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Baumslag defined a family of groups that are of interest because
1. Introduction they closely resemble free groups, yet are not free. It was
2. Strategy and Results known that each group in this family has the same lower central
Acknowledgements series of quotients and the same first two terms in the derived
References series of quotients as does the free group F' on two generators.

We have verified that there are different isomorphism types
among the groups in the family, and that the third terms in
the derived series of quotients are often distinct from that of F'.
Our basic technique is to count the number of homomorphisms
from the groups of interest to a target group.

1. INTRODUCTION

While studying groups that resemble free groups,
Baumslag [1967] defined the family

Gij = {a,b,c:a=c ‘a 'cac 7b D),

where 4,5 € Z. We describe a computer-assisted
investigation of these groups, whose main result is:

Theorem. There are several distinct isomorphism
types among the G;;. Furthermore, for some pairs
(,7), the derived series of quotients of G;; differs
from that of the free group F' on two generators.

Therefore some groups that strongly resemble free
groups are in fact not free. To motivate our work,
we recall earlier results about the G;;.

As usual, given subgroups H, K of a group G,
we define [H, K] as the group generated by com-
mutators [h, k], for h € H and k € K. We let

G1 — G, Gz — [G, G], ceey Gi — [Gi—lyGi—l]y -
be the derived series of G, and

’YlG = G, ’}’2G = [G,G], ey 71G = [G,’}’ZG],
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the lower central series of G. We will usually con-
sider the two series G/G,, and G/7,G, rather than
the classical derived and central series; we refer
to them as the derived series of quotients and the
central series of quotients.

A fundamental and classic question is: How well
do these towers capture the identity of a group?
Can a group, for example, have the same towers as
a free group and yet not be free?

It is easy to see that each G;; modulo its com-
mutator subgroup is the free Abelian group on two
generators, (a,b,c : a = 1, b ¢ 'bc = 1). Thus
G;; and the free group on two generators are alike
in that

Gij/|Gij, Gi] = F/[F, F.

In fact the resemblance goes much deeper. Baum-
slag showed that G;/7,G;; = F/v,F for every n.
Moreover,

(NG = [ wF =1
n=1 n=1

Are the G;; free? By a result of Whitehead
[Magnus et al. 1976], G;; is free if and only if the
single defining relator

a e ta cac b b (1.1)

of G;; is part of some free basis of the free group
on three generators. Baumslag showed that this is
impossible, so none of the Gj; is free.

Since they are not free, the next question is: Are
the G;; all distinct? Baumslag showed that they all
have the same lower central series of quotients. For
the derived series of quotients, hand computation
shows that the first two entries are the same for all
G;j, and isomorphic to those of the free group F.
Beyond that the computation gets very difficult;
we shall return to this question later.

2. STRATEGY AND RESULTS

To show that two groups G and G' are distinct, one
may try to show that they map differently to some

third group—in other words, that the homomor-
phism sets Hom(G, H) and Hom(G', H) are dis-
tinct for some group H. For instance, one can try
to choose H so the two sets of homomorphism are
finite, and count the number of homomorphisms.
This approach has been used several times before:
see, for example, [Havas and Kovacs 1984; Holt and
Rees 1990].

A nilpotent target group H will fail to discrim-
inate between G;; and Gy, because all the Gj;
have the same lower central series of quotients,
and therefore the same homomorphisms into any
nilpotent group. Having no theoretically attrac-
tive choice for the target, we simply choose reason-
ably small finite groups. Matrix groups over cyclic
groups Z/n are an obvious choice, since they are
usually not nilpotent, and matrices are easily rep-
resentable on the computer. We use SL(2,Z/n).

To count the homomorphisms we use the follow-
ing well-known fact. Suppose G = (z1,...,Z, :
Wi, ..., w,) is a finitely presented group, H is any
group, and Ay, ..., h, are elements of H. A neces-
sary and sufficient condition for there to be a ho-
momorphism G — H taking x; to h; is that the el-
ements of H obtained from the relators wy,...,w,
by replacing each z; with h; all be trivial. It is
obvious that if such a homomorphism exists it is
unique.

In our case, then, we can compute the number
of homomorphisms from G;; into H = SL(2,Z/n)
by taking all triples (z,y,z) € H x H x H and
counting how many satisfy

z 2t e Iy Ty = 1, (2.1)

the G;; having a single defining relator (1.1). Liri-
ano wrote a program to do this and ran it on a
PC. With n = 2, all tested combinations of ¢ and
j yielded 36 = 62 homomorphisms. With n = 3,
all combinations yielded 576 = 242. This was the
“expected” number in each case, because if Gj;
were really free on two generators, the generators’
images could be assigned arbitrarily in any target
group H, yielding |H|* homomorphisms.
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(i,4) | [Hom(Gij, H)| || (i,5) | |Hom(Gyj, H))|
(1,2) 20640 (1,7) 22560
(1,3) 11520 (2,3) 19200
(1,4) 20640 (2,5) 15840
(1,5) 17760 (3,5) 16320
(1,6) 9600 (4,2) 11040

TABLE 1. Number of homomorphisms from Gj;
into H = SL(2,Z/5), for various (¢,5). Note that
each entry is a multiple of |SL(2,Z/5)| = 120.

When n = 5 the results were more gratifying, as
shown in Table 1. This proves the first statement
in the Theorem: not all the G;; are isomorphic.

The following observation by Lewis allows a sig-
nificant improvement to the algorithm described.
For x € H, let Sol(z) be the set of (y,z) € H x H
such that the relation (2.1) is satisfied. If ; and
x, are conjugate, Sol(z;) and Sol(z,) have same
cardinality; indeed, any element of H conjugating
z; and z, also conjugates Sol(z;) and Sol(zz). It
follows immediately that

[Hom(Gij, H)| = ) _[Sol(z))|
zeH

= 3" [Sol(z)| |conj(2)),

z€Conj

where Conj denotes a set of representatives of the
conjugacy classes of H and conj(z) denotes the
conjugacy class of x. Thus, instead of examining
every triple (z,y,2) € H x H x H, we need only
look at triples (z,y, z) € Conj x Hx H. Computing
the conjugacy classes of H usually takes negligible
time and can be done once and for all. In our case
the running time is cut by a factor of 120/9 = 13,
since SL(2,Z/n) has order 120 and nine conjugacy
classes; each line of Table 1 now takes about six
minutes to compute on a MaclIci.

Recall that the original motivation for studying
the groups G;; was their strong resemblance to a
free group. We know that the lower central se-
ries of quotients of every G;; is the same as that
of the free group on two generators. What about
the derived series of quotients? Baumslag showed

that Gi;/(G;j)2 and G;;/(G;j)s are the same as for
the free group, but could not prove anything for
Gi;/(G;j)s. To apply the computational technique
we need a target group H with nontrivial H/Hy;
we take H = SL(2,Z/4). Now |SL(2,Z/4)| = 48,
so the “expected” number of homomorphisms is
482 = 2304. Lewis found that 2304 is indeed the
predominant value, but that

|Hom(G;;, SL(2,Z/4))| = 3072 = 48 - 64

for (i,7) = (1,3), (1,7), (3,5), (5,3), (5,7), and
(7,5). (Each of these results takes about a minute
to compute on a Macllci.) Only the values 2304
and 3072 have been observed. Robert W. Johnson
later verified these results.

This establishes that the derived series of quo-
tients of some of the G;; differ from that of a free
group, and proves the second part of the Theorem.

We conclude with two questions:

1. Are all the G;; distinct?

2. Is the cardinality of Hom(G, SL(2,Z/n)) always
a multiple of the order of SL(2,Z/n)? If so,
why?
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