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The infinitesimal Kobayashi metric of an ellipsoid of the formEm = f(z1; z2) 2 C2 : jz1j2 + jz2j2m < 1g
is calculated explicitly, modulo a parameter that is determined

by solving a transcendental equation. Using this result, we

show that the metric is C1 on the tangent bundle away

from the zero section. We also describe software that will

calculate, using a Monte Carlo method, the infinitesimal Ko-

bayashi metric on a domain of the form
� = f(z1; z2) 2 C2 : �(z1; z2) < 0g;
where � is a real-valued polynomial. We compare results of

computer calculations with those obtained from the explicit

formula for the Kobayashi metric.

Invariant metrics such as the Kobayashi metricand the Carath�eodory metric have become impor-tant tools in the study of holomorphic functionson bounded domains in complex Euclidean space.Nevertheless, many aspects of the behavior of thesemetrics, such as whether or not they are smooth,remain unknown. Of course, an explicit formulafor such a metric would allow the determinationof this behavior, but it is generally very di�cultto compute these metrics explicitly. To date, theonly domains for which the invariant metrics havebeen explicitly calculated are symmetric domainsand Teichm�uller space.The purpose of this paper is to give an explicitformula for the Kobayashi metric on the complexellipsoidEm = f(z1; z2) 2 C2 : jz1j2 + jz2j2m < 1gfor real m � 12 . Because the domain Em is con-vex for that range of m, the Carath�eodory metriccoincides with the Kobayashi metric. (In fact, Emis strictly convex, that is, Em contains the inte-c
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rior of every line segment joining two points in thetopological closure of Em. A proof of the coinci-dence of the Carath�eodory and Kobayashi metricson strictly convex domains in Cn may be found in[Lempert 1981].) As an application of the formulaobtained, we show that the Kobayashi metric onEm is at least C1.The complex ellipsoid Em, including the unitball E1 as a special case, has been a useful model inthe study of bounded domains because of its non-compact automorphism group [Greene and Krantz1986]. For m 6= 1, the ellipsoid Em has the prop-erty that the orbit of a point z 2 Em under theautomorphism group accumulates at a weakly con-vex boundary point of Em. In [Greene and Krantz1986] the complex ellipsoid is used as a model tostudy pseudoconvex domains D with noncompactautomorphism group and with the orbit accumu-lation property just mentioned. It should also benoted that the domains Em, for m integral, arethe only bounded pseudoconvex domains in C2that have noncompact automorphism group andsmooth boundary of �nite type [Bedford and Pin-chuk 1989; 1991].Although the detailed procedure for discerningour formula for the Kobayashi metric Em is tootedious to present, several basic ideas and tech-niques that are used in obtaining the formula areworth mentioning (as well as the in
uence of Po-letskii's work [Poletskii 1983], to which we do notdirectly refer, on �nding extremal maps). The in-�nitesimal Kobayashi metric F : TEm ! (0;1)is de�ned on the complexi�ed tangent bundle asfollows: For z 2 Em; v 2 C2, and f a holomorphicmap from the open unit disk � in C1 into Em withf(0) = z and f 0(0) a positive scalar multiple of v,we write f 0(0) = �fv; then F (z; v) = inff��1f g. Aholomorphic map  =  p : � ! Em is extremalfor p = (z; v) 2 TEm if F (p) = ��1 . Lempert[1981] has shown that for each point in the tan-gent bundle of a strictly convex domain D there isa unique extremal map, and that the resulting ex-tremal maps are proper isometric imbeddings of �with the Poincar�e metric into D with the Kobay-ashi metric. Lempert's results apply in particularto Em, and the formula for the Kobayashi metriccan be obtained once we have the formulas for theextremal maps for each p in TEm. We should alsomention Kay's recent work [Kay 1991] on extremal

disks for genuine ellipsoids in Cn (although thereis no apparent overlap), as well as [Royden andWong].Of course, the domain E1 is the unit ball, onwhich there are several easy techniques for calcu-lating the Kobayashi metric. There is a fundamen-tal di�erence in computing the extremal maps ofEm for m 6= 1. In this paper, we establish for-mulas for the extremal maps  (z; v) in two casesthat depend, for given z, on the direction of v. Aclass of extremal maps into Em, for m 6= 1, is ob-tained by composing a branch of the many-valuedinverse of the covering map Em ! E1 given by(z1; z2) ! (z1; zm2 ) with extremal maps into E1taking values in E1 � (� � f0g). This gives ex-tremal disks only for certain directions of v at eachpoint z of Em. For the other directions, we com-pute the extremal disks at the center 0 2 Em usingthe following fact: The extremal disk of a circularconvex domain at the center 0 is the disk obtainedby intersecting the domain with the complex linein the direction v through 0. The extremal disksat other points are obtained by repositioning thisextremal disk at 0 by the action of the automor-phisms (z1; z2)! (z01; z02), where
z01 = z1 + a1 + �az1 ; z02 = (1� jaj2)1=2mz2(1 + �az1)1=mfor a 2 �.It is not clear a priori whether the Kobayashimetric of Em obtained from formulas in the twodi�erent cases of directions is di�erentiable. Lem-pert proved that on a strongly convex domain withsmooth boundary, that is, a domain for which thefunction de�ning its boundary has positive de�niteHessian in the tangential directions, the Kobaya-shi metric is smooth o� the zero section. This isconsistent with the special case of the unit ball E1.However, if m < 1, the boundary of Em is not C2,and when m > 1, the ellipsoid Em is not stronglyconvex and Lempert's result does not apply. Asan application of the formula obtained here, weshow that the metric F is at least C1 on the tan-gent space away from the zero section. It remainsan open question whether F is di�erentiable to ahigher order.This paper is divided into four sections. In Sec-tion 1, we give formulas for the extremal maps andfor the Kobayashi metric of Em. In Section 2, we
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supply a proof that the given formulas do indeedde�ne extremal functions. We rely here on thecharacterization of extremal maps given in [Lem-pert 1981]. Veri�cation of Lempert's criteria re-quires routine computations too lengthy to justifyfull publication, but we will provide enough stepsfor any reader who is so inclined to easily �ll inmissing details. In Section 3, we establish that theKobayashi metric is C1 as an application of the for-mulas presented in Section 1. In recognition thatthe computations carried out in Section 2 are veryspeci�c to the complex ellipsoid, we address in Sec-tion 4 the possibility of implementing software toobtain experimental information about the Kobay-ashi metric on domains for which we have no hopeof performing explicit calculations at this time.
1. EXPLICIT FORMULASThe formulas for the extremal maps and for theKobayashi metric are given in Theorems 1 and 2(see box on next page). Several remarks should bemade.We denote by H(�; Em) the set of holomorphicmaps from the unit disk � into the ellipsoid Em.For p = (z; v) in the complex tangent bundle TEm,where z 2 Em and v 2 C2, we let H(�; Em : p)denote the subset of H(�; Em) consisting of el-ements f for which f(0) = z and f 0(0) = �fvfor �f > 0. The in�nitesimal Kobayashi metricF : TEm ! R+ for the domain Em is de�ned by

F (p) = inff��1f j f 2 H(�; Em : p)g; (1:1)
for p 2 TEm. An element  =  p of H(�; Em : p)is extremal for p 2 TEm if F (p) = ��1 . As men-tioned, it follows as a special case of a theoremof Lempert that  exists and is unique. The ex-plicit formula for  p in Theorem 1 is given for thepoint z = (0; b), for b 2 C, from which the gen-eral formula follows by composition with M�obiustransformations.The computation of  is divided into two cases,according to the size of u = u(v) = mjv�11 v2j rela-tive to jbj, where v1 and v2 are the components ofv in p = (z; v). The �rst case is de�ned by u � jbj.In the second case, when u > jbj > 0, we will need

two parameters a(p) and �(p). Let a = a(p) bede�ned bya = 2mjbju+ (u2 + 4m(m� 1)jbj2)1=2 ; (1:2)
and let � = �(p) be the unique positive solution of�2a2 + �2m(1� a2)jbj2m = 1: (1:3)Observe that the parameter a(p), used only in thecase where u > jbj > 0, satis�es0 < a(p) < 2mjbjjbj+ (jbj2 + 4m(m� 1)jbj2)1=2= 2m1 + j2m� 1j � 1for these p. It follows not only that (1.3) deter-mines a unique positive solution �(p) when u > jbj,but also that �(p) > 1. We will deliberately leavea third case unde�ned for the moment: When u >jbj = 0, then a(p) vanishes and �(p) is not de�nedby (1.3). The reader should not be troubled by thepossibility that the formulas in Theorems 1 and 2are not meaningful in this case; we redress this sit-uation after the statements of these theorems inpreference to disturbing the relative simplicity ofthe formulas right away.The assertion that our formulas are explicit iswholly true only part of the time. The exagger-ation is to be found in the implicitly de�ned pa-rameter � in the case u > jbj. Even in this case,where the formula is semi-explicit, the formula isessentially as useful as if it were fully explicit. Wehave in mind, for example, the proof of Theorem 3(see box). One may also use symbolic manipula-tion software to actually �nd � in speci�c cases.As observed above, the parameter �(p) used inthe second case satis�es �(p) > 1. Therefore, b = 0is the only potential singularity in (1.7). Of course,such a singularity must be removable, and we willpresently provide a formula, (1.11), that is equiv-alent to (1.7) but that clearly de�nes K at b = 0.Nevertheless, (1.7) does have the advantage of be-ing much simpler than (1.11), and it is sensibleaway from b = 0. As b tends to 0, it is easy to ver-ify that a(p) tends to 0, and �(p) tends to in�nity insuch a way that limb!0 jv2j=(jbj�) exists and equalsK(0; 0; v1; v2). An alternative approach, which wenow sketch, is to use di�erent parameters.
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NotationLet m 2 [12 ;1) be �xed, and let Em be the ellipsoid f(z1; z2) 2 C2 : jz1j2 + jz2j2m < 1g.Let p = ((0; b); (v1; v2)) 2 TEm, with b = jbjei� 2 � and vj = jvjjei'j 2 C for j = 1; 2.Let u = mjv�11 v2j and w = ujbjm�1(1� jbj2m)�1=2.Let a = a(p) and � = �(p) be de�ned by formulas (1.2) and (1.3).
Theorem 1 (Formula for the extremal map). The extremal map  = ( 1;  2) : �! C2 for Em is given by 1(�) = ei('1�'2+�)�(1� jbj2m)1=2((1 + w2)1=2 + w�jbjm)�1 2(�) = ei�(w� + jbjm(1 + w2)1=2)1=m((1 + w2)1=2 + w�jbjm)�1=m

9=; for u � jbj; (1:4)
 1(�) = ei('1�'2+�)a(�2 � 1)�(�(1� a2) + (1� �2a2)�)�1 2(�) = �b(1� a2)1=m(�� + 1)(� + �)m�1�1(�(1� a2) + (1� �2a2)�)�1=m

9=; for u > jbj: (1:5)
Theorem 2 (Formula for the Kobayashi metric). The Kobayashi metric K for Em is given by

K(p) =  jv1j21� jbj2m + m2jbj2m�2jv2j2(1� jbj2m)2 !1=2 for u � jbj; (1:6)
K(p) = jv2j�m(1� a2)jbj(�2 � 1)(m(1� a2) + a2) for u > jbj: (1:7)

Theorem 3. K is C1, for m > 12 , away from the zero section of the complex tangent bundle.
We set� = �(p) = 12�jv2j+ (jv2j2 + 4(1�m�1)jbj2jv1j2)1=2�(1:8)and � = �(p) = �jbj��1; (1:9)and use �(p) and �(p) to replace the parametersa(p) and �(p). We temporarily proceed on a for-mal basis. Note that a = jbjjv1j��1. Substitutingfor a and � in the de�ning equation for � givesthe implicit de�nition of � as the unique positivesolution of the equation�2jv1j2 + �2m�2m(1� jbj2jv1j2��2) = 1: (1:10)We now use (1.10) to de�ne � instead of (1.9). Ob-serve that, when u > jbj = 0, we have � = jv2j from(1.8), and � is well-de�ned by (1.10). Similarly,substituting in (1.7) gives K = K(p) by

K = jv2j��m(1� jbj2jv1j2��2)(�2�2 � jbj2)�m(1� jbj2jv1j2��2) + jbj2jv1j2��2�(1:11)

for u > jbj. When u > jbj = 0, we have � = jv2j asnoted, and (1.11) reduces toK(p) = 1� for p = ((0; 0); (v1; v2)); (1:12)with jv2j > 0. This, in view of (1.9), is in ac-cordance with the asymptotic approach outlinedabove. Note that (1.7) and (1.12) are togetherequivalent to (1.11). See also (1:70) in Section 3.Of course, (1.8) and (1.9) can be used to providea substitute for (1.5) that is valid for u > jbj. Sincethe resulting formula in full generality is cumber-some and since we need a formula only for b = 0,we record only this case: p(�) = (�v1�; �v2�) (1:13)for p = ((0; 0); (v1; v2)), with kvk > 0.
2. PROOFS OF THE FORMULASThe proof of Theorem 1 is accomplished in sev-eral steps. The main work consists of verifying(1.4) and (1.5) at certain points. Then, composi-tion with appropriate holomorphic maps gives The-orem 1 in full generality. Once the validity of The-orem 1 is established, that of Theorem 2 follows
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from a straightforward calculation that can safelybe omitted.For � 2 @Em, let �(�) denote the exterior unitnormal. We recall from [Lempert 1981, x4] thata proper holomorphic map f 2 H(�; Em : p) issaid to be stationary for p 2 TEm if there existtwo Lip(12) functions �f : �� ! �Em and � : @� !(0;1) and a continuous function ~f : �� ! �Emsuch that (a) �f j�= f , (b) �f(@�) � @Em, (c) ~f j�2H(�; Em), and (d) ~f(�) = � �(�) �(f(�)) for � 2@�.From the proof of Proposition 1 of [Lempert1981], it su�ces to show that the maps  de�nedin Theorem 1 are stationary. Because of property(a), we will write  for � in verifying properties (a)through (d) for the function  given in Section 1.Also note that a smooth scaling of the vector �can be accommodated by the positive function �;in the computations that follow, we therefore usethe gradient to obtain some exterior normal �.
Case 1. p = ((0; b); (cos'; sin')) 2 TEm, wherem tan' � b < 1; 0 < b, and 0 � ' � �2 .In the notation of Theorem 1, ' = '1 = '2; � =0; u = m tan', and w = bm�1(1� b2m)�1=2u. Let� = arctanw; then � 2 [0; �2 ) and (1.4) becomes
 (�) = �� cos�(1� b2m)1=21 + bm� sin� ;� � sin�+ bm1 + bm� sin��1=m�(2:1)for � 2 �. Of course, (2.1) de�nes  as well for� = � 2 @�, and on @� we havej 1(�)j2 + j 2(�)j2m= 1 + b2m sin2 �+ ��bm sin�+ �bm sin�j1 + bm� sin�j2= 1;so that  (@�) � @Em. Let �(�) = j1 + bm� sin�j2and ~ (�) = ( ~ 1(�); ~ 2(�)) = � �(�) �( (�))for � 2 @�. Since �( (�)) is given by�(1� b2m)1=2�� cos�1 + bm�� sin� ;

m� �� sin�+ bm1 + bm�� sin��� � sin�+ bm1 + bm� sin��1�1=m�;

it follows that for � in @� we have~ 1(�) = (1 + bm� sin�)(1� b2m)1=2 cos�; (2:2)~ 2(�) = m(sin�+ �bm)(� sin�+ bm)1�1=m�(1 + �bm sin�)�1=m: (2:3)That  is H�older continuous of order 12 , like �(�),is an elementary consideration. In order to showthat ~ extends to a function holomorphic in �, itsu�ces, as we will see, to verify that sin� � bm.Now tan� = mbm�1 tan'(1� b2m)1=2 ;whence sin�cos� � bm(1� b2m)1=2for b � m tan'. Therefore, sin� � bm and formu-las (2.2) and (2.3) de�ne a function ~ on �� that isholomorphic in �. Moreover, unless sin� = bm, itis clear that ~ is continuous on ��. In the case ofequality, ~ 2 may be written as~ (�)mb2m�1(1 + �)2�1=m(1 + b2m�)�1=m;and ~ is continuous on ��, provided m � 12 .
Case 2. p = ((0; b); (cos'; sin')) 2 TEm, where0 < b < m tan', b < 1, and 0 < ' � �2 .In the notation of Theorem 1, ' = '1 = '2; � =0; u = m tan', w = bm�1(1� b2m)�1=2u, anda = a(p) = 2mb(u+ (u2 + 4m(m� 1)b2)1=2)�1:Furthermore (1.5) becomes (�) = � a�(�2 � 1)�(1� a2) + �(1� �2a2) ;�b(1� a2)1=m(�� + 1)(� + �)�1+1=m(�(1� a2) + �(1� �2a2))1=m �; (2:4)where � 2 � and � = �(p) is the unique positivesolution of �2a2+�2m(1�a2)b2m = 1. Once again,after extending  to �� by allowing � to belong to@� in (2.4), we �nd that  (@�) � @Em by virtueof (1.13) and of the identitya2(�2 � 1)2 + (1 + �2)(1� �2a2)(1� a2)= �2(1� a2)2 + (1� �2a2)2:For � 2 @�, let D(�) = �(1� a2) + �(1� �2a2)and let �(�) = jD(�)j2. Since � > 1, it follows that(� � 1)(1 + a2�) > 0 and therefore �(1 � a2) >
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1 � �2a2. Thus, �(�) > 0 for � 2 @�. Let c =c(p) = �b(1� a2)1=m. Then
 (�) = �a�(�2 � 1)D(�) ; c(p)(�� + 1)(� + �)�1+1=mD(�)1=m �;
and, since �(z1; z2) = (z1;mjz2j2m�z�12 ), we see that
�( (�)) = �a��(�2 � 1)D(�) ;
mc(p)2m�1 j�� + 1j2mj� + �j2�2mD(�)1=mjD(�)2j(�� + 1)(� + �)�1+1=m �:Moreover, since j�� + 1j = j� + ��1j = j� + ��j =j�+ �j for � 2 @�, it follows that

��( (�)) = jD(�)j�2�a(�2 � 1)D(�);
mc(p)2m�1 �j� + �j2D(�)1=m(�� + 1)(� + �)�1+1=m�;and therefore~ (�) = [a(�2 � 1)D(�);mc(p)2m�1(� + �)2�1=mD(�)1=m):All requirements for ~ are now either evident oreasily proved from this expression.As discussed in Section 1, there is actually athird case: u > b = 0. In fact, in this case,  has the extremely simple form given by (1.3), andit is trivial to verify that it is stationary. The moregeneral formulas in Section 1 now follow by com-position with the obvious holomorphic maps.

3. SMOOTHNESS OF THE KOBAYASHI METRICIn this section we assume that m > 12 . To showthat K is C1, consider a curve 
(v) = (0; b; 1; v)with jbj > 0. When u = mv � jbj, we have
K(v) = K(
(v)) = � 11� jbj2m + jbj2m�2u2(1� jbj2m)2�1=2;from which it follows that

limu!jbj DKdv = mjbj2m�11� jbj2m :

In the second case, 0 < jbj < u, equation (1.2) isequivalent to u = a�1jbj(m� (m� 1)a2), equation(1.3) is equivalent to1� a2 = (�2 � 1)a21� �2mjbj2m ;and (1.7) may be written more simply asK(v) = a�jv1j1� �2mjbj2m : (1:70)From (1.2) and (1.3), it is clear thatlimu!jbj a(p) = 1 and limu!jbj�(p) = 1: (3:1)Di�erentiating a�1 in (1.2) with respect to v, weobtaindadv = � a22jbj(1 + u(u2 + 4m(m� 1)jbj2)1=2);and therefore limu!jbj dadv = �mjbj(2m� 1) : (3:2)On di�erentiating (1.3) with respect to v, takingthe limit as u tends to jbj, and using (3.2), we getlimu!jbj d�dv = m(1� jbj2m)jbj(2m� 1) : (3:3)Finally, we �nd that, in agreement with the �rstcase,limu!jbj dKdv = limu!jbj ddv� a�1� �2mjbj2m� = mjbj2m�11� jbj2m ;by virtue of (1:70), (3.1), (3.2), (3.3), and the quo-tient rule.In the third case, 0 = jbj < u, the formula forK(v) in (1:70) makes sense only asymptotically.However, the Kobayashi indicatrixfv : K(0; 0; v1; v2) = 1gat (0,0) is given by the equation jv1j2 + jv2j2m = 1and, since the indicatrix is clearly C1, the Kobay-ashi metric K(0; 0; v1; v2) must be a C1 function ofthe variable v.To complete the proof that K is C1, it remainsto show thatlimb!u+ @K@b (0; b; 1; v) = limb!u� @K@b (0; b; 1; v); (3:4)
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where v ! 0 and u = mv. To prove this, we willshow that both sides exist and equalu2m�1(u2m + 2m� 1)(1� u2m)�2:In working �rst with the left side of (3.4), we willabbreviate limb!u+ by lim. Since K = K(0; b; 1; v)is given byK = � 11� b2m + b2m�2u2(1� b2m)2�1=2= (1� b2m + u2b2m�2)1� b2m 1=2;it is clear thatlimK(0; b; 1; v) = (1� u2m)�1: (3:5)To compute @K=@b, we di�erentiate both sides of(1� b2m)2K2 = 1� b2m + u2b2m�2:After simpli�cation, we get(1� b2m)2K@K@b = mb2m�1(2K2(1� b2m)� 1)+ u2(m� 1)b2m�3:Taking the limit of both sides as b! u+ and using(3.5), we obtain, after simpli�cation,lim @K@b = u2m�1(u2m + 2m� 1)(1� u2m)�2:Working with the right side of (3.4) is somewhatmore di�cult, re
ecting the more complicated for-mula for the Kobayashi metric appearing in thiscase, the second listed in Theorem 1. We nowwrite lim for limb!u� . Recall that K(0; b; 1; u) =a�=(1� (�b)2m). Clearly,lim a = 1 and lim� = 1: (3:6)We now compute lim@a=@b and lim@�=@b. Froma = 2mbu+ (u2 + 4m(m� 1)b2)1=2 ;we obtain@a@b = 2m(u+pR)� 2mb � 4m(m� 1)bR�1=2(u+pR)2 ;where R = u2 + 4m(m � 1)b2. Note that limR =(2m� 1)2u2, so thatlim @a@b = 4m2u� 8m2(m� 1)u2((2m� 1)u)�14m2u2 :

After simpli�cation,lim @a@b = 1(2m� 1)u : (3:7)On di�erentiating both sides of�2a2 + �2m(1� a2)b2m = 1;we get2�@�@b a2 + �2(2a)@a@b +m�2m�1@�@b (1� a2)b2m+ �2m(�2a@a@b )b2m + �2m(1� a2)2mb2m�1 = 0:Combining this with (3.6) and (3.7), we obtainlim @�@b = u2m � 1(2m� 1)u (3:8)and, recalling that K = a�=(1� (�b)2m),@K@b = @a@b�+ a@�@b1� (�b)2m + 2am�(�b)2m�1(1� (�b)2m)2 �@�@b b+ ��:It then follows from (3.7), (3.8), and much simpli-�cation thatlim @K@b = u2m�1(1� u2m)2 (u2m + 2m� 1);as required.
4. NUMERICAL APPROXIMATIONSIn view of the semicontinuity of the Kobayashimetric [Rei�en 1963; Greene and Krantz 1984], andespecially the semicontinuity of extremal disks thatfollows from considerations of normal families, it isattractive to use numerical methods to search forextremal disks.One seeks to implement an algorithm that takesas input the de�ning function � for the domain,the base point z, and the direction v, and thatperforms a search among polynomial mappings ' :� ! Em, with user-speci�ed restrictions on thedegree of the polynomial, the range of the coe�-cients, and the maximum size of j�'j.Even with the parameter space so restricted, theproblem is too large to be computationally feasible.Helton et al. (personal communication) have ad-dressed this infeasibility by studying a real-variableanalogue of the Kobayashi metric. We address itby employing a Monte Carlo method that checksa prespeci�ed number of randomly selected disks
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satisfying the parameter bounds indicated above.This method has been implemented in a C pro-gram kobayashi.c that is publically available (seeinformation at the end of the article).In e�ect, the program shows that, with a cer-tain (unspeci�ed) probability, the extremal diskand corresponding value for the Kobayashi metriccorrespond to a certain output. Repeated runningof the program, of course, increases the probability.In several experiments that we have performed, thenumerical answer obtained substantiates the ex-plicit calculations performed in earlier sections ofthis paper. Alternatively, those calculations, whichare of course self-contained as presented, may beviewed as a test of the algorithm's e�ectiveness (seeTable 1).
p v iterations K(Monte Carlo) K(exact)(0; 0) (1; 0) 20;000 1:0 1:0(0; 0) (1; 1) 40;000 0:786 0:786(0; 0:2) (1; 0) 40;000 0:9992 0:9992(0; 0:2) (1; 1) 10;000 0:749 0:762(0; 0:2) (1; 1) 40;000 0:749 0:762(0; 0:2) (1; 1) 60;000 0:752 0:762(0; 0:2) (1; 1) 160;000 0:754 0:762(0; 0:5) (1; 0) 40;000 0:968 0:968(0; 0:5) (1; 1) 40;000 0:577 0:626

TABLE 1. Values of the Kobayashi metric K onthe ellipsoid Em with m = 2, as obtained fromTheorem 2 using Mathematica (last column) andfrom the program kobayashi.c (fourth column).The �rst two columns indicate the base point andthe direction of the sample vector, the third col-umn the number of random disks used in runningthe program. The search for extremal disks islimited to polynomial functions of degree at mosteight. Four entries refer to the same base pointand sample vector, but were computed with dif-ferent numbers of iterations; this gives an idea ofhow slowly the algorithm converges to the correctanswer, and also of the complexity of the problem.
Armed with this information, one would like touse the software to obtain experimental informa-tion about the Kobayashi metric on domains forwhich we have no hope of performing explicit cal-

culations at this time. The problem of determiningthe Kobayashi metric for an ellipsoid of the formE = f(z1; : : : ; zn) : jz1j2m1 + � � �+ jznj2mn < 1g;with the mj's positive integers, should be tractableusing the methods presented in this paper (thoughthe details are sure to be unpleasant). When themj's are positive but nonintegral, the matter isstill of great interest but our methods do not applydirectly|especially if the mj 's are irrational. Thesoftware will be of use in determining the behaviorof the metric near nonsmooth boundary points ofsuch a domain.Given the results of [Lempert 1981], it is alsonatural to consider convex domains. By modify-ing one line of the C program, one could considerdomains of the formf(z1; z2) : Re z1 + f(jz2j) < 0g;with f a real-valued convex function.One of the more interesting open problems ofthe subject is to determine whether a smoothlybounded, pseudoconvex domain is complete in theKobayashi metric. All known partial results indi-cate that this is true. (But Fornaess and Krantzhave an unpublished example of a smooth, pseu-doconvex domain on which the Kobayashi metricdoes not blow up as the reciprocal of the distance tothe boundary.) The software can be used to gatherdata to help support or refute the conjecture.A bare-hands calculation of the Kobayashi met-ric, essentially by trying all possible disks, is com-putationally expensive. The problem is exponen-tially complex in the degree of the polynomials de-scribing the extremal disk and also in the dimen-sion of the ambient space. It would be interestingto use some of Lempert's ideas [Lempert 1981] tosimplify the search in the convex case. It is alsopossible that the dual extremal methods of [Roy-den and Wong], which apply on a formal level inconsiderable generality, could be used to simplifythe search. We intend to address these issues infuture work.Here is a sketch of the algorithm implementedby the software: To limit the order of complexityof the problem, this software calculates extremalmappings of the disk into domains in C2. The do-main is speci�ed as 
 = fz 2 C2 : �(z) < 0g. Itis clear that in order to evaluate the in�nitesimal
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Kobayashi metric at a point P = (p1; p2) in thedirection v = (v1; v2), it su�ces to consider poly-nomial mappings '(�) = ('1(�); '2(�)) from thedisk to the domain 
. The zero- and �rst-order co-e�cients of these polynomials are determined (thelatter up to a scalar multiple) by the base point Pand the direction v.The coe�cients of ' are randomly perturbed,within the speci�ed constraints, in an e�ort to pushthe value �' toward �max. At each stage, the soft-ware checks that the new con�guration of ' hasimage lying in the domain 
. In the spirit of aMarkov process, the step-k perturbation takes intoaccount information about the success or failure ofthe �rst k�1 perturbations. When successive con-�gurations of '0(0) become and remain within auser-speci�ed " of each other, the program halts,
agging success. If, after a user-speci�ed numberof attempts, no such convergence is achieved, theprogram halts, 
agging failure.In general, we cannot hope that the extremaldisk for a given problem will be a polynomial. Butthe polynomial achieving the extreme value in thissoftware algorithm is of some interest and is pre-sumably closely related to the true extremal map-ping. The program exhibits the extremal dataupon completion of its run.
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SOFTWARE AVAILABILITYThe program kobayashi.c described in Section 4 isavailable by ftp from the machine jezebel.wustl.edu.Use the account guest and the password anyonehome,and go to the directory /home/jezebel/sk/programs.Also in that directory are other �les of interest to work-ers in several complex variables, including the programlevi.mac, a Macsyma program that will take as input ade�ning function �(z) and a point P satisfying �(P ) =0, and will calculate an orthonormal basis for the com-plex tangent space to the surface M = fz : �(z) = 0gat the point P , and the values of the Levi form at P .
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