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The infinitesimal Kobayashi metric of an ellipsoid of the form
En={(21,22) € C*: |21]* + |2)*™ < 1}

is calculated explicitly, modulo a parameter that is determined
by solving a transcendental equation. Using this result, we
show that the metric is C'! on the tangent bundle away
from the zero section. We also describe software that will
calculate, using a Monte Carlo method, the infinitesimal Ko-
bayashi metric on a domain of the form

Q, ={(21,22) € C?: p(z1,22) < 0},

where p is a real-valued polynomial. We compare results of
computer calculations with those obtained from the explicit
formula for the Kobayashi metric.

Invariant metrics such as the Kobayashi metric
and the Carathéodory metric have become impor-
tant tools in the study of holomorphic functions
on bounded domains in complex Euclidean space.
Nevertheless, many aspects of the behavior of these
metrics, such as whether or not they are smooth,
remain unknown. Of course, an explicit formula
for such a metric would allow the determination
of this behavior, but it is generally very difficult
to compute these metrics explicitly. To date, the
only domains for which the invariant metrics have
been explicitly calculated are symmetric domains
and Teichmiiller space.

The purpose of this paper is to give an explicit
formula for the Kobayashi metric on the complex
ellipsoid

E, = {(21,22) S C2 : |Zl|2 + |Z2|2m < 1}

for real m > % Because the domain FE,, is con-

vex for that range of m, the Carathéodory metric
coincides with the Kobayashi metric. (In fact, E,,
is strictly convex, that is, FE,, contains the inte-
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rior of every line segment joining two points in the
topological closure of F,,. A proof of the coinci-
dence of the Carathéodory and Kobayashi metrics
on strictly convex domains in C™ may be found in
[Lempert 1981].) As an application of the formula
obtained, we show that the Kobayashi metric on
E,, is at least C.

The complex ellipsoid E,,, including the unit
ball F as a special case, has been a useful model in
the study of bounded domains because of its non-
compact automorphism group [Greene and Krantz
1986]. For m # 1, the ellipsoid E,, has the prop-
erty that the orbit of a point z € F,, under the
automorphism group accumulates at a weakly con-
vex boundary point of E,,. In [Greene and Krantz
1986] the complex ellipsoid is used as a model to
study pseudoconvex domains D with noncompact
automorphism group and with the orbit accumu-
lation property just mentioned. It should also be
noted that the domains FE,,, for m integral, are
the only bounded pseudoconvex domains in C?
that have noncompact automorphism group and
smooth boundary of finite type [Bedford and Pin-
chuk 1989; 1991].

Although the detailed procedure for discerning
our formula for the Kobayashi metric E,, is too
tedious to present, several basic ideas and tech-
niques that are used in obtaining the formula are
worth mentioning (as well as the influence of Po-
letskii’s work [Poletskii 1983], to which we do not
directly refer, on finding extremal maps). The in-
finitesimal Kobayashi metric F' : TE,, — (0,00)
is defined on the complexified tangent bundle as
follows: For z € E,,,v € C?, and f a holomorphic
map from the open unit disk A in C! into E,,, with
f(0) = z and f’(0) a positive scalar multiple of v,
we write f'(0) = Ajv; then F(z,v) = inf{)\;l}. A
holomorphic map ¢ = ¢, : A = E,, is extremal
for p = (z,v) € TE,, if F(p) = )\;1. Lempert
[1981] has shown that for each point in the tan-
gent bundle of a strictly convex domain D there is
a unique extremal map, and that the resulting ex-
tremal maps are proper isometric imbeddings of A
with the Poincaré metric into D with the Kobay-
ashi metric. Lempert’s results apply in particular
to Epn,, and the formula for the Kobayashi metric
can be obtained once we have the formulas for the
extremal maps for each p in T'F,,. We should also
mention Kay’s recent work [Kay 1991] on extremal

disks for genuine ellipsoids in C" (although there
is no apparent overlap), as well as [Royden and
Wong].

Of course, the domain Fj is the unit ball, on
which there are several easy techniques for calcu-
lating the Kobayashi metric. There is a fundamen-
tal difference in computing the extremal maps of
E,, for m # 1. In this paper, we establish for-
mulas for the extremal maps ¥(z,v) in two cases
that depend, for given z, on the direction of v. A
class of extremal maps into E,,, for m # 1, is ob-
tained by composing a branch of the many-valued
inverse of the covering map E,, — FE; given by
(21,22) — (z1,25") with extremal maps into E
taking values in E; — (A x {0}). This gives ex-
tremal disks only for certain directions of v at each
point z of E,,. For the other directions, we com-
pute the extremal disks at the center 0 € E,, using
the following fact: The extremal disk of a circular
convex domain at the center 0 is the disk obtained
by intersecting the domain with the complex line
in the direction v through 0. The extremal disks
at other points are obtained by repositioning this
extremal disk at 0 by the action of the automor-
phisms (z1, z2) — (21, 25), where

(1 o) 2mz,
(1 + azl)l/m

z1+a !
22:

/
AT Az
for a € A.

It is not clear a priori whether the Kobayashi
metric of E,, obtained from formulas in the two
different cases of directions is differentiable. Lem-
pert proved that on a strongly convex domain with
smooth boundary, that is, a domain for which the
function defining its boundary has positive definite
Hessian in the tangential directions, the Kobaya-
shi metric is smooth off the zero section. This is
consistent with the special case of the unit ball E.
However, if m < 1, the boundary of E,, is not C?,
and when m > 1, the ellipsoid E,, is not strongly
convex and Lempert’s result does not apply. As
an application of the formula obtained here, we
show that the metric F is at least C! on the tan-
gent space away from the zero section. It remains
an open question whether F' is differentiable to a
higher order.

This paper is divided into four sections. In Sec-
tion 1, we give formulas for the extremal maps and
for the Kobayashi metric of E,,. In Section 2, we
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supply a proof that the given formulas do indeed
define extremal functions. We rely here on the
characterization of extremal maps given in [Lem-
pert 1981]. Verification of Lempert’s criteria re-
quires routine computations too lengthy to justify
full publication, but we will provide enough steps
for any reader who is so inclined to easily fill in
missing details. In Section 3, we establish that the
Kobayashi metric is C' as an application of the for-
mulas presented in Section 1. In recognition that
the computations carried out in Section 2 are very
specific to the complex ellipsoid, we address in Sec-
tion 4 the possibility of implementing software to
obtain experimental information about the Kobay-
ashi metric on domains for which we have no hope
of performing explicit calculations at this time.

1. EXPLICIT FORMULAS

The formulas for the extremal maps and for the
Kobayashi metric are given in Theorems 1 and 2
(see box on next page). Several remarks should be
made.

We denote by H(A, E,,) the set of holomorphic
maps from the unit disk A into the ellipsoid F,,.
For p = (z,v) in the complex tangent bundle T'E,,,,
where z € E,, and v € C2, we let H(A, E,, : p)
denote the subset of H(A, E,,) consisting of el-
ements f for which f(0) = z and f'(0) = Asv
for Ay > 0. The infinitesimal Kobayashi metric
F:TE,, — R™" for the domain E,, is defined by

F(p) =inf{A;' | fe HA, By :p)}, (11

for p € TE,,. An element ¢ = 1, of H(A, E,, : p)
is extremal for p € TE,, if F(p) = /\;1. As men-
tioned, it follows as a special case of a theorem
of Lempert that v exists and is unique. The ex-
plicit formula for v, in Theorem 1 is given for the
point z = (0,b), for b € C, from which the gen-
eral formula follows by composition with M&bius
transformations.

The computation of ¢ is divided into two cases,
according to the size of u = u(v) = m|vy 'vy| rela-
tive to |b|, where v; and vy are the components of
v in p = (z,v). The first case is defined by u < |b].
In the second case, when u > [b| > 0, we will need

two parameters a(p) and A(p). Let a = a(p) be

defined by

2m|b|
= 1.2
T U @@+ dm(m — D)2 (12)

and let A = A(p) be the unique positive solution of
Ma? + X1 —a?)|pP™ = 1. (1.3)

Observe that the parameter a(p), used only in the
case where u > |b| > 0, satisfies

a(p) < 2m|b
1b] + (b]2 + 4m(m — 1)[b]2)*/?
2m
=" <1
1+ 2m—1] —

for these p. It follows not only that (1.3) deter-
mines a unique positive solution A(p) when u > [b],
but also that A(p) > 1. We will deliberately leave
a third case undefined for the moment: When v >
|b| = 0, then a(p) vanishes and A(p) is not defined
by (1.3). The reader should not be troubled by the
possibility that the formulas in Theorems 1 and 2
are not meaningful in this case; we redress this sit-
uation after the statements of these theorems in
preference to disturbing the relative simplicity of
the formulas right away.

The assertion that our formulas are explicit is
wholly true only part of the time. The exagger-
ation is to be found in the implicitly defined pa-
rameter A in the case u > |b|. Even in this case,
where the formula is semi-explicit, the formula is
essentially as useful as if it were fully explicit. We
have in mind, for example, the proof of Theorem 3
(see box). One may also use symbolic manipula-
tion software to actually find A in specific cases.

As observed above, the parameter \(p) used in
the second case satisfies A(p) > 1. Therefore, b =0
is the only potential singularity in (1.7). Of course,
such a singularity must be removable, and we will
presently provide a formula, (1.11), that is equiv-
alent to (1.7) but that clearly defines K at b = 0.
Nevertheless, (1.7) does have the advantage of be-
ing much simpler than (1.11), and it is sensible
away from b = 0. As b tends to 0, it is easy to ver-
ify that a(p) tends to 0, and A(p) tends to infinity in
such a way that limp ,q |v2|/(|b|\) exists and equals
K (0,0,v1,v2). An alternative approach, which we
now sketch, is to use different parameters.
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Notation
Let m € [3,

Let u = m|v; vg| and w = u|b|™ (1

o) be fixed, and let E,, be the ellipsoid {(z1,22) € C? : |z1]? + |22*™ < 1}.
Let p = ((0,b), (v1,v2)) € TEp, with b= |ble? € A and v; =
_ |b|2m)71/2‘

lv;jle®¥i € C for j =1,2.

Let a = a(p) and A = A(p) be defined by formulas (1.2) and (1.3).

Theorem 1 (Formula for the extremal map). The extremal map ¥ =
1— |b|2m)1/2((1 + w2)1/2 + w§|b|m)_1
Pa(€) = e%g + o™ (1 + w?) YA (1 + w4 we o)™
DEAA —a®) + (1

i(p1— 502+9 (

P1(8) =
P (§) = i(p1—p2+0) ()\2_

Ya(€) = Mb(1 = @)/ + D(E+ X"

— X%
IN1-d®)+(1

(¢1,19) : A — C? for E,, is given by

} foru <|b|, (1.4)

2 2)5)_1/7”} foru>1bl. (1.5)
— Na

Theorem 2 (Formula for the Kobayashi metric). The Kobayashi metric K for E,, is given by

|U1|2 m2|b|2m72|,02|2

e = (1 —P" "0

lva|Am (1 — a?)

_ |b|2m)2

1/2
) foru < b, (1.6)

K(p) =

[bI(A% = 1)(m(1 = a?) + a?)

for u > |b|. (1.7)

Theorem 3. K is C1, for m > %, away from the zero section of the complex tangent bundle.

We set

mL Rl )2)
(1.8)

a = a(p) = 3 (Jval + (J2]* +4(1 -
and

p=p(p) = Apla, (1.9)

and use a(p) and p(p) to replace the parameters
a(p) and A\(p). We temporarily proceed on a for-
mal basis. Note that a = |b||vi|a~!. Substituting
for @ and X in the defining equation for A\ gives
the implicit definition of u as the unique positive
solution of the equation

'u2|v1|2 + M2ma2m(

— b1 P ?) = 1. (1.10)
We now use (1.10) to define p instead of (1.9). Ob-
serve that, when u > |b| = 0, we have o = |va| from

(1.8), and p is well-defined by (1.10). Similarly,
substituting in (1.7) gives K = K(p) by

|ve|paem (1 — [b]? v [Pa?)
(u2a? = [b]2) (m(1 = [b2|v1[2a=2) + |b]2|v1[2a—2)
(1.11)

K=

for u > |b|. When u > |b] = 0, we have a = |v3] as
noted, and (1.11) reduces to

L ((0,0), (01, 02)),

K(p) =~ forp—
W
with |va] > 0. This, in view of (1.9), is in ac-
cordance with the asymptotic approach outlined
above. Note that (1.7) and (1.12) are together
equivalent to (1.11). See also (1.7") in Section 3.
Of course, (1.8) and (1.9) can be used to provide
a substitute for (1.5) that is valid for v > |b|. Since
the resulting formula in full generality is cumber-
some and since we need a formula only for b = 0,
we record only this case:

Pp(§) = (pv1§, p2g)
for p = ((0,0), (v1,v2)), with ||v]| > 0.

(1.12)

(1.13)

2. PROOFS OF THE FORMULAS

The proof of Theorem 1 is accomplished in sev-
eral steps. The main work consists of verifying
(1.4) and (1.5) at certain points. Then, composi-
tion with appropriate holomorphic maps gives The-
orem 1 in full generality. Once the validity of The-
orem 1 is established, that of Theorem 2 follows
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from a straightforward calculation that can safely
be omitted.

For ¢ € OF,,, let v({) denote the exterior unit
normal. We recall from [Lempert 1981, §4] that
a proper holomorphic map f € H(A,E,, : p) is
said to be stationary for p € TE,, if there exist
two Lip(3) functions f : A — E,, and 7 : 0A —
(0,00) and a continuous function f : A — E,,
such that (a) f|[x= f, (b) f(OA) C OE,,, (c) f|AE
H(A, Ep), and (d) f(¢) = ¢n(Q)v(f(Q)) for ¢ €
0A.

From the proof of Proposition 1 of [Lempert
1981], it suffices to show that the maps 1 defined
in Theorem 1 are stationary. Because of property
(a), we will write v for 1 in verifying properties (a)
through (d) for the function ¢ given in Section 1.
Also note that a smooth scaling of the vector v
can be accommodated by the positive function 7;
in the computations that follow, we therefore use
the gradient to obtain some exterior normal v.

Case 1. p = ((0,b),(cosp,siny)) € TE,,, where
mtanp <b <1, 0<b,and 0 < ¢ < 7.

In the notation of Theorem 1, ¢ = 1 = @2, 0 =
0, u=mtanp, and w = b~ 11 — b*™)~ /2y, Let
a = arctanw; then o € [0, §) and (1.4) becomes

Ecosa(l — bQ’")l/2 Esina + b™ 1/m
14+ bm¢sina 14+ bmEsina

we = (

(2.1)

for £ € A. Of course, (2.1) defines 1) as well for
£ = (€ 0A, and on OA we have

1O + [P
1+ b?™ sin? o + Cb™ sin o + Cb™ sin o
N |1+ b™( sina?

=1,

so that ¥(0A) C 0Ey,. Let w(¢) =
and

|1+ b™( sin a|?

P(Q) = ($1(0), $2(0)) = ¢m(¢) v(¥(Q))

for ¢ € OA. Since v(1(()) is given by

<(1 — b*™)1/2¢ cos
14+ bm(sina

m< Csina + b™ )< Csina + b™ >1—1/m>
1 +bm¢sina/ \ 1+ b"(sina ’

it follows that for ¢ in QA we have
P1(¢) = (14 b™¢sina)(1 — b*™) 2 cosa, (2.2)
P2(¢) = m(sina + ™) (Csina + ™)1 1/m™

X(1+ ¢bmsina) Y™, (2.3)

That 1 is Holder continuous of order 3, like 7((),
is an elementary consideration. In order to show
that 1 extends to a function holomorphic in A, it
suffices, as we will see, to verify that sina < b™.
Now
mb™ ! tan ¢

whence ]
sin o b

cosa ~ (1 —p2m)l/2

for b > mtany. Therefore, sina < ™ and formu-
las (2.2) and (2.3) define a function 1) on A that is
holomorphic in A. Moreover, unless sina = b, it
is clear that 1) is continuous on A. In the case of
equality, ¢2 may be written as

&(C)mb%‘_l(l + <)2—1/m(1 + b2m< —l/m’

and 1/; is continuous on A, provided m > %

Case2. p = ((0,b),(cosp,siny)) € TE,,, where
O0<b<mtangp,b<1,and 0 < < 7.

In the notation of Theorem 1, ¢ = 1 = @2, 0 =
0, u=mtany, w=b""1(1— me)_1/2u, and

a = a(p) = 2mb(u + (u” + 4m(m — 1)b%)"/*)~!

5) becomes
B aé(\? —1)
vle) = </\(1 Z )+ €(1 = Xad)’
Ab(1— a?)V Mg +1)(§ + 1)
(AL —a?) +€(1 - X2a2)'/"
where £ € A and A = A(p) is the unique positive
solution of \%a? +)\2m£1 —a?)b*™ = 1. Once again,
after extending ¥ to A by allowing £ to belong to
OA in (2.4), we find that ¥(0A) C E,, by virtue
of (1.13) and of the identity
a?(N? — 1) 4+ (14+ X3 (1 - NaH(1 - a?)
=\ (1—a?)?+ (1 - Na?)2
For ¢ € 0A, let D(¢) = A(1 — a?) + ¢(1 — A\%a?)
and let (¢) = |D(¢)|?. Since A > 1, it follows that
(A = 1)(1 + a*)\) > 0 and therefore A\(1 — a?) >

Furthermore (1.

), (2.4)
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1 — X%a?. Thus, 7(¢) > 0 for ( € OA. Let ¢ =
¢(p) = Ab(1 — a?)*/™. Then

aC(\? —1) c(p(A+ D¢+ A)—1+1/m>

w0 = D) D)1/

and, since v(z1, 22) = (21, m|22|*" 25 1), we see that
(N -1
@)= (“55

mdm%hnMAJPmK+AP2mD@P”j.

ID(C)?|(AC+ 1)(C + A) - Lrt/m
Moreover, since |\ + 1| = A+ (7Y = A+ (| =
A+ | for ¢ € DA, it follows that

Q) = PO (al¥? - 1)D(C),

¢+ APD(Q)Y™ )
(A + 1)(¢+ )~ /m )

me(p)"~!

and therefore

$(¢) = [a(\* — 1)D(Q),
me(p)®™ H(¢ + N2 HmD(OY™).

All requirements for ¢ are now either evident or
easily proved from this expression.

As discussed in Section 1, there is actually a
third case: u > b = 0. In fact, in this case, ¥
has the extremely simple form given by (1.3), and
it is trivial to verify that it is stationary. The more
general formulas in Section 1 now follow by com-
position with the obvious holomorphic maps.

3. SMOOTHNESS OF THE KOBAYASHI METRIC

In this section we assume that m > 1.

5. To show
that K is C*, consider a curve v(v) = (0,b,1,v)

with [b] > 0. When v = mv < |b|, we have

1 b 2m—2u2 1/2
K(v) = K(y(v)) = <1 T (|1 |_ |b|2m)2) ’

from which it follows that

i PK m|b[?m—t
11m = .
u—b| dv 1—1b)?m

In the second case, 0 < |b| < u, equation (1.2) is
equivalent to u = a !|b|(m — (m — 1)a?), equation
(1.3) is equivalent to

(A2 —1)a?

1 —g?2= 2 0
a 1_)\2m|b|2m’

and (1.7) may be written more simply as

a|vy]

K(U) = 1— >\2m|b|2m

(1.7)

From (1.2) and (1.3), it is clear that

lim a(p) =1 and lim A(p) =1. (3.1)
u—|b| u—b|
Differentiating a~! in (1.2) with respect to v, we
obtain

d 2
d_z - _ﬁu +u(u® + dm(m — 1)[p]*)'/?),

and therefore

da —-m

lm — = ———. 3.2
usbl dv b (2m — 1) (3:2)

On differentiating (1.3) with respect to v, taking
the limit as u tends to |b|, and using (3.2), we get

d\  m(1— [p]2m)

Iim —= —~—--—=-. 3.3
asbl do  [b(2m — 1) (3:3)

Finally, we find that, in agreement with the first
case,

lim K = lim i( aA ) = mlbr =
usslp] dv  u—|p| dv \ 1 — A\2m|p|?m 1—[p]pm”’
by virtue of (1.7'), (3.1), (3.2), (3.3), and the quo-
tient rule.

In the third case, 0 = |b| < u, the formula for
K(v) in (1.7) makes sense only asymptotically.
However, the Kobayashi indicatrix

{v: K(0,0,v1,v2) =1}

at (0,0) is given by the equation |vi|? + |vg|?™ =1

and, since the indicatrix is clearly C', the Kobay-
ashi metric K (0,0, v1,v2) must be a C! function of
the variable v.
To complete the proof that K is C!, it remains
to show that
oK

oK
lim —— 1,v) = lim — 1 4
Jim, — (0,0,1,v) Jm (0,0,1,v), (3.4)
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where v — 0 and u = mwv. To prove this, we will
show that both sides exist and equal

WP 4 2m— 1)(1 — W) 2

In working first with the left side of (3.4), we will
abbreviate lim,_,,+ by lim. Since K = K(0,b,1,v)
is given by

1 om—2,2 \ 1/2
(e 150
1— b2m (1 _ b2m)2
(1 — b2 4+ 252m=2) 1/2
- 1—p2m ’

it is clear that

—u¥™h (3.5)

To compute 0K /0b, we differentiate both sides of
(1—b*")K?* =1—b"" + u?p*™ 2,

lim K(0,b,1,v) = (1

After simplification, we get

K
(1- b2m)2K%—b = mb*™ 1 (2K%(1 — b*™) — 1)

+ u*(m — 1)b*™73,

Taking the limit of both sides as b — u™ and using
(3.5), we obtain, after simplification,
oK -

lim = WP 4 2m— 1)(1 — u?™) 2

Working with the right side of (3.4) is somewhat
more difficult, reflecting the more complicated for-
mula for the Kobayashi metric appearing in this
case, the second listed in Theorem 1. We now
write lim for lim, ,,—. Recall that K(0,b,1,u) =
a)/(1 — (Ab)*™). Clearly,

lima=1 and limA=1. (3.6)
We now compute lim da/0b and lim O\/0b. From
2mb

u+ (u? + 4m(m — 1)b2)

a= 12

we obtain
da _ 2m(u+ VR) — 2mb - 4m(m — 1)bR™1/?
db (u + VR)? ’
where R = u? + 4m(m — 1)b?. Note that lim R =
(2m — 1)%u?, so that
da _ 4m*u —8m?%(m — 1)u?((2m — 1)u)*
b 4m2u? '

After simplification,

Oa 1
lim — = ———. 3.7
Mo T 2m - Du (87)
On differentiating both sides of
Na® + X" (1 - a®)b*™" =1,
we get
oA 2 da 2m-—10A 2\7,2
2\ — 2a)— mT (1 — m
)\aba +)\(a)ab+m/\ 8b( a”)b

+ AQm(—2a%)b2m + A7 (1 = a®)2mb*™ ! = 0.
Combining this with (3.6) and (3.7), we obtain

. 0A u?m — 1

and, recalling that K = a\/(1 — (A\b)?™),

OK  %x+aZd  2amA(Ab)2m ! <8)\b+ A)
(1= (Ab)>m)? '

b 1— (\b)2m db
It then follows from (3.7), (3.8), and much simpli-
fication that
OK u2m71
lim — =

b~ [ —wmp A D),

as required.

4. NUMERICAL APPROXIMATIONS

In view of the semicontinuity of the Kobayashi
metric [Reiffen 1963; Greene and Krantz 1984], and
especially the semicontinuity of extremal disks that
follows from considerations of normal families, it is
attractive to use numerical methods to search for
extremal disks.

One seeks to implement an algorithm that takes
as input the defining function p for the domain,
the base point z, and the direction v, and that
performs a search among polynomial mappings ¢ :
A — E,,, with user-specified restrictions on the
degree of the polynomial, the range of the coeffi-
cients, and the maximum size of |\,|.

Even with the parameter space so restricted, the
problem is too large to be computationally feasible.
Helton et al. (personal communication) have ad-
dressed this infeasibility by studying a real-variable
analogue of the Kobayashi metric. We address it
by employing a Monte Carlo method that checks
a prespecified number of randomly selected disks
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satisfying the parameter bounds indicated above.
This method has been implemented in a C pro-
gram kobayashi.c that is publically available (see
information at the end of the article).

In effect, the program shows that, with a cer-
tain (unspecified) probability, the extremal disk
and corresponding value for the Kobayashi metric
correspond to a certain output. Repeated running
of the program, of course, increases the probability.
In several experiments that we have performed, the
numerical answer obtained substantiates the ex-
plicit calculations performed in earlier sections of
this paper. Alternatively, those calculations, which
are of course self-contained as presented, may be
viewed as a test of the algorithm’s effectiveness (see
Table 1).

. . K K
p v Iterations (Monte Carlo) (exact)
(0,0) (1,0) 20,000 1.0 1.0
(0,0) (1,1) 40,000 0.786 0.786
(0,0.2) (1,0) 40,000 0.9992 0.9992
(0,0.2) (1,1) 10,000 0.749 0.762
(0,0.2) (1,1) 40,000 0.749 0.762
(0,0.2) (1,1) 60,000 0.752 0.762
(0,0.2) (1,1) 160,000 0.754 0.762
(0,0.5) (1,0) 40,000 0.968 0.968
(0,0.5) (1,1) 40,000 0.577 0.626
TABLE 1. Values of the Kobayashi metric K on

the ellipsoid F,, with m = 2, as obtained from
Theorem 2 using Mathematica (last column) and
from the program kobayashi.c (fourth column).
The first two columns indicate the base point and
the direction of the sample vector, the third col-
umn the number of random disks used in running
the program. The search for extremal disks is
limited to polynomial functions of degree at most
eight. Four entries refer to the same base point
and sample vector, but were computed with dif-
ferent numbers of iterations; this gives an idea of
how slowly the algorithm converges to the correct
answer, and also of the complexity of the problem.

Armed with this information, one would like to
use the software to obtain experimental informa-
tion about the Kobayashi metric on domains for
which we have no hope of performing explicit cal-

culations at this time. The problem of determining
the Kobayashi metric for an ellipsoid of the form

F = {(Zl,...,,zn) : |z1|2m1 4+ 4 |Zn|2mn < 1}7

with the m;’s positive integers, should be tractable
using the methods presented in this paper (though
the details are sure to be unpleasant). When the
m;’s are positive but nonintegral, the matter is
still of great interest but our methods do not apply
directly—especially if the m;’s are irrational. The
software will be of use in determining the behavior
of the metric near nonsmooth boundary points of
such a domain.

Given the results of [Lempert 1981], it is also
natural to consider convex domains. By modify-
ing one line of the C program, one could consider
domains of the form

{(21,22) : Rez1 + f(|22]) < 0},

with f a real-valued convex function.

One of the more interesting open problems of
the subject is to determine whether a smoothly
bounded, pseudoconvex domain is complete in the
Kobayashi metric. All known partial results indi-
cate that this is true. (But Fornaess and Krantz
have an unpublished example of a smooth, pseu-
doconvex domain on which the Kobayashi metric
does not blow up as the reciprocal of the distance to
the boundary.) The software can be used to gather
data to help support or refute the conjecture.

A bare-hands calculation of the Kobayashi met-
ric, essentially by trying all possible disks, is com-
putationally expensive. The problem is exponen-
tially complex in the degree of the polynomials de-
scribing the extremal disk and also in the dimen-
sion of the ambient space. It would be interesting
to use some of Lempert’s ideas [Lempert 1981] to
simplify the search in the convex case. It is also
possible that the dual extremal methods of [Roy-
den and Wong], which apply on a formal level in
considerable generality, could be used to simplify
the search. We intend to address these issues in
future work.

Here is a sketch of the algorithm implemented
by the software: To limit the order of complexity
of the problem, this software calculates extremal
mappings of the disk into domains in C2. The do-
main is specified as = {z € C? : p(z) < 0}. It
is clear that in order to evaluate the infinitesimal
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Kobayashi metric at a point P = (p1,p2) in the
direction v = (v, v2), it suffices to consider poly-
nomial mappings ¢(¢) = (¢1(¢), ¢2(¢)) from the
disk to the domain 2. The zero- and first-order co-
efficients of these polynomials are determined (the
latter up to a scalar multiple) by the base point P
and the direction v.

The coefficients of ¢ are randomly perturbed,
within the specified constraints, in an effort to push
the value A\, toward Amax. At each stage, the soft-
ware checks that the new configuration of ¢ has
image lying in the domain €. In the spirit of a
Markov process, the step-k perturbation takes into
account information about the success or failure of
the first kK —1 perturbations. When successive con-
figurations of ¢’(0) become and remain within a
user-specified ¢ of each other, the program halts,
flagging success. If, after a user-specified number
of attempts, no such convergence is achieved, the
program halts, flagging failure.

In general, we cannot hope that the extremal
disk for a given problem will be a polynomial. But
the polynomial achieving the extreme value in this
software algorithm is of some interest and is pre-
sumably closely related to the true extremal map-
ping. The program exhibits the extremal data
upon completion of its run.
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SOFTWARE AVAILABILITY

The program kobayashi.c described in Section 4 is
available by ftp from the machine jezebel.wustl.edu.
Use the account guest and the password anyonehome,
and go to the directory /home/jezebel/sk/programs.
Also in that directory are other files of interest to work-
ers in several complex variables, including the program
levi.mac, a Macsyma program that will take as input a
defining function p(z) and a point P satisfying p(P) =
0, and will calculate an orthonormal basis for the com-
plex tangent space to the surface M = {z : p(z) = 0}
at the point P, and the values of the Levi form at P.
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