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We present an algorithm for computer verification of the global

structure of structurally stable planar vector fields. Constructing

analytical proofs for the qualitative properties of phase portraits

has been difficult. We try to avoid this barrier by augmenting

numerical computations of trajectories of dynamical systems

with error estimates that yield rigorous proofs. Our approach

lends itself to high-precision estimates, because the proofs are

broken into independent calculations whose length in floating-

point operations does not increase with increasing precision.

The algorithm is tested on a system that arises in the study of

Hopf bifurcation of periodic orbits with 1:4 resonance.

1. INTRODUCTIONHenri Poincar�e initiated the geometric analysis ofphase portraits of planar vector �elds in his dis-sertation [Poincar�e 1880]. The concept of struc-tural stability [Andronov and Pontryagin 1937] for-malizes the idea that a phase portrait is qualita-tively unchanged by perturbations. On compactorientable two-dimensional manifolds, structurallystable vector �elds have a �nite number of equilib-rium points and periodic orbits, and all trajectoriesapproach these invariant sets in forward and back-wards time [Peixoto 1962]. The phase portraits ofthese structurally stable vector �elds can be clas-si�ed by graphs with vertices at the equilibria andperiodic orbits, labeled by their stability type, andedges located near separatrices that connect sad-dles to sinks and sources. Numerical computationof the data contained in these graphs is often aroutine matter and a reliable one, unless the vec-tor �elds are near structural instability. On theother hand, rigorous veri�cation that numericallycomputed phase portraits are correct has seldom
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been accomplished, or even attempted. This pa-per presents a general approach to the problem ofproducing computer-generated proofs for the cor-rectness of phase portraits for structurally stablevector �elds. This approach was initiated by Sal-vador Malo [1993], and we develop it further. Thealgorithms we describe have been implemented andtested with a few examples. They have been e�ec-tive in producing the desired proofs, perhaps farmore so than other methods that have been at-tempted with these types of problems.The di�culty with producing rigorous boundson the location of trajectories lies in the growthof error estimates during highly iterative proce-dures. Numerical integration algorithms of a typi-cal trajectory may involve thousands of time stepsin such an iterative procedure. Controlling round-o� errors of oating-point computations in such aprocess is problematic. Successful e�orts to provestatements about the approximate location of tra-jectories have tended to rely upon very high nu-merical precision of the numerical integration asan antidote to the rapid growth of error estimates.Such precise numerical analysis has been based onthe use of interval arithmetic. The basic opera-tions of interval arithmetic produce intervals thatcontain the range of a function on rectangular do-mains. Our methods for proving properties of pla-nar vector �elds also make use of interval arith-metic, but they do so in a much more limited way.In particular, we refrain from iterative calculationswith interval arithmetic. Geometric structures arecomputed that we expect to possess qualitativeproperties (like transversality) with respect to theoriginal vector �eld. Validation of these propertiesutilizes interval arithmetic, but the computationalcomplexity of each unit of interval arithmetic com-putation is independent of time steps or the res-olution with which piecewise smooth objects arecomputed. When �ner meshes are used to com-pute these piecewise smooth objects, the numberof independent estimates that are performed withinterval arithmetic increases, but the number ofoperations in each estimate remains unchanged.

The problems that we discuss have been veryresistant to analysis. For example, Hilbert's six-teenth problem [Hilbert 1902] concerning boundsfor the number of limit cycles of planar polyno-mial vector �elds appears to be far from beingsolved, even for quadratic vector �elds. There aremany examples of vector �elds whose phase por-traits have been established through rigorous argu-ments, but the process of deriving a phase portraitfrom an analytic expression of a vector �eld re-mains mysterious. Indeed, the di�culty of the sub-ject has been deceptive. Many published resultsand proofs have been later discovered to be awed,including Dulac's work [1923] on singular cyclesof analytic planar vector �elds and the work ofPetrovskii and Landis on Hilbert's sixteenth prob-lem. Existing analytic arguments to reestablish theproof of Dulac's Theorem are complex and delicate[Il'yashenko 1991; �Ecalle 1993].The logical structure of our arguments may ap-pear to be somewhat confusing in relation to ideasof \constructive" mathematics, and a few com-ments at the outset may help put the matter intoperspective. We regard the computer as an \ora-cle" which we ask questions. Questions are formu-lated as input data for sets of calculations. Thereare two possible outcomes to the computer's work:either the calculations rigorously con�rm that aphase portrait is correct, or they fail to con�rm it.The application of interval arithmetic to a giveninput data set involves a bounded number of op-erations that can be readily estimated. Thus, thisphase of the analysis does not su�er from a haltingproblem. In the second case, one can change the in-put data and try again. The theory that we presentstates that if one begins with a structurally stablevector �eld, there is input data that will yield aproof that a numerically computed phase portraitis correct. However, this fails to be completely con-clusive from an algorithmic point of view, becauseone has no way of verifying that a vector �eld isstructurally stable in advance of a positive out-come. Thus, if one runs a set of trials of increasingprecision, the computer will eventually produce a
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proof of the correctness of a phase portrait for astructurally stable vector �eld. Presented with avector �eld that is not structurally stable, the com-putation will not con�rm this fact; it will only failin its attempted proof of structural stability. How-ever, note that the numerical precursors to the in-terval arithmetic calculations can also be expectedto fail to produce trial data as input for the intervalarithmetic procedures. Pragmatically, we termi-nate the calculation when the computer producesa de�nitive answer or our patience is exhausted.The situation described in the previous para-graph is analogous to the question of producinga numerical proof that a continuous function hasa zero. If a function changes sign, then computingvalues with su�cient precision will determine thisfact. The intermediate value theorem completesthe proof that the function has a zero. If there is azero with a local maximum or minimum at a num-ber that is not explicitly computable, we will notbe able to determine the existence or nonexistenceof a zero by a computation of �xed length. Forexample, the functionsf"(x) = (x� �)2 + "will be indistinguishable by numerical calculationsof �xed length for numbers " of su�ciently smallmagnitude. Numerical proofs that a function van-ishes can be expected to succeed only when thefunction has qualitative properties that can be ver-i�ed with �nite-precision calculations.From an abstract perspective, the problem ofverifying the correctness of the phase portrait ofa structurally stable planar vector �eld seems triv-ial: simply increase the accuracy of error estimatesfor numerically computed trajectories. On furtherreection, the matter appears more complicated.The numerical computations involve both trunca-tion and round-o� errors. As truncation errorsare reduced by decreasing step sizes, the numberof arithmetic operations and error estimates maygrow, due to the larger number of operations. Thus,simultaneous increase in the number of step sizes

and the oating-point precision of individual oper-ations might not produce error estimates for tra-jectories that improve with increasing precision inthe calculations. The number of arithmetic oper-ations in the individual computer-generated esti-mates used in this paper do not increase in lengthwith increasing precision. Thus, they are an im-provement upon estimates for the accuracy of anumerical integration. With increasing precision,more estimates need to be made, but the num-ber of arithmetic operations in each remains �xed.Still, there is a dependency of the proofs on nu-merical integration, since the input data for theveri�cation routines comes from numerical integra-tion. For our procedures to work with vector �eldsthat approach the boundary of structural stability,the (unveri�ed) accuracy of this data must improvewith increasing precision. It is the procedures forproducing proofs from accurate numerical integra-tions that are free from the uncontrolled growth ofround-o� errors with increasingly �ne discretiza-tions.This paper treats only the case of planar vec-tor �elds, though the methods are applicable withincreasing complexity to higher-dimensional sys-tems. We chose this restriction for two reasons.First, structural stability is not a dense property inthe space of vector �elds on manifolds of dimensionlarger than two. Second, the topological and com-putational complexity increase rapidly with dimen-sion, unless the dynamics of a high-dimensionalsystem reduce to those of a low-dimensional sys-tem. This is particularly true when a system pos-sesses chaotic invariant sets.Faced with these di�culties, we have endeav-ored to present our strategy in the simplest pos-sible setting. As is evident from the general lack ofprogress on Hilbert's sixteenth problem, the math-ematical questions associated with this domain ofproblems are still formidable. Farzaneh [1995] hassucceeded in using methods based on the strategypresented here to validate the existence of stableperiodic orbits in the three-dimensional Lorenz sys-tem [Lorenz 1963].
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2. BACKGROUNDWe recall facts about planar vector �elds in thissection. Two ows are topologically equivalent ifthere is an orientation-preserving homeomorphismmapping trajectories of one onto trajectories of theother. A ow is said to be structurally stable if C1perturbations of the ow are topologically equiva-lent to the original ow. Structurally stable owson orientable compact two-dimensional manifoldswere characterized by Peixoto [1962], following ear-lier work for ows on the disk by DeBaggis [DeBag-gis 1952; Peixoto and Peixoto 1959]:
Theorem 2.1. A Cr vector �eld on a compact two-dimensional manifold is structurally stable if andonly if :
1. there are a �nite number of equilibrium pointsand periodic orbits, each hyperbolic;
2. no trajectories connect saddle points;
3. the nonwandering set of the ow consists en-tirely of equilibrium points and periodic orbits.
Remark 2.2. We shall focus most of our attention onplanar polynomial vector �elds. Since the plane isnot compact, one has the choice of studying theproperties of these vector �elds in a compact re-gion [Peixoto and Peixoto 1959] or compactifyingthe vector �elds to polynomial line �elds on theprojective plane or vector �elds on the two-dimen-sional sphere [Lefschetz 1957]. Since the concept ofstructural stability only deals with the geometry ofthe singular foliations produced from a vector �eldor line �eld, we can apply Peixoto's theorem inthis setting. In particular, we shall be concernedwith planar vector �elds that have a �nite numberof equilibria and periodic orbits, each hyperbolic,and have no saddle connections. Ignoring the is-sues of compacti�cation, we shall call these vector�elds structurally stable.
Definition 2.3. The spine of a planar vector �eldwith hyperbolic equilibria is the set consisting ofits equilibrium points, periodic orbits and the sta-ble and unstable manifolds of the saddle points.Two spines are topologically equivalent if there is

a homeomorphism of the plane mapping one to theother, preserving the stability types of equilibriaand periodic orbits.
Theorem 2.4 [Peixoto 1973]. If two planar vector�elds with hyperbolic equilibria have topologicallyequivalent spines, they are topologically equivalent .In accord with this result, the main thrust of ourwork is to determine the topological equivalenceclass of a spine. The spine of a vector �eld is almosta graph. The limit sets of the saddle separatri-ces are either equilibrium points or periodic orbits.Spines fail to be graphs because separatrices tend-ing to periodic orbits have in�nite length. Still,a spine is a �nite union of curves and equilibriumpoints that we shall regard as a combinatorial andtopological object. We shall say that we have (rig-orously) determined the phase portrait of a planarvector �eld if we have proved that its phase por-trait lies in a speci�c topological equivalence class.From a computational point of view, what needs tobe done is to verify the number of equilibria andtheir stability types, as well as the number andstability types of periodic orbits, and to con�rmthe topological location of the saddle separatricesin the complement of the equilibria and periodicorbits.The least tractable part of determining the phaseportrait of a planar vector �eld involves periodicorbits. Since all hyperbolic periodic orbits of aplanar system are either stable or unstable, theycan be located by forwards and backwards numer-ical integrations. The di�culty lies in con�rm-ing that these numerical integrations are correct.There are three results about planar vector �eldsthat we shall use in these arguments: The Poin-car�e{Bendixson Theorem, Du�'s theory of rotatedvector �elds, and Floquet theory for periodic or-bits.The Poincar�e{Bendixson Theorem is a funda-mental result concerning the limit sets of trajec-tories for planar vector �elds. One statement of itis the following.
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Theorem 2.5 [Hirsch and Smale 1974]. A nonempty ,compact limit set of a C1 planar vector �eld thatcontains no equilibrium point is a periodic orbit .Our application of the Poincar�e{Bendixson The-orem will be based upon surrounding a numeri-cally computed (un)stable periodic orbit with anannulus that has the property that the vector �eldpoints transversally out of or into the annulus onits boundary. We formalize this concept as follows:
Definition 2.6. If X is a planar vector �eld, an an-nulus A � R 2 is called a transverse annulus if
1. the boundary of A is a piecewise C1 curve,
2. X is transverse to the boundary of A with Xpointing out of A on both boundary componentsor pointing into A on both boundary compo-nents of A, and
3. X has no equilibrium points in A.At a point where the boundary of A is not smooth,transversality with respect to the boundary is de-�ned by the requirement that X or �X lie in thesector bounded by the left and right tangents of theboundary curves that points towards the interiorof the annulus. The Poincar�e{Bendixson Theoremimplies immediately that a transverse annulus con-tains a periodic orbit of X. We make a furtherde�nition:
Definition 2.7. A transverse annulus A for X thatcontains a single periodic orbit  is called an iso-lating annulus for .Our computations of transverse annuli will be ac-complished in two di�erent ways, both relying onadditional results about vector �elds in two dimen-sions. The �rst of these methods is based upon thetheory of rotated vector �elds [Du� 1953]. Con-sider the family of planar vector �elds_x1 = cos � f1(x1; x2)� sin � f2(x1; x2)_x2 = sin � f1(x1; x2) + cos � f2(x1; x2);which is obtained by rotating the vector �eld _x =f(x). Du� [1953] proves that the ow of the ro-tated vector �elds has the following properties:

1. The equilibria of the rotated vector �elds areindependent of �.
2. If � is not a multiple of �, the ow of the rotatedvector �eld is transverse to that of _x = f(x),except at their equilibria.
3. Hyperbolic limit cycles of the rotated vector�elds vary continuously and monotonically with�.
4. If �1 � �2 is not a multiple of �, the limit cyclesof the rotated vector �elds for �1 and �2 aredisjoint.Rotated vector �elds will be used in the computa-tion of regions that bound saddle separatrices forstructurally stable vector �elds. Recall that the �-and !-limit sets of a trajectory are its limit pointsas t ! �1. Each stable manifold of a saddle has�-limit set that is an unstable equilibrium or anunstable periodic orbit. Similarly, each unstablemanifold of a saddle has !-limit set that is a stableequilibrium or a stable periodic orbit. Our goalis to verify that the �-limit sets of stable man-ifolds and the !-limit sets of unstable manifoldsare the equilibrium points or periodic orbits foundin a numerical computation. Assume that we havecomputed an isolating annulus for each periodicorbit and a disk surrounding each (un)stable equi-librium that lies in its (un)stable manifold. Theeigendirections of a saddle point in a rotated fam-ily vary monotonically with the angle of rotation.Moreover, the separatrices of one member of a ro-tated family are transverse to the trajectories ofother members of the family. Consider a segment�s of a stable manifold de�ned on the time interval[�T;1) or a segment �u of an unstable manifoldde�ned on the time interval (�1; T ] that extendto the isolating neighborhood U of its �- or !-limitset. For small rotations, the corresponding sepa-ratrix segments of the rotated vector �elds will bemutually disjoint and enter U . Therefore the sepa-ratrices of rotated vector �elds with small positiveand negative rotation angles bound a strip S in thecomplement of U so that S [ U contains the sep-aratrix of the original vector �eld. Moreover, the
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trajectories of rotated �elds lying on the boundaryof S make a constant angle with the original vector�eld. Verifying the transversality of the boundaryof S su�ces to prove that the original saddle sepa-ratrix enters U . Use of rotated vector �elds to ruleout saddle connections of a planar vector �eld hasbeen discussed extensively by Malo [1993].Du�'s theory implies that limit cycles of rotatedvector �elds for small positive and negative anglesof rotation will form the boundary of an isolatingannulus for a periodic orbit. Since the propertyof being a transverse annulus is an open property(with respect to the C1 topology of its boundarycomponents), we expect that numerical approxi-mations to the limit cycles of rotated vector �eldswill form satisfactory boundaries for transverse an-nuli. However, veri�cation that an annulus is iso-lating for a limit cycle seems to be more complexthan verifying the transversality of the boundarycomponents, so we use another technique to ver-ify uniqueness of the limit cycles in annulus. Themethod entails the introduction of special coordi-nate systems that we call Floquet coordinates.
Definition 2.8. Let  be a limit cycle for a planarvector �eld X. An annular coordinate system  :S1 � R ! R 2 with coordinates (u; v) is called asystem of Floquet coordinates for  if it has thefollowing properties:
1. If x 2 , then  is de�ned in a neighborhood ofx, v = 0, _v = 0 and _u = 1.
2. @ =@u and @ =@v are perpendicular at (u; 0).
3. For u �xed,  (u; v) is an a�ne function of v.
4. The variational equations (D )�1(DX)(D ) ofX in the  coordinates are constant along theu axis  �1().The �rst three of these conditions state that  isa normal bundle to .
Theorem 2.9 [Hartman 1982, Theorem 6.1, p. 60].A periodic orbit of a smooth vector �eld has a sys-tem of Floquet coordinates.Dulac's Criterion [Andronov et al. 1966, p. 305]states that a two-dimensional vector �eld can only

have a single limit cycle in an annulus on whichthe divergence of the vector �eld is constant. Thinstrips surrounding the coordinate axis in a systemof Floquet coordinates for a hyperbolic periodicorbit satisfy this criterion and form isolating annulifor the periodic orbit.In the next section, we describe an algorithm fornumerically computing Floquet coordinates.
3. NUMERICAL COMPUTATION OF FLOQUET COOR-

DINATESAs input for the interval arithmetic computationswe describe later, we need a representation of anapproximate Floquet coordinate system. Let g :S1 ! R 2 be a periodic orbit of the planar vector�eld X de�ned by the equation _x = f(x). Denoteby f?(x) the vector obtained by rotating f(x) by�=2. A parametrization of the normal bundle ofg is given by  (u; v) = g(u) + k(u)f?(u)v for anysmooth positive function k : S1 ! R . Suitablechoices of k will make  �1 a Floquet system ofcoordinates in a neighborhood of g. These k aredetermined by the following di�erential equation.
Theorem 3.1. If _x = f(x) de�nes a planar vector�eld X with periodic orbit g and  (u; v) = g(u) +v exp(�(u))f?(u) is a parametrization of a tubularneighborhood of g, the divergence of X in the (u; v)coordinates is given by�d�du + f?Dff?f � f � fDfff � falong the periodic orbit v = 0.
Proof. The vector �eld X in the (u; v) coordinatesis (D )�1f � . Setting h = exp(�)f?, we computeD = � g01(u) + vh01(u) h1(u)g02(u) + vh02(u) h2(u)�and(D )�1 = 1det � h2(u) �h1(u)�(g02(u) + vh02(u)) g01(u) + vh01(u)�;withdet = (g01(u)+vh01(u))h2(u)�(g02(u)+vh02(u))h1(u):
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Thus (D )�1f equals1det � h2(u)f1 � h1(u)f2�(g02(u) + vh02(u))f1 + g01(u) + vh01(u)f2�and div((D )�1f �  ) equals@@u�h2(u)f1�h1(u)f2det �
+ @@v��(g02(u)+vh02(u))f1+(g01(u)+vh01(u))f2det �:Along the periodic orbit v = 0,� g01g02� = � f1f2�and det = h2f1 � h1f2 = exp(�)f � f . Thereforev = 0 implies �g02f1 + g01f2 = 0 anddiv((D )�1f �  )= @@v ��g02(u)f1 + g01(u)f2det �� h02f1 � h01f2det= �g02(@f1=@v) + g01(@f2=@v)exp(�)f � f � h02f1 � h01f2det= f? �Dff?f � f � f �Dfff � f � �0:The last calculation uses the fact that@@v (f �  ) = Dfhandh0 = (exp(�)f? �  )0 = �0h+ exp(�)(Dff)?along the periodic orbit v = 0. �This theorem gives a variational equation that weuse for the computation of Floquet coordinates. Inthe Floquet coordinates, div((D )�1f �  ) is con-stant along the periodic orbit. Since the Lyapunovexponent � is the integral of this quantity alongthe periodic orbit, we must have�0 = f? �Dff?f � f � f �Dfff � f � �T ;where T is the period of the periodic orbit. If val-ues for � and T are known, the data needed for the

computation of Floquet coordinates is obtained byintegration of this di�erential equation along withthe equation _x = f(x). If numerical integrationof _x = f(x) together with its variational equation_� = Df(�) produces an approximation of the limitcycle, its period and Lyapunov exponent, then afurther numerical integration of the equation for� produces all of the data required for construc-tion of a coordinate system that approximates theFloquet coordinates.
4. INTERVAL ARITHMETICThe numerical data generated by numerical inte-grations of the original vector �eld, its variationalequations, rotations and the associated equationfor constructing Floquet coordinates, are discreterepresentations of continuous objects. Proofs ofglobal properties for planar vector �elds based ontransversality rely upon smooth functions. Thetransition from discrete data to smooth functions ismade by interpolation. Piecewise polynomial andrational functions will be created from the numer-ical data, and their properties investigated withinterval arithmetic. In all cases, the desired proofswill be reduced to a set of computations showingthat the ranges of the constructed functions do notcontain zero. This is the standard problem of inter-val arithmetic, and there is substantial theory andpractice in organizing these range computations tobe as accurate and e�cient as possible. The rigor-ous bounds of the range computations achievablein the implementation of the algorithms describedin this paper are important, but incidental to thetheory. This section assumes that if F is a rationalfunction that is positive on a rectangle in the plane,this fact can be veri�ed using interval arithmeticcomputations.The numerical implementation of interval arith-metic is based upon a set of functions Fj(I1; : : : ; Ik)whose arguments and values are intervals of realnumbers. The intervals may have zero length. Foreach Fj, there is a real-valued function �Fj : R k ! Rwith the property that if xi 2 Ii for i = 1; : : : ; k,
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then �Fj(x1; : : : xk) 2 Fj(I1; : : : ; Ik). For the inter-val arithmetic computations used in this paper,it su�ces to take Fj that correspond to the ba-sic arithmetic operations of addition, subtraction,multiplication and division. Directed rounding op-erations from the ANSI/IEEE 754-1985 ArithmeticStandard are used in an implementation of thefunctions Fj. To program the interval arithmeticcalculations, a lexical analysis of compound arith-metic expressions written in the computer languageC (produced by the Unix utility functions lex) istransformed (with the Unix utility yacc) to pro-grams built upon a small library of interval arith-metic evaluations of the basic arithmetic opera-tions. The libraries and lex/yacc programs thatwe use were written by Salvador Malo [1993].We perform two types of calculations with in-terval arithmetic. In the �rst, the transversalityof a vector �eld _x = f(x) to a piecewise polyno-mial curve is computed. The piecewise polynomialcurve (u) comes either from numerical integrationof a rotated vector �eld, or from an explicitly de-�ned curve in a piecewise polynomial coordinatesystem. In either case the transversality calcula-tion for a polynomial vector �eld amounts to veri-fying that the functions 0(u) � f((u)) do not van-ish. If f is polynomial, this requires computationof the range of the piecewise polynomial function0(u) � f((u)). Algebraic methods could be usedas an alternative to interval arithmetic computa-tion for this purpose, but we do not explore thesealternatives here.Our second type of interval arithmetic computa-tion begins with piecewise polynomial coordinatetransformation of a vector �eld, and then evaluatesexpressions involving the derivatives of the vector�eld in the transformed coordinates. If _x = f(x)is a polynomial vector �eld and ( )�1 is a polyno-mial coordinate system for a region of the plane,the transformed vector �eld ((D )�1f � ) and itsdivergence are rational functions. Therefore, inter-val arithmetic evaluation of these expressions canbe carried out as a sequence of interval arithmeticevaluations of basic arithmetic operations. The

goal is to compute the integral of the divergence ofa vector �eld in Floquet coordinates. We encountera small technical problem here: if the transformedvector �eld is only piecewise smooth, its divergencemay be singular. Discontinuous changes in the vec-tor �eld may contribute to the stability of the limitcycle. To obtain a continuous transformed vector�eld having divergence with only simple jump dis-continuities, the coordinate transformation shouldbe C1.To reduce the complexity of the divergence cal-culations, we rescale the vector �eld slightly sothat _v is identically 1. Thus a continuous line�eld transverse to a periodic orbit is preserved, andthe divergence of the vector �eld becomes @ _v=@v.Using this approach, we can use C0 coordinatesystems, since all that needs to be calculated iswhether the ow expands or contracts in the v co-ordinate direction.We use coordinate patches that are based uponcubic interpolations of the vector �eld and havetotal degree four in both coordinates. The cubicinterpolations employed here rely upon the avail-ability of the tangent direction to trajectories fromevaluation of the vector �eld. Let _x = f(x) bea smooth vector �eld, and let p0; : : : ; pn be n + 1points obtained from application to f of a numer-ical integration procedure with constant time step�. Construct a C1 cubic interpolating polynomialthat passes through the computed points pn andhas derivatives f(pn) at these points. If the timeinterval of this trajectory segment is translated sothat its origin becomes 12(2n + 1)�, the domainof the function interpolating between pn and pn+1will be [� 12�; 12�]. The coe�cients of this interpo-lating polynomial a0 + a1x+ a2x2 + a3x3 area0 = 12(pn+1 + pn)� 18�(f(pn+1)� f(pn));a1 = 32��1(pn+1 � pn)� 14(f(pn+1) + f(pn));a2 = 12��1(f(pn+1)� f(pn));a3 = �2��3(pn+1 � pn) + ��2(f(pn+1) + f(pn)):This interpolation formula is used to computea piecewise cubic curve g(u) approximating the
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numerically computed periodic orbit of the vector�eld _x = f(x). A piecewise polynomial coordinatesystem  (u; v) = g(u)+v h(u) is then constructed,where the curve h(u) has the form c(u) (g?)0(u)and c(u) is the linear interpolation between thenumerically computed values for exp�(pn) andexp�(pn+1):Thus h and  are cubic functions of u, and  isa�ne in v. When computing the transformed vec-tor �eld (D )�1f �  , the common denominatorof this rational function is det((D )). To simplifyour calculations, the vector �eld is scaled so thatthe u component is identically 1. Thus the rescaledvector �eld is ~f = (1; dv=du). The trajectories canbe parametrized by u and the lines given by con-stant u and varying v are preserved by the owof ~f . Note that ~f is still a rational vector �eld iff is polynomial. The degree of ~f is bounded byb = (deg f + 1)(deg ) � 1. To demonstrate theexistence of a periodic orbit of ~f , it su�ces to de-termine the sign of the v component of ~f alongcurves de�ned by v = �". If this component nevervanishes on the two components but has oppositesign on the two, the Poincar�e{Bendixson Theoremimplies the existence of a limit cycle in the annulusbounded by these two curves.Since the functions h(u) have values determinedby f(pn), the derivatives h0(u) may be discontinu-ous as we move from one patch to the next. Thusthe transformed vector �eld may be discontinu-ous, and the derivative of its return map mighthave contributions coming from the discontinuitiesin addition to the integral of the divergence alongtrajectories. Nonetheless, the integral of the diver-gence of ~f determines whether segments parallelto the v axis are expanded or contracted. Notethat the divergence of ~f is �(u; v) = @(dv=du)=@v.Flowing from the boundary of one coordinate patchto the next, the integral of �(u; v) calculates therate at which in�nitesimal trajectory segments inthe v direction are contracted or expanded. If �does not change sign in a neighborhood of the limit

cycle, all initial conditions are contracted (� < 0)or expanded (� > 0) towards each other in the vdirection. In particular, only one limit cycle canoccur in the neighborhood.
5. AN EXAMPLEWe discuss the application of the procedure de-scribed in the previous section to prove the exis-tence and uniqueness of a limit cycle for the cubicvector �eld_z = exp(i�)z � ( + i�)z jzj2 + �z3;with parameter values (�; ; �)=(1:0553; 0:09; 1:2).This family of vector �elds arises in the study ofHopf bifurcation of periodic orbits with charac-teristic multipliers �i [Arnold 1977]. There havebeen intensive numerical studies of the dynamicsdisplayed by this family [Berezovskaia and Khib-nik 1980; Krauskopf 1994a; 1994b], but the systemhas resisted analytical attempts to fully character-ize its dynamics. In one region of the (�; ; �) pa-rameter space, the system has a pair of concentriclimit cycles. Malo [1993] used rotated vector �eldsto produce a pair of rigorously veri�ed transverseannuli for these limit cycles at the parameter val-ues (�; ; �) = (1:0703; 0:1; 1:2). Uniqueness of thelimit cycles in each of these transverse annuli wasnot proved. Malo also used rotated vector �elds toprove the nonexistence of limit cycles for param-eter values (�; ; �) = (�=4; 2; 3) by proving thatthere are strips containing trajectories that con-nect the four sinks to in�nity and to the source atthe origin.We study this family further by exhibiting anisolating annulus for a periodic orbit at the pa-rameter values (�; ; �) = (1:0553; 0:09; 1:2) thatare close to those where there are a pair of limitcycles. The single limit cycle at these parametervalues has period 3:394537 and characteristic mul-tiplier �2:101615095. There are large segments inregions where the divergence of the vector �eld ispositive and large segments in regions where thedivergence of the vector �eld is negative. Figure 1
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FIGURE 1. The phase portrait of the vector �eld _z = exp(i1:0553)z � (0:09 + i1:2)z jzj2 + �z3, showing thesaddle point separatrices and one trajectory accumulating at the limit cycle. Triangles denote sinks and thesquare is the source at the origin. The divergence of the vector �eld vanishes on the circle.shows the limit cycle together with the circle onwhich the divergence of the vector �eld is zero.Thus, establishing the stability properties of thelimit cycle requires careful analysis. We performthis analysis by computing a piecewise polynomialsystem of approximate Floquet coordinates. Thenumerical integration of the vector �eld is accom-panied by solution of the variational equation thatdetermines the function � used in the construc-tion of Floquet coordinates as well as the solutionof the \standard" variational equations that are

used to determine the characteristic multiplier ofthe trajectory. The numerical integrations wereperformed with a fourth order Runge{Kutta algo-rithm with the step size � = 0:0001697265519 ad-justed so that the length of the limit cycle was20;000 time steps. The data from these numericalcalculations provided the input for the calculationof the Floquet coordinate system.The transformation to Floquet coordinates andcalculation of the divergence of the rescaled vector�eld was implemented in a C program that used
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interval arithmetic. Each segment of the numer-ically computed limit cycle was approximated bya cubic curve g(u) whose tangent was the (numer-ically) computed value of the vector �eld at theend points of the segment. The normal bundleto this computed curve was parametrized in theform g(u)+ vk(u)g0(u) where k(u) is a linear func-tion that interpolates the values of exp�(u) nu-merically computed from the variational equationsfor the vector �eld. In each segment of length�, we performed interval arithmetic calculationsto estimate the divergence of the vector �eld inthe annulus de�ned by jvj < 10�5. To estimatethe range of the divergence function more accu-rately, we partitioned the domain [� 12�; 12�] of uinto ten subintervals Ij and performed a single in-terval calculation of the divergence for the rectan-gle (u; v) 2 Ij � [�10�5; 10�5]. Over much of thelimit cycle these produce estimates of the diver-gence that lie in the range [�0:63;�0:61]. Nearthe points where the limit cycle is farthest fromthe origin, the estimated range of the divergencebecomes larger, with extreme values in the interval[�0:780663;�0:444572]. Nowhere does the diver-gence of the transformed vector �eld come close tothe origin relative to its average divergence, whichequals �0:6191168619. We conclude that the vec-tor �eld has at most one limit cycle in the annulusjvj < 10�5. To prove the existence of a limit cyclein the annulus jvj < 10�5, we performed intervalarithmetic calculations of the v component of thetransformed vector �eld on the boundary compo-nents of the annulus. To obtain veri�cation of thetransversality conditions in this coordinate system,we had to �nely partition each segment of the thepiecewise cubic curve de�ning the boundary be-tween two of its knot points. Each segment wassubdivided into 2000 subsegments. The computedvalue of the u component of the transformed vector�eld before rescaling is approximately 40, so the ex-pected length of its v component is approximately0:62 � 40 � 10�5 = 0:000248. The computed inter-vals lie in the range [�0:000381;�0:0000836] on theboundary v = 0:00001 and [0:0000821; 0:000380] on

the boundary v = �0:00001. Thus, the coordinatetransformation to Floquet coordinates produces anannulus in which the interval arithmetic calcula-tions prove that the vector �eld of this examplehas a unique limit cycle in the isolating annulus.To complete veri�cation of the global propertiesof this phase portrait, there are three remainingtasks:
1. prove that the �-limit set of the stable manifoldof a saddle point is the origin,
2. prove that the !-limit set of the unstable mani-fold of a saddle point has one separatrix tendingto the periodic orbit and one separatrix tendingto a sink, and
3. prove that there is a trajectory connecting in-�nity to the periodic orbit.For each of these tasks, we use rotated vector �eldsto �nd curves transverse to the vector �eld thatform corridors trapping the vector �eld in the ap-propriate region. In addition to the interval arith-metic calculations that proceed in a similar fashionto those for establishing the existence of an iso-lating annulus, it is also necessary to make localarguments about the properties of the equilibriumpoints, and to estimate a region at region at in�n-ity which contains no periodic orbits.The radial component 12( _z�z + z _�z) of the vector�eld is positive inside the disk of radius 0:67 cen-tered at the origin, so all trajectories entering thisdisk have the origin as �-limit set. The derivativeof the vector �eld at the saddle point located at ap-proximately (0:567825; 0:43735) is approximately� 1:38 �1:33�2:05 �0:58� :The eigenvalues are approximately 2:32 and �1:52,and the corresponding eigenvectors are approxi-mately (0:82;�0:58) and (0:42; 0:93). For rota-tion angles in the interval (�0:1; 0:1), the eigen-values remain well away from the imaginary axisand the eigenvectors stay far from the coordinateaxes.
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This implies that initial conditions that are ver-tically above and below the saddle point and ini-tial conditions that are right and left of the saddlepoint can be used for the computation of corridorsthat will bound the saddle separatrices. Pointswhose distance from the saddle is approximately0:01 su�ce for these computations. Next we notethat the divergence of the vector �eld is symmetricwith respect to rotations, and a decreasing quad-ratic function of r that vanishes on a circle nearr = 1:655. Therefore, any limit cycle must inter-sect the disk of this radius. Finally, we need anestimate for how wide the isolating annulus is, sothat we can determine when points are inside theannulus. The highest point on the limit cycle oc-curs near (1:153; 2:96481). Here the value of thevector �eld is approximately (4; 0) and the factorexp� is about 0:375. Therefore the width of theisolating annulus is about 0:000015. These esti-mates provide su�cient data for creating corridorsthat connect the saddle separatrices to their limitsets and in�nity to the limit cycle.In carrying out the interval arithmetic calcula-tions, it is helpful to consider the angles of rotationthat can be used in computing the trajectories thatwill form the corridor boundaries. The stringentlimitations that we encounter are those associatedwith trajectories approaching the limit cycle. Toobtain trajectories that enter or leave the isolatingneighborhood, the limit cycles of the rotated vector�eld cannot separate the isolating neighborhoodfrom the trajectory. With a rotation angle of 10�5,the limit cycle intersects the vertical line x = 1:153near y = 2:96498. The di�erence is about an orderof magnitude larger than the width of the isolat-ing neighborhood that has been determined, so itis necessary to work with rotation angles that areof the order of 10�6 to obtain trajectories that en-ter the isolating neighborhood. With these smallrotation angles the transversality veri�cation for acurve g(u) computed from numerical integration ofthe rotated vector �eld requires small steps. Per-forming these calculations by direct interval arith-metic evaluation of the cross product of the tan-

gent vector to g with the vector �eld requires verysmall steps along the curve. If a piecewise linearcurve g is used, then the variation in the directionof f along an individual curve segment should becomparable to the rotation angle  . For small �,f(x+�) is approximately Dfx ��. From this weestimate the change in angle along a curve segmentto be �f?Dfxff � f ��:Thus we expect that we need to take � compara-ble to jDf j�1 . At (1:153; 2:96481) near the limitcycle, Df is roughly 35. These estimates lead usto expect that each circuit around the limit cyclefor the corridor will require on the order of 108interval arithmetic evaluations. The transversal-ity calculations along the boundary of the isolatingannulus used 8�107 steps, so the work is compara-ble. The truncation and roundo� errors associatedwith these calculations are still small relative tothe transversality condition, but the computationsare lengthy. Thus, it would be helpful to �nd tech-niques that will be more e�ective in determiningthe range of the functions whose zeros signal theloss of transversality, but this was not necessaryin con�rming the global structure of the speci�cvector �eld studied in this paper.
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