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Euler studied double sums of the form�(r; s) = X1�m<n 1nsmr
for positive integers r and s, and inferred, for the special casesr = 1 or r + s odd, elegant identities involving values of

the Riemann zeta function. Here we establish various series

expansions of �(r; s) for real numbers r and s. These expan-

sions generally involve infinitely many zeta values. The series

of one type terminate for integers r and s with r + s odd, re-

ducing in those cases to the Euler identities. Series of another

type are rapidly convergent and therefore useful in numerical

experiments.

1. INTRODUCTIONFollowing Euler, we consider the nested sum
�(r; s) = 1Xn=2 1ns n�1Xm=1 1mr = Xm<n 1nsmr ; (1.1)

where r � 1 and s > 1 are real numbers. By takingthe sum over complementary pairs of summationindices we obtain a simple reection formula�(r; s) + �(s; r) = �(r)�(s)� �(r + s); (1.2)where �(�) is the Riemann zeta function.A discussion of the precise region of convergenceof (1.1), together with questions of analytic contin-uation, can be found in [Apostol and Vu 1984].Euler discovered an identity for �(r; s) for r evenand s odd:�(r; s)=� 12�(r+s)+ r+sXj=1j odd
�� j�1s�1�+� j�1r�1���(j)�(r+s� j): (1.3)
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Note that a formula for the case of r odd and seven follows from this identity and the reectionformula. Euler also gave an identity for the caser = 1:
�(1; s) = 12s�(s+1)� 12 s�2Xj=1 �(j+1)�(s� j); (1.4)

regardless of the parity of the integer s. When sis even this last identity is a special case of (1.2)and (1.3), but, as we shall see, the case of s oddrequires more work.The function �(r; s) was investigated recently,both theoretically and numerically, in [Borwein etal. 1994]. The authors proved Euler's identities andevaluated what might be thought of as an outlyingcase: �(2; 4) = �2(3)� 43�(6): (1.5)This relation is also found in [Markett 1994].To summarize, evaluations of �(r; s) for integersr and s are known when r = 1, when r + s is odd,when (r; s) = (2; 4) or (4; 2), and, via (1.2), whenr = s.It is possible to derive some interesting relationsinvolving several \unevaluated" Euler sums. Forinstance, it can be proved that5�(2; 6) + 2�(3; 5) = 10�(3)�(5)� 75400�8 (1.6)and�(2; 6) + �(2; 8) + �(2; 10) + � � �= � 12+ 112�2� 1120�4+ 42835�6+ 12�(3)��2(3); (1.7)but in neither of these identities has any of theindividual Euler sums �(r; s) ever been evaluatedas a �nite series of zeta values.In keeping with the fact that few Euler sumswith r+s even have been evaluated in closed form,Bailey, Borwein and Girgensohn [Bailey et al. 1994]suggest, on the basis of extensive numerical exper-iments with sophisticated variants of \lattice basisreduction" algorithms, that, for example, �(2; 6)

and �(3; 5) are not individually expressible as a lin-ear combination of products of values of the zetafunction and related quantities.In the same work the authors describe an Euler{Maclaurin scheme for the numerical evaluation ofEuler sums. They have succeeded in numericalevaluating various sums to hundreds of digits, al-beit at the expense of considerable computer time.In fact it was their observation that Euler{Mac-laurin methods are not explicitly convergent thatmotivated the present treatment. Moreover, thelattice basis reduction algorithms require a lot ofdecimal digits of input, so rapidly convergent ex-pansions are of interest.In this work we establish various formulas for�(r; s) for arbitrary real r and s. One class of for-mulas generalizes the Euler identity (1.3). Formu-las of another class converge more rapidly and aretherefore of value in numerical work. The meth-ods described herein also have application to othertypes of sums. After [Borwein et al. 1994] we cande�ne four possible sums:
���(r; s) = 1Xn=2 (�1)nns n�1Xm=1 (�1)m�1mr ;

of which Euler's case (1.1) is just �++. (Other au-thors have used the notations �h = �++, �a = �+�,�h = ��+, �a = ���.) Again for integers r and swith r + s odd, each of these sums can be givena �nite zeta evaluation in the style of (1.3). Themethods of this paper can be applied to these al-ternative sums, to yield corresponding convergingseries for each.These methods will perhaps be applicable in thefuture to multiple zeta sums�(s1; s2; : : :) = X0<n1<n2<��� 1ns11 ns22 : : :or to the Witten zeta functions
W (r; s; t) = 1Xn=1 1Xm=1 1nr 1ms 1(m+ n)t : (1.8)
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These forms are described in Zagier's overview ofthe mathematical import of generalized zeta sums[Zagier 1994]; also given there are beautiful knownevaluations for some of these sums.
2. THE PERIODIC ZETA FUNCTIONIn this section we establish integral identities andseries expansions involving the periodic zeta func-tion E [Apostol 1976, p. 257 and following]. Thefunction is de�ned byE(s; x) = 1Xn=1 e2�inxns = C(s; x) + iS(s; x);with the cosine and sine parts C and S given byC(s; x) = 1Xn=1 cos 2�nxns ; S(s; x) = 1Xn=1 sin 2�nxns :The primary integral identities from which our re-sults on Euler sums will follow are:�(s) = 2Z 120 cot�xS(s; x) dx; (2.1)

�(r; s) = � 12�(r+s)+2Z 120 cot�xS(s; x)C(r; x) dx;
(2.2)�(r; s) = � 12�(r + s)+ 2Z 120 cot�xS(r; x)(�(s)� C(s; x)) dx;
(2.3)

�(r; s) = �(r)�(s)� 1�(r) Z 10 xr�1E�s; ix2��1� e�x dx:
(2.4)The �rst three integral identities follow from thefact that, for n � 1 and m � 0, the integralZ 120 cot�x sin 2�nx cos 2�mxdx (2.5)is equal to 0, 14 , or 12 , depending on whetherm > n,m = n, or m < n. To complete the derivations,one writes the C and S functions in (2.1){(2.3) as

trigonometric series, so that each integral becomes,after the evaluation of (2.5), the relevant one- ortwo-dimensional sum.Identity (2.4) follows from series expansion ofthe term (1� e�x)�1 in powers of e�x. In this casethe E function of imaginary argument becomes areal-valued polylogarithm function:
E�s; ix2�� = 1Xn=1 e�nxns = Ls(e�x);

which is a case of the more general Lerch{Hurwitzzeta function.Note that the cotangent function appears in the�rst three integral identities. A classic expansionthat will prove quite useful, especially in the devel-opment of converging series evaluations, is
cot�x = � 2� 1Xk=0 �(2k)x2k�1: (2.6)

The E function admits of series expansion [Erd�elyi1953, vol. 1, p. 29] when jxj < 1 and s is not apositive integer:
E(s;x) = 1Xm=0�(s�m)(2�ix)mm! +�(1�s)(�2�ix)s�1:
In the neighborhood of s = n, with n a positiveinteger, the � singularity cancels the � singularityin the following way. One may use the asymptoticrelations, valid for small ",�(1 + ") � "�1 +  +O(");�(1� n� ") � (�1)nn! ("�1 �  (n) +O("))to infer that, when the �rst argument s = n is aninteger,E(n; x)= 1Xm=0m 6=n�1 �(n�m)(2�ix)mm!
+ (2�ix)n�1�(n) ( (n)� (1)+ 12 i�� log 2�x): (2.7)
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In particular, C and S have �nite polynomialform in certain cases. In fact, for integer argumentsof appropriate parity and real x 2 [0; 1], these func-tions can be expressed in terms of Bernoulli poly-nomials Bn:
C(r; x) = �(�1)r=22r�1�rBr(x)r! for r even;S(s; x) = �(�1)(s�1)=22s�1�sBs(x)s! for s odd:

(2.8)All coe�cients of the Bernoulli polynomials are ra-tional, so all coe�cients of the C or S polynomialsof appropriate parity belong to Q (�). It will beimportant for our derivation of converging seriesthat even without the parity restrictions, C and Scan at least be developed via (2.7) as an in�niteseries plus logarithm term.It is fortuitous that a special-case elementaryform exists beyond the odd/even restriction:C(1; x) = � log(2 sin�x):This can be shown by elementary means withoutrecourse to E expansions. Within the present con-text it may be imagined that Euler's closed formsfor �(1; s) for any positive integer s are possiblebecause of this elementary form for C(1; x). Notethe equivalent elementary form for the index-onepolylogarithm: L1(z) = � log(1� z).There is an alternative way to expand the pe-riodic zeta function such that singularities do notappear in series terms. One develops a Taylor se-ries around x = 12 :
E(s; x) = � 1Xm=0 �(s�m)(2x� 1)m(�i)mm! ; (2.9)

where the eta function is de�ned by�(s) = (1� 21�s)�(s):This function is entire; for example, �(1) = log 2.The expansion (2.9) is certainly valid for all real

x 2 [0; 1]. Again, C and S are �nite polynomialsin (2x� 1), if the �rst argument is an even or oddinteger, respectively.It is sometimes useful to invoke a polylogarithmanalog of the eta function expansion (2.9). For acomplex � with Re(�) > 0 we have
E�s; ix2�� = Ls(e�x) = 1Xm=0 (�� x)mm! Ls�m(e��);

(2.10)which becomes formally equivalent to the eta ex-pansion as � approaches i�.
3. THE GENERALIZED EULER IDENTITYNow we shall establish Euler's identity (1.3) andderive our generalization. To prove (1.3) we usethe formalism of the previous section and the fol-lowing expansion for the product of two Bernoullipolynomials.
Lemma. Let r and s be nonnegative integers. Thenthe product Bs(t)Br(t) equalsXj>0j�r+smod 21j

�r� sj� r �+ s� rj� s��Br+s�jBj(t)
+ 12((�1)r+s+1)(�1)rBr+s� r+ ss � :

Proof. See [Apostol 1976, p. 276, ex. 19], wherea proof is outlined. Andrew Granville showed usanother proof, whose essence we describe in thecase of interest to us: r is even and s is odd. Onecompares coe�cients in the readily veri�ed identity2b+(t; x)b�(t; y) = b+(0; y)(b�(t; x+ y)� b�(t; y � x))+ b+(0; x)(b�(t; x+ y) + b�(t; y � x));where
b+(t; x) = 1Xm=0m even Bm(t)xm�1m! = ext + ex(1�t)2(ex � 1)
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andb�(t; x) = 1Xm=0m odd Bm(t)xm�1m! = ext � ex(1�t)2(ex � 1)
are the generating functions for the even and oddBernoulli polynomials, respectively. �Now we use (2.8) when r is even and s is odd tocast the above lemma as a statement about the Sand C functions. The result isS(s; x)C(r; x)= r+sXj=1j odd

�� j�1s�1�+� j�1r�1��S(j; x)�(r+s� j):
(3.1)From the integral identities (2.1) and (2.2) we im-mediately recover Euler's identity (1.3).But we can go further. From the eta expansion(2.9) for the periodic zeta function we can give ageneral series without restrictions on integer r ands. We summarize the algebraic steps. First sepa-rate the eta expansion (2.9) into real and imaginaryparts and multiply these parts to express the SCproduct of the integral representation (2.2) as apower series in 2x�1. Then consider the followinglemma:

Lemma. Let n be a positive odd integer . Then
(2x� 1)n = 2 nXk=1k odd (�1)

(k+1)=2�k n!(n+ 1� k)!S(k; x):
Proof. The assertion is equivalent, using (2.8), to

(2x� 1)n = nXk=1k odd n! 2k(n+ 1� k)!Bk(x):
Multiplying by un and summing over odd n showsthat the result follows from comparing coe�cientsin the identityu sinh(u(2x� 1)) = b�(x; 2u) sinhu;

which is a restatement of the earlier formula forthe generating function of the odd Bernoulli poly-nomials. �Using this lemma, the integral in (2.2) can be per-formed formally, with the help of (2.1), to resolvethe general Euler sum as follows:
Theorem 3.1. De�ne constants �k, for k > 1 an oddinteger , by

�k = � 2� k�2Xd=1d odd(�1)(d�1)=2�
dd! �(k � d+ 1): (3.2)

Then, for real r � 1 and s > 1, we have�(r; s) =� 12�(r+ s)+ 1Xk=3k odd �k k�1Xj=0j even
� kj ��(r� j)�(s�k+ j): (3.3)

This general series terminates, of course, when ris an even integer and s is an odd integer, due tothe vanishing of the eta function for negative evenarguments. The result in these terminating casesis equivalent to the �nite Euler identity (1.3).The constants �k themselves present an interest-ing computational problem. The asymptotic be-havior for large odd indices n is, as we shall see,
j�nj � 2�n�1 log nn! :

In spite of this rapid decay, the summands in (3.2)vary radically in magnitude and it is di�cult tomaintain precision. Computing �k using this al-ternating series is similar to computing zero byevaluating the sine power series at �.A second computational problem is that evenwhen we know numerical values of the constants�k, the series (3.3) generally exhibits slow conver-gence. In the next section we develop means foraddressing such convergence problems.



280 Experimental Mathematics, Vol. 3 (1994), No. 4

4. CONVERGENCEEven though each �k can be written as a �nite zetaseries, we �nd that the following in�nite series isbetter behaved numerically, in that terms do notvary radically in magnitude:�k = 2(�1)(k�1)=2�k�1k!� kXj=1 1j � log � + 1Xn=1 �(2n)n 4n� k + 2nk �!:
This relation is obtained by integrating the powerseries of the product SC in the variable (2x � 1),and applying the cotangent expansion (2.6).It is perhaps of interest that, in the course of thiswork in resolving high-precision values for the �k,we noticed an e�cient means for evaluating theRiemann zeta function itself for odd arguments.The idea is to use one of the various expansionsfor a function such as S(3; x) and integrate (2.1)termwise via the cotangent expansion (2.6). In thisway one can evaluate �(3)|or �(n) for any odd in-teger n|toD good digits in O(D logD) arithmeticoperations. In fact the implied O constant can bemade conveniently small. A typical such series is:36�2 �(3) = 707 + 144 log 5159780352678223072849� 12 1Xn=1 (�(2n)� 1� 4�n � 9�n)(2n+ 5)4n(2n+ 1)(2n+ 2)(2n+ 3) ;which yields about two good decimal digits persummand. One may yet improve the convergenceby peeling o� longer partial sums from �(2n), ex-pressing the necessary correction as extra logarith-mic terms.We have mentioned that the general eta series(3.3) converges poorly (except of course when itterminates). By trading o� the elegance of thesingularity-free expansion (2.9) for the more com-plicated but numerically e�cient logarithmic ex-pansion (2.7), we get a rapidly converging series.The steps run as follows. First, by multiplyingthe real and imaginary parts of expansion (2.7),

develop an SC product as a power series for realx, plus possible logarithmic terms. Place this SCseries into the cotangent integral (2.2), and use theexpansion (2.6) to integrate term by term.The procedure is somewhat tedious and the re-sulting formula is rather unwieldy: see Theorem 4.1on page 281. In spite of its complexity, however,the formula has the advantage that much of thecalculation uses arithmetic involving only rationalnumbers and values of the zeta function. We havechecked it numerically over many pairs (r; s).Note that as a byproduct of this work with cotan-gent integrals we get formulas for general cases ofthe integral
In = Z 120 xn cot�x dx:

Such values (except for n = 1) seem not to appearin published tables. It turns out that, for everypositive integer n,In 2 Q (�; log 2; �(3); �(5); : : :):One may prove this by expressing monomials xnin terms of S functions and the related functionsSO(s; x) = S(s; x)� S(s; 2x)=2s. Actually the SOfunctions, which are sine parts of a periodic func-tion like E, but developed over odd summationindices n, become, for odd s, proportional to stan-dard Euler polynomials. One inserts expansions ofthe monomial into the integral representation (2.1)to obtain the �nite series evaluation
In = n!2n nXk=1k odd (�1)

(k�1)=2�k �(k)(n� k + 1)!
+ 12((�1)n + 1)4n! (1� 2�n�1)(2�)n+1 �(n+ 1):

For example, we have
I5 = log 232� � 1532�3 �(3) + 22564�5 �(5):
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Theorem 4.1. For any real r � 1 and real s > 1, we have�(r; s) =� 12�(r+ s)� 4� 1Xk=0 �(2k)
 1Xj=1j odd Lj(2k) j�1X0m=0m even

� jm��(r�m)�(s� j+m)
+A(r) 1X0m=1m odd Lm(2k+ r� 1)�(s�m)(�r�1J(r; m+ r+2k� 1)+1)
+B(s) 1X0m=0m even Lm(2k+ s� 1)�(r�m)(�sJ(s; m+ s+2k� 1)+1)
+ A(r)B(s)q2q �(�r�1J(r; q)+1)(�sJ(s; q)+1)+ �r�1�sq2 �!;where the primed sums indicate that terms involving singularities of the zeta function are omitted , andwhere we de�ne q = r + s+ 2k � 2; �n = � 1 if n is an even integer ,0 otherwise;J(n; a) = bnc�1Xj=2 1j � log � + 1a ; Lj(a) = (�1)bj=2c(2�)jj! 2j+a(j + a) ;A(r) = �r2r�2�(r) cos( 12�r)(1��r�1) + �r�1 (�1)(r�1)=2(2�)r�1�(r) ;

B(s) = �s2s�2�(s) sin( 12�s)(1��s)��s (�1)s=2(2�)s�1�(s) :(Because of the � factors, one never need compute J(n; a) for noninteger n, so as a practical matterthe greatest integer notation b c in the de�nition of J is superuous.)
5. EULER’S IDENTITY FOR ζ(1; n)The Euler formula (1.4), for even integers s, followsimmediately from the integral identity (2.3) andthe �nite expansion (3.1), because in such casesS(1; x) and C(s; x) are polynomials. But the iden-tity for �(1; s) with s an odd integer is more prob-lematic.Our method of proof is based on the observa-tion of [Borwein et al. 1994] that certain generatingfunctions are tractable. We start by de�ning theS function with three arguments as a sum reminis-cent of the usual S functions:

S(s; x; z) = 1Xn=1 sin 2�nxns�1� z2n2� :The following generating function involves at onceall the �(1; x) with x odd:
g(z) := 1Xn=3n odd zn�3(�(1; n) + 12�(1 + n))

= 2Z 120 cot�xS(3; x; z)C(1; x) dx;
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To evaluate the integral in the expression for g(z),we observe that the augmented S function can begiven an elementary form, for example throughPoisson summation:S(3; x; z) = �2z2�2x� 1� sin(�z(2x� 1))sin�z �:Therefore our generating function isg(z) = 1z2H(0)� �H(z)z sin�z ; (5.1)where H is the somewhat forbidding integral
H(z) = Z 120 log2(2 sin�x) cos(�z(1� 2x)) dx:It turns out that such integrals can be resolved interms of derivatives of beta functions:H(z) = 12� @2@�2 2� Z �20 cos��1 t cos 2zt dt �����=1= 12 @2@�2 �(�)�( 12(�+1)+ z)�( 12(�+1)� z) �����=1 :On taking derivatives with respect to � we obtainpsi functions 	 = �0=�, then use known zeta ex-pansions of such psi functions to arrive at

H(z)= sin�z2�z   1Xk=3k odd �(k)zk�1
!2+�(2)

� 12 1Xk=0k even �(k+2)(k+1)zk!:
Finally, we use this last form for H in (5.1) torecover the coe�cient of zs�3, namely, �(1; s) +12�(1 + s) for odd s. This results in a form for�(1; s) equivalent to the Euler form (1.4).This analytical derivation gives us a byproductanalogous to the exact cotangent integral evalua-tions (5.1); namely, we now know any integral ofthe form

Jq = Z 120 log2(2 sin�x)(2x� 1)q dx;

where q is an even integer. Each such integral be-longs to Q (�2 ; �(3); �(5); : : :). For example,J6 = 11�2360 + 60�4 �2(3)� 720�6 �(3)�(5):There may be some hope for using such logarithmicintegrals to establish some outlying cases, such as(1.5), or relations such as (1.6), although we havenot carried out such derivations. Such identitiesinvolving unevaluated sums follow from a partial-fraction algebraic method of [Borwein et al. 1994]that can be traced back to Euler. One may also�nd (1.6) in the guise of [Markett 1994, eq. (1.8)].For example, the algebraic method yields (1.5) inthe guise of the identity�(6) = 12�(1; 5) + 6�(2; 4):Such an identity also follows from the fact that theintegralZ 120 (6S(5; x)C(1; x) + 3S(4; x)C(2; x)� 5S(6; x))� cot�x dxvanishes (even though the integrand generally doesnot). But it is not clear how to establish suchresults via integral calculus alone. It is possiblyrelevant that the term involving C(1; x) can be in-tegrated by parts to yield some logarithmic formsJq.
6. EXPANSIONS WITH FREE PARAMETERWe have developed a generalized Euler series and arapidly converging series. There is yet another typeof series, this time involving incomplete gammafunction values. For the identity (2.4), we observethat the integral may be split in the classic styledue to Riemann in his studies of the zeta functionalequation:
�(r; s)= �(r)�(s)� 1�(r)�Z �0 +Z 1� � xr�11�e�xLs(e�x) dx:

(6.1)
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A rapidly converging expansion can be devel-oped as follows. Let the free parameter be � < 2�.In the �rst integral above, the factor 1=(1 � e�x)may be developed in a converging Bernoulli series,with the polylogarithm developed also in a series,of the type (2.7). The second integral can be ex-pressed by expanding the same 1=(1� e�x) factor,but this time in powers of e�x, to yield incompletegamma function terms. De�ne functions H� andG� for real indices � by
H�(z) = 1Xm=0 (�1)mBmzm+�m! (m+ �) ;
G�(z) = dd�H�(z):The result of these manipulations of (6.1) can beexpressed as follows.

Theorem 6.1. For r > 1 real , s > 1 noninteger , and� 2 (0; 2�), we have
�(r; s) = �(r)�(s)� 1�(r) 1Xm=1 mXm=1 �(r;m�)mrns� 1�(r) 1X�=0 �(s� �)(�1)��! H�+r�1(�)

� �(1� s)�(r) Hr+s�2(�):For s integer , the equality must be modi�ed as fol-lows: replace the third line by(�1)s�(r)�(s)�Hs+r�2(�) s�1Xm=1 1m �Gs+r�2(�)�
and , on the second line, omit the summand involv-ing the zeta singularity .The expansion in this theorem has several featuresof interest. For one thing, a computer programcan be tested strenuously by altering the free pa-rameter �, in which case one expects of course aninvariant numerical result. Note also that for ran integer, the incomplete gamma functions are

elementary. But perhaps the most important fea-ture is that the incomplete gamma sum is not fun-damentally two-dimensional as it might �rst ap-pear. In fact, one may keep track of the partialsum of n�s, and by so doing evaluate the doublesum up to m = M with O(M) evaluations of them-dependent part.If means for fast polylog evaluation are available,an interesting option is to use the polylog expan-sion (2.10) in representation (6.1) to obtain thefollowing alternative series. For any real r > 1 ands > 1, and any � 2 (0; 2�),
�(r; s)=�(r)�(s)� 1�(r) 1Xm=1 mXn=1 �(r;m�)mrns� �r�1�(r) 1Xm=0�mLs�m(e��) 1Xn=0 (��)n�(n+r�1)Bnn! �(n+r+m) :
Aside from the development of converging ex-pansions, we note that formal manipulations of thepolylogarithm integral representation can yield in-teresting identities. Equation (1.7) and many likeit may be obtained by summing appropriately in-side the integral of (2.4).Finally, we observe that the Witten zeta function(1.8) admits of straightforward integral representa-tions:
W (r; s; t) = Z 10 E(r; x)E(s; x)E(t; x) dx= 1�(t) Z 10 xt�1E�r; ix2��E�s; ix2�� dx:

(6.2)Various algebraic relations, such as Zagier's trian-gle recurrenceW (r; s; t) =W (r� 1; s; t+1)+W (r; s� 1; t+1);follow immediately upon integration by parts ofthe second, polylogarithm representation in (6.2).As for numerical work, it is evident that the ex-pansion methods of this treatment may be appliedto these integral representations to cast the Wittenzeta function as a converging series.



284 Experimental Mathematics, Vol. 3 (1994), No. 4

7. NUMERICAL RESULTSUsing the converging series given in Theorems 4.1and 6.1, we tested several known Euler identitiesand established numerical values for such odditiesas �( 32 ; 2) and �( 52 ; 52). We show on Table 1 someof the results found.To ensure software reliability, one has variousoptions. First, the free-parameter expansions ofSection 6 should give invariant results as the pa-rameter � is varied. Second, \check-sum" iden-tites abound; for example, the �rst relation of (1.6)is unlikely to hold numerically if either �(2; 6) or�(3; 5) is o� the mark.Often, given a speci�c pair (r; s), one may fur-ther streamline a converging series. For example,we computed �(2; 6) to a little beyond 1000 decimaldigits using the following modi�cation of the seriesof Theorem 4.1 for the equivalent case of �(6; 2):�(6; 2)=� 12�(8)� 8�6945 7Xj=1 aj2j� 1Xn=0 �(2n)4n 1+(2n+ j)(1� log �)(2n+ j)2+ 1Xn=1 14n(2n+ j) nXk=1 �(2k)�(2n�2k)k(2k+1) �;where the constants aj, for j = 1; : : : ; 7, are equalto 1, 0, �21, 0, 105, �126, 42 (they are related tothe coe�cients of the sixth Bernoulli polynomial).This run was performed with Pari [Batut et al.1992], and consumed a few hours on a commonworkstation; by comparison, 100-digit accuracy re-quires just a few seconds.To e�ect a rigorous numerical check on such ahigh-precision run, we used a di�erent expansion|this time the free-parameter expansion of Theorem6.1|to calculate �(3; 5) also to a little more than1000 digits. Then we veri�ed a checksum relation(1.6) on our 1000-digit values of �(2; 6) and �(3; 5).Both 1000-digit values appear correct on the basis

of this test. A subset of the digits found for �(2; 6)and �(3; 5) is shown in Table 1.Just prior to publication, our numerical evalua-tion of the above formula for �(6; 2) was checkedindependently by David Bailey, who employed anFFT-based convolution scheme for the �nal sum,and a scheme for rapid evaluation of the �(2n). Hereports that his 1200-digit run is in agreement withour �rst 1000 digits for �(2; 6).
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r s Approximate value of �(r; s)32 2 0:9318244904250340985516151107036430517075057946346876995766277052 52 0:381330153111609260571881875430989293280886538134903116649303812 6 0:0178197404168359883626595302487246121687131371102911884188 : : :: : : 4732926935867486638982837920816595119509531953 5 0:0377076729848475440113047822936599148226013194152775240126 : : :: : : 1772657698070790324837937476033195171962449962 8 0:00412246967839983222404695683869420885581262735846856928524533 7 0:008419668503096332423968579714670650636917875063958092272574464 6 0:01745519475083502473574063938666841373185928290952143100615652 10 0:000999206787209691840433801488215837609141019232819409684882033 9 0:002015478010882029467830531458581355038747766514374493376092724 8 0:00408829615158930333136219928309127346342049604106916545404215 7 0:00836639918876867807817029942591870889256229149327410078401234 10 0:000995714742742513095510984208257721066349088756638224870872875 9 0:002010138991854847627817760974887399811762410631208555990117046 8 0:00408005627129882676511499544268821964544483638881231133820696 10 0:000994858084968762760811227281603558749868998215303371585557647 9 0:00200882668789802887906605433862192867317283252008831854390448 10 0:0009946456558278109016146529677459396783051618067192814141506
TABLE 1. First sixty or so digits of some values of �(r; s) for which no �nite evaluation is known. For �(2; 6)and �(3; 5) we also have given digits 955{1000 out of the respective 1000-digit expansions.
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