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We report on our implementation of an algorithm due to Neu-

mann and Praeger for deciding whether or not a matrix group

over a finite field contains the special linear group. This is a

Monte Carlo algorithm, and thus has a small but precise prob-

ability of returning the wrong answer; this probability can be

specified in advance by the user. The algorithm requires the

selection of random elements from the group, and the most im-

portant problem that arose in the implementation was to find a

satisfactory procedure for making this selection.

1. INTRODUCTIONThe purpose of this article is to report on our im-plementation of the algorithm described in [Neu-mann and Praeger 1992] for solving the followingproblem. Let q be a prime power, d a positive in-teger, and GL(d; q) the linear group of nonsingulard � d matrices over the �nite �eld Fq of order q.Given a �nite subset X of GL(d; q), does the groupG generated by X contain the special linear groupSL(d; q)?This implementation has been carried out in theGAP system developed by Martin Sch�onert andothers at Aachen [Sch�onert et al. 1992]. We havefollowed the algorithm described in [Neumann andPraeger 1992] fairly closely, and so we only needto report on one or two minor deviations, and onthose parts of the process that were not describedprecisely there. The implementation is practicalfor values of d up to at least 60 or 70, and it worksreasonably well for all Fq that are currently knownto GAP, namely those with q � 216 = 65536.In Section 2 we outline the main steps of thealgorithm and present some running times for ourimplementation. We emphasise that we are dealing
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with a Monte Carlo algorithm, which means thatthere is a number " (which the user can choosein advance) such that there is a probability of atmost " that the process will give an incorrect an-swer. In this particular case, only false negativescan occur. In other words, the answer \yes" canalways be relied upon, but the answer \no" mayvery occasionally be incorrect.The theoretical analysis of the process requiresthat we make a moderately large (up to a few hun-dred) number of independent choices of randomelements of the group G. A Monte Carlo algo-rithm to generate (pseudo-)random elements of Gis described in [Babai 1991]. Unfortunately, thisdoes not seem to be practical for us, on account ofthe large number of matrix multiplications that itrequires. We have therefore been forced to adopta procedure that does not attempt to cover thewhole group with uniform probability, but merelyto choose elements in such a way that they havethe correct probability of having the desired prop-erties. We must then rely on heuristical and statis-tical evidence to support the method that we haveadopted. These matters are discussed in more de-tail in Section 3.Finally, since the description in [Neumann andPraeger 1992] is not quite precise for d � 4, we �llin the details of these cases in Section 4.According to a result of Aschbacher [1984], anymatrix group over a �nite �eld lies in one of nineclasses of matrix groups, and one of these classesconsists of groups that contain the special lineargroup. We hope that the Neumann-Praeger algo-rithm will be the �rst of a series of algorithms thatseek to recognise whether a particular group lies inone or other of these classes.In fact, there has already been a suggested im-provement to the Neumann{Praeger algorithm it-self by Charles Leedham-Green, which has beenimplemented in GAP by Frank Celler. This cur-rently lacks a precise theoretical probabilistic anal-ysis, but statistical results suggest that it involveslooking at far fewer random elements of the group.What seems to be clear, however, is that all algo-rithms of this type are likely to depend strongly onthe selection of random elements from the group,and so an investigation of this process is essential.

2. OUTLINE OF THE ALGORITHM AND TIMINGSWe begin with a very brief outline of the Neumann{Praeger algorithm; readers should consult [Neu-mann and Praeger 1992] for more details. An el-ement g of GL(d; q) is called irreducible if it actsirreducibly on the underlying d-dimensional vectorspace V over Fq, and it is called nearly irreducible ifit �xes and acts irreducibly on a (d�1)-dimensionalsubspace of V . The element g is called primitiveirreducible if it is irreducible and its order jgj isdivisible by some prime p that divides qd � 1 butdoes not divide qe�1 for any positive integer e < d.Similarly, g is called primitive nearly irreducible ifit is nearly irreducible and jgj is divisible by a primedividing qd�1 � 1 but not dividing qe � 1 for anye < d�1. Finally, g is called ample if no conjugateof any element gz, with z a scalar matrix, lies inGL(d; r) for any proper sub�eld Fr of Fq.It is shown in [Neumann and Praeger 1992] that,with a few precisely described exceptions, any sub-group of GL(d; q) that contains an ample element,a primitive irreducible element, and a primitivenearly irreducible element must contain the wholeof SL(d; q). It is also shown that, if G is a subgroupof GL(d; q) that contains SL(d; q), the proportionof ample primitive irreducible elements of G is atleast 1=(d+1), except when d < 3 or (d; q) = (6; 2),and the proportion of ample primitive nearly irre-ducible elements is at least 1=d, except when d < 4or (d; q) = (7; 2).The algorithm proceeds as follows, with slightmodi�cations for small d and the exceptional cases(d; q) = (6; 2) and (7; 2). Choose a sample S of nrandom elements of the given group G, where n issuch that, if G does contain SL(d; q), the probabil-ity that S does not contain both an ample prim-itive irreducible element and an ample primitivenearly irreducible element is less than the chosenerror probability ". (It is easy to calculate n from" and d; if " = 1100 , for example, n = 112 d is su�-cient.) Check the elements in the sample for am-pleness, primitive irreducibility and primitive near-irreducibility. If the sample does not contain anample element, or if it does not contain a primi-tive irreducible element, or if it does not containa primitive nearly irreducible element, return theanswer \no". If it does contain each of these threeelements, check for the known exceptional exam-ples, and answer accordingly.
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Now, from our implementation, it turns out thatthe proportion of computation time taken by testsfor primitivity, ampleness, and dealing with the ex-ceptional cases is very small. This is essentiallybecause they only have to be done once or twice,rather than for each individual element of the sam-ple S. The test for primitivity is described in[Neumann and Praeger 1992, p. 578{579] and con-sists of raising the element to an appropriate highpower and checking if the result is the identity.Since raising matrices to high powers is fairly e�-cient, this is not too time-consuming. The test forampleness is described in [Neumann and Praeger1992, pp. 578], and involves some simple tests onthe coe�cients of the characteristic polynomial ofthe element. The exceptional cases are dealt withby individual tests; typically, these involve someshort orbit calculations. For example, in the casen = 11; q = 2, the exceptional case in which G isthe Mathieu group M24 is recognised by the factthat an eigenvector for the nearly irreducible ele-ment has precisely 1288 translates under the actionof the group.The bulk of the time is taken up with calcu-lating the random elements and testing them forirreducibility and near-irreducibility. We shall dis-cuss the �rst of these operations in the next sec-tion, but here we simply note that the procedurewe have adopted is to �rst enlarge the generatingset by using a moderate number (about 10) of rela-tively long words (length about 30) in the originalgenerators. This takes a certain amount of time,but only needs to be done once. We then contin-ually replace a randomly chosen generator by itsproduct with another, and use these products asthe elements of S.For the testing of the elements g in S for ir-reducibility and near-irreducibility, Neumann andPraeger suggest calculating the characteristic poly-nomial f of g, which is irreducible if and only if g isirreducible, and has an irreducible factor of degreed � 1 if and only if g is nearly irreducible. Therewas already a GAP procedure available, writtenby Frank Celler, for calculating the minimal poly-nomial, and it was a simple matter to adapt itto calculate the characteristic polynomial instead.In fact, following a suggestion of the referee, wecan take a short cut by interrupting this procedurewhenever an invariant subspace for g of dimensionlying strictly between 1 and d � 1 is found, since

in that situation g cannot possibly be irreducibleor nearly irreducible. However, it turns out thatthis shortcut helps signi�cantly only for very small�elds and relatively large degrees. For large �eldsit is extremely rare to �nd such a subspace: forexample, in the symplectic groups Sp(60; q) withq = 2; 3; 5 and 11, such a subspace was found forabout 36%; 15%; 6% and 1% of the elements, re-spectively.There were already some GAP procedures avail-able for factorising polynomials over �nite �elds,and we were able to adapt them to test only forirreducibility and near-irreducibility. These proce-dures work by �rst �nding the linear factors of thepolynomial f , then �nding the quadratic factors,and so on. Since the existence of any proper factorwill rule out irreducibility (and usually also near-irreducibility), this means that we can often stoplong before f has been factorised completely. Thisprocess will therefore take longest when f really isirreducible, but that does not matter, since it is anirreducible element that we are seeking.Table 1 shows some running times for our im-plementation, obtained on a Solbourne 5/600, aworkstation similar in performance to a Sun Sparc-station 2. Since this algorithm only runs to com-pletion when G does not contain SL(d; q), all ofthe rows except the last represent examples witha negative answer. In the last example, the timegiven is an average over 500 runs. Times can varyby at least 10% on di�erent runs of the same exam-ple; this applies particularly to tred, which dependsstrongly on the polynomials involved.We have tried to choose examples that demon-strate the e�ects of changing the degree, the �eldand the group. Thus, the basic example, of whichthe others are variations, is G = Sp(40; 172). Itappears to be tminp that is most a�ected by the de-gree, whereas tred is most a�ected by changing the�eld or the group. Concerning the �eld, it seemsto be increasing the characteristic rather than in-creasing the size that has the worse e�ect; it is notclear why this should be the case, but it stems fromthe basic �eld and matrix operations within GAP.The two cyclic groups C1 and C2 were chosen asexamples that we expected to be particularly quickand particularly slow, respectively. Thus C1 (of or-der 172 � 1) consists entirely of diagonal matrices,and so all of the operations involved are as quick asthey ever could be, whereas C2 (of order 1720 � 1)
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G d q n tpre tran tminp tred ttotSp(20; 172) 20 172 110 13 3 18 35 71Sp(40; 172) 40 172 215 82 47 188 178 496Sp(60; 172) 60 172 320 254 220 698 916 2119Sp(40; 2) 40 2 215 14 9 63 22 109Sp(40; 216) 40 216 215 107 78 193 555 934Sp(40; 1009) 40 1009 215 88 56 168 339 652Sp(40; 5003) 40 5003 215 204 119 230 1289 1844Sp(40; 10007) 40 10007 215 354 197 315 1790 2658C1 40 172 215 10 5 58 39 114C2 40 172 215 36 19 80 1057 1193GL(20; 172) 20 172 30 35
TABLE 1. Timings, in seconds, for representative runs of our implementation of the Neumann{Praeger algo-rithm, on a Solbourne 5/600. The column labeled n gives the number of random elements considered; ttot isthe total CPU time for the run, broken down into the preprocessing time tpre for extending the original set ofgenerators, the time tran to calculate the random elements, the time tminp to compute their minimal polynomi-als, and the time tred to decide whether they are reducible or nearly irreducible. Sp(d; q) are symplectic groups,and C1 and C2 are particular cyclic groups (see text). The last row shows averages over 500 runs.is generated by an element g of which the minimalpolynomial is a product of two distinct irreduciblefactors of degree 20. This should be the worst pos-sible situation for the reducibility test.

3. THE SELECTION OF RANDOM GROUP ELEMENTSWe have put a considerable amount of e�ort intotrying to �nd a satisfactory method of choosingrandom elements from the given matrix group; thisseems to be worthwhile, because such a methodwill be needed in the future for many other ma-trix group algorithms. The main problem is that,if the chosen procedure involves more than about�ve matrix multiplications for each random ele-ment, the total time tran taken for this part of theprocedure becomes inordinately large in compari-son with the time for the other parts. After muchexperimentation, the procedure that we eventu-ally adopted involves a certain amount of prepro-cessing, but thereafter requires only a single ma-trix multiplication for each random element. Thisprocedure, based on ideas of Charles Leedham-Green and Leonard Soicher, was suggested to us bythe referee of the original version of this paper (inwhich a slightly di�erent method was described).We had �rst considered two procedures that at-tempted to choose every element in the group withroughly equal probability (which is of course whatis necessary for a truly random process). The �rst

is described in [Babai 1991] and is a very gen-eral method, applicable whenever we know an up-per bound N on the group order and can multi-ply group elements. It yields elements that areguaranteed to be random, so long as a certain pre-processing algorithm succeeds; this happens withprobability at least 1 � ", where " can be cho-sen beforehand. Unfortunately, the method hasa lengthy preprocessing phase involving O(log5N)group multiplications, after which each random el-ement itself requires O(logN) multiplications. Wehave logN = d2 log q for matrix groups; since weare aiming to go up to at least d = 60 and log q =16, this process involves far too many operations.The second suggestion is made by Neumann andPraeger themselves in their paper. It consists ofchoosing products of powers of the formgm11 gm22 : : : gmll ;where l � 2d, the gi are randomly chosen elementsfrom the given set of generators of G, and the miare random integers in the range 1 � mi � qd. Thereason for considering powers is that they can becomputed fairly e�ciently and, provided that thegenerators do not all have small order, there aresu�ciently many products of this form to make itheuristically plausible that they should cover theset of all group elements with equal probability.However, we timed this process with the groupGL(40; 55) and found that calculating each such
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product in GAP required about 278 seconds onaverage and, since we would need to �nd up to215 such products in dimension 40, this would stillmake this part of the complete procedure dispro-portionately slow in comparison with the rest.We therefore decided to abandon the aim of se-lecting all group elements with equal probability.After all, we only need to select our sample in sucha way that the probability of an element chosenbeing irreducible or nearly irreducible is about thesame as the proportion of such elements in thewhole group. The di�culty with this is that wecan conceive of no method of justifying such a pro-cedure theoretically or of estimating any small de-viation between the actual and the expected prob-abilities. This is unfortunate, since it mars theotherwise impeccable mathematical analysis of thealgorithm. However, we believe that we have ex-tremely convincing statistical evidence to justifythe procedure that we eventually chose.Here we have a new problem. Any statisticalargument will be based on experiments, and anyexperiment will use a particular set of generators.But we want our procedure to be equally valid forall generators, and we cannot possibly test all pos-sible sets of generators; choosing random genera-tors is de�nitely not helpful, since procedures likethis are almost by de�nition likely to perform beston random collections of elements. It is rather theimprobable generating sets that we need to worryabout, whatever this may mean. In fact, we are go-ing to rely on the slightly dubious assumption thatthe generators for GL(d; q) and SL(d; q) describedin [Taylor 1987] are as improbable as any. The twogenerators of GL(d; q) are A and B, where A is a di-agonal matrix with A11 = w (a �eld generator) andAii = 1 for i > 1, and B is de�ned by B11 = �1,B1d = 1, Bi;i�1 = �1 for 2 � i � d, and Bij = 0otherwise. They are both extremely sparse and A,at least, is highly improbable in the sense that theproportion of diagonalisable elements in the groupis vanishingly small except for very small valuesof d.We used the following statistical test to evaluateselection procedures. For a matrix A, let h(A) bethe highest degree of an irreducible factor of theminimal polynomial of A. Now, if G is any groupwith SL(d; q) � G and k is any integer with k > 12d,arguments similar to those in [Neumann and Prae-ger 1992] show that, if d > 2 and A is a random

element of G, the probability that h(A) = k lies be-tween 1=k and 1=(k + 1). In fact, unless q is verysmall, this probability lies much closer to 1=k. Wetherefore used the proposed procedure to select alarge sample of elements, computed h(A) for eachof these elements, and compared the expected fre-quencies with the observed frequencies, groupingall elements with h(A) � 12d into a single class.We could then carry out a �2 test for signi�cantdeviation.We soon concluded that simply choosing wordsin the original generators is inadequate. Even withwords of length 20, the value of �2 was outside ofthe 0.05 probability zones, whereas with length 50,a sample of size 1000 still contained 61 elementsA with h(A) = 1, but the proportion of such ele-ments in G is much smaller. When we started withtwo random elements as generators rather than theelements from [Taylor 1987], we still found thatchoosing random words of length 5 in them wascompletely inadequate, and words of length 10 wassuspect. The solution was therefore to start with amuch larger set of generators; this seemed to havethe desired e�ect of eliminating or at least greatlyreducing any biases resulting from the e�ects ofparticular generators.The procedure we have �nally employed is thefollowing. If there are n generators to begin with,we introduce max(10; n) new generators, each ofwhich is chosen as a random word of length about30 in the existing generators. This is part of thepreprocessing phase. We then perform the follow-ing process repeatedly. We choose two distinct gen-erators x and y at random, and replace x by xy.We do this n2 times (where n is now the currentnumber of generators) as part of the preprocessingphase. Thereafter, we use the new generator xy asthe required random element. It is quite plausible(and may even be provable) that the resulting el-ements will eventually cover the whole group withequal probability, although of course successivelychosen elements will not be distributed uniformlyamongst pairs of group elements.We carried out our signi�cance test with thisprocedure on a variety of examples with di�erentvalues of d and q, and we never obtained a value of�2 outside of the 0.005 probability zone. (In fact,we suspect that we are doing rather more prepro-cessing than is necessary for our purposes.) Wepresent one such set of results in Figure 1.
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FIGURE 1. Expected frequency (line) and observedfrequency (dots) for each value of h(A) from 31 to60, in a 5000-element sample in GL(60; 55). Ex-pected and observed frequencies for h(A) � 30were 1576 and 1609. The �2 for this data is 30.14,almost the same as the expected value of 30.
4. THE LOW-DIMENSIONAL CASESThe algorithm in [Neumann and Praeger 1992] isonly speci�ed precisely for dimensions d > 4, and amore general matrix group recognition procedure isdescribed for d � 4. Since we preferred to make ourprogram uniformly applicable in all dimensions, weshall quickly describe the necessary modi�cationsnecessary for the low-dimensional cases.For d = 4, it follows from [Neumann and Praeger1992, Theorem 2] that the only exceptional groupsG containing primitive irreducible and nearly irre-ducible elements are those with G=Z �= A7, whereZ denotes the subgroup of scalar matrices in G.Furthermore, this can only occur when q = 2 orq � 23. In the �rst case, we can simply calcu-late the order of G, which is 2520 if and only ifG �= A7. In the second case, we consider the ac-tion of G on the set 
 of one-dimensional subspacesof V , and compute the length l of the orbit of hviunder G, where hvi is �xed by a primitive nearlyirreducible element of G. Then G=Z �= A7 if andonly if l � 120.For d = 3, to maintain the validity of the proba-bilistic analysis [Neumann and Praeger 1992, Lem-mas 2.5 and 2.6], we drop our requirement that

the nearly irreducible element that we are seek-ing should be primitive. By considering the listin [Neumann and Praeger 1992, Proposition 8.2],we �nd that the exceptional groups are the semi-linear groups �L(1; q3) and groups with G=Z �=PSL(2; 7). These are all among the list of excep-tions for general d, so we already have proceduresto recognise them.For d = 2, we deal with the very small �elds(q � 5) simply by calculating the order of G. Forq � 7, it is easy to show that, if SL(2; q) � G, atleast jGj=4 of the elements g of G have the prop-erty that g is ample and g2 is irreducible. We nowseek an element with this property, and considerenough random elements to guarantee that fail-ure occurs with probability at most ". If we �ndsuch an element, the exceptional possibilities areG �= �L(1; q2) and G=Z �= A4; S4 or A5. The lastthree can be tested for by calculating the length lof the orbit of a subspace hvi under G, as above.If l � 60, we have one of the exceptions.Finally, if d = 1, we return the answer \yes".
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