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The title refers to the fact, noted by Chebyshev in 1853, that

primes congruent to 3 modulo 4 seem to predominate over

those congruent to 1. We study this phenomenon and its gen-

eralizations. Assuming the Generalized Riemann Hypothesis

and the Grand Simplicity Hypothesis (about the zeros of the

Dirichlet L-function), we can characterize exactly those mod-

uli and residue classes for which the bias is present. We also

give results of numerical investigations on the prevalence of

the bias for several moduli. Finally, we briefly discuss general-

izations of the bias to the distribution to primes in ideal classes

in number fields, and to prime geodesics in homology classes

on hyperbolic surfaces.

1. INTRODUCTIONDirichlet [1837] proved that for any a and q with(a; q) = 1 there are in�nitely many primes p withp � a mod q, and that they are roughly equidis-tributed amongst these residue classes. We de-note the set of such residue classes by Aq. It waslater proved by Hadamard and de la Vall�ee Poussinthat the number �(x; q; a) of primes p � x withp � a mod q has the behavior�(x; q; a) � Li(x)'(q) � 1'(q) xlog xas x ! 1, where '(q) = jAqj is the Euler phifunction and Li(x) = Z x2 dtlog t :Chebyshev noted in 1853 that there are manymore primes congruent to 3 than 1 modulo 4. Muchhas been written about this since then, but we havefound the literature to be a little confused and in-accurate. We have, therefore, tried our best to citebelow the original sources where appropriate. Ac
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174 Experimental Mathematics, Vol. 3 (1994), No. 3good survey appears in [Kaczorowski]. In this pa-per we take a somewhat di�erent point of view inour attempt to analyze Chebyshev's phenomenonand its generalizations, which we call \Chebyshev'sbias". Our purpose has been to examine theseissues both theoretically and numerically and, inparticular, to give numerical values to these biases.Let a1; a2; : : : ; ar 2 Aq be distinct, and de�nePq;a1;:::;ar as the set of real x � 2 such that�(x; q; a1) > �(x; q; a2) > � � � > �(x; q; ar):Are these sets nonempty? What are their densi-ties? A de�nitive result of Littlewood [1914] as-serts that both P4;1;3 and P4;3;1 extend to in�nityand the same is true of P3;1;2 and P3;2;1. Leech[1957] found the �rst member of P4;1;3. It is 26861and indicates the bias of primes towards 3 mod 4.The �rst member of P3;1;2 is 608981813029, andwas found by Bays and Hudson [1978]. Evidently,strong biases occur in the initial segments and oneasks whether they persist or perhaps even grow.De�ne �(P ) to be the logarithmic density of P ,that is, set�(P ) := lim supX!1 1logX Zt2P\[2;X] dtt ;�(P ) := lim infX!1 1logX Zt2P\[2;X] dtt ;and set �(P ) = �(P ) = �(P ) if the latter two limitsare equal. That the logarithmic density is the ap-propriate one to use here is well known [Wintner1941] and will become clear in Section 2; su�ce itto say that the usual densities of our Pq;a1;:::;ar 'sdo not exist. We will see that, on certain naturalhypotheses, �(P4;3;1) = 0:9959 : : : and �(P3;2;1) =0:9990 : : :, showing very strong biases.In order to investigate these densities and biaseswe introduce the vector-valued functionEq;a1;:::;ar(x) = logxpx� ('(q)�(x; q; a1)� �(x); : : : ; '(q)�(x; q; ar)� �(x))

for x � 2. The normalization is such that, if we as-sume the Generalized Riemann Hypothesis (GRH),as we shall do throughout this paper, Eq;a1;:::;ar(x)varies roughly boundedly (see Section 2). Withthis normalization, Eq;a1;:::;ar has a limiting distri-bution.
Theorem 1.1 (see Section 2.1). Assume GRH . ThenEq;a1;:::;ar has a limiting distribution �q;a1;:::;ar onRr , that is,limX!1 1logX Z X2 f(Eq;a1;:::;ar(x))dxx= ZRr f(x) d�q;a1;:::;ar(x)for all bounded continuous functions f on Rr .Special one-dimensional cases of this theorem (insomewhat di�erent forms) have been known forsome time. See [Wintner 1938], and more recently[Kueh 1988; Heath-Brown 1992].Note that, if r = '(q) in Theorem 1.1, the sumof the components of Eq;a1;:::;ar is O(log x=px). Itfollows that in this case �q;a1;:::;ar is supported onthe hyperplane Prj=1 xj = 0.The measures �q;a1;:::;ar carry all the informa-tion concerning the densities and biases that weare interested in, and we seek to understand theirshapes, means, and so on. For example, if �q;a1;:::;aris absolutely continuous, we have�(Pq;a1;:::;ar) = �q;a1;:::;ar (fx 2Rr j x1 >x2 > � � �>xrg) :Note, however, that assuming only GRH we don'tknow that �(Pq;a1 ;:::;ar) exists, since we have notbeen able to establish Theorem 1.1 with f a char-acteristic function of a nice set.The proof of Theorem 1.1 also yields a method ofapproximating �. In Section 2 we construct mea-sures �Tq;a1;:::;ar de�ned in terms of the zeros 12+ i
�of the L-functions L(s; �), where � runs over theDirichlet characters modulo q with j
�j � T . Thesemeasures satisfy���q;a1;:::;ar(f)� �Tq;a1;:::;ar(f)���q cf log TpT ;



Rubinstein and Sarnak: Chebyshev’s Bias 175where f is Lipschitz with constant cf , and the no-tation x�� y means x � ky with k depending on� only.Concerning the localization of the measures �,we can show that they are very localized but notcompactly supported. SetB0R = fx 2 Rr j jxj � Rg;B+R = fx 2 B0R j "(aj)xj > 0g;B�R = �B+R ;where "(a) = 1 if a � 1 mod q and "(a) = �1otherwise.
Theorem 1.2 (see Section 2.2). Assume GRH . Thereare positive constants c1, c2, c3 and c4, dependingonly on q, such that�q;a1;:::;ar(B0R) � c1 exp(�c2pR);�q;a1;:::;ar(B�R ) � c3 exp(� exp c4R):This theorem asserts that the tails of the dis-tributions are \exponentially" small. However, itis the double exponential lower bound that is pre-sumably closer to the true size, as will be seen later.Note that it is only for special sets like B�R that wecan establish a nonzero lower bound. It seems quitedi�cult (without further hypotheses) to show thatall orthants have positive mass (if, say, r < '(q));see Remark 2.5.We mention two related cases where Theorems1.1 and 1.2 apply:First, the case \q = 1", concerning the densityof P1 = fx � 2 j �(x) > Li(x)g:Again, Littlewood [1914] showed that P1 extendsto in�nity. However, in this case the bias is sokeen that no member of P1 is known. It is known[Skewes 1933; te Riele 1986] that the �rst memberof P1 is at most 10370. Denote by �1 the limitingdistribution ofE1(x) := (�(x)� Li(x)) log xpx :

Then, assuming the Riemann Hypothesis, we have,for �� 1,c7 exp(� exp(c8�)) � �1[�;1) � c5 exp(�c6p�);c7 exp(� exp(c8�)) � �1(�1;��] � c5 exp(�c6p�)
(1.1)for absolute positive constants c5, c6, c7 and c8. Inparticular we have �(P1) > 0; this may also be de-duced from [Wintner 1941]. We will see later that�(P1) = :00000026 : : : . So, although the initialsegment in which �(x) loses to Li(x) is extremelylong, the probability that �(x) beats Li(x), whilevery small, is still palpable.The second case concerns the excess of primesthat are quadratic residues over those that are non-residues, a problem recently analyzed in [Davido�1994]. For q = p�, q = 2p� or q = 4, where p is anodd prime and � is a positive integer, letPq;N;R = fx � 2 j �N(x; q) > �R(x; q)g;Pq;R;N = fx � 2 j �R(x; q) > �N(x; q)g;where �R(x; q) is the number of prime quadraticresidues not exceeding x and �N(x; q) is the num-ber of prime quadratic nonresidues not exceedingx. We will see that there is always a bias towardsnonresidues. From now on, when we write q;N;Rit will be understood that q is of the form p�, 2p�,or 4.As in Theorem 1.2 and in the estimates (1.1), onecan give lower bounds for the tails of the limitingdistribution �q;N;R ofEq;N;R := (�N(x; q) � �R(x; q)) log xpx(see Section 2.2). Consequently we have�(Pq;R;N )�(Pq;N;R) > 0:In particular (under GRH), we have �(P4;1;3) > 0,hence the usual density of P4;3;1 relative to theusual measure dx cannot be zero (we note that�(P4;1;3) > 0 could also be deduced by the methodin [Wintner 1941]). This is contrary to a conjecturein [Knapowsky and Turan 1962]. Kaczorowski has



176 Experimental Mathematics, Vol. 3 (1994), No. 3also recently disproved the aforementioned conjec-ture by a somewhat di�erent approach based on hisK-functions [Kaczorowski]. He also gives some nu-merical approximations to the unequal upper andlower (usual) densities of P4;3;1.To further analyze the measures �q;a1;:::;ar , weneed to make some further hypotheses about thezeros of the L-functions L(s; �). In practice, we canverify these hypotheses to the extent that we wantto approximate the measures �Tq;a1;:::;ar and hence�q;a1;:::;ar . So we view the following as a workinghypothesis. It appears that the �rst person to pro-pose (or realize the signi�cance of) the hypothesisbelow, at least for �(s), was Wintner [1938, Ch. 13;1941]. Later authors [Hooley 1977; Montgomery1980] introduced it for similar purposes.
Grand Simplicity Hypothesis (GSH). The set of 
 � 0such that L( 12+i
; �) = 0, for � running over prim-itive Dirichlet characters, is linearly independentover Q .Note that GSH implies that all the zeros are simpleand that L( 12 ; �) 6= 0 for all such �. A lot of evi-dence exists for the last two statements, while nu-merical evidence for GSH is more modest [Odlyzko;Rumely 1993]. In any event, there is no reason tosuspect that di�erent zeros satisfy any relations,and this is the main rationale for believing GSH.For more general L-functions GSH may fail, but ina predictable way: see Section 5.Montgomery [1980], using GSH for the Riemannzeta function, investigated the sizes of the tails of�1. He showed thatexp(�c2pR expp2�R)� �1(B�R )� exp(�c1pR expp2�R):In particular, we see that the double exponentiallower bound of Theorem 1.2, which depends onlyon GRH and not on GSH, is closer to the true sizeof the tails.Under GRH and GSH we have the following ex-plicit formula for the Fourier transform of �q;a1;:::;ar(see Section 3.1):

�̂q;a1;:::;ar(�1; : : : ; �r) = exp�i rXj=1 c(q; aj)�j�� Y�6=�0�modq Y
�>0 J0�2 ��Prj=1 �(aj)�j��p 14 + 
2� �; (1.2)where �0 is the principal character,c(q; a) = �1 + Xb2�a(q)0�b�q�11; (1.3)and J0(z) is the Bessel functionJ0(z) = 1Xm=0 (�1)m( 12z)2m(m!)2 :Again, special cases of (1.2) are known [Wintner1941; Hooley 1977].The in�nite product in (1.2) converges absolutelyfor �xed (�1; : : : ; �r). This follows from the expan-sion J0(z) = 1� 14z2+ � � � at z = 0 and the fact thatP
� 1=( 14+
2�) <1. If one is equipped with manyzeros of L(s; �), one can use (1.2) and some vari-ations thereof to compute �q;a1;:::;ar and �q;a1;:::;ar .This is carried out in Section 4 and is the basis forour computations of the �'s.
Remark 1.3. If r < '(q), we can easily deduce from(1.2) that �̂q;a1;:::;ar(�) is rapidly decreasing as j�j !1. It follows that �q;a1;:::;ar = f(x) dx with f(x)rapidly decreasing, and even that f is entire. Alsof(x) is doubly exponentially localized. If r = '(q)then �̂(�) = �̂(�+ �(1; : : : ; 1)) for any � 2 R. Thisimplies that �q;a1;:::;ar is supported onPrj=1 xj = 0,a fact we have already noted. In this case, �̂(�)is rapidly decreasing as j�j ! 1 as long as � ?(1; : : : ; 1). So again �q;a1;:::;ar = f(x) dV (x), wheredV is the volume form on Prj=1 xj = 0 and f isanalytic and localized. In either case it follows,under GRH and GSH, that �(Pq;a1 ;:::;ar) exists andis nonzero, answering in particular the questionabout whether Pq;a1;:::;ar is nonempty.The �rst factor in (1.2) causes a shift in the mean ofthe distribution �q;a1;:::;ar , placing it at �(c(q; a1);



Rubinstein and Sarnak: Chebyshev’s Bias 177: : : ; c(q; ar)). This is the source of the Chebyshevbias. For q = 3; 4 it leads to the bias towardsnonresidues (primes congruent to 2 mod 3 and 3mod 4) discussed on page 1.A closer investigation of the symmetries of thedensity function of �q;a1;:::;ar in (x1; : : : ; xr) revealsthe nature of the biases. We say that(q; a1; : : : ; ar)is unbiased, or that the R�enyi{Shanks primes race[Shanks 1959] is unbiased, if the density functionof �q;a1;:::;ar is invariant under permutations of (x1;: : : ; xr). In this case we have �(Pq;a1 ;:::;ar) = (r!)�1.(The converse seems very plausible as well.)
Theorem 1.4 (see Proposition 3.1). Under GRH andGSH , (q; a1; : : : ; ar) is unbiased if and only if ei-ther r=2 and c(q; a1) = c(q; a2), where c is de�nedby (1.3), or r=3 and there exists � 6=1 such that�3 � 1 mod q, a2 � a1� mod q and a3 � a1�2 mod q.So with the aid of GSH we can in essence com-pletely resolve the issue of the existence of a bias.The symmetry analysis of �q;N;R shows that 12 <�(Pq;N;R) < 1, that is, there is always a bias to-wards nonresidues. At the beginning of Section 4we list these densities for q = 3; 4; 5; 7; 11; 13.From (1.2) we can also �nd out what happens asq ! 1. Interestingly, all biases disappear and acentral limit behavior emerges. From (1.2) we candetermine the covariance matrix of the distribution�q;a1;:::;ar . Its entries arebai;aj = X�6=�0�modq ��aiaj �B(��);where �� is the primitive character inducing � andwhereB(��)= 12 log�q��� �+ �02��3���(�1)4 �+ L0L (1; ��):

(1.4)In view of a theorem of Littlewood [1928] we haveL0=L(1; ��) = O(log log q��), still assuming GRH,so B(��) is dominated by the log q�� term. This

growth in the variance is responsible for dissolvingthe bias.
Theorem 1.5 (see Section 3.2). Assume GRH andGSH . Then, for r �xed ,maxa1;:::;ar2Aq �����(Pq;a1 ;:::;ar)� 1r! ����! 0 as q !1:Even in the extreme case of Pq;N;R, where all theresidues and nonresidues are grouped separately,the bias dissolves: that is, �(Pq;N;R)! 12 as q !1.In fact we have the following central limit theorem.
Theorem 1.6 (see Section 3.2). Assume GRH andGSH . Let ~�q;N;R be the limiting distribution ofEq;N;R(x)plog q :Then ~�q;N;R converges in measure to the Gaussian(2�)�1=2e�x2=2 dx as q !1.A central limit theorem for a close relative of �q;a1as q !1 was derived in [Hooley 1977].In Section 4 we give the results of our numericalinvestigations into the issues discussed above. Forthe computations of the measures � we used thou-sands of zeros of �(s) and L(s; �1), where �1 is thenonprincipal real character mod q. The values of�(s) were provided to us by Odlyzko and te Riele,and those of L(s; �1) by Rumely. At the beginningof Section 4 we give the values of �(P comp1 ) and�(Pq;N;R), for q = 3; 4; 5; 7; 11; 13. As expected, thebias is most extreme for q = 1 (that is, �(x) vs.Li(x)), and decreases, albeit not steadily, as q in-creases. Figure 1 shows graphs of the distributions�1 and �q;R;N , for q = 3; 4; 5; 7; 11; 13, comparingthe curves predicted by the use of (1.2) and ourtable of zeros with numerical distributions involv-ing primes up to 1010. The �ts are quite good andthe dissolving bias and central limit behavior arealready present.In Section 5 we brie
y discuss generalizations ofthe bias of distribution to primes in ideal classes innumber �elds and to prime geodesics in homologyclasses on hyperbolic surfaces.
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2. APPLICATIONS OF THE GENERALIZED RIEMANN
HYPOTHESIS

2.1. Existence of the Limiting DistributionThe main tool in establishing the existence of thelimiting distribution � is the explicit formula ofRiemann relating �(x; q; a) to zeros of Dirichlet L-functions L(s; �). Fix q and let � run over theDirichlet characters modulo q, with �0 the princi-pal character. Set (x; �) :=Xn�x�(n)�(n);where �(n) = log p if n = pm for some m 2 Z and�(n) = 0 otherwise. As is shown in [Davenport1980, pp. 115{120], if � 6= �0, x � 2 and X � 1 wehave (x; �) = � Xj
�j�X x�� +O�x log2(xX)X + log x�;where � = ��+i
� runs over the zeros of L(s; �) in0 < Re(s) < 1, and the implied constant in the Odepends on q. Since we are assuming the RiemannHypothesis for L(s; �), we have �� = 12 and thepreceding equation becomes (x; �) = �px Xj
�j�X xi
�12 + i
�+O�x log2(xX)X +logx�:
(2.1)We recall some notations from Section 1. For a

and q relatively prime, let �(x; q; a) be the numberof primes p � x with p � a mod q, setE(x; q; a) = ('(q)�(x; q; a) � �(x)) log xpx(where ' is the Euler function), and let c(q; a) begiven by (1.3) (when q = p�, q = 2p� or q = 4 thisis the nonprincipal real character �1(a)). Also, (x; q; a) := Xn�xn�amodq�(n) = 1'(q) X�modq ��(a)Xn�x�(n)�(n)= 1'(q) X�modq ��(a) (x; �): (2.2)

Lemma 2.1. As x!1 we haveE(x; q; a) = �c(q; a)+X�6=�0 ��(a) (x; �)px +O� 1log x�:We remark that the constant term �c(q; a) is whataccounts for the bias towards nonresidues.
Proof. Let �(x; q; a) = Xp�xp�a(q)log p: Then�(x; q; a) = Z x2 d�(t; q; a)log t ;and, from Dirichlet's theorem for progressions, (x; q; a) = �(x; q; a)+� Xb2�a(q)1� px'(q) +O� pxlog x�:Solving for �(x; q; a) and combining with (2.2), wegetZ x2 d�(t; q; a)log t = 1'(q) Z x2 d (t)log t + 1'(q) X�6=�0 ��(a)Z x2 d (t; �)log t � 1'(q)� Xb2�a(q)1� pxlog x +O� pxlog2 x�= 1'(q)��(x) + pxlog x�+ 1'(q) X�6=�0 ��(a) (x; �)log x � 1'(q)� Xb2�a(q)1� pxlog x+O�X�6=�0 ����Z x2  (t; �)t log2 t dt����+ pxlog2 x�= �(x)'(q) + 1'(q) X�6=�0 ��(a) (x; �)log x � c(q; a)'(q) pxlog x +O�X�6=�0 ����Z x2  (t; �)t log2 t dt����+ pxlog2 x�: (2.3)



Rubinstein and Sarnak: Chebyshev’s Bias 179Let G(x; �) = R x2  (t; �) dt. Then, from (2.1),after integrating and letting X !1, we haveG(x; �) = �X
� x3=2+i
�( 12 + i
�)( 32 + i
�) +O(x log x)It is a crucial point throughout our analysis thatthis series over 
� converges absolutely, as is appar-ent from the asymptotic formula for the number ofzeros [Davenport 1980, p. 101]:#fj
�j � Tg = T� log qT2� � T� +O(log T + log q);
(2.4)and so it follows that G(x; �) �q x3=2, with theconstant depending on q. Hence, after an integra-tion by parts, the O term in (2.3) is O(px= log2 x),and (2.3) becomes�(x; q; a)� �(x)'(q) = �c(q; a)'(q) pxlog x+ 1'(q) log x X�6=�0 ��(a) (x; �) +O� pxlog2 x�:This completes the proof. �Combining Lemma 2.1 with (2.1) we get, for T � 1and 2 � x � X:E(x; q; a) = �c(q; a)�X�6=�0 ��(a) Xj
�j�T xi
�12 + i
�+ "a(x; T;X); (2.5)where"a(x; T;X) = �X�6=�0 ��(a) XT�j
�j�X xi
�12 + i
�+Oq�px log2XX + 1log x�: (2.6)Now set y = log x, so that dy = dx=x.

Lemma 2.2. For T � 1 and Y � log 2,Z Ylog 2 j"a(ey; T; eY )j2 dy �q Y log2 TT + log3 TT :

Proof. We haveZ Ylog2 j"a(ey;T;eY )j2dy�Z Ylog2���� X�6=�0 ��(a) XT�j
�j�eY eiy
�12+ i
� ����2dy+O(1)= X�6=�0� 6=�0 XT�j
�j�eYT�j
�j�eY ��(a)�(a)Z Ylog2 eiy(
��
�)( 12+ i
�)( 12� i
�) dy+O(1)�q X�6=�0� 6=�0 XT�j
�j�1T�j
�j�1 1j
�jj
�jmin�Y; 1j
��
�j�:Using (2.4) and comparing the sum withZ 1T Z 1T log x log yxy min�Y; 1jy � xj� dx dywe can get a bound of O �Y log2 T=T + log3 T=T �.�Therefore, for each T � 1, (2.5) gives a �nitequasiperiodic approximation of E(ey; q; a) (wherey = log x), with error " whose mean square is uni-formly small according to Lemma 2.2. This is thekey to the proof, which we now turn to, of theexistence of the limiting distribution.Let f : Rr ! R be a �xed continuous functionsatisfying a Lipschitz estimatejf(x)� f(y)j � cf jx� yj: (2.7)Consider 1Y Z Ylog 2 f(E(y)) dy;where E(y) = (E(ey ; q; a1); : : : ; E(ey; q; ar)). LetE(T )(y) = (E(T )1 (y); : : : ; E(T )r (y));withE(T )j (y) = �c(q; aj)� X�6=�0 ��(aj) Xj
�j�T eiy
�12 + i
� :
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Lemma 2.3. For each T there is a probability mea-sure �T on Rr such that�T (f) := ZRr f(x) d�T (x)= limY!1 1Y Z Ylog 2 f(E(T )(y)) dyfor all bounded continuous functions f on Rr . Inaddition, there is a constant c = c(q) such that thesupport of �T lies in the ball B(0; c log2 T ).
Proof. This is a general feature of quasiperiodicfunctions. For later calculations we give the proof.Let � 6= �0 and list the zeros 12 + i
� of L(s; �)such that 0 � 
� � T as 
1; : : : ; 
N . (We needonly focus on 
� � 0 since, for � real, we haveL( 12 + i
; �) = 0 if and only if L( 12 � i
; �) = 0,while for � complex we have L( 12+i
; �) = 0 if andonly if L( 12 � i
; ��) = 0.) We may write E(T )(y) inthe formE(T )(y) = 2Re� NXl=1 bleiy
l�+ b0; (2.8)where b0; : : : ; bN 2 C r withb0 = �(c(q; a1); : : : ; c(q; ar));bl = �� ��l(a1)12 + i
l ; : : : ; ��l(ar)12 + i
l�:De�ne the function g(y1; : : : ; yN) on the N -torusTN = RN =ZN byg(y1; : : : ; yN) = f�2Re NXl=1 ble2�iyl + b0�:Clearly, g is continuous on TN andf(E(T )(y)) = g�
1y2� ; : : : ; 
Ny2� �:Let A be the topological closure in TN of the one-parameter subgroup�(y) := f(
1y=2�; : : : ; 
Ny=2�) j y 2 Rg:

A is a torus and the Kronecker{Weyl Theorem as-serts that �(y) is equidistributed in A. Since gjAis continuous on A, we havelimY!1 1Y Z Ylog 2 f(E(T )(y)) dy = ZA g(a) da (2.9)where da is the normalized Haar measure on A.This proves the �rst part of the lemma, with�T (f) = ZA g(a) da:(We could actually compute �T|as we do later|ifA = TN .)The second part of the lemma follows by noting,from the de�nition of E(T )(y), thatjE(T )j (y)j � Xj
�j�T 1j
�j+ 1 ;which, by (2.4), is �q log2 T . �Returning to (2.7), we have, from (2.5):1Y Z Ylog 2f(E(y))dy= 1Y Z Ylog 2f(E(T )(y) + "(T )(y))dy= 1Y Z Ylog 2f(E(T )(y))dy+O�cfY Z Ylog 2j"(T )(y)jdy�;where "(T )(y) := E(y) � E(T )(y) and the impliedconstant depends on q only. By Lemma 2.2, this isfurther equal to1Y Z Ylog 2f(E(T )(y)) dy +O� cfpY �Z Ylog 2j"(T )(y)j2 dy�12�= 1Y Z Ylog 2 f(E(T )(y)) dy +O�cf� logTpT + log2 TYpT ��:



Rubinstein and Sarnak: Chebyshev’s Bias 181Letting Y !1 and using Lemma 2.3 we concludethat�T (f)�O�cf logTpT �� liminf 1Y Z Ylog2f(E(y))dy� limsup 1Y Z Ylog2f(E(y))dy��T (f)+O�cf logTpT �: (2.10)Since T can be as large as we please, we concludethat the lim sup and the lim inf coincide, i.e., that�(f) := limY!1 1Y Z Ylog 2 f(E(y)) dy (2.11)exists. Thus there exists a Borel measure � onRr such that (2.11) holds for all f satisfying (2.7).Moreover, for such f 's,j�(f)� �T (f)j � cqcf log TpT :From (2.11) it is also clear that since the �T 's areprobability measures (total mass 1), so is �. Infact, in view of the second part of Lemma 2.3 andof (2.11), we have�(B0�) = �T (B0�) +O� log TpT � = O� log TpT �for � = c log2 T (recall that B0� is the complementof the open ball of radius �). In other words,�(B0�) = O(p�e�cp�) = O(e�c2p�);where c2 depends only on q.
2.2. Lower BoundsWe will now present a proof of the lower bound for�q;N;R[��;�1) for large �. The basic principle ofthis analysis is the same as that used in [Little-wood 1914]; see also [Ingham 1932, Ch. 5]. Theproof that �q;a1;:::;ar(B�R) > 0, as in Theorem 1.2,is similar; see Remark 2.5.Fix q. All the constants cj below depend on qonly. Let �1 be the real nonprincipal character

mod q, and L(s; �1) its L-function. The nontrivialzeros of L(s; �1) are denoted simply by 12 + i
. SetR(x) := log xpx Xp�x �1(p)= log xpx (�R(x; q)� �N(x; q)):As in Section 2.1, we have, for X � 1 and x � 2:R(x) = �1� Xj
j�X xi
12 + i
+O�px log2(xX)X + 1log x�: (2.12)For " > 0 with � � 12" � log 2, setF"(�) := 1" Z �+ "2�� "2 R(ey) dy:Because of (2.4), P
 1=( 14 + 
2) < 1. Togetherwith a simple computation, this yieldsR(ey) = �2 X0�
�Xsin 
y
 +O�1+ ey=2(y + logX)2X �:
(2.13)Integrating this from � � 12" to � + 12" and lettingX !1 we getF"(�) = 4"X0�
 sin 
� sin 12
"
2 +O(1):Next we let " be very small and introduce~F"(�) := 4" X0�
�"�2 sin 
� sin 12
"
2 :Thus, if � � 12" � log 2,F"(�) = ~F"(�) +O(1): (2.14)By studying ~F"(�) as a function of the real vari-able � (in particular near � = 0), and by exploiting



182 Experimental Mathematics, Vol. 3 (1994), No. 3its almost-periodicity, we will be able to prove alower bound for �q;N;R[�;1). Now,~F"( 12") = 4" X0�
�"�2�sin 12
""
 �2 � 4" X0�
�1=" 132� c0 log "�1with c0 > 0. That is,~F"(") � c1 log "�1 with c1 > 0: (2.15)Let 
1; : : : ; 
N denote the imaginary parts of thezeros of L(s; �1) with 0 � 
 � "�2. We haveN � c3"�2 log " as " ! 0. Consider, for M ! 1(with " �xed and very small), the integers m with(log 2)=" � m � M=" and the values ~F"(" +m").We havej ~F"("+m")� ~F"(")j� 2 X0�
�"�2 ����sin (m+ 1)
" � sin 
"
 ����� 2� max0�
�"�2 k
m"k� X0�
�"�2 1j
j� max0�
�"�2 k 
m"kc2 log2 "�1; (2.16)where k k denotes the distance to the nearest inte-ger multiple of 2�. We want the right-hand side ofthis inequality to be appropriately small. Ifmax0�
�"�2 k
m"k � c12c2 log "�1 ; (2.17)it follows from (2.15) and (2.16) that~F"("+m") � 12c1 log "�1:From this and (2.14) we have, on adjusting c1 ap-propriately so as to incorporate the O(1), thatF"("+m") � 12c1 log "�1:Let GM be the set of m such that (log 2)=" � m �M=" and (2.17) holds. To get a lower bound onjGM j as M ! 1 we use the box principle. InRN =ZN consider the vector ("
1=2�; : : : ; "
N=2�).Divide RN =ZN into disjoint boxes of side lengths

(essentially) c1=(4c2 log "�1). There will be e�ec-tively (4c2c�11 log "�1)N such boxes. Of the vectorsm("
1=2�; : : : ; "
N=2�), withlog 2" �m � M" ;at least � = � M � log 2"(4c2c�11 log "�1)N �will be in one box. Corresponding to these integersm1 < m2 < � � � < m� , we form nj = mj �m1, with0 � nj � M="; these numbers satisfy (2.17). Itfollows thatjGM j � � M � log 2" �4c2c�11 log "�1�N �: (2.18)Let �m = Z m"+32 "m"+12 " R2(ey) dy:As in Lemma 2.2 (with T �xed, say T = 2) we haveXlog 2�m"�M �m � Z M+32 "log 2 R2(ey)dy � c4M: (2.19)

Lemma 2.4. For m 2 GM , the measure of the setof y 2 [(m + 12)"; (m + 32)"] such that R(ey) �14c1 log "�1 is at least "2c21 log2 "�1=(16�m).
Proof. Let�(�) = "�1��ft 2 [(m+ 12)"; (m+ 32)"] j R(et) > �g��be the distribution function of R on this interval.We have R1�1 d�(�) = 1,Z 1�1 � d�(�) = 1" Z m"+32 "m"+12 " R(ey) dy= F"(m"+ ") � 12c1 log "�1 (2.20)for m 2 GM , and R1�1 �2 d�(�) = �m"�1:Since the total mass is 1 we haveZ 14 c1 log "�1�1 � d�(�) � 14c1 log "�1;



Rubinstein and Sarnak: Chebyshev’s Bias 183so (2.20) givesZ 114 c1 log "�1� d�(�) � 14c1 log "�1:Thus, by Cauchy{Schwartz's inequality,14c1 log "�1 � �Z 114 c1 log "�1�2 d�(�)�12�Z 114 c1 log "�1d�(�)�12� ��m" �12 ��[ 14c1 log "�1; 1)�1=2:Hence �[ 14c1 log "�1; 1) � "c21 log2 "�116�m ;proving the lemma. �Continuing with the estimation of the lower bound,we have��fy2 [log2; M+ 32"] jR(ey)� 14c1 log"�1g��� Xm2GM��fy2 [(m+ 12 )"; (m+ 32 )"] jR(ey)� 14c1 log"�1g��;which by Lemma 2.4 is bounded below byXm2GM "2c21 log2 "�116�m : (2.21)Also,jGM j = Xm2GM 1 = Xm2GMp�m 1p�m� � Xm2GM �m�12� Xm2GM 1�m�12� � Xlog 2="�m�M="�m�12� Xm2GM 1�m�12�pc4M� Xm2GM 1�m�12

by (2.19). On the other hand, we have the lowerbound (2.18) for jGM j. HenceXm2GM 1�m � 1c4M (M � log 2)2"2(4c2c�11 log "�1)2N :Combining this with the bound (2.21) givesM(M � log 2)2� ��fy 2 [log 2; M + 32"] j R(ey) � 14c1 log "�1g��� c21 log2 "�116c4(4c2c�11 log "�1)2N :As M !1, the left-hand side gives�q;R;N [ 14c1 log "�1; 1):So, if we choose � = 14c1 log "�1, we get N �c"�2 log "�2 � exp(A�) for some A. That is, forsuitable constants A1; A2 > 0 depending on q wehave �q;R;N [�;1) � A1exp(exp(A2�)) :Returning to (2.15), we note that~F"(�") � �c1 log "�1;so one can repeat the whole argument to show that�q;R;N(�1;��] � A1exp(exp(A2�)) :This concludes the proof.
Remark 2.5. The reason we were able to obtain thelower bounds in this section is in part that R(ey)in (2.13) has essentially the formR(ey) = �2 X0�
�X a
 sin 
y
with a
 � 1. If one tries to apply the same methodto show that �(x; q; a)��(x; q; b), for general a; b 2Aq, changes sign in�nitely often, one runs into thedi�culty that the coe�cients are not positive (
�now running over all � mod q, � 6= �0). In general,this problem appears formidable.



184 Experimental Mathematics, Vol. 3 (1994), No. 3There are special a's and b's for which this can beovercome, and Theorem 1.2 falls into this category.The vector sum E(y) in question is essentially ofthe form�X�6=�0X
� sin
�y
� (��(a1); : : : ; ��(ar)) :By an analysis similar to the one in this section wecan force this vector (for many y's) to be a largemultiple of( 12("(a1) + 1)'(q) � 1; : : : ; 12("(ar) + 1)'(q) � 1):The proof of Theorem 1.2 then follows along thelines above.
3. APPLICATIONS OF THE GRAND SIMPLICITY

HYPOTHESIS

3.1. The Product Formula for �̂We turn to some consequences of assuming GSH,which says that the 
 � 0 are linearly indepen-dent over the rationals. Suppose that ��, of con-ductor q�� (which divides q), induces a character�. Then L(s; ��) and L(s; �) have the same ze-ros on Re(s) = 12 . It follows that GSH impliesthat f
� j � mod qg is linearly independent overQ . Hence the set of y(
1; : : : ; 
N ) for y 2 R isuniformly distributed in TN , and (2.8), (2.9) and(2.11) imply that�̂q;a1;:::;ar(�) = limN!1 exp�i rXm=1 c(q; am)�m� NYj=1 �̂
j (�);
(3.1)where �
j is the distribution of a typical term�� ��(a1)ei
y12 + i
 + �(a1)e�i
y12 � i
 ; : : : ;��(ar)ei
y12 + i
 + �(ar)e�i
y12 � i
 �in (2.8). Writing ��(aj) = uj + ivj , we get� 2p14 + 
2 �u1 sin(
y + w
) + v1 cos(
y + w
); : : : ;ur sin(
y + w
) + vr cos(
y + w
)�;

where cosw
= sinw
 = 2
. Noting that sin(
y) hasdensity 8<: 1�p1� t2 if �1 < t < 1,0 otherwise,we �nd that a typical �̂
(�) in (3.1) equals12 Z 1�1 exp�iR
 rXm=1 �m(umt+ vmp1� t2)� dt�p1� t2+12 Z 1�1 exp�iR
 rXm=1 �m(umt�vmp1� t2)� dt�p1� t2 ;where R
 = 2=p 14 + 
2. If we set U =Prm=1 �mumand V =Prm=1 �mvm, this becomes�̂
(�)= 1� Z 1�1 12�exp(iR
(Ut+Vp1� t2))+exp(iR
(Ut�Vp1� t2))� dtp1� t2= 1� Z 1�1 exp(iR
Ut)cos(R
Vp1� t2) dtp1� t2=J0(R
pU 2+V 2);where J0(z) = 1X0 (�1)m( 12z)2m(m!)2 (3.2)is the Bessel function of the �rst kind. Hence, (3.1)becomes�̂q;a1;:::;ar(�) = exp�i rXj=1 c(q; aj)�j�� Y�6=�0�modq Y
�>0 J0�2 ��Prj=1 �(aj)�j��p 14 + 
2� �: (3.3)Note that the factor exp�iPrj=1 c(q; aj)�j� arisesfrom the constant term in (2.8) and it accounts forthe Chebyshev bias. Similarly, using (2.12), wehave �̂q;R;N(�) = ei� Y
�1>0 J0� 2�p 14 + 
2�1�: (3.4)



Rubinstein and Sarnak: Chebyshev’s Bias 185Also, as in (2.12), we have, for X � 1 and x � 2:(�(x)�Li(x)) logxpx =�1� Xj
j�X xi
12+ i
+O�px log2(xX)X + 1logx�;where 
 runs over the imaginary parts of the non-trivial zeros of �(s) that lie in the upper half-plane.Thus the formula for �̂1 is the same as that for�̂q;R;N , the only di�erence being in the set of 
's.
3.2. An Investigation of the SymmetriesWe focus �rst on (3.4) (so �1 is primitive) and in-vestigate its symmetries. Because J0 is an evenfunction, so is Y
>0J0� 2�p 14 + 
2�;so (3.4) implies that the density function of �q;R;Nis symmetric about t = �1. Therefore�(Pq;R;N ) = Z 10 d�q;R;N(t) < 12 ;the inequality is strict because the density functionof �q;R;N is entire and hence cannot be identicallyzero on (�1; 0). See Remark 1.3. However, as q !1, this bias towards nonresidues disappears, as isindicated in Theorem 1.5, which we now turn to.Consider log �̂q;R;N(�=plog q). From (3.4) and(3.2) we see that for j�j � A, where A is any large�xed constant,log �̂q;R;N� �plog q�= i�plog q � �2logqX
>0 114 + 
2+O� A4log2 qX
>0 1( 14 + 
2)2�: (3.5)Expression (4.14) below gives P
>0( 14 + 
2)�1 interms of L0=L(1; �1). Under GRH, a simple adap-tation of the argument in [Littlewood 1928, p. 927]

shows that L0=L(1; �) = O(log log q). Combiningthese results we haveX
>0 114 + 
2 = 12 log q +O(log log q):Moreover,X
>0 1( 14 + 
2)2 � 4X
>0 114 + 
2 ;so that (3.5) becomeslog �̂q;R;N� �plog q�= � 12�2 +O� Aplog q + A2log log qlog q + A4log q�:In other words, we have shown that, for j�j � A,�̂q;R;N� �plog q�approaches e��2=2 uniformly.Hence by Levy's Theorem [L�evy 1922], the mea-sures ~�q;N;R (as in Theorem 1.6) converge in mea-sure to the standard Gaussian. As a corollary wededuce that �(Pq;N;R) = ~�q;N;R[0;1) satis�es�(Pq;N;R)! 12 as q !1: (3.6)We turn to the proof of Theorem 1.5, which runsalong similar lines. Let q be large (where q now isany integer) and let a1; : : : ; ar, with r �xed, be dis-tinct elements of Aq. Let ~�q;a1;:::;ar be the measureon Rr whose Fourier transform is�̂q;a1;:::;ar� �p'(q) log q�:The claim is that ~�q;a1;:::;ar converges in measureto the Gaussiane�(x21+���+x2r)(2�)r=2 dx1 : : : dxras q !1, independently of the choice of a1; : : : ; ar.As before, this follows from Levy's criterion. Fix



186 Experimental Mathematics, Vol. 3 (1994), No. 3A and consider � 2 Rr with j�j � A. Then, using(3.3) and (3.2), we havelog ~̂�q;a1;:::;ar(�)= log �̂q;a1;:::;ar� �p'(q) log q�= ip'(q) log q rXj=1 c(q; aj)�j+ X�6=�0�modq X
�>0 log J0� 2��Prj=1 �(aj)�j ��p'(q) log q( 14 + 
2�)�= � X�6=�0�modq X
�>0 ��Prj=1 �(aj)�j ��2'(q) log q( 14 + 
2�)+O� d(q)Ap'(q) log q + A4('(q) log q)2 X�6=�0 1( 14 + 
2�)2�;where d(q) = Pdjq 1 and we have used c(q; a) <d(q). As in (1.4), we let �� denote the primitivecharacter inducing �. Its conductor q�� divides q.Now L(s; �) and L(s; ��) have the same zeros onRe(s) = 12 , soX
� 114 + 
2� =X
�� 114 + 
2�� = �2ReB(�);where B(�) is given in (1.4). For a proof see [Dav-enport 1980]. As before, Littlewood's bound im-plies thatB(��) = � 12(log q��) +O(log log q):Hencelog ~̂�q;a1;:::;ar(�) = � 12'(q) log q� X�6=�0 log q������ rXj=1 �(aj)�j����2 +O�A4 log log qlog q �;where we have also used d(q) = O"(q") for all " >0. In order to analyze the �rst term on the right-hand side above, let �(a) denote the number ofprimitive characters to a modulus a. For each adividing q, every such character induces a unique

character mod q, so Pajq �(a) = '(q). Also notethat �(a) � '(a) < a. NowX�6=�0 log q������ rXj=1 �(aj)�j����2=Xj;k �j�k X�6=�0 ��ajak� log q��=Xj;k �j�k X�6=�0 ��ajak� log q�Xj;k �j�k X�6=�0 ��ajak� log q=q�� :Denote the �rst summand on the right-hand sideby I, and the second (including the minus sign) byII. ClearlyI = ('(q) � 1) log q rXj=1 �2j +O((log q)A2):On the other hand,II = �Xj;k �j�kXajqa6=1 X�moda���ajak� log q=a;whereP� indicates the sum over primitive charac-ters mod a. SoII� A2Xajq �(a) log qa:For any � < 1,II� A2 Xajqa�q� �(a) log q +A2 Xajqa>q� �(a) log q1��� A2(log q)d(q)q� +A2(1� �)(log q)'(q):Hence lim supq!1 jIIj'(q) log q � A2(1� �):Since 1�� can be chosen as small as we please weget limq!1 jIIj'(q) log q = 0;



Rubinstein and Sarnak: Chebyshev’s Bias 187and moreover convergence is uniform for j�j � A.Thus I + II � '(q) log q rXj=1 �2j :We conclude that, for j�j � A,~̂�q;a1;:::;ar(�)! exp�� rXj=1 12�2j�:This proves the central limit theorem for ~�q;a1;:::;ar .It follows that, for any D � Rr and for any per-mutation � of the r-coordinates,j~�q;a1;:::;ar(D)� ~�q;a1;:::;ar(D�)j ! 0as q ! 1. That is, ~� becomes unbiased, and, inparticular,�(Pq;a1 ;:::;ar) = ~�q;a1;:::;ar(fx j x1 > x2 > � � � > xrg)approaches 1=r! as q !1.Next we study the symmetries of �q;a1;:::;ar .
Proposition 3.1. The density function of �q;a1;:::;ar issymmetric in (x1; : : : ; xr) if and only if either
(a) r = 2 and c(q; a1) = c(q; a2), or
(b) r = 3 and there exists � 6= 1 satisfying thesecongruences modulo q:�3 � 1; a2 � a1�; and a3 � a1�2:The factor exp�iPrj=1 c(q; aj)�j� in (3.3) shifts themean of � to �(c(q; a1); : : : ; c(q; ar)) (note thatthe product of Bessel functions in (3.3) is an evenfunction). Hence, if � is symmetric, c(q; aj) =c(q; al) for all 1 � j; l � r. We assume that thisis the case and thus the symmetry issue is thrownonto the in�nite product of Bessel functions.
Lemma 3.2. B�(�1; : : : ; �r) := ��Prj=1 �(aj)�j�� is sym-metric in (�1; : : : ; �r) for all � if and only if one ofthe two conditions in Proposition 3.1 obtains.

Proof. If r = 2, B�(�1; �2) = j�(a1)�1 + �(a2)�2j.Now, j�(a1)j = j�(a2)j = 1, so���(a1)�1+�(a2)�2��= ���(a1)�(a2)(�(a1)�1+�(a2)�2)��= ���(a2)�1+�(a1)�2��= ���(a2)�1+�(a1)�2��=B�(�2; �1):If r = 3 and there exists � as stated, we have�(a2) = �(a1)�(�), �(a3) = �(a1)�2(�), �3(�) = 1.Hence, ���(a1)�1 + �(a1)�(�)�2 + �(a1)�2(�)�3�� =���1 + ��2 + � 2�3��, where � 3 = 1. But���1 + ��2 + � 2�3�� = ���(�1 + ��2 + � 2�3)��= ���3 + ��1 + � 2�2��= ���2 + ��3 + � 2�1��:Furthermore,���1 + ��2 + � 2�3�� = ���1 + ��2 + � 2�3��= ���1 + ��3 + � 2�2��:These equalities imply that B�(�1; �2; �3) is sym-metric in (�1; �2; �3).Conversely, if j�(a1)�1+�(a2)�2+�(a3)�3j is sym-metric in (�1; �2; �3) for all �, then so isj�1 + �(a2=a1)�2 + �(a3=a1)�3j:Hence Re�(a2=a1) = Re�(a3=a1), and similarlyRe�(a1=a2) = Re�(a3=a2). From this we deduce�(a2=a1) = w and �(a3=a1) = w2, with w3 = 1.This being so for all �, there exists � 6= 1 suchthat a2 � a1� mod q, a3 � a1�2 mod q, and �3 � 1mod q.The same argument shows that B�(�1; : : : ; �r)cannot be symmetric if r � 4. For if it were, thenany three of the ai's would be related as above,leading to a contradiction of the fact that the ai'sare distinct. �We can now prove Proposition 3.1. If r = 2 andc(q; a1) = c(q; a2), then since B�(�1; �2) is sym-metric so is �̂(�1; �2) and also �. If r = 3 anda2 � a1� mod q, a3 � a1�2 mod q, then c(q; a1) =c(q; a2) = c(q; a3), so the exponential factor in �̂is symmetric in (�1; �2; �3) and by Lemma 3.2 so is



188 Experimental Mathematics, Vol. 3 (1994), No. 3B�(�1; �2; �3). This shows that �̂ is symmetric, andtherefore also �.Conversely, if r � 4 or if condition (b) of Propo-sition 3.1 fails, thenB�(�1; �2; �3; : : : ; �r) 6= B��(�1; �2; �3; : : : ; �r)for some permutation �. Assume thatexp�i rXj=1 c(q; aj)�j� Y�6=�0�modq Y
�>0 J0� 2B�(�)p 14 + 
2��� exp�i rXj=1 c(q; aj)��(j)� Y�6=�0�modq Y
�>0 J0� 2B��(�)p 14 + 
2��:First, any � for which B�(�) � B��(�) can beremoved on both sides of this identity without al-tering the relation. So we may assume that theabove product over � contains only terms such thatB�(�) 6� B��(�). In view of our assumption, theproduct is nonempty. Now choose � generically sothat:
(i) B�(�) 6= 0 and B��(�) 6= 0, for all � mod q;
(ii) if B�(�)=B�� (�) 6= 1, thenB�(�)B�� (�) 6=s 14 + 
2�14 + 
2�for all �; � mod q.This can be done because our set of 
�'s is count-able. From (3.6) we have that, for � �xed as aboveand all t 2 R,exp�it rXj=1 c(q; aj)�j�Y� Y
�>0 J0� 2tB�(�)p14 + 
2��� exp�it rXj=1 c(q; aj)��(j)�Y� Y
�>0 J0� 2tB��(�)p 14 + 
2��:The smallest zero in t of the left-hand side occursat a number of the formwp 14 + 
2�2B�(�) ;

where w is the smallest zero of J0(z). The smallestzero on the right-hand side is at somewp 14 + 
2�2B�� (�) :So we must havewp 14 + 
2�2B�(�) = wp 14 + 
2�2B�� (�) :In view of (ii) above, this impliesB�(�)B��(�) = 1 = p 14 + 
2�p 14 + 
2� :But the 
's are distinct, since we are assumingGSH, so � = �. We conclude that B�(�) = B��(�),which contradicts an earlier condition.
4. NUMERICAL INVESTIGATIONSWe now describe the computations that led to thefollowing numbers and the graphs at the end of thissection. �(P comp1 ) = 0:99999973 : : :�(P3;N ;R) = 0:9990 : : :�(P4;N ;R) = 0:9959 : : :�(P5;N ;R) = 0:9954 : : :�(P7;N ;R) = 0:9782 : : :�(P11;N ;R) = 0:9167 : : :�(P13;N ;R) = 0:9443 : : :Let fq;N;R(t) and f1(t) be the density functions of�q;R;N and �1 respectively. In what follows, it willbe more convenient to work with the distribution! whose density function g isg(t) := f(t� 1);where f stands for either fq;R;N or f1. Its Fouriertransform is !̂(�) =Y
>0J0� 2�p 14 + 
2� (4.1)and is symmetric about t = 0 rather than t = �1.



Rubinstein and Sarnak: Chebyshev’s Bias 189We are interested in evaluating�(Pq;N;R) = Z 1�1 d!q;R;N(t);�(P comp1 ) = Z 1�1 d!1(t):Now, because gq;R;N is symmetric about 0, we have�(Pq;N;R) = 12�Z 1�1+Z 1�1 �d!q;R;N(t)= 12 + 12 Z 1�1 d!q;R;N(t)= 12 + 12� Z 1�1 sinuu !̂q;R;N(u) du; (4.2)where the last equality follows from the inversionformula of characteristic functions; it was this ex-pression that was used to compute the �'s. Similarequations hold for �(P comp1 ).The evaluation of these integrals involves threeapproximations. First, the integral was replacedby a sum of appropriately small rectangles. Thenthe in�nite domain of summation was replaced bya large but �nite domain. Finally, in place of thein�nite product for !̂, a �nite product and a com-pensating polynomial were used. We now detailthese three steps and estimate their cost to (4.2).
4.1. Replacing the Integral with a SumConsider the Poisson summation formula"Xn2Z'("n) =Xn2Z'̂�n"�= '̂(0) +Xn2Zn6=0 '̂�n"�; (4.3)applied to'(u) = 12� sinuu !̂(u);'̂(x) = 12 (�[�1;1] � g)(x)= 12 Z x+1x�1 g(u) du = 12 Z x+1x�1 d!(u): (4.4)

We can justify using Poisson summation here asfollows. As is well known [Watson 1948, p. 207],jJ0(x)j � min�1; p2=(� jxj)�; (4.5)from which we deduce that �̂0(�) is rapidly de-creasing. Furthermore, g(u) is also rapidly decreas-ing, as we see from (1.1). Therefore, ' and '̂ arerapidly decreasing. Finally, !̂ is continuous every-where since the product in (4.1) converges abso-lutely for all �. Hence ' is also continuous. Thesefacts allow us to apply Poisson summation [Steinand Weiss 1971].Returning to (4.3), we have12� Z 1�1 sinuu !̂(u) du= 12�Xn2Z"sin "n"n !̂("n)�Xn2Zn6=0 '̂�n"� (4.6)Therefore, to estimate the error of replacing theintegral in (4.2) with the sum in (4.6), we need toget a bound on '̂(n="). This amounts to bounding!.Montgomery [1980] shows that!�2 X0<
�XR
 ;1� � exp��34 �P0<
�X R
�2P
>X R2
 �
(4.7)with R
 = 2=p 14 + 
2, provided that the sums inthis equation are nonempty.It is possible to use this bound, together with(2.4), to get a double exponential bound on !.However, to obtain a bound with explicit constantsrequires using explicit constants in the error termin (2.4). But we can avoid this by using the factthat, for �(s)|which, for convenience, we call theq = 1 case|and for L(s; �1) with q = 3; 4; 5; 7;11; 13, all the positive 
's are greater than 2; thiswe know by looking at our computer �les of zeros.Hence, for any � � 0, with q = 1; 3; 4; 5; 7; 11; 13,we may �nd an X such that0 � �� 2 X0<
�XR
 < 2:



190 Experimental Mathematics, Vol. 3 (1994), No. 3Combining this with (4.7) yields for q = 1; 3; 4; 5; 7;11; 13 and for � � 2 (so that the sum is nonempty):![�;1) < exp��34 ( 12(�� 2))2P
>X R2
 �� exp��34 ( 12(�� 2))2P
>0R2
 �:Looking ahead to Table 2 and (4.13){(4.14), we seethat �X
>0R2
��1 > 0:98in all instances, so that![�;1) � exp(� 16(�� 2)2)for q = 1; 3; 4; 5; 7; 11; 13 and � � 2, where we usedthe fact that 16 < 316 � 0:98�1. Hence, for n � 1with n" � 1 � 2, (4.4) gives'̂�n" � = 12 Z n"+1n"�1 g(u) du � 12!�n" � 1; 1�� 12 exp�� 16�n" � 3�2�:Now, because g(u) is symmetric about 0, so is '̂.Thus, choosing " = 120 , we �ndXn2Zn6=0 '̂�n"� = 2 1X1 '̂�n"� � 1X1 exp(� 16(20n� 3)2)< 2 exp �� 16(17)2� = 10�20:617::::Combining this with (4.2) and (4.6) yields�(Pq;N;R) = 12 + 12�Xn2Z"sin "n"n !̂q;R;N("n) + error;
(4.8)where " = 120 and jerrorj < 10�20. The same holdsfor �(P comp1 ).

4.2. The CutoffNext, in (4.8), we replaced the sum over �1 <n" < 1 with a sum over �C � n" � C, where Cwas chosen su�ciently large so that the tail ends

of the sum contributed a pleasingly small amount.More precisely,12�� X�1<n"<1� X�C�n"�C�"sinn"n" !̂(n")= 1� Xn">C "sinn"n" 1Yj=1 J0� 2n"p14 + 
2j �< 1� Xn">C " 1n" ���� MYj=1 J0� 2n"p 14 + 
2j �����for M = 1; 2; 3; : : : . By (4.5), the right-hand sideabove is dominated byQMj=1( 14 + 
2j )1=4�M=2+1 Xn">C "(n")M=2+1< QMj=1( 14 + 
2j )1=4�M=2+1 �Z 1C 1xM=2+1 dx+ "CM=2+1�= QMj=1( 14 + 
2j )1=4�M=2+1 � 2MCM=2 + 120CM=2+1� : (4.9)Using this bound and our computer �les of the 
j 's,we found that the C's and M 's listed in Table 1gave us a small enough error to achieve eight-digitaccuracy for �(P comp1 ) and four-digit accuracy forthe other �'s. And so we have�(Pq;N;R)= 12� X�25�n"�25"sin "n"n Y
�1>0J0� 2n"p 14 +
2�1�+ 12 +error (4.10)C M bound�(P comp1 ) 50 59 2� 10�10�(P3;N ;R) 25 36 4� 10�7�(P4;N ;R) 25 39 6� 10�8�(P5;N ;R) 25 42 2� 10�8�(P7;N ;R) 25 46 2� 10�9�(P11;N ;R) 25 52 1� 10�10�(P13;N ;R) 25 53 5� 10�11
TABLE 1. Error bounds for the computed values of�(P comp1 ) and �(Pq;N ;R). The bounds are providedby (4.9); C and M are chosen accordingly.



Rubinstein and Sarnak: Chebyshev’s Bias 191and�(P comp1 ) = 12� X�50�n"�50"sin "n"n Y
�>0J0� 2n"p14 + 
2� �+ 12 + error; (4.11)where the error includes the one shown in Table 1and the one from (4.8).
4.3. Replacing the Infinite ProductFinally, we replaced the in�nite product in (4.10){(4.11) with a �nite product and a polynomial thatcompensated for the missing tail end of the prod-uct: !̂(u) � p(u) Y0<
�X J0� 2up 14 + 
2� (4.12)for �C � u � C, where p(u) = PAm=0 bmu2m ap-proximates the productY
>X J0� 2up 14 + 
2� = 1Xm=0 bmu2m:Using the formula (3.2) for J0(z) and the fact|aconsequence of (2.4)|thatX
>X 114 + 
2converges, say to T1 = T1(X), we see that such anexpansion is justi�ed. In fact, comparing the bm'swith the coe�cients ofY
>X exp�14� 2up 14 + 
2�2� = exp�u2 X
>X 114 + 
2�;we �nd that jbmj < Tm1 =m!. Therefore���� 1Xm=A+1bmu2m����< 1XA+1 Tm1m! juj2m< (T1u2)A+1(A+1)! (1+T1u2+(T1u2)2+ � � �):This last quantity equals(T1u2)A+1(A+ 1)! 11� T1u2

if T1u2 < 1, and so is less than 2(T1u2)A+1=(A+1)!if T1u2 < 12 . Thus, the error introduced by replac-ing the in�nite product in (4.10){(4.11) with (4.12)is bounded, in norm, by12� X�C�n"�C" j sinn"jn" Y0<
�X����J0� 2n"p14 + 
2������ 2(T1n2"2)A+1(A+ 1)!if T1n2"2 < 12 . To carry out this sum we �rstneeded to compute the T1's. This is describedshortly. For �(P comp1 ), using X = 88190, A = 2,C = 50, and " = 120 , this sum is less than 3�10�10.For all the other �'s, using X = 9999, A = 1,C = 25, and " = 120 , this sum is less than 2� 10�6.So, for most of our computations, we only neededa compensating polynomial of the form p(u) =1 + b1u2, the exception being the computation of�(P comp1 ), where we used p(u) = 1 + b1u2 + b2u4.From the de�nition of the bj 's, we see thatb1 = �T1(X) = ��X
>0� X0<
�X� 114 + 
2 :Now, it is known [Davenport 1980, pp. 80{83] that,assuming GRH,X
�>0 114 + 
2� = 12
 + 1� 12 log(4�)= :0230957089661210338 : : : (4.13)andX
�1>0 114 + 
2�1 = 12 log� q��� 12
 � 12(�1(�1) + 1) log 2 + L0L (1; �1); (4.14)where, overloading the notation,
 = limN!1 NX1 1n � logN = 0:577215664901532 : : :is Euler's constant.To compute L0=L(1; �1) we evaluated L0(1; �1)and L(1; �1) separately and then divided. L(1; �1)



192 Experimental Mathematics, Vol. 3 (1994), No. 3was calculated using the formulas in [Davenport1980, pp. 8{9], according to which it equals� 1pq q�1X1 �1(m) log�2 sin��mq �� if q � 1 mod 4,� �q3=2 q�1X1 m�1(m) if q � 3 mod 4,�4 if q = 4.The L0(1; �1)'s were computed using Dirichlet'sformula [Davenport 1980, p. 11]�(s)L(s; �1) = Z 10 h(e�u)1� e�uq us�1e�u du;where h(x) = q�1X1 �1(m)xm�1:Di�erentiating we get,�0(s)L(s; �1) + �(s)L0(s; �1)= Z 10 h(e�u)1� e�uq log(u)us�1e�u du;which at s = 1 becomesL0(1; �1) = 
L(1; �1) + Z 10 h(e�u)1� e�uq log(u)e�u du:since �0(1) = �
, �(1) = 1. Maple [Char et al.1991] was used to perform the integral numerically,and combining the results with our earlier com-puted values of L(1; �1)'s we got our L0(1; �1)'s.With these numbers in our hands, we were thenable, using (4.13){(4.14), to evaluate the T1(0)'s;see Table 2.Thus, our �nal formula for �(Pq;N;R) is�(Pq;N;R) = 12� X�25�n"�25"sin(n")n" (1 + b1(n")2)� Y0<
�9999J0� 2n"p14 + 
2�+ 12 + errorwhere b1 = �T1(0) + X0<
�9999 114 + 
2 :

Recall that the error in this formula accounts forreplacing the integral by a sum of rectangles ofwidth " = 120 , cutting o� the in�nite domain ofsummation at �25, and replacing the in�nite prod-uct by a �nite product and a compensating polyno-mial of the form p(u) = 1 + b1u2. In all instances,using the estimates made earlier, the error was lessthan 2:5�10�6 in norm, and did not have an e�ecton the �rst four decimal places of the �'s given atthe beginning of Section 4 (for q = 3; 4; 5; 7; 11; 13).To compute �(P comp1 ), as already mentioned, wereplaced the in�nite product in (4.10){(4.11) by(1 + b1u2 + b2u4) Y0<
�88190J0� 2up14 + 
2�;whereb1 =� X
>88190 114 +
2=� 12
� 1+ 12 log(4�)+ X0<
�88190 114 +
2=�:0230957089661210338 : : :+ X0<
�88190 114 +
2andb2 = X
>88190 14( 14 + 
2)2 + X
j>
k>88190 114 + 
2j 114 + 
2k= X
>88190 4(1 + 4
2)2+ 8�� X
>88190 11 + 4
2�2 � X
>88190 1(1 + 4
2)2�= b212 � 4�X
>0� X0<
�88190� 1(1 + 4
2)2 : (4.15)NowX
>0 1(1 + 4
2)2 = �14X
>0� 12
 + i � 12
 � i�2= 12X
>0 11 + 4
2 � 14Xall 
 1(2
 + i)2 :



Rubinstein and Sarnak: Chebyshev’s Bias 193q L(1; �1) L0(1; �1) T1(0)3 0:6045997880780726168646 0:2226629869686015094866 0:056614984928736174 0:7853981633974483096156 0:1929013167969124293631 0:077783989961792965 0:4304089409640040388894 0:3562406470307614988646 0:078278476997143247 1:187410411723725948784 0:0185659810930280571715 0:1276179891459105111 0:9472258250994829364296 �0:0797737527762439195432 0:2537565567266778213 0:6627353910718455897136 0:3114667901362450908264 0:19832628962613668
TABLE 2. Values of L(1; �1), L0(1; �1) and T1(0) =P
>0 1=( 14 + 
2) for q = 3; 4; 5; 7; 11; 13.The �rst of these sums we already know to equal18( 12
 + 1 � 12 log (4�)). The second sum we de-termine by di�erentiating the formula [Davenport1980, p. 80]� 0� (s)+ 1s� 1 + 12 �0� �s2 +1�+K =X� � 1s� �+1��;where K is a constant and � runs over all the non-trivial zeros of �(s); then substituting s = 1 anddividing by �16. On the right we get, assumingthe Riemann Hypothesis,�14Xall 
 1(2
 + i)2 :On the left, we use�(s) = 1s� 1 + 1X0 am(s� 1)mwith a0 = 
 = 0:577215664901532 : : : anda1 = limN!1 12 log2(N + 1)� NX1 log(m+ 1)m+ 1 ;and also use12 �0� �s2 + 1� = �
2 � 1X1 � 1s+ 2n � 12n�to obtain�14Xall 
 1(2
 + i)2 = � 116(2a1 � a20 + 34�(2)� 1)= � 116(2a1 � 
2 + 18�2 � 1):

HenceX
>0 1(1 + 4
2)2 = 18( 12
 + 1� 12 log(4�))� 116(2a1 � 
2 + 18�2 � 1)= 18( 12
 + 1� 12 log(4�))= 0:000002318789777341554469 : : :The value of a1 was obtained from Maple, whichknows how to calculate the am's to great precision.With this number we were able, using (4.15), toevaluate b2 and thus �nd�(P comp1 ) = 12� X�50�n"�50"sinn"n" (1+b1(n")2+b2(n")4)� Y0<
�88190 J0� 2n"p14 + 
2�+ 12 + error= :99999973 : : : ;where the error is less than 6� 10�10 in norm.Figure 1 shows graphs of the density functions of�1 and �q;R;N , for q = 1; 3; 4; 5; 7; 11; 13, obtainedby evaluating the Fourier transform of (3.4). Alsoshown are the histograms representing (logarith-mic) distributions numerically computed forF (x) = �1 +  (x)� xpx (4.16)and F (x) = �1 +  (x; �1)px ; (4.17)for x in the range 105 � x � 1010. One can show,using the method of Lemma 2.1, that (4.16) and
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�3 �2 �1 0 100:5 q = 13

FIGURE 1. Predicted density functions (curves) of �1 and �q;R;N , for q = 3; 4; 5; 7; 11; 13, compared withexperimental data (histograms) of the logarithmic distribution of the function F (x) of (4.16) (for q = 1) and(4.17) (for q = 3; 4; 5; 7; 11; 13). The real line was divided into intervals (buckets) of width 125 . Using a sieve,we then evaluated (4.16) and (4.17) at x = n+ 12 , for all 105 � n � 1010, and for each x we added x�1 to thebucket containing F (x). Finally, we scaled the histograms so as to have area one.(4.17) have the same (logarithmic) distributions asE1(x) and Eq;R;N(x), respectively. We chose towork with them because the term in O(1= log x) inLemma 2.1 is signi�cant enough to skew the dis-tribution in the range that we examined.
5. GENERALIZATIONSIn this short section we discuss generalizations ofthe Chebyshev bias phenomenon. First, we ex-amine the relative distribution of prime ideals ina number �eld. Given two ideal classes, one can

examine whether there is a preference for primes tobe in one class over the other. If we assume the Rie-mann Hypothesis for the corresponding ideal classL-functions, we obtain results similar to those inSections 2 and 3. For example, if the class numberis 2 there is a bias of primes to be nonprincipal. Onthe other hand, if the class number is odd there areno biases in pairwise comparisons.Similarly, one can study the relative distributionof primes according to their splitting in Galois ex-tensions (Chabotarev-type questions). Again, onecan prove results analogous to those in Sections 2



Rubinstein and Sarnak: Chebyshev’s Bias 195and 3. In this case, one has to deal with gen-eral Artin L-functions [Lang 1970, Ch. 12]. Here anew feature emerges concerning GSH for such L-functions and some care must be exercised. First,such an L-function may factor into a product ofprimitive such L-functions and the factors may ap-pear with exponent greater than 1. So, for exam-ple, the Dedekind zeta function of a nonabelianGalois extension K=Q will have multiple zeros andwill not satisfy GSH. As far as GSH is concerned,we must restrict ourselves to principal primitiveL-functions, as described in [Rudnick and Sarnak1994], which discusses the statistical distributionof the zeros of such L-functions. In particular,distinct primitive principal L-functions have sta-tistically independent zeros. However, the alge-braic GSH for zeros of di�erent primitive Artin L-functions is more subtle. The reason (or at leastone reason) is that there is an example [Armitage1972] of a primitive Artin L-function with a zero ats = 12 . This will naturally cause a bias in connec-tion with the problem that we are discussing. Thisbias should still be considered as algebraic sincethe vanishing at s = 12 is a consequence of an oddfunctional equation that emerges from computa-tions of Serre [1971] on Artin conductors and rootnumbers. One might surmise that besides this re-lation there are no algebraic relations between theimaginary parts of the zeros of primitive Artin L-functions.The other generalization that we discuss is ananalogous problem in geometry. Let X be a com-pact hyperbolic surface (that is, of curvature �1).Denote by P the set of primitive closed geodesics(primes) on X and letN(p) = exp l(p);where l(p) denotes the length of p. Each p de-termines a homology class C(p) 2 H1(X). Let�C(x) be the number of elements p 2 P such thatN(p) � x and C(p) = C. In [Phillips and Sarnak1987] it is shown that, for any C,�C(x) � (g � 1)gxlogg+1 x

as x!1, where g � 2 is the genus of X. Appar-ently, the situation is similar to the other exam-ples that we have been considering: the primes areequidistributed amongst the homology classes. Wecan thus ask whether there are any biases towardsone homology class as compared to another. Onedi�erence here is that the group H1(X) �= Z2g intowhich the primes distribute themselves is in�nite.In fact, it turns out that in this case there arevery strong biases. Not only can �(PC1;C2) be zero,but there are always (for su�ciently large x) moreprimes in certain homology classes. The groupH1(X) carries a natural norm coming from theconformal structure on X, de�ned as follows. LetHarX denote the space of harmonic one-forms onX. We have pairings h ; i : H1(X) � HarX ! Rand ( ; ) : HarX �HarX ! R given byhC;wi = ZC wand (w1; w2) = ZX w1 ^ �w2:Using duality we can therefore associate to eachc 2 H1(X) a unique dual harmonic one-form �Cthat satis�es hC;wi = (�C ; w) for all w 2 HarX.Now, de�ne a norm on H1(X) by setting kCk2 :=(�C ; �C). One can show by a careful analysis ofthe subleading term in the asymptotics developedin [Phillips and Sarnak 1987] that, if kCk > kDk,then �D(x) > �C(x) for x su�ciently large. Thusthere are \more" primes homologous to D than toC. In particular, there are more primes homolo-gous to zero than to any other homology class. Aswe have seen in Sections 2 and 3, such a strongbias is never present in the arithmetic cases.
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