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The title refers to the fact, noted by Chebyshev in 1853, that
primes congruent to 3 modulo 4 seem to predominate over
those congruent to 1. We study this phenomenon and its gen-
eralizations. Assuming the Generalized Riemann Hypothesis
and the Grand Simplicity Hypothesis (about the zeros of the
Dirichlet L-function), we can characterize exactly those mod-
uli and residue classes for which the bias is present. We also
give results of numerical investigations on the prevalence of
the bias for several moduli. Finally, we briefly discuss general-
izations of the bias to the distribution to primes in ideal classes
in number fields, and to prime geodesics in homology classes
on hyperbolic surfaces.

1. INTRODUCTION

Dirichlet [1837] proved that for any a and ¢ with
(a,q) = 1 there are infinitely many primes p with
p = a mod ¢, and that they are roughly equidis-
tributed amongst these residue classes. We de-
note the set of such residue classes by A,. It was
later proved by Hadamard and de la Vallée Poussin
that the number 7(x,¢,a) of primes p < x with
p = a mod ¢ has the behavior

Li() 1 =
o(q)  »(q)logx

m(2,q,a) ~

as © — oo, where ¢(q) = |A,| is the Euler phi
function and

Codt

Li(z) = —.
i(@) 5 logt

Chebyshev noted in 1853 that there are many
more primes congruent to 3 than 1 modulo 4. Much
has been written about this since then, but we have
found the literature to be a little confused and in-
accurate. We have, therefore, tried our best to cite
below the original sources where appropriate. A
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good survey appears in [Kaczorowski]. In this pa-
per we take a somewhat different point of view in
our attempt to analyze Chebyshev’s phenomenon
and its generalizations, which we call “Chebyshev’s
bias”. Our purpose has been to examine these
issues both theoretically and numerically and, in
particular, to give numerical values to these biases.

Let ay,as,...,a, € A, be distinct, and define

P, as the set of real x > 2 such that

O

ﬂ-(xa% al) > W(I7Q7a2) > > ﬂ-(xa% ar)'

Are these sets nonempty? What are their densi-
ties? A definitive result of Littlewood [1914] as-
serts that both Py, 3 and Py 3, extend to infinity
and the same is true of Ps;, and Ps;.;. Leech
[1957] found the first member of Py 3. It is 26861
and indicates the bias of primes towards 3 mod 4.
The first member of P, is 608981813029, and
was found by Bays and Hudson [1978]. Evidently,
strong biases occur in the initial segments and one
asks whether they persist or perhaps even grow.

Define 6(P) to be the logarithmic density of P,
that is, set

— 1 dt
6(P) := limsup —,
X—oo l0gX tepni2,x] t
1 dt

O(P) :=liminf

- X—oo log X Jycprzx) t

and set §(P) = §(P) = §(P) if the latter two limits
are equal. That the logarithmic density is the ap-
propriate one to use here is well known [Wintner
1941] and will become clear in Section 2; suffice it
to say that the usual densities of our P,,, .. s
do not exist. We will see that, on certain natural
hypotheses, 6(Py31) = 0.9959... and 6(Ps0.) =
0.9990. .., showing very strong biases.

In order to investigate these densities and biases
we introduce the vector-valued function

log x

G
X (Q(q)ﬂ-(xa qaal) - 71'(1,)7 LR ¢(Q)W(x7Q7 a’f‘) - 71'(1'))

Eyay,...00,(T)

for # > 2. The normalization is such that, if we as-
sume the Generalized Riemann Hypothesis (GRH),
as we shall do throughout this paper, E,.., .. (2)
varies roughly boundedly (see Section 2). With
this normalization, F,.,, . has a limiting distri-
bution.

Theorem 1.1 (see Section 2.1). Assume GRH. Then
E,... .o has a limiting distribution fig.q, . .. on
R", that 1s,

i, e [ o)™
X oo ]_OgX . ;01 ..y 7

= /Rf(:c) ditgian,.. 0, (T)

for all bounded continuous functions f on R".

Special one-dimensional cases of this theorem (in
somewhat different forms) have been known for
some time. See [Wintner 1938], and more recently
[Kueh 1988; Heath-Brown 1992].

Note that, if » = ¢(¢) in Theorem 1.1, the sum
of the components of E.,, . .. is O(logz/\/x). Tt
follows that in this case jtg.q,,....q, 1S supported on
the hyperplane > 7" x; = 0.

The measures ftg.q,, ... carry all the informa-
tion concerning the densities and biases that we
are interested in, and we seek to understand their
shapes, means, and so on. For example, if jg.q, _a.
is absolutely continuous, we have

6(Pgar,..ar) = Masay,oa, {2 ER" 21 > 20> - > 1, }).

Note, however, that assuming only GRH we don'’t
know that 6(P,..,....,) exists, since we have not
been able to establish Theorem 1.1 with f a char-
acteristic function of a nice set.

The proof of Theorem 1.1 also yields a method of
approximating u. In Section 2 we construct mea-
sures 1), defined in terms of the zeros T iy
of the L-functions L(s,Y), where y runs over the
Dirichlet characters modulo ¢ with |y, | < T. These
measures satisfy

logT
T
:u’q;m,..war(f) - Mq;al,...,aT(f)‘ <<q cfﬁa



where f is Lipschitz with constant c;, and the no-
tation x <, y means x < ky with k£ depending on
7 only.

Concerning the localization of the measures pu,
we can show that they are very localized but not
compactly supported. Set

By ={z €R" | |z[ 2 R},
By ={w € By | e(a;)x; > 0},
Byp = —-Bj,

where ¢(a) = 1 if @ = 1mod ¢ and e(a) = —1
otherwise.

Theorem 1.2 (see Section 2.2). Assume GRH. There
are positive constants ci, ¢y, c3 and c4, depending
only on q, such that

uq;au...,aT(B;%) < eXp(—C2\/E),

:U’q;al,...,ar(B?Q:) Z C3 eXP(_ exp C4R)-

This theorem asserts that the tails of the dis-
tributions are “exponentially” small. However, it
is the double exponential lower bound that is pre-
sumably closer to the true size, as will be seen later.
Note that it is only for special sets like Bi that we
can establish a nonzero lower bound. It seems quite
difficult (without further hypotheses) to show that
all orthants have positive mass (if, say, r < p(q));
see Remark 2.5.

We mention two related cases where Theorems
1.1 and 1.2 apply:

First, the case “q = 17, concerning the density
of

P ={x>2|xn(x)> Li(x)}.

Again, Littlewood [1914] showed that P; extends
to infinity. However, in this case the bias is so
keen that no member of P, is known. It is known
[Skewes 1933; te Riele 1986] that the first member
of P, is at most 103", Denote by p; the limiting
distribution of

log x
R

E,(z) := (w(x) — Li(x))
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Then, assuming the Riemann Hypothesis, we have,
for A > 1,

crexp(—exp(cg))) < [\, 00) < e exp(—cgVA),
crexp(— exp(cs))) < gy (—00, —A] < ¢5 exp(—cgVA)
(1.1)

for absolute positive constants cs, ¢g, ¢; and cg. In
particular we have §(P;) > 0; this may also be de-
duced from [Wintner 1941]. We will see later that
5(P;) = .00000026... . So, although the initial
segment in which 7(z) loses to Li(x) is extremely
long, the probability that m(x) beats Li(x), while
very small, is still palpable.

The second case concerns the excess of primes
that are quadratic residues over those that are non-
residues, a problem recently analyzed in [Davidoff
1994]. For ¢ = p“, ¢ = 2p® or ¢ = 4, where p is an
odd prime and « is a positive integer, let

Pq;N,R = {.CB > 2 | ﬂ-N(I7Q) > ﬂ-R(x7Q)}7

PQ;RJV = {.CB > 2 | ﬂ-R(I7Q) > ﬂ-N(x7Q)}7

where 7g(x,q) is the number of prime quadratic
residues not exceeding = and 7y (x,¢q) is the num-
ber of prime quadratic nonresidues not exceeding
x. We will see that there is always a bias towards
nonresidues. From now on, when we write ¢; N, R
it will be understood that ¢ is of the form p®, 2p*,
or 4.

Asin Theorem 1.2 and in the estimates (1.1), one
can give lower bounds for the tails of the limiting
distribution sy n g of

log x
By = (nx(,0) = wn(,0)) =

(see Section 2.2). Consequently we have
Q(Pq;R,N)Q(Pq;N,R) > 0.

In particular (under GRH), we have §(Py;3) > 0,
hence the usual density of P, relative to the
usual measure dz cannot be zero (we note that
O(Py13) > 0 could also be deduced by the method
in [Wintner 1941]). This is contrary to a conjecture
in [Knapowsky and Turan 1962]. Kaczorowski has
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also recently disproved the aforementioned conjec-
ture by a somewhat different approach based on his
K-functions [Kaczorowski|. He also gives some nu-
merical approximations to the unequal upper and
lower (usual) densities of Py ;.

To further analyze the measures jig.q,, 4., We
need to make some further hypotheses about the
zeros of the L-functions L(s, x). In practice, we can
verify these hypotheses to the extent that we want
to approximate the measures p . and hence
Kaar,..ar- S0 We view the following as a working
hypothesis. It appears that the first person to pro-
pose (or realize the significance of) the hypothesis
below, at least for ((s), was Wintner [1938, Ch. 13;
1941]. Later authors [Hooley 1977; Montgomery
1980] introduced it for similar purposes.

Grand Simplicity Hypothesis (GSH). The set of v > 0
such that L(%—i—iw, x) = 0, for x running over prim-
itive Dirichlet characters, is linearly independent
over Q.

Note that GSH implies that all the zeros are simple
and that L(%,x) # 0 for all such x. A lot of evi-
dence exists for the last two statements, while nu-
merical evidence for GSH is more modest [Odlyzko;
Rumely 1993]. In any event, there is no reason to
suspect that different zeros satisfy any relations,
and this is the main rationale for believing GSH.
For more general L-functions GSH may fail, but in
a predictable way: see Section 5.

Montgomery [1980], using GSH for the Riemann
zeta function, investigated the sizes of the tails of
i1. He showed that

exp(—c;VRexpV2rR) < i1 (B7)
< exp(—¢; VRexp V27 R).

In particular, we see that the double exponential
lower bound of Theorem 1.2, which depends only
on GRH and not on GSH, is closer to the true size
of the tails.

Under GRH and GSH we have the following ex-
plicit formula for the Fourier transform of yt4.q, ... 4,
(see Section 3.1):

uq,ah ,ar(fla "767‘ —exp( Z Q7a] )

2‘2 1X aj; fj‘
X || || JO( = > (1.2)
X#X0 Vx>0 v _+7x
xmodgq

where Yy, is the principal character,

c(ga)=—-1+ Y 1, (1.3)

Again, special cases of (1.2) are known [Wintner
1941; Hooley 1977].

The infinite product in (1.2) converges absolutely
for fixed (&, ... ,@). This follows from the expan-
sion Jy(z) = 1—12%4--- at 2 = 0 and the fact that
>, 1/( +72) < oo. If one is equipped with many
zeros of L(s,x), one can use (1.2) and some vari-
ations thereof to compute fi4.0, o, and 040y, a,-
This is carried out in Section 4 and is the basis for
our computations of the ’s.

Remark 1.3. If » < ¢(q), we can easily deduce from
(1.2) that fig.a,,. .. (§)is rapidly decreasing as [¢| —
oo. It follows that fig.a,. ., = f(z)dz with f(z)
rapidly decreasing, and even that f is entire. Also
f(x) is doubly exponentially localized. If r = ¢(q)
then i(§) = (€ + A(1,...,1)) for any A € R. This
implies that i, ,....a, is supportedon Y37 z; =0,
a fact we have already noted. In this case, (¢)
is rapidly decreasing as |{| — oo as long as { L
(1,...,1). So again jig.q,....a, = f(x)dV(x), where
dV is the volume form on 37", x; = 0 and f is
analytic and localized. In either case it follows,
under GRH and GSH, that 6(P,.,, . ., ) exists and
is nonzero, answering in partlcular the question

about whether P,,, . is nonempty.

The first factor in (1.2) causes a shift in the mean of
the distribution ptg.q,. ..., , placing it at —(c(g, a1),



..., ¢(q,a,)). This is the source of the Chebyshev
bias. For ¢ = 3,4 it leads to the bias towards
nonresidues (primes congruent to 2 mod 3 and 3
mod 4) discussed on page 1.

A closer investigation of the symmetries of the
density function of fiy.4,. ., in (z1,...,2,) reveals
the nature of the biases. We say that

(Q;ala"'aar)

is unbiased, or that the Rényi—Shanks primes race
[Shanks 1959] is unbiased, if the density function
of fLg.ay.. .0, is invariant under permutations of (x4,

.., x,). In this case we have §(P,,, .. )= (r!)"t.
(The converse seems very plausible as well.)

Theorem 1.4 (see Proposition 3.1). Under GRH and
GSH, (¢;ay,...,a,) is unbiased if and only if ei-
ther r =2 and c(q,a,) = c(q, ay), where ¢ is defined
by (1.3), or r =3 and there exists p#1 such that
p>=1mod q, ay, = a;p mod q and as = a, p*> mod q.

So with the aid of GSH we can in essence com-
pletely resolve the issue of the existence of a bias.
The symmetry analysis of j,.n g shows that % <
0(P,;n,r) < 1, that is, there is always a bias to-
wards nonresidues. At the beginning of Section 4
we list these densities for ¢ = 3,4,5,7,11,13.

From (1.2) we can also find out what happens as
q — o0. Interestingly, all biases disappear and a
central limit behavior emerges. From (1.2) we can
determine the covariance matrix of the distribution
Kgiar,...a.- 1ts entries are

bovay = ) x(%)B(x*),

XFXO0

xmodgq
where y* is the primitive character inducing x and
where

!

B =os(%) g () + L0
(1.4)

In view of a theorem of Littlewood [1928] we have
L'/L(1,x*) = O(loglog gqy~), still assuming GRH,
so B(x*) is dominated by the log g, term. This
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growth in the variance is responsible for dissolving
the bias.

Theorem 1.5 (see Section 3.2). Assume GRH and
GSH. Then, for r fized,

1
max  |0(Pyay . an) — it 0 as ¢ — oo.

a1,...,0,EA, r!
Even in the extreme case of P, g, where all the
residues and nonresidues are grouped separately,
the bias dissolves: that is, §( Py n,r) — 3 as ¢ — 0.
In fact we have the following central limit theorem.

Theorem 1.6 (see Section 3.2). Assume GRH and
GSH. Let [i,.n, g be the limiting distribution of

Eq;N7R(w)
Vlog q

Then f[iy.n.r converges in measure to the Gaussian
2
(2m)~ 2= 2 dx as ¢ — oo.

A central limit theorem for a close relative of fi,,,,
as ¢ — oo was derived in [Hooley 1977].

In Section 4 we give the results of our numerical
investigations into the issues discussed above. For
the computations of the measures p we used thou-
sands of zeros of ((s) and L(s, x1), where y; is the
nonprincipal real character mod ¢. The values of
((s) were provided to us by Odlyzko and te Riele,
and those of L(s,y;) by Rumely. At the beginning
of Section 4 we give the values of §(P;°™") and
8(P,. N r), for ¢ =3,4,5,7,11,13. As expected, the
bias is most extreme for ¢ = 1 (that is, w(x) vs.
Li(x)), and decreases, albeit not steadily, as ¢ in-
creases. Figure 1 shows graphs of the distributions
w1 and jug.r N, for ¢ = 3,4,5,7,11,13, comparing
the curves predicted by the use of (1.2) and our
table of zeros with numerical distributions involv-
ing primes up to 10'°. The fits are quite good and
the dissolving bias and central limit behavior are
already present.

In Section 5 we briefly discuss generalizations of
the bias of distribution to primes in ideal classes in
number fields and to prime geodesics in homology
classes on hyperbolic surfaces.
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2. APPLICATIONS OF THE GENERALIZED RIEMANN
HYPOTHESIS

2.1. Existence of the Limiting Distribution

The main tool in establishing the existence of the
limiting distribution p is the explicit formula of
Riemann relating 7(x, ¢, a) to zeros of Dirichlet L-
functions L(s,x). Fix ¢ and let x run over the
Dirichlet characters modulo ¢, with x, the princi-
pal character. Set

bey) = S x(m)A(n),

n<z

where A(n) =logp if n = p™ for some m € Z and
A(n) = 0 otherwise. As is shown in [Davenport
1980, pp. 115-120], if x # xo, # > 2 and X > 1 we
have

¢($»X)=— Z x_p'i_o

1%
[vx |SX

log”(zX

where p = [3, +iv, runs over the zeros of L(s, x) in
0 < Re(s) < 1, and the implied constant in the O
depends on ¢. Since we are assuming the Riemann
Hypothesis for L(s,y), we have §, = % and the
preceding equation becomes

X zlog?(z X
Pz, x) = Ve Z R— +0< gXE )-I-logx>.
(2.1)

We recall some notations from Section 1. For a

/z do(t,q,a) _ 1 / di(t) , 1

and ¢ relatively prime, let w(x, ¢, a) be the number
of primes p < x with p = a mod ¢, set

E(x,q,a) = (p()7(2, ¢, 0) — 7(x)) l(\)%

(where ¢ is the Euler function), and let ¢(q,a) be
given by (1.3) (when ¢ = p®, ¢ = 2p® or ¢ = 4 this
is the nonprincipal real character y;(a)). Also,

baga)= Y Am=— 3 @)Y Amxm)

n<e <p(q) x mod ¢ n<e
n=amodq
1 _
=@ > xX(@)y(z, x). (2.2)
Pl x mod ¢q

Lemma 2.1. As x — 0o we have

= —c(q,a X(a ¥ x) :
E(x,q,a)— (Q7 )+X§X:OX( ) \/5 +O<logx>

We remark that the constant term —c(q, a) is what
accounts for the bias towards nonresidues.

Proof. Let 0(x,q,a) = Z log p. Then

p<z
p=a(q)
" do(t,q,a)
W(UC,(LG):/ oot
2 0og

and, from Dirichlet’s theorem for progressions,

w(w,q,a)=9(x,q,a)+< > 1) v +O< VT )

vty P log

Solving for 6(x, q,a) and combining with (2.2), we
get

W |

Tdy(t,x) 1 (

log ¢ p(q) Jo logt — plg) &= logt  pla) \,Z, / log log®
- (v + hfx) = 3 0>z<a>¢fjg’ Y » (bz:a(;) l(fx
~o(Z|[ forrl o)
= % + ﬁ X(a)wl(oxg’;() - C;q(’qc;) lfx + O(Z /2 fl(ogrfz dt‘ + bg%) (2.3)




Let G(x,x) = [, ¢(t,x)dt. Then, from (2.1),
after integrating and lettlng X — 00, we have

x3/2+i7x

Gl == 2 g

+ O(zlogx)

It is a crucial point throughout our analysis that
this series over +y, converges absolutely, as is appar-
ent from the asymptotic formula for the number of
zeros [Davenport 1980, p. 101]:

T T T
#{|nl < T} = p log g—ﬂ — — 4+ 0O(log T + log q),
(2.4)
and so it follows that G(z,y) <, z%?, with the

constant depending on ¢. Hence, after an integra-
tion by parts, the O term in (2.3) is O(\/z/log” ),

and (2.3) becomes
v(q) o(q) logx
i Vi
) X X)+0 :
¢(q)log x 2 X(@(.) (log2x>
X#X0
This completes the proof. O

Combining Lemma 2.1 with (2.1) we get, for T > 1
and 2 <x < X:

B xi’Yx
E(x7Q7 CL) = _C(Q7a) - Z X(CL) Z +
XFX0 Iy |<T 2 i
+ oz, T, X), (2.5
where
B xi’)’x
(xaTvX) _ZX(G‘) Z l—l-i
xExo  T<lnl<x2 X
Vzlog® X 1
0,( ). s
‘ X + log = (2.6
Now set y = log x, so that dy = dz/x.
Lemma 2.2. ForT > 1 and Y > log?2,
v 2 3
log”T log™T
Y. T,e" ) d Y .
[t Ry <, v 4 2
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Proof. We have

Y
/1 ol TPy
dox(a) Y

Y
<</
log2 X7FX0 T<|vx|<e¥ 2

- Y @ /Y

T, T

2 (5112 5 1Y
XFX0 T< ] <e¥ log2 (2 ’Yx)(g 7))
AEX0 T<|yy|<e¥

eiy’Yx

5 +Hivy

2
dy+0(1)

et v(x—x)

+0(1)

min (Y, #) .
I =Ml
Using (2.4) and comparing the sum with

1 1 1
/ / 8T8 Y in(Y, 7) dx dy
ly — |

we can get a bound of O (Ylog” T/T + log” T/T).
(]

<<q22;

Fo Ty <o I
A#x0 T< |1l <00

Therefore, for each T > 1, (2.5) gives a finite
quasiperiodic approximation of E(eY,q,a) (where
y = log x), with error £ whose mean square is uni-
formly small according to Lemma 2.2. This is the
key to the proof, which we now turn to, of the
existence of the limiting distribution.

Let f : R" — R be a fixed continuous function
satisfying a Lipschitz estimate

|f(x) = fy)| < erlr —yl. (2.7)
Consider
1 /Y
? log 2 f(E(y)) dya

where E(y) = (E(eY,q,a1), ..., E(eY,q,a,)). Let

= (EgT)(y)v AEER) EgT)(y))a




180 Experimental Mathematics, Vol. 3 (1994), No. 3

Lemma 2.3. For each T there is a probability mea-
sure vy on R” such that

vr(f) = er(x) dvr(x)
= Jim = [ f(ED(y)dy

log 2

for all bounded continuous functions f on R". In
addition, there is a constant ¢ = c¢(q) such that the
support of vy lies in the ball B(0, clog”T).

Proof. This is a general feature of quasiperiodic
functions. For later calculations we give the proof.
Let y # Xo and list the zeros $ + iv, of L(s, )
such that 0 < v, < T as 7,...,7n. (We need
only focus on v, > 0 since, for x real, we have
L(5 + iy, x) = 0 if and only if L(§ — iy, x) = 0,
while for x complex we have L(3+iv,x) = 0 if and
only if L(% —iv,{) =0.) We may write E(7)(y) in
the form

N
EM(y) = 2Re (Z ble“”’> + bo, (2.8)

=1

where by, ...,by € C" with

by = —(c(g; a1),...,c(g; ar)),
bl=_<>&(a1) Xz(ar)).

P

Define the function ¢(y;,...,yx) on the N-torus

TN = RN /ZN by
N
91, yn) = f(ZResz€2my’ +bo>-
=1

Clearly, ¢ is continuous on TV and

FED () =g(22,..., ).

o 2

Let A be the topological closure in T% of the one-
parameter subgroup

L(y) == {(my/27,...,yvy/27) | y € R}

A is a torus and the Kronecker—Weyl Theorem as-
serts that I'(y) is equidistributed in A. Since g|4
is continuous on A, we have

Y
lim 1 f(E(T)(y))dy:/g(a) da (2.9
A

Y —oo log 2

where da is the normalized Haar measure on A.
This proves the first part of the lemma, with

vr(f) = / g(a) da.

(We could actually compute vr—as we do later—if
A=TN)

The second part of the lemma follows by noting,
from the definition of E(T)(y), that

1
B () < Y

[vx ST |,YX| + 17

which, by (2.4), is <, log” T'. O

Returning to (2.7), we have, from (2.5):

1 Y
v SE)
1

Y
=3[ fED @ +Dy)dy
log2

I T Cr i T
— 3 [ SE @ a0 (E [ EPly).

log2

where (7 (y) := E(y) — ET(y) and the implied
constant depends on ¢ only. By Lemma 2.2, this is
further equal to

% lo;f(E(T)(y))dy+O<% </10:2|8(T)(y)|2 dy)%)

_1 Y (1) < <logT log2T>>
=7 10g2f(E (y))dy +O| ¢y T + v /)




Letting Y — 0o and using Lemma 2.3 we conclude
that

Y
uTwy—O(qggT)SHmnﬁ%:l2fU%y»dy
Y
Slimsup% 1 ‘Qf(E(y))dy
SVT(f)—I-O(CfI%T). (2.10)

Since T' can be as large as we please, we conclude
that the lim sup and the liminf coincide, i.e., that

p(f) = lim t

Y —o Y

' f(E(y))dy (2.11)

log2

exists. Thus there exists a Borel measure u on
R" such that (2.11) holds for all f satisfying (2.7).
Moreover, for such f’s,

From (2.11) it is also clear that since the vr’s are
probability measures (total mass 1), so is p. In
fact, in view of the second part of Lemma 2.3 and
of (2.11), we have

sT) —o(()

for A = clog® T (vecall that B is the complement
of the open ball of radius A). In other words,

p(B}) = vr(B}) + O

u(B}) = O(Vae ) = O(e=*¥),

where ¢, depends only on g¢.

2.2. Lower Bounds

We will now present a proof of the lower bound for
Pa:n r[EA, £00) for large A. The basic principle of
this analysis is the same as that used in [Little-
wood 1914]; see also [Ingham 1932, Ch. 5]. The
proof that figa, ..o (B5) > 0, as in Theorem 1.2,
is similar; see Remark 2.5.

Fix ¢. All the constants c; below depend on ¢
only. Let x; be the real nonprincipal character
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mod ¢, and L(s, ;) its L-function. The nontrivial
zeros of L(s, y1) are denoted simply by £ +iv. Set

R(r) := 1055 S )

log x

= NG (rr(x,q) — N (7, q)).

p<z

As in Section 2.1, we have, for X > 1 and = > 2:
x

R(x)=-1- Z —
=x 2 70

Vv log?(2X) )
X logz/"

+ O( (2.12)

For ¢ > 0 with £ — %5 > log 2, set

£+3
P =2 [ Ry

g 57%

Because of (2.4), >°_1/(; +77) < oo. Together
with a simple computation, this yields

i v/2(y 4 log X)?
R(ey)=—2281n7y+0(1+e (y +log ))_

0<y<X K X

(2.13)
Integrating this from & — %6 to & + %6 and letting
X — 00 we get

4 Z sin ¢ sin e

F.() = - +0(1).

0<y ’Y2
Next we let ¢ be very small and introduce
4 sin ¢ sin e

c 0<y<e—? 7 ‘

Thus, if £ — %s > log 2,

F.(&) = F.(6) + O(1). (2.14)

By studying F.(¢) as a function of the real vari-
able ¢ (in particular near £ = 0), and by exploiting
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its almost-periodicity, we will be able to prove a
lower bound for i, 5 r[A, 00). Now,

. sin £ 2 1
FE(%E):4€ Z (IHQ,Y(S) 248 Z ?

o<h<e— - ) 0<v<1/e
> colog g1
with ¢ > 0. That is,
Fg(s) > ciloge™  with ¢; > 0. (2.15)

Let 71,...,7vny denote the imaginary parts of the
zeros of L(s,x;) with 0 < v < 72 We have
N ~ cze 2loge as ¢ — 0. Consider, for M — oo
(with ¢ fixed and very small), the integers m with

(log2)/e < m < M/e and the values F.(z + me).
We have

|Fe(e +me) = F.(e)]
<

2 D

sin (m + 1)ye — sinye

0<y<e—2 "
<2( max || m€||> E L
= oy v
0<y<e—2
< max ’ym6||c210g26_1, (2.16)
0<y<e~2

where || || denotes the distance to the nearest inte-
ger multiple of 2. We want the right-hand side of
this inequality to be appropriately small. If

C1

ymel| <

max

(2.17)
0<y<e~2

2¢loge="”

it follows from (2.15) and (2.16) that
F.(s+me) > Lejloge.

From this and (2.14) we have, on adjusting ¢; ap-

propriately so as to incorporate the O(1), that
F.(e +me) > 3ciloge .

Let Gy be the set of m such that (log2)/s <m <
M/e and (2.17) holds. To get a lower bound on
|G| as M — oo we use the box principle. In
RN /ZN counsider the vector (e, /27, ..., eyn/27).
Divide RV /Z" into disjoint boxes of side lengths

(essentially) ¢;/(4cyloge™!). There will be effec-
tively (4cyey ' loge=")" such boxes. Of the vectors

m(ev /27, ..., eyn/27), with
log 2 M
S m S )
€ €
at least

M —log?2
V=
e(deye;t loge=1)N

will be in one box. Corresponding to these integers
m; < my < --- < m,, we form n; = m; —m;, with
0 < n; < M/e; these numbers satisfy (2.17). It
follows that

(2.18)

M —log?2
e [t ]

€ (46261_1 log a—l)N
Let

m5+55
bu= [ R

m5+%f

Asin Lemma 2.2 (with T fixed, say T' = 2) we have

> ﬂmé/

log 2<me<M log2

M+g£

R*(e¥)dy < cyM. (2.19)

Lemma 2.4. For m € Gy, the measure of the set
of y € [(m+ L)e, (m + 2)e] such that R(e¥) >
Leyloge™! is at least 2 log” ™1 /(1613,,).

Proof. Let
v(\) = 5’1‘{75 € [(m+1)e, (m+2)e] | R(e") > /\}‘

be the distribution function of R on this interval.
We have [ dv(\) =1,

(o] 1 m5+gs
/ Ndv()) = —/ R(e") dy

€ m5+%f
_ 1 1
= F.(me+¢) > 5ciloge (2.20)

for m € Gy, and [T A2 dv(X) = Be".
Since the total mass is 1 we have

1ct loge™
/ Adv(X) < teploge™",

o)



0 (2.20) gives

ﬁ Adv(X) > Leiloge ™
cyloge—1

1

Thus, by Cauchy—Schwartz’s inequality,

1 1
oo 2 oo 2
teploge™' < (/1 22 dV()\)) (/1 dV()\))
—c110g5*1 ic1 loge—1

< (6m> (v[teiloge™, oo))1/2.

Hence

ey loge T, 00) > e log®e!
vizciloge 7, 00) > ————,

e 165,

proving the lemma. O

Continuing with the estimation of the lower bound,
we have

[{y € log2, M +3¢] | R(e¥) > fc1loge ™'}
> [{yelm+3)s, (m

meGm

+2)e] | R(e¥) > derloge 1},

which by Lemma 2.4 is bounded below by
Z 2 log” e~
168,

meG

(2.21)

Also,

Gul= ¥ 1= X Vi

meGy meGy
5 1 %
<(Z ) (% ﬁ—)
meG meG

2 1\2
<(LZ, ) (Z5)
log2/e<m<M/e meG

(5 1)

meG
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by (2.19). On the other hand, we have the lower
bound (2.18) for |G|. Hence
ﬁm - c4M 62(4026 1logs 1)2N"

meG
Combining this with the bound (2.21) gives
M
(M —log2)?
x [{y € [log2, M + 2¢] | R(e¥) > 1c;loge™"}|
A log” ™!
T 16¢4(4cocy M loge=1)2N
As M — oo, the left-hand side gives

pgr,n e loge™, 00).

So, if we choose A = i01 loge™t, we get N ~

ce?loge™? < exp(AN) for some A. That is, for
suitable constants A;, A; > 0 depending on ¢ we

have
Ay

exp(exp(43)))’
Returning to (2.15), we note that

,LLq;R,N [/\7 OO) Z

F.(—¢) < —ciloge™",

so one can repeat the whole argument to show that
Ay

. —00,—A] > —————.
o (00 = 2 o exp(A)

This concludes the proof.

Remark 2.5. The reason we were able to obtain the
lower bounds in this section is in part that R(e¥)
in (2.13) has essentially the form

:_22

0<y<X

sinyy

with a, = 1. If one tries to apply the same method
to show that w(z, q,a)—m(z,q,b), for general a,b €
A,, changes sign infinitely often, one runs into the
difficulty that the coefficients are not positive (7,
now running over all y mod ¢, x # xo). In general,
this problem appears formidable.
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There are special a’s and b’s for which this can be
overcome, and Theorem 1.2 falls into this category.
The vector sum E(y) in question is essentially of
the form

-2 2 (R, ().

XFEX0 Vx

By an analysis similar to the one in this section we
can force this vector (for many y’s) to be a large
multiple of

(5(s(a) + Dplg) = 1, ..., 5(=(a,) + Dp(q) = 1).

The proof of Theorem 1.2 then follows along the
lines above.

3. APPLICATIONS OF THE GRAND SIMPLICITY
HYPOTHESIS

3.1. The Product Formula for /i

We turn to some consequences of assuming GSH,
which says that the v > 0 are linearly indepen-
dent over the rationals. Suppose that y*, of con-
ductor ¢+ (which divides ¢), induces a character
X- Then L(s,x*) and L(s,x) have the same ze-
ros on Re(s) = 3. Tt follows that GSH implies
that {7, | x mod ¢} is linearly independent over
Q. Hence the set of y(yi,...,yx) for y € R is
uniformly distributed in 7%, and (2.8), (2.9) and
(2.11) imply that

3.1)
where 1., is the distribution of a typical term

_ (X(al)ewy + x(ar)e v
Tty T —iy

g ey

X(a,)e
1 .
5 Ty

a, e~y
N ><(1 ) ‘ )

3 Y
n (2.8). Writing {(a;) = u; + iv;, we get

2 )

_ﬁ (“1 sin(yy + w.,) + vy cos(yy +w,), ...,

4

u, sin(yy + w,) + v, cos(yy + wv)),

where cos w,, / sinw., = 2v. Noting that sin(yy) has
density
1
/1 —t?
0 otherwise,

if—1<t<l,

we find that a typical i, () in (3.1) equals

1
l/ exp(zR me umt+vm\/1—t2)> di

2 — V1 — t2
-I-1 /1 e <z'R Z Em(Umt—vm V1 t2)> dt
5 X m\Uml—Um - s
2/ P 'szl V1 — 2

where R, =2/vV 1 +7% Ifweset U =73 _ &, un,
and V' =>3"" _ &,0,,, this becomes

(=1 [ H(explif, U+ VVI=P)
+exp(iR, (Ut —VV1-12))) 1df =
:%/1 exp(iR,Ut)cos(R,VV1—12) —

= Jy(RNT2FV?),

where

= (1)m(32)

= 3.2
20: (m!)? -2

is the Bessel function of the first kind. Hence, (3.1)

becomes

r

.[Lq;al ..... aT(g) = exp <Z Z C(Qa aj)§j>
7j=1
2 ‘Z 1X a; fj‘
< I] HJ( i ) (3.3)
X#X0 Vx>0 1 +7x
xmodgq

Note that the factor exp (i > clg, a;)¢;) arises
from the constant term in (2. 8) and it accounts for
the Chebyshev bias. Similarly, using (2.12), we
have

ﬂq;R7N = et H Jo <m> . (3.4)
X1

Yx1 >0



Also, as in (2.12), we have, for X > 1 and = > 2:

(n(w) ~ i) B = 3

Ve it
1 X 1
+O<\/r? og”(x ) 4 )
X logx

where 4 runs over the imaginary parts of the non-
trivial zeros of ((s) that lie in the upper half-plane.
Thus the formula for f; is the same as that for
ftq:r, N, the only difference being in the set of 7’s.

3.2. An Investigation of the Symmetries

We focus first on (3.4) (so x; is primitive) and in-
vestigate its symmetries. Because J; is an even
function, so is

so (3.4) implies that the density function of ..z v
is symmetric about t = —1. Therefore

6(Pq;R,N) = / dﬂq;RN(t) < %;
0

the inequality is strict because the density function
of ptg.r,n is entire and hence cannot be identically
zero on (—1,0). See Remark 1.3. However, as ¢ —
00, this bias towards nonresidues disappears, as is
indicated in Theorem 1.5, which we now turn to.

Consider log i,z n(/v/10gq). From (3.4) and
(3.2) we see that for |£| < A, where A is any large
fixed constant,

N 4
st (=) = s - logq Z T

A 1
+0< - Z(l+72)2). (3.5)

log” q =olg

Expression (4.14) below gives > _ (7 +7°)7" in
terms of L'/L(1,x;). Under GRH, a simple adap-
tation of the argument in [Littlewood 1928, p. 927]
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shows that L'/L(1, ) Combining

these results we have

1
Zl_i_,-yQ

= O(loglogq).

= 1log ¢ + O(loglog q).

>0 4
Moreover,
1 1
D arop St
1 — 9
7>0 (3 +77) v>0 4 P+
so that (3.5) becomes

log fig;r,N (%)
= -1+ 0(

A A?logl A*
, Alloglogg ) .
log ¢ log ¢ log ¢

In other words, we have shown that, for |¢| < A,

s (=)

approaches e~¢*/2 uniformly.

Hence by Levy’s Theorem [Lévy 1922], the mea-
sures fi,n,r (as in Theorem 1.6) converge in mea-
sure to the standard Gaussian. As a corollary we
deduce that 6(P,.n r) = fig.n, r[0,00) satisfies

6(Pyn,r) — 3 asq— 0. (3.6)

We turn to the proof of Theorem 1.5, which runs
along similar lines. Let ¢ be large (where ¢ now is
any integer) and let a,,...,a,, with r fixed, be dis-
tinct elements of A,. Let fi;.., ., be the measure
on R" whose Fourier transform is

R £
A veorri)

The claim is that fi,.,,, ... .. converges in measure
to the Gaussian

e~ (@it +a])

del...dxr

as ¢ — oo, independently of the choice of a4, ..., a,.
As before, this follows from Levy’s criterion. Fix
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A and consider ¢ € R” with |[¢] < A. Then, using
(3.3) and (3.2), we have

.....

2|Z; 1X(aj)§j|
+ Z ZlOgJ()(\/Qp ))

XF#X0 Vx>0 logq +7x
xmodgq

-3 Z 2= 1x(aj)£J|

X#X0 vx>0@ q)logq(% +12)

xmodgq
d(q)A A4 1

+O< 04 | oy 22>’

p(@)logg  (pla)loga)* == (+73)

where d(q) = >_,,1 and we have used c(¢,a) <
d(q). As in (1.4), we let x* denote the primitive
character inducing y. Its conductor ¢,- divides q.

Now L(s,x) and L(s, x*) have the same zeros on
Re(s) = 3, so

1 1
Zl 2221+72 = —2Re B(x),

+ *
x4 P}/X Tx* 4 X

where B() is given in (1.4). For a proof see [Dav-
enport 1980]. As before, Littlewood’s bound im-

plies that

B(x") = —3(log ¢y-) + O(loglog q).
Hence

. 1
log flyay. a,,(f) == 20(q )logq
log log ¢
X Z log ¢+ ZX )& <A4T>,
X#X0 -

where we have also used d(q) = O.(¢°) for all £ >
0. In order to analyze the first term on the right-
hand side above, let (a) denote the number of
primitive characters to a modulus a. For each a
dividing ¢, every such character induces a unique

character mod ¢, so >_,, A(a) = ¢(g). Also note
that 3(a) < ¢(a) < a. Now

> log g, Zx a;)¢

X#X0

—ij& > X ( )logqx

X7#X0

_ijgkz <k>logq
X#X0
ijﬁkz ( )logQ/qx

XFX0

Denote the first summand on the right-hand side
by I, and the second (including the minus sign) by
II. Clearly

I=(p(q) — logq ) _ & + O((log q)A%).

=1
On the other hand,

Z@&Z > A(52) togaa

alg Amoda
a#l

where " indicates the sum over primitive charac-
ters mod a. So

1< A® E B(a)log 1
a
alg

For any o < 1,

II < A? Z B(a)log q + A* Z B(a)log ¢

alq alq
a<q® a>q®

< A%(log q)d(q)q™ + A*(1 — a)(log q)(q).
Hence

11
limsup# < A%(1 - a).
a—oo P(q)logq

Since 1 — « can be chosen as small as we please we
get

: 11|
hm —_— =
a—o0 (q)log q



and moreover convergence is uniform for || < A.
Thus

I+1I~ p(q) loquf?.
=1

We conclude that, for (] < A,

Hgsanan (€) = €xD (— > %53) :

=1

This proves the central limit theorem for fi,.q,, .. 4, -
It follows that, for any D C R and for any per-
mutation o of the r-coordinates,

|ﬂq;a1 ..... aT(D) - [Lq;a1 ..... aT(Da)| —0

as ¢ — oo. That is, i becomes unbiased, and, in
particular,

6(Pq;a1 ----- aq\) = ﬁq;m ----- ar({x | T1 > Ty >0 > xr})

approaches 1/r! as ¢ — oc.
Next we study the symmetries of 40,0, -

Proposition 3.1. The density function of tg.a, .. a, 5
symmetric in (x1,...,2,) if and only if either

(@ r=2and C(Qa a'l) = c(‘]a a2)7 or
(b) r = 3 and there exists p # 1 satisfying these
congruences modulo q:

=1, ay=aip, and as=ap’.
The factor exp (i > clg, a;)¢;) in (3.3) shifts the
mean of u to —(c(q,ay), ..., c(q,a,)) (note that
the product of Bessel functions in (3.3) is an even
function). Hence, if p is symmetric, c¢(q,a;) =
c(q,a;) for all 1 < j,1 < r. We assume that this
is the case and thus the symmetry issue is thrown
onto the infinite product of Bessel functions.

Lemma3.2. B (&,...,&):= ‘Zgzl x(a;)&;| is sym-
metric in (&1, ...,&,) for all x if and only if one of
the two conditions in Proposition 3.1 obtains.
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Proof. If v = 2, B,(&,62) = [x(a1)& + x(a2)éal-
Now, |x(a1)| = |x(az)| =1, so
[x(a1)& + x(a2)&| = |x(a1)x(az)(x(a1)é1 + x(az)&2)|
= |x(a2)& + x(a1)&|
=|x(az)é + x(a1)&| = By (&, 6).

If r = 3 and there exists p as stated, we have

x(az) = x(a1)x(p), x(as) = x(a1)x*(p), X*(p) = 1.
Hence, |x(a1)& + x(a1)x(p)&2 + x(a)x2(p)&| =
&1 + 7& + 72&5|, where 78 = 1. But

‘51 +7& + 7'253‘ = ‘T(El +7& + 7'253)‘
= ‘534‘751 +T2§2‘
= ‘§2+T§3+T2§1‘.

Furthermore,

‘51 +7& + 7'253‘ = ‘51 +7é + 7'253‘
= ‘51 + 783+ 7'252‘-

These equalities imply that B, (&,&s,&3) is sym-
metric in (51762753)'

Conversely, if |x(a1 )& +x(a2)a+x (az)€s] is sym-
metric in (&, &, &3) for all y, then so is

&0 + x(az2/a1)& + x(as/ar)Es].

Hence Rex(az/a;) = Rex(as/a;), and similarly

Re x(ai/as) = Rex(as/az). From this we deduce

X(az/a;) = w and x(az/a;) = w?, with w?® = 1.

This being so for all y, there exists p # 1 such

that ay = a;p mod ¢, a3 = a,p® mod ¢, and p*> =1
mod gq.

The same argument shows that B, (y,...,¢,)
cannot be symmetric if » > 4. For if it were, then
any three of the a;’s would be related as above,
leading to a contradiction of the fact that the a;’s
are distinct. O

We can now prove Proposition 3.1. If r = 2 and
c(q,a1) = c(q,az2), then since B, ({;,&) is sym-
metric so is f1(&1,&;) and also p. If r = 3 and
ay = a;p mod q, az = a;p® mod ¢, then c(q,a,) =
c(q,az) = c(q,a3), so the exponential factor in j
is symmetric in (&3, &5, &3) and by Lemma 3.2 so is
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B, (&1,£2,&3). This shows that i is symmetric, and
therefore also p.

Conversely, if » > 4 or if condition (b) of Propo-
sition 3.1 fails, then

BX(§17£27£37 st 761‘) 7é B (617627537 st 761‘)

for some permutation o. Assume that

i) I 14(229)

X#Xo Vx>0
x mod g
2B7(¢)
=ep(i 30t ) TT 1T A (S )
j=1 X#X0 Yx>0 1 +7X
x mod ¢

First, any x for which B, (§) = BJ({) can be
removed on both sides of this identity without al-
tering the relation. So we may assume that the
above product over y contains only terms such that
B, (§) # B(§). In view of our assumption, the
product is nonempty. Now choose ¢ generically so
that:

(i) By(§) # 0 and BJ(&) # 0, for all x mod ¢;
(i) if B, (§)/BS(€) # 1, then

for all x, A mod gq.

This can be done because our set of v, s is count-
able. From (3.6) we have that, for £ fixed as above

and all t € R

ewo(i3 o005 ) T 11 J(%)
o - 2tB7( 5))
= exp(i#3 el gﬂ*f)llll (s

The smallest zero in t of the left-hand side occurs
at a number of the form

WVt
2B, (§) '

where w is the smallest zero of Jy(z). The smallest
zero on the right-hand side is at some

wVi+ %
2B ()
So we must have
Wity
2B, (§)

In view of (ii) above, this implies

w/ITF R
2B7(6)

By(€) _ | _ Vit
B () Vit 9

But the 4’s are distinct, since we are assuming
GSH, so x = A. We conclude that B, (§) = BJ(&),
which contradicts an earlier condition.

4. NUMERICAL INVESTIGATIONS

We now describe the computations that led to the
following numbers and the graphs at the end of this
section.

§(P;°™) = 0.99999973 . ..
(Py,n:r) = 0.9990. ..
8(Pyn.r) = 0.9959. ..
8(Py,n.p) = 0.9954.. ..
( )
)
)

>

(SP7;N;R 209782
6(P11;N;R - 09167 e
6(P13;N;R = 09443 ce

Let f, n r(t) and f;(t) be the density functions of
Ky~ and 1y respectively. In what follows, it will
be more convenient to work with the distribution
w whose density function g is

g(t) == f(t = 1),

where f stands for either f .z y or fi. Its Fourier
transform is

@) =1I7% (%) (4.1)

¥>0

and is symmetric about ¢ = 0 rather than t = —1.



We are interested in evaluating

1
5(Pq;N7R) = / dwq;&N(t)v

o)

§(PLomP) = / 1 duw, (t).

o0

Now, because g,.r v is symmetric about 0, we have

(] o Yot

+ = B / du)q R, N(t)
—1

1
2
1 1 * sinw .
5 + % " wq;R,N(u) du, (4.2)

6(Pq;N,R) =

where the last equality follows from the inversion
formula of characteristic functions; it was this ex-
pression that was used to compute the §’s. Similar
equations hold for §(P;°™P).

The evaluation of these integrals involves three
approximations. First, the integral was replaced
by a sum of appropriately small rectangles. Then
the infinite domain of summation was replaced by
a large but finite domain. Finally, in place of the
infinite product for @, a finite product and a com-
pensating polynomial were used. We now detail
these three steps and estimate their cost to (4.2).

4.1. Replacing the Integral with a Sum

Consider the Poisson summation formula

=Y wlen) =Y (B =)+ Y ¢(2)

nezZ nez nez
n#0
applied to
1 sinu
o) = 5= o),
1
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We can justify using Poisson summation here as
follows. As is well known [Watson 1948, p. 207],

2/(m |xl)), (4.5)

from which we deduce that i'(¢) is rapidly de-
creasing. Furthermore, g(u) is also rapidly decreas-
ing, as we see from (1.1). Therefore, ¢ and ¢ are
rapidly decreasing. Finally, @ is continuous every-
where since the product in (4.1) converges abso-
lutely for all £. Hence ¢ is also continuous. These
facts allow us to apply Poisson summation [Stein
and Weiss 1971].
Returning to (4.3), we have

|Jo(x)] < mln(

1 * sinu

] a O(u) du
1 sinen N
=— ) ¢ w(en) — (%) “4.6)
T % en % €

n#0

Therefore, to estimate the error of replacing the
integral in (4.2) with the sum in (4.6), we need to
get a bound on $(n/e). This amounts to bounding
w.

Montgomery [1980] shows that

2
{ Z Ry,oo> < exp(—z—(2§:<7<XR2) )
0<y<X v>x 115

(4.7)
with R, = 2/V/ 1 ++?, provided that the sums in
this equation are nonempty.

It is possible to use this bound, together with
(2.4), to get a double exponential bound on w.
However, to obtain a bound with explicit constants
requires using explicit constants in the error term
n (2.4). But we can avoid this by using the fact
that, for ((s)—which, for convenience, we call the
q = 1 case—and for L(s,y;) with ¢ = 3,4,5,7,
11,13, all the positive ~’s are greater than 2; this
we know by looking at our computer files of zeros.
Hence, for any A > 0, with ¢ = 1,3,4,5,7,11,13,
we may find an X such that

0<A-2 ) R,<2

0<y<X
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Combining this with (4.7) yields for ¢ = 1,3,4,5, 7,
11,13 and for A > 2 (so that the sum is nonempty):
3(3(A—2))°
)
3(3(A—2))°
<155 )
Looking ahead to Table 2 and (4.13)-(4.14), we see

that
(=)

¥>0

w[A, 00) < exp(—

~1
> 0.98

in all instances, so that
WX, 00) < exp(—g(A —2)%)

for ¢ = 1,3,4,5, 7 11 13 and A > 2, where we used
the fact that + < = —0.98"'. Hence, for n > 1
Wlthﬂ—1>2 ( 4) gives

@(E) = %/ +1g(u)du < %w[%— 1, oo)

sexp(—§(2-3)7).

Now, because g(u) is symmetric about 0, so is .
Thus, choosing ¢ = we find

IA

207

S =23 e

< exp(—1(20n —3)%)

< 2exp (—%(17)2) — 10 20-617...

Combining this with (4.2) and (4.6) yields

1 sinen .
§(Pynp) =3+ =— Zs - Wq.r.N(eN) + error,

(4.8)
where e = 5= and |error| < 1072, The same holds

for 6(PL™).

4.2. The Cutoff

Next, in (4.8), we replaced the sum over —oco <
ne < oo with a sum over —C < ne < C, where C'
was chosen sufficiently large so that the tail ends

of the sum contributed a pleasingly small amount.
More precisely,

%( DS >gSi2:%(m)

—oo<ne<oo —C<ne<C
_ Z sin ne H ( 2ne )
= = o —
n6>C =1 v i + 732
na>C’ v i + 7]2
for M =1,2,3,.... By (4.5), the right-hand side
above is dominated by
H] 1( + PY] )1/4 g
TM/2+1 . (ne)M/2+1

LGN 1
aM/2+1 o xM/2+1 OM/2+1

L G 2 1 wo)
- aM/241 MCM/2 + 200 M/2+1 | ° :

Using this bound and our computer files of the v;’s,
we found that the C’s and M’s listed in Table 1
gave us a small enough error to achieve eight-digit
accuracy for §(P;°™") and four-digit accuracy for
the other §’s. And so we have

1 sin en 2ne
6(Pq'NR):_ Z S H J0<7>
iN, /T | 2
2w Cos<ne<as Yxq >0 1T
+ 1 +error (4.10)
C M bound
S(P™P) 50 | 59 | 2x 10710
§(P3.n.r) | 25 | 36 | 4x 1077
6(Py.NR) 25 | 39 | 6x10°8
8(Ps.n.R) 25 | 42 | 2x 1078
5(P7;N;R) 25 46 2x107°
§(Piivir) | 25 | 52 | 1x 10710
§(Pis.nir) | 25 | 53 | 5x 1071

TABLE1. Error bounds for the computed values of
8(P;°™P) and §(P,.n.r). The bounds are provided
by (4.9); C and M are chosen accordingly.



and

1 sinen 2ne
6(Pcomp) —— e JO (7)
' 2m 502;5350 en H \ i + 7?

Y¢>0

+ % +error, (4.11)

where the error includes the one shown in Table 1
and the one from (4.8).

4.3. Replacing the Infinite Product

Finally, we replaced the infinite product in (4.10)—
(4.11) with a finite product and a polynomial that
compensated for the missing tail end of the prod-
uct:

2u
J, (7) (4.12)
0<y<X v % +2

for —C < u < C, where p(u) 22:0 b u®™ ap-

proximates the product
2u -
[17(=) = 3 bow.
y>X i + 72 m=0

Using the formula (3.2) for Jy(z) and the fact—a
consequence of (2.4)—that

1
P e

sxa T

converges, say to T} = T1(X), we see that such an
expansion is justified. In fact, comparing the b,,’s
with the coefficients of

1/ 20 \° , 1
L(i(775) ) - )
y>X 4 i+’72 7>X1+7

we find that |b,,| < T7™/m!. Therefore

[ee]

o ™
5 boain| < 3> o
m!
m=A+1 A+1
T U2 A+1
%(1 +T1U2 + (T1U2)2 +-- )

This last quantity equals

(T1u2)A+1 1
A+ 1- T2

Rubinstein and Sarnak: Chebyshev’s Bias 191

if Tyu? < 1, and so is less than 2(Tyu?)4+ /(A +1)!
if Thu? < % Thus, the error introduced by replac-
ing the infinite product in (4.10)—(4.11) with (4.12)
is bounded, in norm, by

1 | sin ne|
w2 e A

—C<ne<C 0<~y<X

J ( 2ne )‘
0 /—% + 72
(T1n282)A+1

2T

if Tyn%e? < L. To carry out this sum we first
needed to compute the 77’s. This is described
shortly. For §(P;°™"), using X = 88190, A = 2,
C =50, and ¢ = o, this sum is less than 3 x 107,
For all the other ¢’s, using X = 9999, A = 1,
C =25 and ¢ = %, this sum is less than 2 x 107¢.
So, for most of our computations, we only needed
a compensating polynomial of the form p(u) =
1 + byu?, the exception being the computation of
S(P°™P), where we used p(u) = 1+ byu? + byu®.
From the definition of the b;’s, we see that

1
blZ—T1<X)=—(Z— 2. )m
y>0 0<y<X’ 4 v

Now, it is known [Davenport 1980, pp. 80-83] that,
assuming GRH,

1
Z m = %’Y"ﬁ‘l — %10g(471')
ve>0 1 ¢
=.0230957089661210338 ... (4.13)
and
1 1 q
> = slos(7)
1 2 2

Yx1 >0 4 + ’YX1 d

!

L
— 57— 30a(=1)+1)log2 + 7 (L), @14

where, overloading the notation,

N
1

v = lim g — —log N = 0.577215664901532.. ..
n

N—oco

is Euler’s constant.
To compute L'/L(1,y;) we evaluated L'(1, ;)
and L(1,x;) separately and then divided. L(1, x;)
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was calculated using the formulas in [Davenport
1980, pp. 8-9], according to which it equals

——le

log<251n(7r;n)) if ¢ =1 mod 4,

q—1
™
1
% if ¢ = 4.

The L'(1, x1)’s were computed using Dirichlet’s
formula [Davenport 1980, p. 11]

ML) = [ 1]

g 1—e v

if ¢ =3 mod 4,

w e du,
where
q—1
x) = le(m ™"
1
Differentiating we get,
I"(s)L(s, x1) +T(s)L (s, x1)

= / L(ei ) lo
g 1—e ™
which at s = 1 becomes

/  h(e .
L'(1,x1) =~vL(1,x1) + / 157) log(u)e™ ™ du.
0

e~ ua

g(u)u*~te " du,

since I"(1) = —~, ['(1) = 1. Maple [Char et al.
1991] was used to perform the integral numerically,
and combining the results with our earlier com-
puted values of L(1,x;)’s we got our L'(1,x;)’s.
With these numbers in our hands, we were then
able, using (4.13)-(4.14), to evaluate the T7(0)’s
see Table 2.
Thus, our final formula for 6(P,,x r) is

sin(ne)

1
8(Pyn.p) = 5 > o« 2

—25<ne<25

(1 + by(ne)?)

X )—i—% -+ error

0<v1:[9999 ( Vi

where

1
by=-T1(0)+ > T
4

0<y<9999

Recall that the error in this formula accounts for
replacing the integral by a sum of rectangles of
width ¢ = 21—0, cutting off the infinite domain of
summation at +25, and replacing the infinite prod-
uct by a finite product and a compensating polyno-
mial of the form p(u) =14 byu®. In all instances,
using the estimates made earlier, the error was less
than 2.5 x 107% in norm, and did not have an effect
on the first four decimal places of the ¢’s given at
the beginning of Section 4 (for ¢ = 3,4,5,7,11,13).
To compute §(P;°"), as already mentioned, we
replaced the infinite product in (4.10)—(4.11) by

(1—I-blu2—l-b2u H J()( )
0<<88190 Vi + v

where
1
-3
~>88190 1 +7
1
=—27—1+$log(4m)+ Z o2
0<~y<88190 4 7
1
= —.0230957089661210338... + Z T
0 i+
<~v<88190

and

1 1 1
he L Tt A Ta

Ty

~+>88190 i > >88190 1
-y
- 2\2
~v>88190 (1 + 47 )
1 2 1
(S ) - o)
~>88190 1+ 47 ~v>88190 (1 + 47 )

:__4(2 > ) T (4.15)

y>0  0<~y<88190

Now

e e
(14 442)2 4 \2y i 2y —i

>0
1 1 1 1
_5214-472 _Z;(Zw—l-i)?'

¥>0
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q L(1,x1) L'(1,x1) T:(0)
3 0.6045997880780726168646 0.2226629869686015094866 0.05661498492873617
4 0.7853981633974483096156 0.1929013167969124293631 0.07778398996179296
5 0.4304089409640040388894 0.3562406470307614988646 0.07827847699714324
7 1.187410411723725948784 0.0185659810930280571715 0.12761798914591051
11 0.9472258250994829364296 —0.0797737527762439195432 0.25375655672667782
13 0.6627353910718455897136 0.3114667901362450908264 0.19832628962613668
TABLE 2. Values of L(1,x1), L'(1,x1) and T1(0) = 3_ -, 1/(3 +7?) for ¢ = 3,4,5,7,11,13.

The first of these sums we already know to equal
t(3y + 1 — Jlog(47)). The second sum we de-
termine by differentiating the formula [Davenport
1980, p. 80]
¢ 1

Z(S)‘i‘s

1r ; 11
+§F< +1>+IX :Z( +—>,
P

s—p p

where K is a constant and p runs over all the non-
trivial zeros of ((s); then substituting s = 1 and
dividing by —16. On the right we get, assuming
the Riemann Hypothesis,

__Z 27+z

all v

On the left, we use

((s) = (s = 1)

with ag = v = 0.577215664901532 ... and

N

) log(m + 1)
— 1 2 — =

al—]\}l_r)r(l)oﬂog(N—i—l) El ——

)

and also use

1T /s 7 = 1 1
2 (2 1)2___ _ =
2F(2+ 2 Z<s+2n 2n>

1

to obtain

S pp A TS SR
16 0 4
a0 23/—!-1

=—%(2a, -7+ in* - 1).

Hence

11y 41— Llog4
Z (1 +4’Y2)2 - §(§7+ Y Og( ﬂ-))
¥>0

- (20, =+ i1 - 1)

= %(%7 +1 - %log(47r))
= (0.000002318789777341554469. ..

The value of a; was obtained from Maple, which
knows how to calculate the a,,’s to great precision.
With this number we were able, using (4.15), to
evaluate by, and thus find

1 sin ne
SPP™)=— > = (14D (ne)+by(ne)?)
_s0<ne<so  F
2ne
X H J0<7) + % + error
0<~<88190 v i +
=.99999973...,

where the error is less than 6 x 107!° in norm.

Figure 1 shows graphs of the density functions of
w1 and pg.gp N, for ¢ = 1,3,4,5,7,11,13, obtained
by evaluating the Fourier transform of (3.4). Also
shown are the histograms representing (logarith-
mic) distributions numerically computed for

_ Y(z) —x
and
_ 7vb(val)
F(x)——l—l-T, 4.17)

for x in the range 10° < x < 10'°. One can show,
using the method of Lemma 2.1, that (4.16) and
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FIGURE 1. Predicted density functions (curves) of p; and pgp N, for ¢ = 3,4,5,7,11,13, compared with

experimental data (histograms) of the logarithmic distribution of the function F(z) of (4.16) (for ¢ = 1) and
(4.17) (for ¢ = 3,4,5,7,11,13). The real line was divided into intervals (buckets) of width % Using a sieve,
we then evaluated (4.16) and (4.17) at z = n + £, for all 10> < n < 10!, and for each = we added =~ ! to the
bucket containing F'(x). Finally, we scaled the histograms so as to have area one.

(4.17) have the same (logarithmic) distributions as
E,(x) and E, g n(x), respectively. We chose to
work with them because the term in O(1/log x) in
Lemma 2.1 is significant enough to skew the dis-
tribution in the range that we examined.

5. GENERALIZATIONS

In this short section we discuss generalizations of
the Chebyshev bias phenomenon. First, we ex-
amine the relative distribution of prime ideals in
a number field. Given two ideal classes, one can

examine whether there is a preference for primes to
be in one class over the other. If we assume the Rie-
mann Hypothesis for the corresponding ideal class
L-functions, we obtain results similar to those in
Sections 2 and 3. For example, if the class number
is 2 there is a bias of primes to be nonprincipal. On
the other hand, if the class number is odd there are
no biases in pairwise comparisons.

Similarly, one can study the relative distribution
of primes according to their splitting in Galois ex-
tensions (Chabotarev-type questions). Again, one
can prove results analogous to those in Sections 2



and 3. In this case, one has to deal with gen-
eral Artin L-functions [Lang 1970, Ch. 12]. Here a
new feature emerges concerning GSH for such L-
functions and some care must be exercised. First,
such an L-function may factor into a product of
primitive such L-functions and the factors may ap-
pear with exponent greater than 1. So, for exam-
ple, the Dedekind zeta function of a nonabelian
Galois extension K /Q will have multiple zeros and
will not satisfy GSH. As far as GSH is concerned,
we must restrict ourselves to principal primitive
L-functions, as described in [Rudnick and Sarnak
1994], which discusses the statistical distribution
of the zeros of such L-functions. In particular,
distinct primitive principal L-functions have sta-
tistically independent zeros. However, the alge-
braic GSH for zeros of different primitive Artin L-
functions is more subtle. The reason (or at least
one reason) is that there is an example [Armitage
1972] of a primitive Artin L-function with a zero at
s = % This will naturally cause a bias in connec-
tion with the problem that we are discussing. This
bias should still be considered as algebraic since
the vanishing at s = % is a consequence of an odd
functional equation that emerges from computa-
tions of Serre [1971] on Artin conductors and root
numbers. One might surmise that besides this re-
lation there are no algebraic relations between the
imaginary parts of the zeros of primitive Artin L-
functions.

The other generalization that we discuss is an
analogous problem in geometry. Let X be a com-
pact hyperbolic surface (that is, of curvature —1).
Denote by P the set of primitive closed geodesics
(primes) on X and let

N(p) = expl(p),
where [(p) denotes the length of p. Each p de-
termines a homology class C(p) € H;(X). Let
mo(x) be the number of elements p € P such that
N(p) <z and C(p) = C. In [Phillips and Sarnak
1987] it is shown that, for any C,

(g 1)
Ry
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as r — 00, where g > 2 is the genus of X. Appar-
ently, the situation is similar to the other exam-
ples that we have been considering: the primes are
equidistributed amongst the homology classes. We
can thus ask whether there are any biases towards
one homology class as compared to another. One
difference here is that the group H;(X) = Z?9 into
which the primes distribute themselves is infinite.

In fact, it turns out that in this case there are
very strong biases. Not only can §(Pg, ¢,) be zero,
but there are always (for sufficiently large =) more
primes in certain homology classes. The group
H,(X) carries a natural norm coming from the
conformal structure on X, defined as follows. Let
Har X denote the space of harmonic one-forms on
X. We have pairings (, ) : H;(X) x Har X — R
and (, ): Har X x Har X — R given by

Cup= [ u

(wl,wg)z/ wy A *w,.
X

and

Using duality we can therefore associate to each
¢ € Hi(X) a unique dual harmonic one-form 7o
that satisfies (C,w) = (nc,w) for all w € Har X.
Now, define a norm on H,(X) by setting ||C]|* :=
(nc¢,mc). One can show by a careful analysis of
the subleading term in the asymptotics developed
in [Phillips and Sarnak 1987] that, if [|C|| > || D],
then 7wp(x) > we(x) for x sufficiently large. Thus
there are “more” primes homologous to D than to
C. In particular, there are more primes homolo-
gous to zero than to any other homology class. As
we have seen in Sections 2 and 3, such a strong
bias is never present in the arithmetic cases.
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