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We describe algorithms to compute self-similar measures as-

sociated to iterated function systems (i.f.s.) on an interval, and

more general self-replicating measures that include Hausdorff

measure on the attractor of a nonlinear i.f.s. We discuss a va-

riety of error measurements for these algorithms. We then use

the algorithms to study density properties of these measures

experimentally. By density we mean the behavior of the ratio�(Br(x))=(2r)� as r ! 0, were � is an appropriate dimen-

sion. It is well-known that a limit usually does not exist. We

have found an intriguing structure associated to these ratios that

we call density diagrams. We also use density computations

to approximate the exact Hausdorff measure of the attractor of

an i.f.s.

1. INTRODUCTIONWe study a large class of measures associated toan iterated function system (i.f.s.), which is justa �nite set of one-to-one continuous maps Sj :[0; 1] ! [0; 1], where j = 1; : : : ;m. (Many of theideas presented here can be extended to compactsubsets of R n , but there are many places where wetake advantage of the simpli�cations that are spe-cial to one dimension.) It is common to imposea contractivity hypotheses on the maps, such asjSjx � Sjyj � �jx � yj for � < 1, but this is un-necessarily restrictive. For the most part we willassume that the maps are nonoverlapping, meaningthat the images SjI have disjoint interiors.A measure � on [0; 1] is said to be self-similarwith respect to the i.f.s. if it satis�es an identity
� = mXj=1 pj� � S�1j (1.1)

for some positive weights pj that satisfy the proba-bility conditionP pj = 1 [Hutchinson 1981]. More
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generally, we will consider self-replicating measures,those that satisfy an identity
� = mXj=1 (pj�) � S�1j ; (1.2)

where the weights pj are now allowed to be positivefunctions. More precisely, (1.2) means that�(A) = mXj=1 ZS�1j Apj d�for any Borel set A, or, more generally,Z f d� = mXj=1 Z (f � Sj)pj d�
for any integrable function f .Such measures are investigated in [Barnsley etal. 1989] under the probability hypothesisP pj(x) � 1;but we do not wish to make this assumption. Oneimportant example where this hypothesis does nothold is the Hausdor� measure on the attractor Kof the i.f.s. (the unique closed set such that K =SSjK). If the maps Sj are assumed to be C1 butnot necessarily linear, the �-dimensional Hausdor�measure on K satis�es (1.2) with pj(x) = jS0j(x)j�,where � is the Hausdor� dimension of K.It is perhaps useful to think of a self-replicatingidentity (1.2) as something analogous to a di�er-ential equation. Just as there are di�erent types ofdi�erential equations, so there are di�erent typesof self-replicating identities. Our restriction to aone-dimensional domain is analogous to consider-ing o.d.e.'s. The analog of a linear o.d.e. would beto restrict to a linear i.f.s. The more restrictiveform (1.1) is analogous to autonomous o.d.e.'s (orconstant-coe�cient o.d.e.'s in the linear case).The �rst problem we consider is to develop e�ec-tive algorithms for numerical approximation of so-lutions to a self-replicating identity. The algorithmwe propose may be thought of as the analog of Eu-ler's method for numerical solution of o.d.e.'s. It is

a straightforward implementation of what the self-replicating identity says, and it seems to work wellenough for our purposes, especially in the specialcase (1.1) that we take up �rst in Section 2. In thissection we set the framework for the general prob-lem: \How do we compute an approximation to ameasure, and how do we estimate the error?" Theanswer we seek involves a �nite set of statements\�(J) equals (or approximately equals) certain val-ues", where J ranges over a nonoverlapping set ofintervals J that cover the support of �. The mainidea in our approach is that we do not attemptto specify the collection J in advance, but rathercompute it adaptively for the particular measure,along with the computations of �(J). We providea careful and perhaps overly pedantic exposition ofthese ideas in Section 2.In Section 3 we consider the more general form(1.2). The question of existence and uniqueness(up to a normalization constant) is not completelysettled. It is convenient to work with a projec-tivized version �� = P(qj�) � S�1j in which theeigenvalue � is unknown, as well as the measure.We are able to prove that a solution exists andthe eigenvalue is unique under suitable hypotheses,but uniqueness of the measure seems more di�cult.We are able to adapt the algorithms to this set-up,but we no longer have an e�ective way to estimatethe error (indeed, if the solution is not unique itis not even clear what the error is). Nevertheless,we have done some computations using our algo-rithm that seem reasonably reliable, and form thebasis of some of our subsequent experiments. An-other approach to the material in this section (andsome of the computations in Section 5) would beto use the thermodynamic formalism of Bowen (see[Bowen 1975] and [Ruelle 1983]). This would cer-tainly lead to di�erent algorithms, and it is notclear how well this approach would work.The remainder of the paper is devoted to the in-vestigation of densities of our measures. Let Br(x)denote the ball of radius r about x|in our case theinterval [x � r; x + r]. The general density prob-lem is the behavior of the ratio �(Br(x))=(2r)� as
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r ! 0. Since it is known [Falconer 1985] that thelimit does not usually exist, we seek various sub-stitutes. Bedford and Fisher [1992] consider anaverage in r, which they call a second-order den-sity, and this approach has been widely investi-gated [Falconer 1992; Patzschke and Z�ahle 1993].From our point of view, this average is too crude.In the linear case, a more recent approach [Bandt1992; Graf 1993] suggests that a much richer struc-ture exists. In Section 4 we propose such a struc-ture, which we call a density diagram, de�ned tobe essentially the superposition of all graphs of allfunctions �(Br(x))=(2r)� (on a logarithmic scale)as x varies over the attractor. For simple exam-ples, such as the usual Cantor measure, the den-sity diagram reveals a striking self-similar struc-ture, which we are able to fully explain. For morecomplicated examples the density diagram appearsmore chaotic, but we are able to \decipher" it insome cases as a superposition of self-similar sets.In Section 5 we discuss the problem of the cor-rect normalization of Hausdor� measure. Since ourself-replicating identities are homogeneous, the so-lutions can only be determined up to a constantmultiple. We usually normalize our measures tobe probability measures. However, the de�nitionof Hausdor� measure is exact, so the constructionof Hausdor� measure on the attractorK by solvingthe self-replicating identity is incomplete withoutthe determination of �(K). Fortunately, there isa well-known theorem that comes to the rescue: if0 < �(K) <1, the upper convex densitylim sup �(I)jIj�as jIj ! 0 and x 2 I tends to one for �-almostevery x [Falconer 1985]. The algorithm we use in-volves computing this lim sup for the incorrectlynormalized Hausdor� measure, and using the re-sult to correct the normalization. We illustratethis method by computing the Hausdor� measureof the attractor K of an i.f.s. for some families ofexamples. We also compute the Hausdor� mea-sure for the family of Julia sets of the mapping

z2 � c, for c > 2 real. Although the accuracy ofthe method cannot be quanti�ed, the results seemto indicate that the relative measure (Hausdor�measure divided by diameter to the Hausdor� di-mension power) has a discontinuity at c = 2.In Section 6 we discuss two other densities anddimensions that we obtain by averaging pointwisequantities. The entropy dimension is
limr!0 R log�(Br(x)) d�(x)log rand the L2 dimension islimr!0 log R �(Br(x)) d�(x)log r ;

in each case there are corresponding densities. (Itmay seem strange to call this latter an L2 dimen-sion, but in fact it is quadratic in �. For a fulljusti�cation, see [Strichartz 1993b].) Both thesedensities are easy to compute using our algorithms,and we present evidence for more regular behaviorthan has been proved so far.The algorithms described in this article are pre-sented in schematic form. Of course, they wereactually coded in computer programs: see the sec-tion on Electronic Availability at the end. Theprograms were written in C and Pascal and run ona Sun Sparcstation using Unix during the summerof 1993.This article contains some conventional mathe-matical theorems, proofs and de�nitions, as wellas experimental results, conjectures and problemssuggested by the experiments. But the conven-tional mathematical content was all developed inconjunction with the experiments, either to justifythe algorithms or to explain the results. In par-ticular, the material in Sections 4 and 5 is almostentirely serendipitous discovery in response to theexperimental results.The reader is encouraged to consult [Barnsley1988] and [Falconer 1990] for the general theoryof iterated function systems and self-similar mea-sures.
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2. NUMERICAL APPROXIMATION ALGORITHMSLet P denote the space of probability measures onthe Borel subsets of [0; 1]. For each such measure�, let g(x) = �([0; x]) denote its distribution func-tion (or integral). Then g is monotone increasing,right-continuous, and g(1) = 1. For nonatomicmeasures, which include all the measures we willwork with, g is continuous and g(0) = 0. Wewill call such functions ramp functions. It is well-known that the correspondence between � and g isone-to-one and onto. Thus to know a measure itsu�ces to know its ramp function.We will adopt the point of viewthat an algo-rithm for computing a measure is equivalent to analgorithm for computing its ramp function. (Forexample, the ramp function gives us an immedi-ate algorithm for choosing a point at random withrespect to �: simply choose a point at randomfrom [0; 1] with respect to Lebesgue measure andtake the inverse image under the ramp function.)This point of view leads naturally to a family ofmetrics on P of the form ~d(�1; �2) = d(g1; g2),where d is a metric on ramp functions. We willuse two such metrics, called the maximum errormetric dmax(�1; �2) = supx jg1(x)� g2(x)j
and the average error metric

dave(�1; �2) = Z 10 jg1(x)� g2(x)j dx:
These are special cases (p = 1 and p = 1) of theLp error metric

dLp(�1; �2) = �Z 10 jg1(x)� g2(x)jp dx�1=p:
It is easy to see that all these metrics for 1 � p <1are topologically equivalent, although they are notequivalent metrics, and that P is complete in allsuch metrics.

The average error metric is equal to the Hutchin-son metric [Hutchinson 1981; Dudley 1966], de-�ned bydH(�1; �2) = sup����Z 10 f d�1 � Z 10 f d�2����;where f runs over Lipschitz functions with Lips-chitz constant 1. This is a well-known result inprobability theory (see [Rachev 1991, p. 28], forexample), but we include the short proof for theconvenience of the reader.
Lemma 2.1. Let �1 and �2 be nonatomic measuresin P. Then dave(�1; �2) = dH(�1; �2).
Proof. It is well-known that f is Lipschitz withLipschitz constant 1 if and only if f 0 2 L1 withkf 0k1 � 1 (the derivative exists Lebesgue almosteverywhere and in the distribution sense). Then,by integration by parts for Stieltjes integrals, wehave Z 10 f d�j = f(1)� Z 10 f 0(x)gj(x)dx(since gj(0) = 0 and gj(1) = 1), hence����Z 10 f d�1�Z 10 f d�2���� = ����Z 10 f 0(x)(g2(x)�g1(x)) dx����;and the result follows by the L1{L1 duality. �Because the Hutchinson metric comes into manyexistence and uniqueness theorems for self-similarmeasures, we will pay attention to the average er-ror metric estimates in our computations. (Later,we will present some existence and uniqueness the-orems using the maximum error metric.) Still, wewill be more concerned with maximum error esti-mates, since they give stronger control of errors inthe density computations we will be doing. Also,for many of the measures we will be dealing with,there will be a countable union of subintervals ofmeasure zero, called lakes, whose total lengths sumto one, and such that we can compute the rampfunction exactly on a large subset of lakes. Thusthe error in the ramp function will be entirely con-�ned to a set of small Lebesgue measure, and so the
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average error will automatically be small, even ifthe ramp function does not do a particularly goodjob of approximation on the remainder of the inter-val (which is where most of the interesting behavioris to be found). Thus average errors will tend tobe considerably smaller than maximum errors.To describe our algorithms we introduce the no-tion of a set of interval partition data. This is justa �nite collection J of nonoverlapping subintervalsJ of [0; 1] and a function �(J) in J that satis�esthe probability conditions 0 � �(J) � 1 andXJ2J �(J) = 1:
By nonoverlapping we mean that the interiors aredisjoint; since our measures are nonatomic we donot have to distinguish between open and closedintervals. We say that a measure � in P matchesthe interval partition data exactly if �(J) = �(J)for all J , or approximately with error " ifXJ2J j�(J)� �(J)j � ":
All our algorithms compute interval partition datafor a measure � either exactly or approximately,and we take for our approximation to � any mea-sure that matches exactly the computed intervalpartition data. The simplest way to do this is us-ing linear interpolation: the ramp function is takento be piecewise linear on each of the intervals J andpiecewise constant on the intervals that form thecomplement of SJ2J J . The approximating mea-sure is thus just a multiple of Lebesgue measureon each interval J and zero elsewhere. We can eas-ily write a formula for the ramp function of themeasure. First, order the intervals J in increasingorder, say J1; J2; : : : ; JN ; all storage of J in �les willuse this ordering, of course. Write Jj = [aj; bj], andset g(bj) = jXk=1 �(Jk)and g(x) = g(bj) for bj � x � aj+1 (also g(x) = 0for 0 � x � a1). Finally, for any x in Jj, set

g(x) = x� ajbj � aj g(bj) + bj � xbj � aj g(aj): (2.1)This linear interpolation algorithm is easy to im-plement, but it does require a search for the inter-val containing x.Given a complete state of ignorance about themeasure, except for the interval partition data, thelinear interpolation algorithm can be justi�ed onphilosophical grounds as the choice that introducesthe least extraneous information (assuming that auniform distribution on an interval corresponds tothe measure with least information). It would beinteresting to investigate whether or not there isany quantitative justi�cation for this choice. Inany case, we are usually not in a state of completeignorance concerning the measure, so we can some-times make better choices. We will discuss someimproved accuracy interpolation algorithms later.Now consider an i.f.s. S1; S2; : : : ; Sm on [0; 1] withno overlap (the images of [0; 1] under Sj have dis-joint interior). We say that an interval partitionJ is adapted to the i.f.s. if for every J 2 J and Sjthere exists J 0 2 J such that SjJ � J 0. Given anadapted interval partition J, we de�ne a new in-terval partition J0, called the re�nement of J, bytaking J0 to be the collection of intervals SjJ as Jvaries over J and j = 1; : : : ;m. It is easy to seethat J0 is an interval partition and that it is alsoadapted to the i.f.s.Now suppose � is a probability measure satisfy-ing a self-similar identity
� = mXj=1 pj� � S�1j (2.2)

for constant probabilities pj. To avoid trivialitywe assume m � 2 and all pj positive. In par-ticular, this implies that � is nonatomic. To seethis, consider the atom of largest measure, sayx0. Then �(fx0g) = Pmj=1 pj�(fS�1j x0g) implies�(fS�1j x0g) = �(fx0g) for all j, hence we musthave m = 2 and x0 must be the common endpointof the images S1[0; 1] and S2[0; 1]. But, by applyingthe same reasoning to S�1j x0, we �nd Sjx0 = x0 for



106 Experimental Mathematics, Vol. 4 (1995), No. 2
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FIGURE 1. Left: a histogram representation of the self-similar measure for the i.f.s. S1x = 14x, S2x = 13x + 23with p1 = p2 = 12 . The errors dmax = 7:6�10�6 and dave = 3:1�10�10 were computed between the next-to-lastand last iteration of the algorithm. Right: The ramp function for the same measure.j = 1; 2, and this contradicts the assumption thatthe Sj are one-to-one.Note that the nonoverlapping assumption meansthat A � [0; 1] implies�(SjA) = pj�(A):This observation leads to a simple algorithm forpassing from a set of interval partition data (J; �)that matches � exactly, with J adapted to the i.f.s.,to one for the re�nement J0.
Algorithm 2.2. Suppose J is adapted to the i.f.s. andthat J0 is its re�nement. Given data (J; �) thatmatches � exactly, de�ne data (J0; � 0) by� 0(SjJ) = pj�(J):Then (J0; � 0) also matches � exactly. De�ne induc-tively (J0; �0) by J0 = f[0; 1]g and �0([0; 1]) = 1,and let (Jk; �k) be obtained from (Jk�1; �k�1) bythe above algorithm.We call intervals in Jk islands of the k-th gener-ation, and connected components of the comple-ment of SJ2Jk J lakes of the k-th generation. It isclear that the lakes have measure zero and hencethe ramp function is constant on each lake, for anymeasure that matches the data for the given gen-eration. It is easy to implement the algorithm togenerate the data (Jk; �k) so it terminates whenthe size of the data (3mk) approaches the maxi-mum available memory space.

In Figure 1 we display the output of the algo-rithm for a simple example. We display both ahistogram of the measure and the graph of its rampfunction. The histogram graphs the probability ofeach interval in a uniform partition of [0; 1] into4,000 intervals. It is useful for giving a rough pic-ture of the measure, but some of the features areartifacts due to the choice of partition.We can give a priori estimates for the accuracyof the algorithm based on the following elementarylemma.
Lemma 2.3. (a) Let �1 and �2 be measures in P thatmatch the data (J; �) exactly . Set�1 = supJ2J �(J) and �2 = �1XJ2J jJ j;where jJ j is the length of the interval . Thendmax(�1; �2) � �1 and dave(�1; �2) � �2:
(b) Suppose �1 and �2 match the data (J; �) approx-imately with errors "1 and "2. Thendmax(�1; �2) � �1 + "1 + "2 (2.3)and dave(�1; �2) � �2 + "1 + "2:
Proof. (a) On the complement of SJ2J J , we haveg1 = g2 exactly, so there is no contribution todave(�1; �2). If x 2 J = [a; b], theng1(x)� g2(x) = �1([a; x])� �2([a; x])
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and [a; x] � J , so jg1(x) � g2(x)j � �(J). Thusdmax(�1; �2) � supJ2J �(J) = �1 and dave(�1; �2) �PJ2J jJ j �(J) � �2.
(b) In this case we only have the estimatejg1(x)� g2(x)j � "1 + "2on the complement of SJ2J J , and if x 2 J we havejg1(x)� g2(x)j � �(J) + "1+ "2, so we obtain (2.3)anddave(�1; �2) � "1 + "2 +XJ2J jJ j �(J) � �2 + "1 + "2:�SometimesPJ2J jJ j �(J) is smaller than �2, but itis usually not worth the e�ort to compute it.
Corollary 2.4. Let � satisfy (2.2) and let �k be anyapproximations that exactly match the data (Jk; �k)generated by Algorithm 2.2. Thendmax(�; �k) � pkmaxand dave(�; �k) � (�pmax)k;where pmax = maxj pj and � =Pj jSj([0; 1])j.
Proof. By our assumptions, pmax < 1. From the al-gorithm it is clear that �1 = pkmax and �2 = (�pmax)kfor (Jk; �k), and both � and �k match (Jk; �k) ex-actly. �Notice that we are not claiming that the sizes ofthe intervals in the partitions Jk are going to zero.Of course, if I is an interval such that SjI � I,the equality (2.2) easily implies �(I) = 0, so this isperhaps an uninteresting generalization. However,we do not require any further contractivity of thei.f.s. beyond the nonoverlapping hypothesis. Wecan easily turn the estimates in the corollary intoan existence and uniqueness proof for solutions of(2.2), but perhaps it is more interesting to obtainexistence and uniqueness out of general contractiv-ity estimates for the transformation on P given byT� = mXj=1 pj� � S�1j :

Theorem 2.5. Assume the i.f.s. is nonoverlapping ,m � 2, and all pj > 0. Then T is contractive in themaximum error metric with contractivity constantpmax. In particular , T has a unique �xed point �,which can be obtained as limn!1T n�1 starting withany �1 2 P, and if dmax(~�; T ~�) � " for any ~� 2 P,then d(~�; �) � "=(1� pmax).
Proof. Order the mappings Sj so that Sj[0; 1] =[aj; bj] are in increasing order. If x 2 [aj; bj] and~�1 = T�1, we have~g1(x) = T�1([0; x]) = j�1Xk=1 pk + pj�1(S�1j [aj; x]);
and S�1j [aj; x] is either [0; S�1j x] or [S�1j x; 1], de-pending on whether Sj is increasing or decreas-ing. Thus �1(S�1j [aj; x]) equals either g1(S�1j x) or1� g1(S�1j x). In either case we havej~g1(x)� ~g2(x)j = pj jg1(S�1j x)� g2(S�1j x)j;hence dmax(T�1; T�2) � pmaxdmax(�1; �2). If x is inthe complement of the intervals [aj; bj], the abovereasoning shows that ~g1(x) = ~g2(x) exactly. �We consider next some modi�cations to Algorithm2.2. If there is a large spread of values for the prob-abilities pj, there will be an even greater spreadamong the values of �k(J) over di�erent intervals.It can then happen that a shortage of memoryspace will terminate the algorithms before pkmaxgets su�ciently small. In that case, too much mem-ory is dedicated to very �ne information about themeasure, while a certain amount of too coarse in-formation keeps the error large. To deal with thisproblem one could adopt various consolidation al-gorithms. The idea is to set a threshold ", andwhenever �(J) drops below ", to combine J withseveral other intervals in the partition. We will notdescribe the procedure in detail since it is fairlystraightforward.One way to improve accuracy at very little cost isto replace the linear interpolation algorithm, whichin e�ect chooses the measure �k to match the data(Jk; �k), with one that exploits the self-similarity
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of the measure. This is only feasible in the specialcase when all the transformations Sj are linear. Inthat case, we know that the exact ramp functiong for the measure �, restricted to any island J inJk, is equal to a scaled version of the entire rampfunction g on [0; 1]. If J = [aj; bj], the horizontalscaling factor is just bj�aj , while the vertical scal-ing must be adjusted so that g assumes the correctvalues at a and b. Note that Algorithm 2.2 com-putes the exact values for g(aj) and g(bj) (exceptfor round-o� error, which can be made extremelysmall). Thus the self-similarity translates intog(x) = g(aj) + (g(bj)� g(aj)) g� x� ajbj � aj � (2.4)for x in [aj; bj]. Since the unknown function g ap-pears on both sides of the identity, we cannot use(2.4) in place of (2.1) directly. However, we can usea two-step procedure, computing �rst g1 by (2.1)and then g2 using (2.4) with g1 on the right side.Since the error in g1 is multiplied by g(bj)� g(aj),which is bounded by �1 = supJ2J �(J), we obtainan error estimate of �21 for g2.We conclude this section with a brief discussionof how we modi�ed the algorithm to handle i.f.s.'swith overlap. The overlaps create problems that wehave dealt with in an ad hoc fashion. The result-ing computations seem reasonably accurate, butwe have no rigorous method to estimate the error.We want to obtain a sequence of interval partitiondata (J1; �1); (J2; �2); : : :, where each one is deter-mined from the previous one by a procedure wewill describe. The partitions will not necessarilybe adapted to the i.f.s., and Jk will not necessar-ily be the re�nement of Jk�1. Also, the measure �will not match the data exactly, and there does notseem to be a realistic way to estimate the error (wecan give worst case estimates that are undoubtedlytoo large). The procedure described can be modi-�ed by interspersing consolidation routines.To simplify the notation, suppose (J; �) is a setof partition data, and that we want to pass to thenext set (J0; � 0). We let J0 be the set of all intervalsobtained from the collection SjJ , for J 2 J and

1 � j � m, by the following splitting procedure: iftwo intervals [a; b] and [c; d] overlap, say a < c <b < d, replace them by the three intervals [a; c],[c; b] and [b; d]. To pass from � on J to � 0 on J0we �rst assign weight pj�(J) to SjJ and split theweight proportionate to length if SjJ is split. Thatis, � 0([a; b]) =X b� ajSjJ j pj�(J);where the sum is taken over all SjJ that contain[a; b]. (By the construction, if [a; b] in J0 has non-trivial intersection with SjJ it must be containedin SjJ .) The splitting in proportion to length in-troduces an error. On the other hand it representsa least biased approach, in the absence of any in-formation, and it has the advantage of being inde-pendent of the order of splitting for intervals thatare split more than once.We applied this algorithm to the famous exam-ple of Bernoulli measures for the i.f.s. S1x = �x,S2x = �x + 1 � � with 12 < � < 1, and weightsp1 = p2 = 12 . Figure 2 shows histograms of thecomputed measure for two values of �. The value� = 12(p5 � 1) used on the left is far from typ-ical, since ��1 is the golden ratio, the simplestP.V. number. (Recall that a Pisot{Vijayaraghavannumber, or P.V. number for short, is an algebraicinteger of absolute value greater than 1 with all itsconjugates having absolute value less than 1.) See[Lau 1992; 1993] for some interesting properties ofthis measure and related examples. The histogramreveals striking details. In this case there is analternate procedure for generating interval parti-tion data that � matches exactly. We de�ne threetransformations:T0x = S0S0x = �2x;T1x = S1S0S0x = S0S1S1x = �3x+ �2;T2x = S1S1x = �2x+ 1� �2;which satisfy the nonoverlapping condition (notethat �2 = 1� �), with attractor equal to the wholeunit interval. The de�ning identity for � yields,
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FIGURE 2. Histograms of the Bernoulli measure for the i.f.s. with overlaps S1x = �x, S2x = �x+ 1� �, withp1 = p2 = 12 . On the left we take � = 12 (p5 � 1) (with dmax = 3:2 � 10�5 and dave = 4:6 � 10�6); theidentities (2.5) can be clearly visualized in this case. On the right we take � = :705 (with dmax = 6:8�10�5 anddave = 1:1� 10�6). Note that :705 is close to 1=p2, for which value of � the measure is absolutely continuousand the histogram is the piecewise linear function this one resembles.after iteration, the following nine identities (for ar-bitrary Borel sets A in [0; 1]):�(T0T0A) = 14�(T0A)�(T0T1A) = 14�(T1A)�(T0T2A) = 12�(T1A)�(T1T0A) = 18�(T0A) + 14�(T1A)�(T1T1A) = 14�(T1A)�(T1T2A) = 18�(T2A) + 14�(T1A)�(T2T0A) = 12�(T1A)�(T2T1A) = 14�(T1A)�(T2T2A) = 14�(T2A):

(2.5)

It follows from this that � assigns equal probabilityto the three intervals [0; �2], [�2; �] and [�; 1] thatmake up J1. We then choose Jk inductively to bethe re�nement (for T0; T1; T2) of Jk�1, and the nineequations above give an algorithm for computing�k on Jk to match � exactly.There is a sense in which the identities (2.5) areanalogous to di�erential equations of second order.An extensive computer search conducted by AlanHo during the summer of 1994 (after the �rst draftof this paper was completed) turned up one otherP.V. number, namely the root of �3 � �2 + 2� = 1,or approximately 0:56984, with an analogous set ofsecond order identities (in this case 81 equations

involving 9 transformations). The search failed to�nd such identities for any of the other P.V. num-bers de�ned by low-order polynomials. Therefore,such identities are either rare or extremely large.
3. VARIABLE WEIGHTS AND HAUSDORFF MEASUREIn this section we want to consider the more generalself-replicating identity

� = mXj=1(pj�) � S�1j ; (3.1)

where the weights pj(x) are variable functions. Wecannot expect there to exist solutions without im-posing some consistency condition on the weights,analogous to the probability condition for constantweights. In [Barnsley et al. 1989] the conditionmXj=1 pj(x) � 1 (3.2)

was imposed, but this is too restrictive for our pur-poses. Instead, we reformulate the problem as aneigenvalue problem and projectivize the weights:given projective weights qj(x), we look for solutionsof �� = mXj=1(qj�) � S�1j (3.3)
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for � in P and � > 0. Any solution of (3.3) yieldsa solution of (3.1) for pj = ��1qj, and it turns outthat we don't have to put any consistency condi-tions on qj to solve (3.3). We will, however, imposethe following assumptions:
Hypotheses 3.1. (a) The i.f.s. is nonoverlapping.
(b) The maximum length of intervals in Jk tends tozero as k !1.
(c) The projective weights qj are continuous.
(d) m � 2 and all the qj are positive.Note that (c) and (d) imply the existence of posi-tive numbers qmin and qmax such that0 < qmin � qj(x) � qmax <1for all x and j. Since all solutions to (3.3) mustbe supported on the attractor K of the i.f.s., itsu�ces to have qj de�ned on K. Of course, by astandard extension theorem, we can assume with-out loss of generality that the qj are de�ned on thewhole interval [0; 1], since continuity and the exis-tence of bounds qmin and qmax can be preserved inthe extension.The following counterexamples to uniqueness jus-tify the assumptions of continuity and positivity.In both cases (3.2) is satis�ed, by the way. Wetake the simple i.f.s. consisting ofS1x = 12x and S2x = 12x+ 12 :Then Lebesgue measure �1 solves the constant-weight self-similar identity with p1 = p2 = 12 , butany other choice of probabilities ~p1 6= ~p2 yieldsa measure �2 singular with respect to �1. Thatmeans there exists a disjoint decomposition [0; 1] =A1 [ A2 with �1(A2) = �2(A1) = 0. We then mayde�ne pj(x) = qj(x) = � 12 if x 2 A1,~pj if x 2 A2.It is obvious from the construction that both �1and �2 (and any convex combination of them) sat-isfy (3.1). Of course, in this example the weightfunctions are everywhere discontinuous.

For the second example we use the same i.f.s.,and we takep1(x) = 1� x; p2(x) = x:It is easy to verify that the delta measures at x =0 and x = 1 both satisfy (3.1). The vanishingof the weights in this case provides hiding placesfor extraneous solutions (presumably there exists anonatomic solution as well, but we have not beenable to �nd it). It is no coincidence here that thezeroes of the weights lie at the �xed points of themappings.We also give a counterexample to uniquenesswhere the problem is with the i.f.s., not the weights.Let S1x = �x if 0 � x � 14 ,14 + 13(x� 14) if 14 � x � 1,and let S2x = 12x + 12 . Since the interval [0; 14 ] isinvariant under S1, if we choose p1 � 1 any measuresupported on [0; 14 ] will satisfy (3.1).
Theorem 3.2. Under Hypotheses 3.1, there exists anonatomic solution of (3.3) and � is unique.
Proof. For each k and each J 2 Jk, de�neq+jk(J) = supx2J qj(x); q�jk(J) = infx2J qj(x);so that q�jk(J) � qj(x) � q+jk(J) (3.4)for x 2 J . By the integral mean value theorem,any solution of (3.3) must satisfy��(J) = XSjJ0�J qjk(J 0)�(J 0)for qjk(J 0) also satisfying the analogue of (3.4). Webegin by trying to �nd approximations to �(J) bysolving ��k v�k (J) = XSjJ0�J q�jk(J 0)v�k (J 0) (3.5)

for J 2 Jk. Since this is a �nite-dimensional matrixeigenvalue problem, the Perron{Frobenius theorem
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implies there is a unique positive solution, normal-ized byPJ2Jk v�k (J) = 1. Because the dependenceof the eigenvalues on the matrix is monotone, wehave ��k � � � �+k��k � ��k+1 � �+k+1 � �+k :But we claim even more, namely, that �+k ���k goesto zero as k ! 1. The reason for this is that byhypotheses (b) and (c) the di�erences q+jk�q�jk go tozero uniformly as k !1. This alone is not enoughto conclude what we want, because the size of thematrix (mk �mk) also increases as k ! 1. Thekey observation is that each of the equations (3.5)involves onlym nonzero terms, and this is indepen-dent of k. Thus the variational characterization ofthe eigenvalue shows that it depends continuouslyon the coe�cients, uniformly in k. This shows thatlimk!1 ��k = �, hence � is unique.Once we have the solution of (3.5), we can solvea related self-similar identity for a measure ��k thatis required to satisfy ��k (J) = v�k (J) and��k ��k =P(q�jk��k ) � S�1j ; (3.6)with the obvious notation q�jk for the function thatassumes the constant value q�jk(J) on J . The func-tions q�jk may not be continuous, but this does notmatter because the correct way to think of (3.6) isas a matrix version of (2.2) for the family of mea-sures ��k restricted to J (as J varies over Jk). See[Mauldin and William 1988], [Edgar and Mauldin1992] or [Strichartz 1993b] for a proof of existence(in these references the i.f.s. is assumed contrac-tive, but the proof of Theorem 2.5 can be adaptedto the general case).Next we pick a subsequence of �+k that convergesweakly to a measure � in P. We claim that � satis-�es (3.3). To see this, choose any continuous func-tion f . Then����Z f � Sj(q+jk � qj) d�k���� � ckq+jk � qjk1for c independent of k, so the limit along the subse-quence of R f �Sjq+jk d�k exists and equals the limit

of R f �Sjqj d�k, which equals R f �Sjqj d� by weakconvergence. But since
�+k Z f d�k = mXj=1 Z f � Sjq+jkd�kby (3.6), we can take the limit along the subse-quence to obtain
�Z f d� = mXj=1 Z f � Sjqj d�which is (3.3). �

Problem 3.3. Under what conditions does unique-ness hold for probability measure solutions of (3.3)?A reasonable conjecture is that uniqueness holds ifthe functions qj(x) are Lipschitz continuous. Thiswould be analogous to the theory of o.d.e.'s, wherethe Peano existence theorem requires only continu-ity, while the Picard existence and uniqueness the-orem requires Lipschitz continuity. It is not hardto modify the proof of existence and uniquenessin [Hutchinson 1981], under the hypothesis thatSj are strictly contractive, to prove existence anduniqueness under the perturbative hypothesis thatthe Lipschitz constants are very small.The proof of Theorem 3.2 suggests an algorithmfor computing � and � approximately, and testingthe likelihood of uniqueness. We solve (3.5) for��k and v�k on Jk by iteration, for �xed Jk (chosenbased on memory limitations). This gives us ap-proximate interval partition data for perhaps twosolutions. We know that ��k must eventually beclose to the unique value of �, and their di�er-ence gives a plausible measure of whether we arereasonably close to matching the interval partitiondata (we have no rigorous estimate for the error).Then we compare v�; if they are close, this givesplausible evidence that the solution is unique. Inpractice we do not go through the trouble of com-puting q�jk(J) to be the max and min of qjk onJ , but simply evaluate qjk at the endpoints of J .This gives the same result if the functions qj(x) are
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FIGURE 3. Left: The ramp function for the self-replicating measure associated with the i.f.s. S1x = 12x,S2x = 12x + 12 with projective weights q1 = 1:1 � x and q2 = :1 + x. Right: The di�erence between the rampfunctions for approximations to the same measure, using left and right endpoint evaluation of the weights. (Wehave restricted the vertical range to show the detail; the graph drops abruptly to zero at both endpoints.)all increasing (decreasing). Figure 3 shows the re-sulting ramp function for a typical example wherewe expect uniqueness, and the di�erence betweenramp functions using v� for the same example. Onthe other hand, we ran several tests where we usedinput that was very close to the second counterex-ample to uniqueness, and the di�erences betweenv+ and v� were enormous.This algorithm also gives a method for approxi-mately computing the Hausdor� measure (up to aconstant multiple) for the attractor of a nonover-lapping i.f.s. We need to assume that the mappingsSj are C1 with derivatives satisfying 0 < jS0jj < 1on the attractor. Then it is known [Falconer 1985]that the Hausdor� measure satis�es� =P(jS0jj��) � S�1j ; (3.7)where � is the dimension of the attractor. SincejS0jj� is decreasing in � under the hypothesis 0 <jS0jj < 1, we conclude that the unique eigenvalue�(�) associated with the equation�(�)� =P(jS0jj��) � S�1j (3.8)is decreasing in �. Also lim�!1 �(�) = 0 sincejS0jj� ! 0, and �(0) = m (evaluate (3.8) on theentire attractor). Thus � is characterized as theunique solution of �(�) = 1. Since our algorithmyields an accurate estimate of �(�), we merely com-pute values of �(�) until we obtain �(�1) < 1 <

�(�2), then divide the interval between �1 and �2(to obtain a speed-up we used linear interpolationto get a value of �(�) close to 1) and iterate.We applied this method to compute the Haus-dor� dimension and a multiple of Hausdor� mea-sure (normalized to be a probability measure) forthe Julia sets of the mappings z2�a for a real anda � 2. In this range the Julia set lies in the realaxis and is the attractor for the i.f.s. given by thetwo transformations �px+ a. This attractor liesin the interval [�b; b], where b is the larger root ofb2 = a + b, namely b = pa+ 14 + 12 . As a ! 2,the i.f.s. becomes badly behaved; in fact it fails tosatisfy 0 < jS0jj < 1 for 2 � a � 14(5 + 2p5), butat a = 2 the attractor is just the interval [�2; 2].Nevertheless, it is known [Blanchard 1984] that thecondition 0 < jS0jj < 1 can be restored by takingan equivalent i.f.s. obtained by iteration, and itfollows from [Sullivan 1983] that (up to a constantmultiple) Hausdor� measure is the unique solutionof (3.7) (Sullivan calls such measures �-conformal).See also [Aaronson et al. 1993] and [Hofbauer 1992]for related uniqueness results.Figure 4 shows the histogram of the measure fortwo typical values of a. The results of these com-putations are used later in this paper to exploreproperties of these Julia sets.We will take up the question of the correct nor-malization of Hausdor� measures in Section 5.
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FIGURE 4. Histograms of Hausdor� measure on the Julia set for the mapping z2�a, where a = 3:36 (left) anda = 6 (right). (We have composed with an a�ne transformation to map the interval of interest, with endpoints�(pa+ 14 + 12 ), to the unit interval.) The Hausdor� dimensions are :584332 (left) and :451837 (right). Theparameters for the computation are dmax = 4:1 � 10�5, dave = 4:7 � 10�16 (left) and dmax = 4:2 � 10�5,dave = 9:4� 10�16 (right).

4. DENSITY DIAGRAMSFor � a measure on the unit interval and � a givendimension, we de�ne the full, left and right densityfunctions byd�(�; x; r) = �(Br(x))=(2r)�;dL�(�; x; r) = �([x� r; x])=r�;dR� (�; x; r) = �([x; x+ r])=r�;where Br(x) = [x�r; x+r]. Since we are interestedin the behavior as r ! 0, and this will almost neverbe an ordinary limit, it is convenient to introduce alogarithmic scale for r, so we consider the functionh(x; s) = d�(�; x; c�s) (4.1)for a convenient choice of the constant c > 1. InFigure 5 we show the graph of h(x; s) as a functionof s for a point x chosen at random in the Can-tor set, for � equal to the usual Cantor measure,and � = log 2= log 3. Here it was convenient tochoose c = 3. The graph was generated using Al-gorithm 2.2 with 17 iterations and then using thedouble-precision modi�cation (2.4) once to com-pute the distribution function g of �. It is evidentthat computation error becomes signi�cant arounds = 19, and by s = 21 the graph is totally mislead-ing. However, in the region 0 � s � 15, we have

a reasonably accurate and rapid method for com-puting h(x; s).Figure 6 shows an overlap of all the graphs ofh(x; s) for a random selection of 500 points x inthe Cantor set, for 0 � s � 2. (The procedure weused was to choose one point at random between2(k�1)10�3 and 2k10�3 for 1 � k � 500, and thentake the inverse image under the ramp function ofthese points.) The result is so striking it calls fora de�nition.
Definition 4.1. For � supported on a compact setK,the associated density diagram is the subset of the�rst quadrant of the plane consisting of all pairs(s; h(x; s)) as x varies over K, and s � 0. For each

0 5 10 15 20
0:20:4
0:60:8

FIGURE 5. The graph of the function h(x; s) of(4.1) versus s, for a randomly chosen x. The mea-sure is the usual Cantor measure (that is, S1x= 13x,S2x = 23x+ 13 , p1 = p2 = 12 ), with c = 3.
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�xed s, the density section measure �s is de�ned onthe line by �s(A) = �fx : h(x; s) 2 Ag (the imageof the measure � under the mapping x! h(s; x)),and the density diagram measure � on the plane is� = �s ds.Our main goal in this section is to explain the pe-riodicity and self-similarity apparent in Figure 6and to explore what happens when we use morecomplicated measures �. The periodicity is easyto explain: it arises from the fact that the contrac-tion ratios are the same for the two transformationsde�ning the Cantor set, and the nonzero separationof the two islands of the �rst generation.
Theorem 4.2. Let S1; : : : ; Sm be an i.f.s. of the spe-cial form Sjx = �x+bj, and let � be the self-similarmeasure satisfying

� = mXj=1 1m� � S�1j : (4.2)

Assume that the islands Sj[0; 1] of the �rst gener-ation have a minimum separation " > 0. Choose� = logmlog ��1and c = ��1. Then the density diagram (with Kequal to the attractor of the i.f.s.) is periodic ofperiod 1 in the variable s, for s � (log "= log �)�1,and so are the measures �s and �.
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0:50:6
0:70:8

FIGURE 6. An overlay of 500 graphs of the typeshown in Figure 5. This is the density diagramof the Cantor measure. The horizontal axis is re-stricted to 0 � s � 2.

Proof. Each x inK must belong to one of the islandsSj[0; 1], say x = Sjy with y in K. If r � " thenBr(x) cannot intersect any of the other islands (ex-cept at an endpoint, which has � measure zero), so�(Br(x)) = 1m�(Br=�(y)) by (4.2), since Br=�(y) =S�1j (Br(x)). This says d�(�; x; r) = d�(�; y; r=�)because of our choice of �. Thush(x; s) = h(y; s� 1) (4.3)if r = �s. The condition r � " is the same as s �log "= log �, in which case every point (s; h(x; s)) ofthe density diagram corresponds to a point (s� 1;h(y; s � 1)) one unit to the left. Conversely, ev-ery point (s � 1; h(y; s � 1)) arises in this fash-ion (just take x = Sjy for any j), which provesthe periodicity of the density diagram. The sameargument shows that h(x; s) 2 A if and only ifh(y; s� 1) 2 A, so �s = �s�1 is just the invarianceof �, �(B) =Pmj=1 �(SjB). �If the measure � satis�es all the hypotheses exceptthe minimum separation, so that some islands maytouch (but are still assumed not to overlap), thedensity diagram will only have an asymptotic pe-riodicity. We will not attempt to state this in aprecise form.For the Cantor measure, the periodicity beginsat s = 0. To explain the apparent self-similarity inFigure 6 we restrict to 0 � s � 1 and simplify, bywhat amounts to a horizontal and vertical rescal-ing, by returning to the parameter r and consid-ering only the measure �(Br(x)) rather than thedensity. Thus we are looking at the setD=f(r; �(Br(x))) : 13�r�1; x in the Cantor setg:This is shown in Figure 7. The mapping (r; u) !(log3 r�1; u=(2r)�) is a homeomorphism of D ontothe portion of the density diagram over 0 � s � 1,so we can translate the properties of D back toproperties of the density diagram.The structure of D, which is contained in therectangle R = [ 13 ; 1]� [ 12 ; 1], is given by four a�netransformations T1; T2; T3; T4 of R to itself. We
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write (r; u) for the coordinates of D and (r0; u0) =Tj(r; u). ThenT1� r0 = 13r + 29 ;u0 = 12u+ 14 ;T3� r0 = 13r + 49 ;u0 = 12u+ 12 ;
T2� r0 = 13r + 49 ;u0 = 12u+ 14 ;T4� r0 = 13r + 23 ;u0 = 12u+ 12 :We claim that TjD � D. To see this, observe �rstthat we can restrict 0 � x � 13 in computing D,because the contribution from the island 23 � x � 1is the same. Then, since x� r � 0, we can replace�(Br(x)) by �([0; x + r]). Also, since x + r � 13 ,we have �([0; x+ r]) = 12 + �([ 13 ; x+ r]);so if x + r � 23 then �([0; x + r]) = 12 while ifx+ r � 23 then �([0; x+ r]) = 12 +�([0; x+ r� 23 ])(note that x+ r � 43).To each transformation Tj we associate a map-ping x ! x0 of [0; 13 ] to itself, namely x0 = 13x forT2 and T4 and x0 = 13x + 29 for T1 and T3. Nowfor T1 and T2 we compute x0 + r0 = 13(x + r) + 49 ,which can be written x0 + r0 � 23 = 13(x + r � 23),so that �([0; x0 + r0 � 23 ]) = 12�([0; x + r � 23 ]) ifx + r � 23 . Thus, if (r; u) is a point of D aris-ing from x in 0 � x � 13 with x + r � 23 , thepoint x0 gives rise to the point (r0; u0) in D withu0 = �([0; x0 + r0]) = 12 + �([0; x0 + r0 � 23 ]) =14 + 12( 12 +�([0; x+ r� 23 ])) = 12u+ 14 . On the otherhand, if x+ r � 23 then u = 12 and x0+ r0 � 23 also,so u0 = 12 and u0 = 12u + 14 trivially. This shows
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FIGURE 7. The transform D of the density dia-gram of Figure 6.

TjD � D for j = 1; 2. For j = 3; 4, the argumentis similar, except now x0+ r0� 23 = 13(x+ r) and sou0 = 12 + �([0; x0 + r0 � 23 ]) = 12 + 12�([0; x+ r]) =12u+ 12 , and we always have x0 + r0 � 23 .Thus S4j=1 TjD � D, but this is not the wholestory. There are two line segments L1 = [ 49 ; 59 ]� 12and L2 = [ 79 ; 89 ]�1 that are contained in D but arenot in S4j=1 TjD. In fact,
D = 4[j=1TjD [ L1 [ L2;

and this decomposition is essentially disjoint. ThusD is a relatively self-a�ne set, relative to L1 andL2 (relatively self-similar measures were discussedin [Strichartz 1993b]).If we generate a self-similar measure from thesame i.f.s. using di�erent probabilities, the densitydiagram becomes more complicated. For a lineari.f.s. with contraction ratios rj we take the dimen-sion � = P pj log pjP pj log rj : (4.4)Figure 8 (top) shows the result for p1 = 0:4 andp2 = 0:6.Nevertheless, we can restore self-similarity forsmall values of s by the simple device of separatingthe contributions to the density diagram from eachof the �rst generation islands. This is illustrated inthe second and third panels of Figure 8, where inplace of D we graph D1 and D2 de�ned in the sameway except x is restricted to the portion of the Can-tor set in [0; 13 ] and [ 23 ; 1], respectively. (In gener-ating these graphs we chose the points x randomlyaccording to the measure �.) Now D = D1 [D2,and each Dj is relatively self-a�ne. For simplicitywe deal with D1 only. The four a�ne transforma-tions are now de�ned as follows:T1� r0 = 13r + 29 ;u0 = :4u+ :24;T3� r0 = 13r + 49 ;u0 = :6u+ :4;
T2� r0 = 13r + 49 ;u0 = :4u+ :24;T4� r0 = 13r + 23 ;u0 = :6u+ :4:
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FIGURE 8. Top: The density diagram for the mea-sure associated with the Cantor i.f.s. with weightsp1 = :4, p2 = :6. Middle: The transform D1 of theportion of the top diagram generated by points inthe �rst island, [0; 13 ]. Bottom: The transform D2of the portion of the top diagram generated bypoints in the second island, [ 23 ; 1].Notice that r0 is de�ned as before, and we take x0 asbefore. In this case we have �(0; a) = 23�( 23 ; a+ 23)for 0 < a � 13 , so that �([0; x+ r]) equals� :4 if x+ r � 23 ,:4 + 1:5�([0; x+ r � 23 ]) if x+ r > 23 .

To show that TjD1 � D1 for j = 1; 2, we havex0 + r0 � 23 = 13(x+ r � 23) as before, so�([0; x0 + r0]) = :4 + 1:5�([0; x0 + r0 � 23 ])= :4 + :6�([0; x+ r � 23 ])= :24 + :4�([0; x+ r]);which gives u0 = :4u+ :24 as claimed. For j = 3; 4we have x0 + r0 � 23 = 13(x+ r), so�([0; x0 + r0]) = :4 + 1:5�([0; 13(x+ r)])= :4 + :6�([0; x+ r]);which gives u0 = :6u+ :4, as claimed. Finally, thetwo additional line segments are now L1 = [ 49 ; 59 ]�0:4 and L2 = [ 79 ; 89 ]� 1.Returning to the top diagram in Figure 8, wehave now given an explanation of the left half (thatis, 0 � s � 1) as the superposition of two trans-forms of relatively self-a�ne sets. But the righthalf (1 � s � 2) is just a superposition of twoa�ne images of the left half. In the notation ofTheorem 4.2, we haveh(x; s) = � :4 � 3�h(y; s� 1) if x = S1y,:6 � 3�h(y; s� 1) if x = S2y,and the numbers 0:4 � 3� and 0:6 � 3� are distinctdistortion factors in the vertical direction (in factone is a contraction and one is an enlargement).Thus the image is \smudged" by this superposi-tion, and as s increases the smudging gets pro-gressively worse, until all detail is lost. Also, thedensity diagram is not bounded (or bounded awayfrom zero) as s ! 1. In Section 6 we will de-scribe some averaging processes that will restoreboundedness.We consider next a more complicated example,the i.f.s. S1x = 14x, S2 = 13x+ 23 with p1 = p2 = 12(this is the measure represented in Figure 1). Thetwo a�ne maps have di�erent contraction ratios,and this a�ects the density diagram, shown in Fig-ure 9, and the graphs of D1 and D2 de�ned asabove (using the islands [0; 14 ] and [ 23 ; 1]). At �rstglance it appears that D1 and D2 are similar tothe analogous sets for the previous example, but
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FIGURE 9. Top: The density diagram for the mea-sure in Figure 1 on the scale r = 3�s. Middle andbottom: D1 and D2 for the same density diagram.this is not completely correct. Now there are onlytwo transformations, the analogs of the previousT2 and T3, that map D1 to a subset of D1. Theyare T2� r0 = 14r + 12u0 = 12u+ 14 with x0 = 14x;T3� r0 = 13r + 12u0 = 12u+ 12 with x0 = 13x+ 16 :

The images T2D1 and T3D1 are the lower and upperhalves of the central part of D1, and correspond tovalues of �(Br(x)) as follows: T2 : x lies in theisland S1S1[0; 1] and Br(x) extends to the islandS2S1[0; 1], and T3 : x lies in the island S1S2[0; 1]and Br(x) extends to the island S2S2[0; 1].The upper right and lower left portions of D1are visibly not a�ne images of the whole (notethat the placement of the central \tower" is di�er-ent). However, for each of these pieces we can �ndtwo a�ne mappings analogous to T2 and T3 abovethat map it into itself (the images again being thelower and upper halves of the central portions).For example, the upper right portion of D1 is gen-erated by the values of �(Br(x)) where x lies inthe island S1S1[0; 1] and Br(x) extends to the is-land S2S2[0; 1]. Two a�ne images of this portioncan be generated to cover the smaller portion gen-erated by (a) x in S1S1S1[0; 1] and Br(x) extendingto S2S2S1[0; 1], and (b) x in S1S1S2[0; 1] and Br(x)extending to S2S2S2[0; 1].To give a complete description ofD1 as a relativeself-a�ne set would require an in�nite number ofa�ne transformations, and a vector version of self-similarity as in [Mauldin and Williams 1988].There is a further complication in this examplewhen we try to explain the behavior of the densitydiagram as s increases. Note that we have chosena scale of r = 3�s, while the two contraction ratiosare 14 and 13 , so the base 3 is not in synch with the�rst ratio. This results in a horizontal \smudg-ing" e�ect in addition to the vertical one notedin the previous example (the vertical smudging ispresent here as well because we did not choose theweights to produce the Hausdor� measure on theattractor). In the notation of Theorem 4.2, h(x; s)equals 8<: 124�h�y; s� log 4log 3� if x = S1y,123�h(y; s� 1) if x = S2y,so that we are superimposing dilated versions ofthe density diagram translated by periods 1 andlog 4= log 3.
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These are by no means the most complicateddensity diagrams that can arise in the linear i.f.s.case. For example, the lakes were chosen to berelatively large, so that only one endpoint of eachinterval Br(x) can lie in an island. Examples withsmaller lakes or more than two islands present fur-ther di�culties that we are unable to analyze ex-plicitly. Still, the density diagrams for small s, evenfor nonlinear i.f.s.'s and variable weights, presenta qualitative picture that is analogous to what wehave seen in the previous examples. In Figure 10we show an example for the Hausdor� measure onthe Julia set of the mapping z2 � 3:36 (compareFigure 4, left), where � = :584332 is the Hausdor�dimension.
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FIGURE 10. The density diagram for Hausdor�measure on the Julia set of the mapping z2� 3:36,on the scale r = 3�s.
We conclude this section with a discussion of an-other approach to organizing the information in thedensity functions h(x; s): rearrangements. Recallthat if f(x) is a nonnegative measurable functionon a probability measure space, the nonincreasingrearrangement f�(t) de�ned on [0; 1] is the uniquenondecreasing right-continuous function equimea-surable with f (this means the measure of the setwhere f satis�es f(x) > s is the same as for f�)[Stein and Weiss 1971]. From an algorithmic pointof view it is easy to compute f�: just choose ran-dom sample points and sort the values of f(x) indecreasing order. The idea is that f� contains allthe \size information" about f , and presents it in

a consistent fashion on the standard measure space[0; 1].In our case we want to take the function h(x; s)for x in K and 0 � s � N with the probabilitymeasure d� � ds=N and write h�N(t) for the re-arrangement, and let h�(t) be the limit as N !1. Using the methods of [Graf 1993] it is easyto show that this limit exists for Hausdor� mea-sure on the attractor of a linear i.f.s., and (usingan ergodic theorem) that, for �-amost every x, weget the same function h� by rearranging h(x; s) on0 � s � N with respect to the probability measureds=N , keeping x �xed. For the Cantor measure, ormore generally the measures described in Theorem4.1, the periodicity condition (4.3) means that wecan obtain h� simply by rearranging h(x; s) for xin K and s0 � s � s0 + 1 for su�ciently large s0.For other linear i.f.s.'s, it follows from [Graf 1993]that h� is equal to the rearrangement of h(x; s)over the set f(x; s) : s1(x) � s � s2(x)g wherec�sj(x) = rj(x) is de�ned to be the largest value ofr such that Br(x) lies entirely in the j-th genera-tion island containing x. (The measure d�� ds onthis set has to be normalized to be a probabilitymeasure; also rj(x) may be zero on a set of measurezero). We have not implemented this constructionbecause of its complexity.

0 0:2 0:4 0:6 0:8 10:50:6
0:70:8

FIGURE 11. The rearranged density function h�for the Cantor measure, computed by choosing1000 random points x and sampling h(x; s) at 1000regularly spaced values in 0 � s � 1.In Figure 11 we show h� for the Cantor measure,obtained by computing h�1. In Figure 12 we show
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FIGURE 12. The approximation h�5 to h� for two measures. Left: the measure in Figure 1, using � given by(4.4) and c = 3. Right: the Hausdor� measure on the Julia set of the mapping z2 � 3:36, with � = :584332and c = 3. In both cases the �gure was computed by choosing 1000 random points x and sampling s at 1000regularly spaced values in 0 � s � 5.h�5 as an approximation to h� for two measures.On the left we use the measure of Figure 1. Sincethis is not the Hausdor� measure for the attrac-tor, the previous discussion does not apply, and infact we know that the limit h�, if it exists, mustbe unbounded. On the right we do the same forthe Hausdor� measure on the Julia set of the map-ping z2 � 3:36. In this case we expect h� to bebounded, but the existence of the limit has not yetbeen established.
Problem 4.3. Under what conditions does the limith� exist? When can we assert that, for � almostevery x, the rearrangments of h(x; s) on 0 � s � Nconverge to h�?We would also like to raise the inverse question:
Problem 4.4. Can you recover the measure � fromthe rearranged density function h�? If not, howmuch information concerning � is contained in thefunction h�?
5. COMPUTATION OF HAUSDORFF MEASUREIf E is any set of �nite nonzero Hausdor� measureH� in dimension �, the upper densitylim supjIj!0 H�(E \ I)jIj�for x contained in I, is one for almost every x in E(with respect to H�) [Falconer 1985]. We want to

turn this observation around in order to computeH� restricted to E exactly, in situations where weknow how to compute H� up to a constant multi-ple.Consider �rst the case of a linear i.f.s. with nooverlaps. If Sjx = �jx + bj are the mappings, thechoice of natural weights pj = ��j (with � chosen sothatPmj=1 pj = 1) leads to a self-similar probabilitymeasure � that must be a multiple ofH� restrictedto the attractor K:c� = H���K : (5.1)Because of the self-similarity, it is easy to see thatthe upper density can be given by a simple supre-mum, namely supI H�(I \K)jIj� = 1;where the supremum is taken over all intervals Iin [0; 1]. In fact it is also easy to see that the inter-vals must have both endpoints in K, for if not wecould contract the length of the interval withoutchanging the measure. Thus we �nd the constantc in (5.1) via
c�1 = supI �(I)jIj� : (5.2)It is not di�cult to design e�cient algorithms tosearch through enough plausible choices for I to
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compute this supremum, and to produce a con-jectural interval that attains the supremum. Thepoint is that if ~I is such an interval, then so isSj ~I for any mapping in the i.f.s., or, more gen-erally, SJ ~I, J = (j1; : : : ; jn), for any compositionof mappings. (Here SJ = Sj1Sj2 � � �Sjn .) We canalso expand the interval ~I by applying S�1j if ~I iscontained in the �rst generation island Sj[0; 1], andstill maintain the supremum in (5.2). In displayingthe interval ~I, we always repeat this expansion un-til ~I is not contained in any �rst generation islands.This gives us a \largest" example.
Lemma 5.1. Suppose that the islands of the �rst gen-eration are all separated . Then there exists an in-terval ~I that achieves the supremum in (5.2).
Proof. Let fIjg be a sequence of intervals such that�(Ij)jIjj� (5.3)approaches the supremum as j !1. By repeateduse of the expansion argument we may replace Ijwith another interval that is not contained in anyisland of the �rst generation, without changing theratio (5.3). Having done this, we have a positivelower bound for the length of all Ij by the small-est length of the �rst generation lakes. Then bya compactness argument we can pass to a subse-quence that converges to a nondegenerate interval~I. Since we know the measure has no atoms weobtain �(~I)j~Ij� = limj!1 �(Ij)jIjj� ;so the supremum is attained. �
Lemma 5.2. Let I be an interval . Then given any" > 0 there exists a set E" with �(E") � " and a�nite disjoint covering of K n E" by images of Iunder iterated similarities SJ .
Proof. Let FN denote the �eld of sets generatedby the islands and lakes of the N -th generation.Suppose �rst that I belongs to FN for some N .We will construct inductively a disjoint sequence

SJ1I, SJ2I, : : : whose union �lls up K, except fora set of measure zero. The sequence begins withS1I; S2I; : : : ; SmI, which are disjoint and satisfy�(S1I [ � � � [ SmI) = ��(K)for some positive �, so
��K n m[j=1SJjI� = (1� �)�(K):

Now Smj=1 SJjI belongs to FN+1, so its complementcan be written SMi=1 SJ0iK for some collection ofmulti-indices J 0i of length N + 1. We continue oursequence with SjSJ0iI letting j vary over [1;m] andi vary over [1;M ]. The sequence remains disjoint,but now the complement has measure (1��)2�(K)and belongs to F2N+2. We can continue this pro-cess inde�nitely, each time obtaining a disjoint se-quence of images of I whose complement has mea-sure (1� �)n�(K).Finally, if I does not belong to any FN , we canenlarge I slightly to I 0 � I, so that I 0 belongs tosome FN and �(I 0 n I) � "�(I). Then we applythe above construction to I 0 and shrink back to I.The shrinking preserves disjointness, and we canmake the measure of the complement as small aswe want by taking " small enough. �If we can �nd an interval ~I that achieves the supre-mum in (5.2), Lemma 5.2 e�ectively tells us how tocover K so as to calculate the Hausdor� measureexactly.We examined in detail the case r1 = r2 = r3 = :2with �rst and third islands anchored at the endsof the unit interval, and the middle island oat-ing in between, so S1x = :2x, S2x = :2x + b2and S3x = :2x + :8, with :2 � b2 � :4 (the range:4 � b2 � :6 yields equivalent attractors under re-ection). For b2 = :4 the islands are symmetricallyarranged and it is known that the supremum in(5.2) is one, attained by I = [0; 1]. See [Falconer1985] for a proof, which will also work if b2 is suf-�ciently close to :4. We experimentally estimatedthe supremum for values of b2 incrementing by :02
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from :2 to :4. We used an ad hoc procedure tosift through a reasonable selection of intervals fromF10. After �nding an interval that achieved themaximum, we expanded it until we obtained an in-terval not contained in any �rst generation islands.Altogether we found only four di�erent island con-�gurations, the most complicated belonging to F3.These con�gurations are illustrated in Figure 13(left) for typical values of b2. To con�rm these esti-mates and to locate the transition points from onecon�guration to the next, we present in Figure 13(right) the graph of the exact value of �(I)=jIj� foreach of the four con�gurations as a function of b2.In addition we have graphed two other con�gura-tions, one from F4 and one that does not belong toany FN, that seemed like plausible candidates forachieving the supremum; both fail decisively to bein contention.In the summer of 1994 (after the �rst versionof this paper was completed), the �rst author and

Elizabeth Ayer applied the experimental methodjust described in a more systematic fashion. Theresults obtained [Ayer and Strichartz 1995] showthat it is not always true that the supremum isachieved by an interval in FN for some N , andthat the exact Hausdor� measure is a discontinu-ous function of the parameters of the linear i.f.s.Also, after this work was completed, we becameaware of earlier work [Marion 1986; 1987] that dealswith the same problem using a similar approach,and contains results equivalent to Lemmas 5.1 and5.2.Next we consider the attractor of a nonoverlap-ping i.f.s. with nonlinear mappings. In Section 3 wedescribed an algorithm for computing an approx-imation to a multiple of Hausdor� measure, nor-malized to be a probability measure. We can ap-ply essentially the same procedure as in the linearcase to compute approximately the correct normal-ization. In this case we cannot replace the lim sup
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FIGURE 13. Left: Con�gurations of intervals of maximum density for four typical \oating island" examples.Vertical ticks above each baseline mark the endpoints of islands in F1, F2 and F3 (largest lines for F1, shortestfor F3). A bracket below the baseline indicates the interval of maximum density. Example 1 (bottom) hasb2 = :4, so the oating island is in the middle and the entire interval is the interval of maximum density.Example 4 (top) has b2 = :2, so there is no lake between the �rst two islands in F1. Right: Plots of �(I)=jIj�as a function of b2 for six con�gurations, the �rst four being the ones shown on the left. Curve a correspondsto [0; 1], curve b to S1[0; 1] through S2[0; 1], curve c to S1[0; 1] through S1 � S2[0; 1], curve d to S1 � S3[0; 1]through S2 � S2 � S2[0; 1], curve e to S0[0; 1] through S2 � S2 � S2 � S2[0; 1], and curve f to S0[0; 1] throughlimS2 � � � � � S2[0; 1]. Note that e and f are always below c, but sometimes above a, b and d.
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with a sup. However, it is plausible to approximatethe lim sup with the supremum in (5.2) where thesize of the intervals jIj is restricted to be small,but is allowed to vary considerably. A graph of thefunction '(r) = supn�(I)jIj� : jIj = rofor some examples (Figure 14) shows a similar pat-tern for both linear and nonlinear examples: lo-cal maximum peaks occur regularly, and the localmaxima appear to converge rapidly to what is pre-sumably the lim sup.The procedure we used was based on intervalpartition data (J; �) generated without any consol-idation, so the intervals of J are exactly the islandsof the last generation. We chose 1000 of these is-lands at random and maximized �(I)=jIj� over allintervals starting at the left at one of the chosen

islands and extending to the right between 100 and900 islands. The choice of a minimum length of 100islands for the intervals was made to overcome theinevitable lack of accuracy in the computation ofthe measure on the smallest scale. By allowing arange of 100 to 900 islands we are sure to includeseveral local maximum peaks of '(r).We present the results of this procedure on theJulia sets for z2 � a in the range 2 � a � b inTable 1. Note that 2b is the diameter of the Ju-lia set. Since we performed the procedure on thescaled version (a�nely transformed to have diam-eter one), the reciprocal of the maximum densitygives the relative Hausdor� measure �(K)=jKj�.It is intriguing that this function appears to showa discontinuity at a = 2. This possibility deservesfurther investigation, but this will require a moreaccurate procedure. Note that the region arounda = 2 involves large derivatives of the functions
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FIGURE 14. Graphs of supf�(I)=jIj� : jIj = rg on a logarithmic scale. Top left: Cantor measure. Theperiodicity and the value 1 for the maximum are expected. Top right: \oating island" example with b2 = :2.The asymptotic periodicity is expected. The graph beyond s = 8 is degraded by computational error. Bottomleft: measure in Figure 1. Because the contraction ratios 14 and 13 are distinct, no periodicity is expected.Bottom right: Hausdor� measure on the Julia set in Figure 4.
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�px+ a (the derivative becomes unbounded ata = 2), so it may be very di�cult to obtain the de-sired accuracy. The computations we did for a = 2are somewhat reassuring. The error in the dimen-sion was 2 � 10�6, and the error in the relativeHausdor� measure was 10�4, which is small com-pared to the apparent size of the jump discontinu-ity (3� 10�2) of the relative Hausdor� measure.a b � max dens �(K)=jKj� �(K)2.00 2.0 0.999998 1.000104 0.999896 3.9995702.31 2.1 0.766235 1.037192 0.964142 2.8953182.64 2.2 0.681853 1.030990 0.969942 2.6637032.99 2.3 0.625882 1.025456 0.975176 2.5344923.36 2.4 0.584332 1.021211 0.979230 2.4488143.75 2.5 0.551618 1.018020 0.982299 2.3867574.16 2.6 0.524880 1.015831 0.984415 2.3388064.59 2.7 0.502441 1.013995 0.986198 2.3011715.04 2.8 0.483233 1.012437 0.987716 2.2708125.51 2.9 0.466536 1.011124 0.988998 2.2457546.00 3.0 0.451837 1.009989 0.990110 2.224749
TABLE 1. Computed values of Hausdor� dimen-sion �, maximum density, relative Hausdor� mea-sure, and Hausdor� measure, for the Julia set ofz2 � a on the interval [�b; b]. The relative Haus-dor� measure is the reciprocal of the maximumdensity, and the Hausdor� measure is the relativeHausdor� measure multiplied by (2b)�.

6. AVERAGE DIMENSIONS AND DENSITIESThe entropy dimension of a measure �, if it exists,is the limit limr!0 R log�(Br(x)) d�(x)log r :It is shown in [Young 1992] that if the measuresatis�eslimr!0 log�(Br(x)log r = � for �-a.e. x; (6.1)the entropy dimension exists and equals �. Theassociated density question is the behavior of'(r) = Z log �(Br(x))(2r)� d�(x) (6.2)

as r ! 0. If the limit of '(r) exists, we call its ex-ponential the entropy density, but usually we needto consider upper and lower entropy densities de-�ned by the lim sup and lim inf. Because (6.2) in-volves averaging, we can expect to see better be-havior than for the pointwise ratio �(Br(x))=(2r)�.For the measures we are considering it is usuallyeasy to compute � and study the behavior of (6.2)experimentally. (To approximate the integral by aCauchy sum we partition the interval [0; 1] by tak-ing the inverse image under the ramp function of auniform partition, and evaluate the integrand at arandom point in each subinterval.) For a nonover-lapping linear i.f.s. with constant weights pj, thevalue of � in (6.1) is just� = P pj log pjP pj log rj : (6.3)For the general (nonoverlapping) case the presumedvalue of � is � = PR pj log pj d�PR pj log jS0jj d�: (6.4)For a proof in the case of constant weights (andcontractivity) see [Strichartz 1993b]. For � equalto a multiple of Hausdor� measure on K, the en-tropy dimension equals the Hausdor� dimension inessentially all the cases we are considering.In Figure 15 we show the graphs of '(r) as afunction of log r for some typical cases. The �rstthree examples can be easily explained.
Theorem 6.1. Assume the i.f.s. is linear and sepa-rated (there is a positive distance between islandsSj[0; 1]) and the weights pj are constant . Then for' given by (6.2) and � given by (6.3), we havelimr!0('(r)� ~'(r)) = 0;where
(a) ~'(r) is a continuous, positive multiplicativelyperiodic function (that is, ~'(�r) = ~'(r)) if thecontraction ratios satisfy rj = �kj for positiveintegers kj and some �, and
(b) ~'(r) is a positive constant otherwise.
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FIGURE 15. Graphs of '(3�s) versus s. Top left: Cantor measure; computational error begins to degrade theresults around s = 8. Top right: measure of Figure 1; convergence to a constant is slow. Middle: measureassociated to the Cantor i.f.s. S1x = 13x, S2x = 13x + 23 with weights p1 = :4, p2 = :6; computational errorbecomes noticeable around s = 6. Bottom left: Hausdor� measure on the Julia set of z2 � 3:36. Bottom right:Hausdor� measure on the Julia set of z2 � 6.In both cases the upper entropy density is �nite andthe lower entropy density is positive, and in case(b) the entropy density exists.
Proof. We will show that ' satisfes'(r) =X pj'� rrj � (6.5)

for all su�ciently small r. The conclusion thenfollows from the renewal theorem (see [Lau 1992]for a similar application of this method).We will prove (6.5) for all r less than the min-imum separation between �rst generation islands,so that Br(x)\K lies entirely inside SjK, for eachx in SjK. Thus
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�(Br(x)) = pj�(Br=rj(S�1j x))andZSjK log�(Br(x)) d�(x)= pj log pj + pj ZK log�(Br=rj(y)) d�(y)after a change of variable. Summing on j we get'(r) + � log 2r=X pj log pj +X pj�'� rrj �+ � log 2rrj �which yields (6.5) upon simpli�cation. �It seems likely that the result remains valid if wedrop the separation hypothesis, and assume onlythat the i.f.s. is nonoverlapping, since the applica-tion of the renewal theorem allows an error termin (6.5). The behavior seen in the last two panelsof Figure 15 for Hausdor� measure on Julia setssuggests that conclusion (b) of the theorem maywell hold for many nonlinear i.f.s.'s and variableweights.
Problem 6.2. Under what conditions does (6.4) givethe correct value for the entropy dimension? Whendoes conclusion (b) of Theorem 6.1 hold?A related notion is the L2 dimension, de�ned bylimr!0 log R �(Br(x)) d�(x)log rif the limit exists. See [Strichartz 1993b] for severalequivalent de�nitions. The existence of the limit isproved in [Lau 1992] for linear i.f.s.'s and constantweights, with the value given by the unique solu-tion � of the equationX p2jr��j = 1: (6.6)The existence of the limit for nonlinear i.f.s.'s andconstant weights is proved in [Strichartz 1993b],but there is no e�ectively computable formula anal-ogous to (6.6) for the value of the limit. The L2dimension is related to the asymptotic behaviorof the Fourier transform of the measure (for these

ideas see the above papers and also [Lau and Wang1993; Strichartz 1990a; b; 1991; 1993a; 1994; Ja-nardhan et al. 1992].Once the L2 dimension � is determined, we canform the function (r) = Z �(Br(x))=(2r)�d�(x)and de�ne the upper and lower L2 densities asthe lim sup and lim inf of  as r ! 0. Actually,slightly di�erent de�nitions are used in [Lau 1992]and [Strichartz 1993b], which yield equivalent butnot identical density values. It is easy to modifythe proof of Theorem 6.1 to obtain the analogousresult for  (r); in place of (6.5) we have (r) =P p2jr��j  (r=rj)for small r. The analogous result for the relatedde�nition of L2 density is proved in [Lau 1992]under weaker hypotheses (nonoverlapping ratherthan separated i.f.s.).In Figure 16 we show the graphs of  on a log-logscale for the same examples as before. For the lin-ear i.f.s. cases we used (6.6) to determine �, whilefor the Hausdor� measure on Julia sets we usedthe Hausdor� dimension.The density results for the Julia sets suggest thatsomething more is going on. In Figure 17 we givethe plot of the maximum and minimum values of�(Br(x))=(2r)�as x varies over K as a function of log r for twoof these Julia sets. This suggests that there areuniform upper and lower bounds,0 < c1 � �(Br(x))=(2r)� � c2 <1 (6.7)for all x in K and r � 1. Such estimates wouldimmediately imply the equality of all dimensionsand the boundedness (and boundedness away fromzero) of all densities.
Problem 6.3. Under what conditions does the Haus-dor� measure on an attractor K of an i.f.s. satisfy(6.7)?
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FIGURE 16. Graphs of log (3�s) for the same measures as in Figure 15.
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0 2 4 6 8 100:40:5
0:60:7
0:8

FIGURE 17. Graphs of the maximum and minimum values of �(Br(x))=(2r)� (as a function of s for r = 3�s)as x varies, for the same Julia set measures illustrated in the bottom row of Figures 15 and 16.
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