left). As already men-
tioned, the remaining level sets S)(0) are equidis-
tant sets to So(0).

1\2

FIGURE 8. Initial surface from which the cube evolves.

For p we take the ratio between the distance from
the origin to the furthest point of the surface along
the line z = y = z and the distance from the z-axis
to the point on the surface nearest the z-axis. Note
that, for large p, the holes along the coordinate
axes collapse. For small p, they expand outward
and eventually join together, leaving eight balls.

The solution shown in Figure 9 appears to be
a good approximation to a surface self-similar un-
der the flow. The fit with the criterion (3.1) is
good, as seen in Figure 11; the computed error
is E = 0.01869. Moreover the surface retains its
shape well under the usual mean curvature flow
(Figure 12).

4.2 The Octahedron
‘The success of the previous computation leads to

the conjecture that every regular polyhedron with
holes will produce a corresponding self-similar so-
lution for mean curvature flow. Figure 13 shows
the octahedron, based on this idea. Again we begin
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FIGURE9. Views of the self-similar cube (left), one-half of it (middle), and one octant (right).

FIGURE 10. Evolution toward the cube on a 60 x 60 x 60 grid (for clarity, half the surface has been removed).
Initially, level set switching is turned off (Section 2.4), so the holes tend to expand and break the connecting
arms. After level set switching is activated, the holes begin shrinking again and the surface converges towards
the final solution.

0.5

gl 50l g , 0.5

—1

—1.5

FIGURE 11. Plot of L x - n versus Hv/C for the cube.

VC

FIGURE 12. Further evolution of the cube under mean curvature flow.
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FIGURE 13.

Views of the self-similar octahedron (left), half of it cut along a vertical plane (middle), and an

octant (right). The computation was done on a 80 x 80 x 80 grid. See also Figure 14.

FIGURE 14.

with a sphere, this time with holes drilled diago-
nally along the vectors (£1,4+1,4+1). The rest of
the construction is as for the cube. This surface
has genus seven.

Again, we seem to get a good approximation to a
self-similar surface. Figure 14 shows how the com-
puted surface preserves its shape when it evolves
under mean curvature. The fit with (3.1) is shown
in Figure 15; the computed error is £ = 0.0197.

1
FIGURE 15. Plot of —— z-n versus Hv/C for the
octahedron. VC

Further evolution of the octahedron under mean curvature flow.

4.3. The Saddle

The next example (Figure 16), called the saddle,
arises from a suggestion by Matt Grayson and Tom
Ilmanen. Topologically, it is a punctured torus,
with eight-fold symmetry about the origin (reflec-
tions in the xz- and yz-planes, and interchange of
r and y with simultaneous reflection in the xy-
plane).

The initial surface consists of the xy-plane in-
terrupted by two crossing tubes at the origin, as
shown in Figure 17. As before, 9 is the distance
function. The symmetry of this surface makes it
unnecessary to use a ratio function: we expect the
zero set to always be the correct level set.

Another difference from the algorithm of Sec-
tion 2.3 is that here the volume on either side is
the same regardless of how thin the handle gets.
For this reason we used the cross-sectional area of
one handle raised to the power % in order to simu-
late a constant volume property.
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FIGURE 16. Views of the self-similar saddle.

FIGURE 17. Half the initial surface for the sad-
dle. The distance function ¢ is positive in the re-
gion facing the gray side of the surface (the upper
half-space and the lower tunnel), and negative in
the complementary region.

The original surface is unbounded; the bound-
ary conditions at the edges of the computational
domain are taken to be upwind. This presents no
problems, as the stretching function ensures that
the upwind direction is always toward the origin
(the surface is always expanding outward). The
evolution is shown in Figure 19.

The tests indicate that this surface is close to
self-similar (Figure 18); the computed error is F =
0.005848 (excluding the points on the boundary

-8 -6 -4 -2

~8

1
FIGURE18. Plot of — z-n versus H+v/C for the saddle.

VC
of the domain). Obviously, the tests can only be
applied to that portion contained in the domain
of computation. Whether there exists a complete
surface that is self-similar cannot be demonstrated
with this algorithm, but we can see that asymp-
totically this surface behaves as we would expect.
If we look at the equation H = (2T) 'z - n, with
T fixed, we see that as © — +o0o a solution may
have H — 0 while x - n — 0. This means that
locally the surface gets flatter as it heads towards

FIGURE 19. Evolution of the saddle on a 100 x 100 x 100 grid. The two handles in the center expand outward
and the holes in the plane tilt back to form the final surface.
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FIGURE 20. Views of the self-similar two-handled cone. The computation took place on a 100 x 100 x 100 grid.

infinity, while the surface normal tends to become
orthogonal to z. We see this behavior in all of our
unbounded examples as they appear to asymptot-
ically approach a cone.

4.4. The Two-Handled Cone

The next example, which is topologically a twice-
punctured torus (Figure 20), was inspired by the
success of the saddle. The initial surface consists

of two horizontal planes combined with three cross-
ing tubes (Figure 21). The function ¢ is again dis-
tance, and p is the ratio between the cross-sectional
areas of the top and middle handles. For p large,

FIGURE 21. Half the initial surface for the cone
with two handles.
0.5
-1 -5 0.5
-5
% -1

1
FIGURE 22. Plot of — x - n versus Hv/C for the
two-handled cone. e

angle of opening

the middle hole gets thinner and collapses, and for
p small, the top and bottom handles collapse. The
cross-sectional area of the top handle was also used
for the volume computation, as in the previous ex-
ample. The treatment of the boundary conditions,
too, is as for the saddle.

The surface is close to self-similar; the computed
error is £ = 0.01983, again excluding points of the
surface on the boundary of the domain. Figure 22
shows the fit with equation (3.1).

This example, if it can be proved to exist, may be
a candidate for an initial smooth surface that de-
velops an interior. The asymptotic behavior seems
to be that of a cone, so that at the time of singular-
ity the surface should become a cone. Preliminary
research by Ilmanen and Angenent indicates that
a cone with a large enough angle of opening will
form an interior according to the theory of weak so-
lutions. However, the value of the critical angle of
opening is yet to be determined. In the event that
such an angle is found, we show in Figure 23 sam-
pled points giving the angle of opening in radians

1
ANNAATH
0.9
0.8
“___-/
0.7
0 /4 /2
azimuth
FIGURE 23. Angle of opening versus azimuth for

the two-handled cone.
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versus direction perpendicular to the cone axis (if
the cone axis is placed vertically, these two angles
are the complement of the elevation and the az-
imuth, respectively). The minimum angle of open-
ing is about 0.739 radians.

4.5. The Four-Handled Dumbbell

As a variation on the cube (Section 4.1), we now
take an initial surface like that of Figure 8, but in-
stead of three holes through the ball we drill only
two, along the z- and y-axes. For p we take the
ratio between the diameter of a component of the
section of the surface by the zy-plane, and the dis-
tance from the z-axis to the point on the surface
nearest to the z-axis. (The exact definition of p
does not matter much; we tried other definitions,
with essentially the same results.)

As it turns out, the algorithm here does not lead
to a self-similar solution. A typical “final” surface
is shown in Figure 24. One sees that, no matter
how fine the grid (here 60 x 60 x 120), the compu-
tation becomes meaningless beyond a certain point
because of the growing difference in scale between
the lobes and the handles, which squeezes out all
detail from the central region. The computed error
for this surface is E = 0.584 and the fit with (3.1),
shown in Figure 25, is very poor.

In retrospect, this makes sense: for a self-similar
surface, big regions far from the origin (||z|| large)
must nearly be tangent to the direction of x, since
z -n is proportional to H and we cannot expect H
to be large over big regions. The outer halves of
the lobes in Figure 24 violate this condition. This

]
FIGURE 25. Plot of — z-n versus Hv/C for the
surface of Figure 24. Ve

suggests that we should focus around the origin,
replacing the two lobes by a cone. Indeed, one can
discern a straight-line pattern in Figure 25 among
those points with - n near zero; roughly speaking,
these data points correspond to sample points on
the surface near the origin.

4.6. The Four-Handled Cone

To test this hypothesis, we choose as an initial sur-
face the boundary of a vertical cylinder (instead
of a sphere, as in the previous section) with two
holes drilled along the z- and y-axes. The cylinder
extends to the boundary of the domain of computa-
tion, and boundary conditions are treated as in the
other noncompact examples (Sections 4.3 and 4.4).
The ratio function is defined as for the dumbbell.

The result is shown in Figure 26. We believe that
this surface does approximate a self-similar one,
in spite of the somewhat greater deviation from
collinearity than for the examples in Sections 4.1
to 4.4 (Figure 27). Here E = .0505.

FIGURE 24.

Computed “solution” for the dumbbell. This surface is not self-similar under mean curvature flow.

(The image on the left has been turned, so the z-axis is horizontal.)
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FIGURE 27. Plot of L x-n versus Hv/C for the
four-handled cone. VO

Note that the angle of opening for the limiting
cone of this surface is considerably larger than for
the two-handled cone (Figures 26 and 28). The
minimum angle of opening is about 1.2627 radi-
ans. This makes it an even likelier candidate for
developing interior (see the discussion at the end
of Section 4.4).

o0'].27
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FIGURE 28. Angle of opening versus azimuth for
the four-handled cone.

5. CONCLUSION AND FUTURE WORK

We have presented an algorithm for computing ap-
proximate self-similar solutions of mean curvature
flow. We have computed what appear to be ap-
proximations to new self-similar surfaces, although
the existence of such surfaces has not been verified
theoretically.

In particular, the two-handled and four-handled
cones may contribute substantially toward under-
standing mean curvature flow and the types of sin-

FIGURE 26. The four-handled cone, computed on gularities that can occur from an initially smooth
a 160 x 160 x 160 grid.
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surface. We hope that they will also aid in proving
the existence (or nonexistence) of new self-similar
solutions.

One shortcoming of this approach is the symme-
try restriction for solutions. We intend to remove
one degree of freedom from this restriction by in-
creasing the dimension of the space S)(0) to two,
and thus the space U will have dimension three.
In this case, we will have two ratio functions p,, po
for selecting trajectories within U. The resulting
formulation should have domain contained in R*.
Higher-dimensional domains are probably imprac-
ticable with current technology.

In this higher dimension, we hope to find more
self-similar solutions that are not possible with the
current method. Two of our intended solutions will
be semi-regular polyhedra and a trefoil knot.
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