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We identify and investigate a class of complex Hénon maps H :

C2 → C2 that are reversible, that is, eachH can be factorized as
RU where R2 = U2 = IdC2 . Fixed points and periodic points
of order two or three are classified in terms of symmetry, with
respect to R or U , and as either elliptic or saddle points. We
report on experimental investigation, using a Java applet, of the
bounded orbits of H.

1. INTRODUCTION

For α,β ∈ C, the Hénon map Hα,β : C2 → C2 is defined
by the rule

Hα,β((z, w)) = (α− βw − z2, z). (1—1)

If α,β ∈ R, then Hα,β restricts to the real Hénon map

Hα,β : R2 → R2. Real and complex Hénon maps, and
their history, are well-documented, see, for example, [De-

vaney 89, Hale and Koçak 91] for the real case, and [Fried-

land et al. 89, Bedford et al. 91, Bedford et al. 93, Hub-

bard and Oberste-Vorth 94, Oberste-Vorth 97, Smillie

and Buzzard 97] for the complex case.

If R is an involution of Rn and F : Rn → Rn or
if R is an involution of Cn and F : Cn → Cn then,
following [Devaney 76, Devaney 84], F is R-reversible if

F−1 = RFR. This is equivalent to requiring that RF is
an involution or that F = RU for some involution U .

Let R and S denote the involutions of C2 such that
R((z, w)) = (w, z) and S(z, w) = (−w,−z), or, where
appropriate, their restrictions to R2. If α ∈ R, the
real Hénon maps Hα,1 and Hα,−1 are R-reversible and
S-reversible, respectively, and are discussed in [Devaney

84] and [Devaney 89, Section 2.9, Exercises 21—34]. The

only comment on reversible complex Hénon maps that we

have found in the literature is a comment in [Friedland et

al. 89], where a conjugate form of H(α,β) is used, that

Hα,β is R-reversible if and only if β = 1 and S-reversible

if and only if β = −1. For β ∈ C, with |β| = 1, let Rβ be
the involution of C2 such that

Rβ((z, w)) = (βw,βz). (1—2)
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FIGURE 1. Projections of orbits.

Then R1 and R−1 have the same restrictions to R2 as R
and S.

In Section 2, we shall see that Hα,β is Rβ-reversible if

and only if α ∈ Rβ. In this case, the involution RβHα,β

is given by (z, w) → (βz,βα − w − βz2). In [Devaney

76, Devaney 84] the involutions R are assumed to be dif-

feomorphisms. Although Rβ is not a C-diffeomorphism
of C2, it is a R-diffeomorphism when C2 is identified with
R4, so the results of [Devaney 84] apply.
The role of the reflection z → βz in the involutions Rβ

and RβHα,β gives rise to orbits, with reflective symmetry,

that can be quite striking in appearance. Figure 1 shows

projections onto the z-plane of two examples.

The reversibility not only influences the geometry

of orbits but facilitates calculation and analysis. In

Section 3, we analyse the fixed points and determine

when they are symmetric, for either of the involu-

tions Rβ or RβHα,β , and when they are elliptic. We

shall do the same for periodic points of order 2 or 3

in Section 4. Section 5 is concerned with local dy-

namics and establishes a sufficient condition for an

orbit to be unbounded. This has been applied to

plot bounded orbits. (A Java applet is available at

http://www.shef.ac.uk/˜daj/henon/H.html.) The final

section reports on experimental observations of such or-

bits. For example, if β is a primitive mth root of unity,

then orb((0, 0)), if bounded, appears to be dense in the

union of m closed curves which are deformations of el-

lipses, becoming more deformed as |α| increases. We also
comment on the influence on orbits of nearby periodic el-

liptic points and on bifurcation.

Our interest in Hénon maps arose from a problem

in [Jordan 93, 3.3], a special case of which would ask

whether, for a nonperiodic orbit {(zn, wn)}n∈Z of the
Hénon map, zn could take the same value infinitely often.

2. REVERSIBILITY

Lemma 2.1. Let α,β, ρ ∈ C, with |ρ| = 1, let H = Hα,β,

and let Rρ be the involution of C2 such that Rρ((z,w)) =

(ρw, ρz). Then H is Rρ-reversible if and only if β = ρ

and α ∈ Rβ.

Proof: It is easily checked that (RρHα,β)
2 = IdC2 if and

only if β = ρ and α ∈ Rβ.

2.1 Notation

The Euclidean norm on C2 = R4 will be denoted || ||.
We denote by H the map Hα,β , where β = e

iθ for some

θ ∈ R with −π < θ ≤ π, and α = rβ for some r ∈ R.
The involutions Rβ and RβH will be denoted by R and

U , respectively. Thus H is R-reversible, H = RU and

U((z, w)) = (βz,βα− w − βz2). (2—1)

Here, βz is obtained from z by reflection in the line in-

clined at θ
2 to the real axis. We call this line the U -line.

For n ∈ Z, H−n((0, 0)) = UHn−1((0, 0)), so the projec-
tion onto the z-plane of orb((0, 0)) is symmetrical about

the U -line. This symmetry can be observed in Figure 1.

The space of parameters for which H is R-reversible

is P := {(α,β) : |β| = 1,α ∈ Rβ}. If r > 0,

−π < θ ≤ π and α = reiθ, then α determines two

points pos(α) := (reiθ, eiθ) and neg(α) := (reiθ,−eiθ) =
(−rei(θ±π), ei(θ±π)) in P.
For P ∈ C2, we say that P is periodic of order n if n is

the least positive integer such that Hn(P ) = P . The set

of periodic points of a given order n is invariant under

both R and U . A periodic point P is U -symmetric, resp.

R-symmetric, if U(P ) = P , respectively R(P ) = P .

3. FIXED POINTS

3.1 Symmetry

Let

f(z) = z2 + (β + 1)z − α. (3—1)

For P = (z, w) ∈ C2,

H(P ) = P ⇔ w = z and f(z) = 0. (3—2)

Counting multiplicity, there are two fixed points deter-

mined by the zeros of f . Let P be a fixed point for H .

Then R(P ) = U(P ) is a fixed point. If P = R(P ) =

U(P ), we shall say that P is symmetric.

Theorem 3.1. The fixed points of H are symmetric if and

only if r ≥ −c2, where c = cos θ2 .

Proof: The fixed points have the form (z, z), where

f(z) = 0, and, as U((z, z)) is also fixed, U((z, z)) =
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(βz,βz). For v ∈ C,

f(ve
iθ
2 ) = β(v2 + 2cv − r). (3—3)

Thus the zeros of f are z = ve
iθ
2 , where v = −c±√c2 + r.

The fixed points are symmetric if and only if these are

on the U -line if and only if r ≥ −c2.

3.2 Ellipticity

We now analyse the fixed points identified in Section 3.1

in terms of local dynamics. Let P = (z, w) ∈ C2, let n
be a positive integer, and let Jn(P ) denote the Jacobian

matrix of Hn at P . Then

J1(P ) =
−2z −β
1 0

and det J1(P ) = β. (3—4)

Let P be periodic of order n. By (3—4), | detJ1(P )| = 1,
so | detJn(P )| = 1. Either both eigenvalues of Jn(P )

have modulus 1, in which case P is elliptic, or one has

modulus > 1 and the other has modulus < 1, in which

case P is a saddle point. The dynamics at saddle points

is well understood in terms of the stable and unstable

manifolds, e.g., [Bedford et al. 91, Fornæss 96, Smillie

and Buzzard 97]. If n ∈ N, then

RHnR = H−n = UHnU and UH−n = Hn−1R. (3—5)

Hence the stable and unstable manifolds are mapped to

each other by R and by U . In a sense made precise in

[Bedford et al. 93] or [Smillie and Buzzard 97, Corollary

13.4], most periodic points are saddle points.

Theorem 3.2. Let c = cos θ2 .

(i) If r < −c2, that is, if the fixed points of H are not

symmetric, then they are saddle points.

(ii) If −c2 ≤ r ≤ 1−2c, then both fixed points are elliptic.
(iii) If 1− 2c < r ≤ 1+2c, then one fixed point is elliptic

and one is a saddle point.

(iv) If r > 1+2c, then both fixed points are saddle points.

Proof: Using (3—4), one shows that, for all w, z ∈ C, the
eigenvalues of J1((z, w)) are λ1(z) = −z + z2 − β and
λ2(z) = −z − z2 − β. Let z = ve

iθ
2 , v ∈ C. Then

λ1(z),λ2(z) = e
iθ
2 (−v ± √v2 − 1). Hence |λ1(z)| = 1 =

|λ2(z)| if and only if v ∈ R and v2 ≤ 1.
By Theorem 3.1 and its proof, the fixed points have

the form (z, z), where z = (−c ± √c2 + r)e iθ2 . (i)-(iv)
follow easily.

FIGURE 2. The regions where fixed points are elliptic.

Remark 3.3. Corresponding to 0 = α ∈ C, there are
four fixed points, P+1 and P+2 for pos(α), and P−1 and

P−2 for neg(α). Number these so that ||P+1 || ≥ ||P+2 ||
and ||P−1 || ≥ ||P−2 ||. Figure 2 shows the values of α,

determined by Theorem 3.2, for which there are elliptic

fixed points. These are P+2 everywhere that is shaded,

P−2 everywhere except in the large outermost region, P+1
in the eye where the shading is lightest and P−1 in the

darkest regions.

3.3 Linearization

We now discuss orbits for the linearization LH of H in

the case where the fixed points are elliptic. This will

provide a basis for discussions of orbits of H later in the

paper. Thus

LH((z, w)) = (−2ζz − βw, z) = (M(z, w)T )T ,

where P = (ζ, ζ) is an elliptic fixed point andM = J1(P ).

By Theorem 3.2 and its proof, the eigenvalues of M can

be written in the form λ1 = ei(
θ
2+φ) and λ2 = ei(

θ
2−φ)

for some φ ∈ R. If both eiθ and eiφ are roots of unity,
then LH has finite order and hence H cannot be locally

conjugate to LH . A condition on the eigenvalues under

which LH is locally conjugate to H is given by [Zehnder

77].

Suppose that β is a primitive mth root of unity, but

that eiφ is not a root of unity. Then λm2 = e
−im( θ2+φ) =

λ−m1 . Let

D =
λ1 0

0 λ2
.
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FIGURE 3. Projections of orbits for LH with θ = π/4.

If z1z2 = 0, the orbit of (z1, z2) for the action of the

group Dm lies on, and is dense in, the closed curve

{(eitz1, e−itz2)} and its orbit for the action of D is

dense in the union of m such closed curves. Projections

of such curves onto a complex line ρz1+σz2 = 0 are (pos-

sibly degenerate) ellipses. The orbit of (z1, 0) or (0, z2)

for the action of D is dense in a circle {(eitz1, 0)} or
{(0, e−itz2)}, in the z1- or z2-plane. Consequently, for
(z,w) ∈ C2, the orbit for the action of LH is dense

either in the union of m (possibly degenerate) closed

curves, whose projections onto the z-plane are ellipses,

or in a single such curve. Examples of some orbits for

LH are shown in Figure 3.

If the eigenvectors generate a free abelian subgroup of

C∗ of rank 2, then orbits for the action of D are dense

in two-dimensional tori {(eitz1, eiuz2)}, so orbits for the
action of LH are also dense in two-dimensional tori.

4. PERIODIC POINTS OF ORDER 2

4.1 Symmetry

For P = (z, w) ∈ C2, if β = −1,

H2(P ) = P ⇔ (1 + β)w = α− z2 and f(z)g(z) = 0,
(4—1)

where f(z) is as in (3—1) and

g(z) := z2 − (β + 1)z + (1 + β)2 − α. (4—2)

Counting multiplicity, this determines the four points P

such that H2(P ) = P , including the fixed points. Thus

there are at most two periodic points of order 2. If P

is a periodic point of order 2, then so are H(P ), R(P ),

and U(P ). As z determines w, P is U -symmetric if and

only if z is on the U -line. Also R(P ) = U(P ), otherwise

H(P ) = P , so either P is R-symmetric and U(P ) =

H(P ), in which case RH(P ) = U(P ) = H(P ) and H(P )

is R-symmetric, or P is U -symmetric and R(P ) = H(P ),

which is U -symmetric.

Theorem 4.1. Let c = cos θ2 .

(i) If r = 3c2 = 0, then H has no periodic points of

order 2.

(ii) If β = −1 and r = 3c2, then H has precisely two

distinct periodic points of order 2. These are U-

symmetric if r > 3c2 and are R-symmetric if r <

3c2.

(iii) If β = −1 and r = 0, then the periodic points of

order 2 are the two points of the form (z,−z) where
z2 = α.

Proof: For v ∈ C, g(ve iθ2 ) = 0⇔ v2 − 2cv + 4c2 − r = 0
so the zeros of g are z = ve

iθ
2 where v = c±√r − 3c2.

(i) Suppose that r = 3c2 = 0. Then β = −1 and
the double zero ce

iθ
2 of g is, by (3—3), a zero of f . For

periodic points of order 1 or 2, w is determined by z so

the solutions of H2((z, w)) = (z,w) are already solutions

of H((z, w)) = (z, w).

(ii) If β = −1 and r = 3c2, then g and f have no

common zero so H has two periodic points, (z1, w1) and

(z2, w2), say, of order 2, with z1, z2 = ve
iθ
2 , where v =

c±√r − 3c2. The result follows.
(iii) This is routine.

4.2 Ellipticity

Theorem 4.2. With c as in Theorem 4.1, if r = 3c2, then

the periodic points of H of order 2 are elliptic if and only

if 4c2 − 1 ≤ r ≤ 4c2.
Proof: Let {(zi, wi) : i = 1, 2} be an orbit of period
2 under H . The Jacobian matrix of H2 at (zi, wi) has

trace t = 4z1z2 − 2β and determinant d = β2. As z1 and

z2 are the roots of g, t = 4(1 + β)2 − 4α − 2β = 2βb,

where b = 8c2 − 2r − 1. Hence t2 − 4d = t2 − 4β2 =
4β2(b2 − 1). The eigenvalues are β(−b ± i√1− b2) and
these have modulus 1 if and only if b2 − 1 ≥ 0, that is if
and only if 4c2 − 1 ≤ r ≤ 4c2.

4.3 Notation

For n ≥ 1, let Qn denote the set of all (α,β) ∈ P for

which H has an elliptic periodic point of order n. In

the notation of Section 2.1, Figure 4 shows, in darker

shading, respectively lighter shading, the values of α for

which pos(α) ∈ Q2, respectively neg(α) ∈ Q2.

4.4 Points of Period 3

If P is periodic of order 3, then HU(P ) = R(P ) so

R(P ) and U(P ) must be in the same orbit. If there is
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FIGURE 4. The set Q2.

a symmetric periodic point of order 3, for either R or

U , then there is an orbit of the form {P,H(P ),H2(P )}
where P is R-symmetric, H(P ) is U -symmetric, and

U(P ) = H2(P ) = R(H(P )). Call such an orbit symmet-

ric. If there is no symmetric orbit then, for any periodic

point P of order 3, orb(U(P )) = orb(R(P )) = orb(P ).

For calculation of the periodic points (z, w) of or-

der 3, there is a polynomial h, of degree 6, such that,

with f as in (3—1), the zeros of hf determine the z-

coordinates of the eight points, up to multiplicity, where

H3(z,w) = (z, w). Except when 2βz2+β4−2αβ+1 = 0,
z determines w.

Following a suggestion of the referee, we have used the

method described in [Giarrusso and Fisher 95] to factor-

ize h as the product of the two cubics

z3 − Ωz2 − (α+ β2 − (β + 1)Ω− β + 1)z
− α(β + 1− Ω) + β3 − βΩ+ 1, (4—3)

where Ω represents the sum of the z-coordinates of the

three points, (zi, wi), 1 ≤ i ≤ 3, in an orbit of period 3
and is a root of the quadratic

Ω2 − (β + 1)Ω+ 2β2 + 2− 2β − α. (4—4)

At each of these points, the Jacobian matrix J3 has trace

−8z1z2z3 + 2β(z1 + z2 + z3) = −8(α(β + 1 − Ω) − β3 +

βΩ − 1) + 2βΩ, and determinant β3. Writing z = ve iθ2 ,
Ω = Γe

iθ
2 and c = cos θ2 , the roots of (4—3) have the form

ve
iθ
2 where

v3−Γv2−(r+4c2−3−2Γc)v+Γr−Γ−2rc+8c3−6c = 0
(4—5)

and

Γ = c± 6 + r − 7c2. (4—6)

The eigenvalues of J3(zi, wi) are e
3iθ
2 (u±√u2 − 1), where

u = (4r − 3)Γ− 8c(r + 3) + 32c3.

FIGURE 5. The set Q3.

If 6+r ≥ 7c2, each of the cubics in (4—5) has a real root
so each orbit of period 3 contains a point (z, w) with z on

the U -line. In the situation where z determines w, such

a point must be U -symmetric. In the exceptional case, a

lengthy calculation shows that the only examples of pe-

riodic points (z, w) of order 3 that are not U -symmetric,

but for which z is on the U -line, occur with β = 1 and

α ≥ 1, in which case {(z, z), (1 − z, z), (z, 1 − z)} is a
symmetric orbit, with U((1 − z, z)) = (1 − z, z), when
z2 = α − 1. Therefore, if 6 + r ≥ 7c2, there are two

symmetric orbits of order 3.

The points in the orbit of period 3 determined by ei-

ther value of Γ are elliptic if u ∈ R and u2 ≤ 1. Note

that u ∈ R if either 6 + r ≥ 7c2 or r = 3
4 . In the latter

case, there is a nonsymmetric orbit of elliptic points of

order 3 when 28c2 > 27 and −1 ≤ 32c3− 30c ≤ 1. When
6+ r = 7c2, there is a symmetric orbit O of period 3 and
multiplicity 2. Here u = cos 3θ2 so the points in O are

elliptic.

Points α for which there are elliptic points of period

three, for pos(α) or neg(α), are shown, with various com-

binations indicated by different levels of shading, in Fig-

ure 5.

4.5 Elliptic Periodic Points and the Keep Set

The forward and backward keep sets K+ and K− of H
are defined as follows:

K+ = {P ∈ C2 : {Hn(P )}n>0 is bounded};
K− = {P ∈ C2 : {Hn(P )}n<0 is bounded}.

For example, see [Hubbard and Oberste-Vorth 94]. The

keep set K is K+ ∩K−. By (3—5), for P ∈ C2,
P ∈ K+ ⇔ R(P ) ∈ K− ⇔ U(P ) ∈ K.

Hence K is invariant under both U and R and if P is

fixed by either R or U , then P ∈ K+ ⇔ P ∈ K.
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It is known, e.g., [Smillie and Buzzard 97, Theorem

13.2] that periodic saddle points must be on the boundary

of K, so any periodic point P ∈ IntK must be elliptic.

We thank the referee for pointing out that, at any such

point, H is locally conjugate to its linearization. On a

dense subset of P , containing those points (α,β) where
the eigenvalues of the Jacobian matrix J1 are roots of

unity at the fixed points, H cannot be locally conjugate

to LH at the fixed points, which are therefore not in

IntK.

Experiments investigating whether selected points

close to periodic points of orders 1, 2, or 3 are in the keep

set produce pictures remarkably similar to those in Fig-

ures 2, 4 and 5. It would be interesting to know for which

elliptic periodic points P there exists a neighbourhood U

of P such that U\K has measure zero. We would also

be interested to know more about the sets Qn and their

union Q. In particular, how does the Lebesgue measure

of Qn behave as n increases and is the Lebesgue measure

of Q finite? Or could Q be the whole of P?

5. DYNAMICAL RELATIONS

The dynamics of the Hénon map are known to be similar

to those of the horseshoe map, see [Smillie and Buzzard

97, Section 5] or [Oberste-Vorth 97, Section 4]. For the

reversible Hénon maps considered here, it is possible to

be precise about the bounds which occur.

Definition 5.1. For 0 = α ∈ C, let

bα = 1 + 1 + |α| ∈ R, (5—1)
and let

V = {(z, w) : |z| ≤ bα and |w| ≤ bα}; (5—2)

V + = {(z, w) : |w| > bα and |w| ≥ |z|}; (5—3)

V − = {(z, w) : |z| > bα and |z| ≥ |w|}. (5—4)

We note that, for the involution R defined in (1—2),

R(V +) = V −, R(V −) = R(V +) and R(V ) = V .

Proposition 5.2.

(i) H(V −) ⊆ V −.
(ii) If P ∈ V − then ||Hn(P )||→∞ as n→∞.
(iii) H−1(V +) ⊆ V +.
(iv) If P ∈ V + then ||H−n(P )||→∞ as n→∞.
(v) H(V ) ⊆ V ∪ V − and H−1(V ) ⊆ V ∪ V +.
(vi) K ⊆ V .

Proof: Note that

|α|b2α − bα − 1 = bα. (5—5)

(i) Let (z, w) ∈ V − and let (u, v) = H((z, w)). Then

|z| ≥ |w| and |z| ≥ bα(1 + ) for some > 0. Now

|u|
|z| ≥

1

|z| (|z|
2 − |w|− |α|) ≥ |z|− 1− |α||z| .

Using (5—5),

|z|− 1− |α||z| ≥ bα(1 + )− 1− |α|
bα(1 + )

=
( 2 + 2 )bα − + 1

(1 + )
≥ 1 + 2 .

Thus |u| > |z| > bα and |v| = |z| ≤ |u| and so

(u, v) ∈ V −.

(ii) Let P = (z, w) and (un, vn) = Hn((z, w)). If

(z, w) ∈ V −, the above argument shows that |vn+1| =
|un| ≥ (1 + 2 )n|z| for some > 0.

(iii) Using (3—5), H−1(V +) = RHR(V +) =

RH(V −) ⊆ R(V −) = V +.
(iv) follows from (ii) and (3—5), while (v) and (vi) are

immediate from (i)-(iv).

Remark 5.3. The bound bα is, in a sense, best possible,
for if α = β = −1, then (z, w) = (−1 −√2, 1 +√2) is a
fixed point of H and bα = 1 +

√
2.

6. ORBITS

Most of this section is concerned with experimental ob-

servations of orbits of (0, 0). Orbits in IntK, for a class

of volume-preserving maps including H , are discussed in

[Bedford et al. 91, Appendix] where it is shown that the

closure of the orbit of a generic point is a union of q k-

dimensional tori for k = 1 or k = 2. From Section 3.3

and our experimentation, it appears that if β is a prim-

itive mth root of unity and r is small, then k = 1 and

q = m. However, it appears that, for larger r, q can be

nm for an integer n > 1. In Section 6.3, we shall describe

an example where m = 25, but q appears to be 1075. If

β is not a root of unity, then k may be 2 and, although

q = 1 for the linearization and for small r, experimen-

tation suggests that q need not always be 1. Examples

with q > 1 will be observed in Section 6.2 and Section

6.3.

We restrict our study to the case where α = reiθ

with r > 0 so that α determines H . The obser-

vations below are based on a Java applet, available
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FIGURE 6. The set B.

at http://www.shef.ac.uk/˜daj/henon/H.html, which,

given r and θ, plots the z-projection Πz(orb((0, 0)). The

set B := {α : (0, 0) ∈ K} is shown in Figure 6. This was
plotted using a Java applet based on the bound bα from

Proposition 5.2(ii). Note that if |α| > 3, then bα < |α|
and hence, since H((0, 0)) = (α, 0) ∈ V −, (0, 0) ∈ K.

6.1 Coset Orbits

Let i and k be integers with 0 ≤ i < k. The subset

{Hjk+i((0, 0)) : j ∈ Z} of orb((0, 0)) will be denoted
Oji and will be called the i-th coset orbit for the sub-
group Hk .

Suppose that β is a primitive mth root of unity. Re-

call from Section 3.3 that the orbit of a generic point

under LH is dense in a union of m closed curves whose

z-projections are ellipses. For small r, Πz(orb((0, 0)))

appears to be dense in the union of m ovals, each cor-

responding to one of the coset orbits Omi . In Figure 7,
where θ = π

3 ,
π
2 ,

π
3 and m = 6, 4, 3, respectively, and in

Figure 8, where θ = π
2 and m = 4, each coset orbit is

shaded differently.

As r increases towards the boundary of B, the m ovals

lose their convexity and smoothness, but remain closed

curves. For example, see the top two coset orbits in Fig-

ure 14.

Where the line {xeiθ : x ≥ 0} crosses the boundary
of B, the closed curves are distorted ovals for α close to

the boundary, but closer to their original oval shape away

from the boundary. Figure 9 shows the coset orbitsO43 for

FIGURE 7. Orbits for m = 6, 4, 3 respectively.

FIGURE 8. Orbits for r = 0.1, 0.24, 0.246, 0.249; θ = π
2
.

FIGURE 9. Coset orbits for r = 0.1, 0.23, 0.24, 0.3; θ = π
2 .

r = 0.1, 0.23, 0.24, 0.3, and θ = π/2. When r = 0.2462,

the orbit is unbounded. However, the orbit appears to

be bounded for r = 0.24853 (see Figure 10) and has a

reasonably simple shape for r = 0.3.

For fixed small r, the eccentricity of the ovals decreases

with θ. This can be seen in Figure 7. If β is not a

root of unity, the pictures generated by the applet are

consistent with orb((0, 0)) being dense in a finite union

of two-dimensional tori. For example, see the orbits in

Figure 1.

FIGURE 10. A coset orbit for r = 0.24853 and θ = π
2 .

6.2 Islands

It seems likely that the boundedness of the orbits dis-

cussed above is influenced by elliptic fixed points close to

the centre of the ovals. Orbits of points close to this fixed

point are similar in shape to those of (0, 0). There are

points on the set B where orb((0, 0)) appears to be in-

fluenced by elliptic periodic points of order greater than

one. For example, for the point α = eπi/3, which ap-

pears to be on the boundary of an “island” of B, (0, 0)

is an elliptic periodic point of order 4. For other val-
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FIGURE 11. Four coset orbits with a close-up of one.

ues of α on this island, the orbits of (0, 0) appear to

be influenced by such periodic points. Figure 11 shows

orb((0, 0)) when r = 1 and β = e0.32πi, a primitive 25th

root of unity. On the left are the four coset orbits for H4

with a close up of one of these, decomposed as the union

of 25 coset orbits for H100, on the right. This suggests

that there may be an orbit {P1, P2, P3, P4} of elliptic pe-
riodic points of order 4, such that there exist neighbour-

hoods N(P1), N(P2), N(P3), N(P4) with orb((0, 0)) ⊂
1≤i≤4N(Pi) and H(N(Pi)) ⊂ N(Pi+1 mod 4).
Values of the parameters at which we have observed

similar behaviour are shown on the left of Table 1. Fig-

ure 12 shows orbits for the first three rows of the left

hand table.

FIGURE 12. Orbits for α = 0.55e
4πi
9 ,α = 0.939e

πi
5 ,

α = 0.9385e0.187πi.

6.3 Bifurcation

Within the period 4 island, there is some bifurcation.

Figure 13 shows the 12 coset orbits for H12, where

α = 0.98e0.305πi, on the left, and α = 0.95e0.3016πi,

indicating bifurcation from 4 to 12. The coset orbits

for α = 0.98e0.305πi are smoother than those for α =

0.95e0.3016πi. Other values of α for which we have ob-

served bifurcation are shown on the right in Table 1.

If θ = 0.16π, so that m = 25, and r is about 0.82

then the coset orbits for H25 appear as 25 closed curves.

However for r = 0.83, these each bifurcate into 43 closed

curves, suggesting that the closure of orb((0, 0)) is the

union of 1075 1-dimensional tori. The 11th coset orbits

for r = 0.82, 0.826 and 0.83 are shown in Figure 14.

r θ period
0.55 4π/9 5
0.939 0.2π 11
0.9385 0.187π 116
0.790666 0.295704π 21
0.788 0.36363636π 9
0.696059 0.520135π 10

r θ bifurcation
0.987 0.30631π 12→ 60
0.983 0.306π 12→ 444
0.943 0.19825π 11→ 99
0.962 0.198π 11→ 253
0.661 0.495π 5→ 90
0.661 0.49498971π 90→ 360

TABLE 1. Parameters for periodic behaviour and bifurcation.

FIGURE 13. Bifurcation into 12.

FIGURE 14. Bifurcation of one coset orbit.
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area-conserving Hénon map.” J. Differential Equations

51 (1984), 254—266.

[Devaney 89] R. Devaney. An Introduction to Chaotic Dy-

namical Systems, 2nd edition, Addison Wesley, Redwood

City, 1989.

[Fornæss 96] J. E. Fornæss. Dynamics in Several Complex

Variables. CBMS Regional Conference Series in Math-

ematics, 87, Amer. Math. Soc., Providence, 1996.

[Friedland et al. 89] S. Friedland and J. Milnor. “Dynamical

properties of plane polynomial automorphisms.” Ergod.

Th.& Dynam. Sys. 9 (1989), 67— 99.

[Giarrusso and Fisher 95] D. Giarrusso and Y. Fisher. “A pa-

rameterization of the period 3 hyperbolic components

of the Mandelbrot set.” Proc. Amer. Math. Soc. 123
(1995), 3731—3737.
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pings in C2.” Nonlinear analysis, Methods & Applica-

tions 30 (1997), 2143—2154.

[Smillie and Buzzard 97] J. Smillie and G. T. Buzzard.

“Complex Dynamics in Several Variables.” in Flavors of

Geometry, S. Levy, ed., pp. 117—150, Cambridge Univer-

sity Press, 1997.

[Zehnder 77] E. Zehnder. “A simple proof of a theorem by

C. L. Siegel.” in Geometry and Topology, J. Palis and

M.d́o Carmo, eds., Lecture Notes in Math., vol. 597, pp.

855—866, Springer-Verlag, New York, 1977.

C. R. Jordan, The Open University in Yorkshire, 2 Trevelyan Square, Boar Lane, Leeds LS1 6ED, UK

(c.r.jordan@open.ac.uk)

D. A. Jordan, Department of Pure Mathematics, University of Sheffield, Hicks Building, Sheffield S3 7RH, UK

(d.a.jordan@sheffield.ac.uk)

J. H. Jordan, Department of Probability and Statistics, University of Sheffield, Hicks Building, Sheffield S3 7RH, UK

(jonathan.jordan@sheffield.ac.uk)

Received November 27, 2000; accepted in revised form November 28, 2001.




