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Our investigations in the 1980’s of Thue’s method yielded de-
terminants that we were only able to analyse successfully in
part. We explain the context of our work, recount our expe-
riences, mention our conjectures, and allude to a number of
open questions.

1. INTRODUCTION

During 1983, and again in 1986, we attempted the
explicit construction of the auxiliary polynomial
required in Thue’s method, as then recently re-
fined by the first author. That led to our battling,
and partly taming, some interesting determinants.
Of course, the moment we finished we found an
easier way. Nevertheless, the context warrants ex-
plaining, and our experiences seem worth recount-
ing. Although our program has been only partially
successful, we hope that telling its story may con-
tribute to its eventual completion.

In passing, and perhaps peripheral to our prin-
cipal objective, we noticed a host of fascinating
facts and some curious identities. All are surely
of intrinsic interest. We mention those facts and
display our conjectured identities.

2. APPROXIMATION OF ALGEBRAIC NUMBERS BY
ALGEBRAIC NUMBERS

Let a # 0 be algebraic of degree r over Q, with
minimal polynomial over Z given by

f(X)=aX"+a X" '+ +a,1X +a,
= aOH(X —oa),

[o
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where o runs over all distinct embeddings of Q(«)
into C.

We define the absolute logarithmic height h(c)
of a by

h(a) = log H ()
= % <log lag| + > max(0, log |0a|)>

1
= — Zd” log™ |,
r v

with the latter sum over the appropriately nor-
malised absolute values v of Q(«); here d, is the
degree of the complete field Q(«), over the com-
plete field Q,. As usual, log™ z = max(0,logz). It
is also convenient to define hA(0) = 0. The abso-
lute values are normalized so that their restriction
to the rational field Q coincide with the usual p-
adic or real absolute values. The second definition
of height, with the same normalization for the ab-
solute values, makes sense in any number field K
containing «, provided we take r to be the degree
of K; the height so defined is independent of K,
whence the name absolute height.
It is a nice exercise to verify that

1t .
log H(a) = + / log | (e27)] dt.
0

It is a theorem of Kronecker, and not completely
trivial, that h(a) = 0 if and only if « is a root of
unity or 0.

We also have the useful facts, which we shall use
without further warning, that

h(1/e) = h(e),
h(oa + -+ + o) < h(ow) + -+ - + h(a,) + logn,
h(af) < h(a) + h(B),
the first equation being of course restricted to non-
ZEro «.
The product formula says that either @ = 0 or

>, log|al, = 0. We easily deduce the fundamental
inequality of diophantine approximation:

a=0 or logl|a]>—rh(a).

Then, if p/q € Q and a # p/q, we have a precise
form of Liouwville’s Theorem:

| —p/ql = (2H (a) max(|p}, |q])) ™"
Indeed, set 8 = a —p/q. Then

h(B) < h(a) + h(p/q) + log?2,
and the result follows from h(1/8) = h(B) and the

fundamental inequality.

It is worthwhile to endeavour to sharpen Liou-
ville’s inequality. Henceforth let » > 3. Consider
the binary form

Y'f(X/Y)=F(X,Y)
=X "+, XYW+ ta, XY +a, Y

and an equation
F(X,Y) =m.

If |a — p/q| > q7#~¢ for ¢ > Qo(e), any € > 0
and a fixed p < r, then the equation has only
finitely many solutions in integers. In fact, sup-
pose q¢"f(p/q) = F(p,q) = m. Let a be the zero of
f closest to p/q. Taking the logarithmic derivative
we obtain

f’(p/q)‘ 1 r__.
Tl 2 A S el
therefore |a — p/q| < r|m|q~"|f'(p/q)|™*. Since

f(p/a) =mq™",

we have that p/q is close to « for sufficiently large ¢,
and since f'(a) # 0 we see that f'(p/q) is bounded
away from zero for large q. This contradicts the
sharpened Liouville inequality.

A. Thue showed in 1909 that

o —p/q| >q "7,

with p = 2r+41, for ¢ > Qo(e). This was improved
by Siegel in 1921 to, in effect, u = 24/r. F. Dyson
in 1947, and independently A. O. Gel’fond in 1949,
obtained p = v/2r. Finally, K. F. Roth in 1955
proved the best possible result ; = 2, independent
of r > 2.
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But these results are ineffective. One proves that
Qo exists, but there is no method for obtaining it
explicitly.

More recently, there have been general effective
results. The ideas introduced by A. Baker in 1966
led to u = r—n, effectively, thus obtaining the effec-
tive solution of the general Thue equation. Baker’s
methods are quite different from those described
here, and 1 > 0 is in general rather small.

Loosely speaking, the reason for the ineffectiv-
ity in Thue’s method and its developments is as
follows: Thue’s method, as refined by Gel’fond,
leads to the result that there are two functions

Q1 = Q1(,¢) and Q2 = Q2(a, €, ¢1) such that if

o —pi/qu] < ;" and  |a—pa/qa| < g™

for g¢; > @Q;, then pyus < 2r +¢e. Taking py = py >
V2r we easily see that we cannot have an infinite
sequence of solutions to |a — p/q| < ¢ #*, which is
the Dyson—Gel’fond Theorem.

Ineffectivity comes from the fact that Q. de-
pends on the denominator q; of the first approxi-
mation: One must exhibit the approximation p; /¢
in order to determine (). Unfortunately @, is
rather large, so large that no examples of the first
inequality being satisfied with p; usefully larger
than 2 are known to us. Thus although @; and Q-
are explicit there is nothing to which to attach, or
anchor, Thue’s method to obtain effective results.

That @, is large was inherent to Thue’s original
method. The basic argument can be summarized
as follow.

Step 1. Construct an auxiliary polynomial P €
ZIX,Y], of bidegree (N, N3) and with small co-
efficients, such that the initial Taylor coefficients
of P at (o, ) vanish.

Step 2. Next, note that P(p1/q1,p2/q2) is a rational
number with denominator at most ¢'*¢2"?, hence
either it is 0 or at least 1/(q;'qy?) in absolute
value. Then use the Taylor expansion of P at (a, «)
and step 1 to deduce that |a—p;/qg;| < g; ** implies
that P(p1/qi, p2/q2) is exceedingly small, and so,
by the preceding remark, that P(p1/qi, p2/q2) = 0.

Step 3. Prove directly that, possibly replacing P by
a partial derivative of rather small order, we have
P(p1/q1, pa/q2) # 0, and deduce that we cannot
have the two approximations |a — p;/qi| < ¢; "%,
where 7 = 1,2, whose existence was supposed in
step 2.

The basic idea used by Thue and other researchers
to show the key step 3, namely P(p:1/q1, p2/q2) #
0, was a two-dimensional version of the obvious fact
that a polynomial g in one variable, with rational
integral coefficients and with a rational root p/q
of multiplicity m, has leading coefficient divisible
by ¢™. In particular, for some h < m, there is a
derivative g™ (p/q) # 0 as soon as ¢ > H(g)'/™,
that is, if ¢ is sufficiently large.

This approach to step 3 obviously required ¢;
large, and Thue’s method remained ineffective. In
1982, however, the first author noticed in Dyson’s
work a different method for showing that the auxil-
iary function does not vanish at the approximating
point.

The old method relied on the principle that the
height of a zero of P is controlled in terms of the
height of P—hence the large size of @J;. Dyson’s
observation was that the number of zeros, counted
according to multiplicity, in a finite set of zeros
of P is controlled by the bidegree of P and the
number of distinct such zeros. The upshot is that
there need be no lower bound on @), at all.

Suppose we have constructed a polynomial

N1 N2
P(X,Y)=) ) a;,X"Y” € Z|X,Y]

J1=03j2=0

such that P # 0 but lots of partial derivatives van-
ish:

POvE) () a,) =0 for 63y /Ny + 050y /N, < t.

Here Q(a) = Q(c2) is of degree r over Q, and the
f; and t are parameters satisfying 6,0, = 1, with
t<B,<t!and %rtz < 1.
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Say we have constructed P with height H(P)—
the height of the vector of coefficients of P—where

log H(P) < A1 Ny log H (1) + A2 Ny log H ().

Here A; and A, depend on the various parameters
of the question. This is not difficult to achieve,
and should be seen as little more than defining the
A;. In fact, we will see that the construction is
a matter of somehow solving ~ %rtleNQ linear
equations in ~ N; N, unknowns.

Then carrying out the three steps outlined before
(but using Dyson’s method in step 3) yields what
may be called the Thue—Siegel Principle [Bombieri
1982]:

Thue-Siegel Principle. Suppose that (3, and (s are
rationals, that oy is algebraic of degree r > 2 and
that az € Q(ay). Let also t, T be real numbers with

V2 —rt? <1 <t. Then, if
2601

jon = B| < (M H(an) ™ H(Br)) 7
and
c* H(az)"2H (f) > (" H(an)" H(f)) mﬁ,

we have
265

|0¢2 - ,82| > (CAzH(ag)AzH(/Bz))_;.

Here c is a small absolute constant: ¢ = 3 will do.
There is no lower bound on H ().

We should mention that this introductory de-
scription readily allows the base field Q to be re-
placed by any fixed number field; moreover, the
absolute value | | may be deemed to stand for any
properly normalized absolute value, archimedean
or nonarchimedean. Versions involving several ab-
solute values, useful for certain applications, can
also be obtained rather easily.

By construction, P vanishes ~ %tleNz times
at each of the r conjugate points (cay, oas). All
will be well if P does not vanish too often (that
is, if not too many contiguous partial derivatives

vanish) at (81, 32). Say
PR (8, 85) # 0

for some (i1,12) with
917:1 927:2
—+ —<7
N, N, —
In this context, Dyson’s Lemma asserts that

%Tt2N1N2 + %T2N1N2 < N]_Nz + %Tsz.

On the left is the number of zeros counted accord-
ing to multiplicity. There are however just r+1 dis-
tinct such zeros. On the right we have, as it were,
the “volume” N; N, of P, and an adjustment term
%TN22 depending on the number of distinct zeros.
Of course it is the asymmetric form of that ad-
justment term that provides the real profit. That
bounds 7, allowing one to employ P(™, so to speak,
as one’s auxiliary function in place of P, the point
being that automatically P (3, 3;) # 0, yielding
the key step 3. In the argument one eventually lets
Ny, Ny — oo so that Ny/N; — 0.

Ideally, also t /* \/2/r, 6, \,t and 7 \, 0. In-
deed, if one could always perform the construction
with A; = 1, allowing 7\, 0, one would seemingly
even have Roth’s Theorem. But in practice one
still has difficulties with the anchor condition

2601

lar — B1| < (¢ H(cn) M H(By)) -,

although even back in 1982 that could be arranged
to hold in infinitely many number fields. The trou-
ble was, and remains, that the only obvious general
construction leads to

Ay = Lrt? /(1 — 1rt?),

which unfortunately increases to oo ast \/ﬁ

That led Bombieri and Vaaler [1983] to restudy
the problem of solving systems of linear equations
and obtaining economical integer solution vectors.
In vulgar terms, they show that one obtains a gen-
eralisation of Cramer’s rule yielding solutions as
quotients of determinants. In more highbrow terms,
they find an upper bound for the geometric mean
of the heights of a basis of solution vectors in terms
of the height of the linear system. Whatever, in the
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present situation one finds oneself studying deter-
minants of the maximal square minors of a matrix
with typical entry

jl j2 J1—%1  J2—i2
X .
(il) (Zz) noOn

Here columns are indexed by the pairs (ji, j2) and
rows by the triples (h,i;,42). Constraints are 0 <
Z =7/N, <land 0 <W = j3/N, < 1; and on
setting w = i, /Ny, z = i2/N, also 61z + 6w < t.
We found it congenial to write (z,ys) for

(Uhal, Uha2)7

soh=1,2,...,r.

One’s hope is to discover that these determinants
have many factors in common. Then such factors
may be ‘cancelled’ and the complementary factors
remaining might allow one to proceed to the limit
t,/ \/ﬁ, so also 7\ 0, leading to a small A;.

Accordingly, during much of 1983, Bombieri and
van der Poorten made a detailed and exhausting
study of determinants

jl j2 J1—11 J2—i2
i .
‘ <21) (12> G

The need to bolster our flagging confidence even-
tually led us to designate David Hunt to assist and
hit these objects with his computer.

Remark. This ‘setting the scene’ section, and the
comments immediately following, are a reasonably
faithful rendition of a lecture given by the third au-
thor at the annual meeting of the Japanese Mathe-
matical Society in April, 1984. Since then, Dyson’s
Lemma has been explained [Viola 1985], trivialised
[Beukers et al 1991], generalised [Vojta 1989], and
extended to the case of many variables [Esnault
and Viehweg 1984]. See also [Vojta 1991; Viola
1992]. The several-variable result [Esnault and
Viehweg 1984] yields Roth’s theorem in ineffective
form—the chain of anchor conditions cannot be
realised—but with significantly improved explicit
parameters; see [Bombieri and van der Poorten
1988].

The new approximation method has acquired
the name ‘The Thue Principle’. There is a va-
riety of applications; see, for example, [Bombieri
and Mueller 1983]. More recently [Bombieri 1993]
it has become apparent that an equivariant gener-
alization of the Principle, with various refinements
whose genesis is about to be described, does yield
effective approximation in all algebraic extensions
of number fields.

3. CONFLUENT VANDERMONDE DETERMINANTS

Thus, in 1983, the first and third authors attacked
the determinants

jl j2 J1—i1, j2—i2
X
‘ <Zl) (@2> R

with the hope that all such determinants might
share substantial common factors in the ‘variables’
x5, and y;, thereby significantly decreasing the crit-
ical parameter A;.

Recall that the rows are given by the triples
(41,92, h) with z = 4;/N; and w = i3/N, lying in
the triangle 6,z + 60w < t. Because h=1,2, ..., 7,
there are r such triangles, each of ‘volume’ ~ %t2 in
the normalised unit square. So, as already noted,
we must have 1rt® < 1.

The columns are pairs (j;,j2). Setting Z =
j1/N1 and W = jy/N,, the columns of each deter-
minant in effect comprise a subset J of area %rtz of
the ‘column unit square’. Thus we are concerned
with factors common to all the determinants as J
ranges over all subsets with |J| ~ Zrt>. In the
one-dimensional case our determinants reduce to
|(Z)x§ft , and one is faced by a confluent Vander-
monde determinant. This is not all that dread-
ful. Suppose we have rt = 1, and study the full
determinant A, corresponding to %rt2 = 1 in the
two-dimensional case. A naive strategy to cope
with these confluent objects is simply to consider
an honest-to-goodness Vandermonde determinant
|27 .|, viewing variables x,; with the same h as dif-
fering only by infinitesimals. One now divides by

b
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the infinitesimals, to wit by [T, _, [T, . (zri — znir),
nakedly revealing that

A = :l:V(1+o(1))t2N2

with V; = [, (zn — zn). The naive strategy
also exposes the detail of the symmetric factor ad-
ditional to the difference product in the general
case 7t < 1. These matters are mentioned in the
literature, and one can turn to [Muir 1911] and the
treatise [Muir 1933] with advantage; see also [van
der Poorten 1976]. Incidentally, in studying that
general case it turns out to be a good strategy to
pretend to still be in the easy full case A. Thus,
rather than omitting (1—7¢t) N columns, one simply
acknowledges that (1—rt)N of the rows are ghosts,
present only as 0’s and a 1 in the column that was
to have been omitted. The z;; corresponding to
ghost rows thus manifest themselves as a sort of -
function, with all their powers infinitesimal, other
than that 2" = 1. Here the j(hi)-th column is
the one reprieved by the spectre of the hi-th row.
In the two-dimensional case it is not at all obvi-
ous a priori that our determinants have any differ-
ence factors at all, even if %rt2 = 1. The trouble
is that x;, and y; are tied together: if all pairs
(zh,yn) were to appear, our problem would fac-
torise as a Kronecker product of matrices in one
set of variables. But in general there need be no
difference factors at all; yet, remarkably:

For r = 3, the full determinant (thus 3rt*> = 1)

(21 19

factorises completely as a product of difference fac-
tors

1

v,

1 1
—602t3+o(1))N12N2 t2—691t3+o(1))N1N22

1,
e(b, )V

We say more about the constant c(D.,t) be-
low. Actually, we should be more careful in quot-
ing those exponents, because we failed to say that
our remark above presumes N;, N, — oco. In the

‘finite’ case the exact exponent of V, is, for exam-
ple,

2N | = SN (N + N2 = i

When %rt2 < 1, as it must be in the actual
construction of an auxiliary polynomial, one loses
some difference factors. .. in fact, possibly as many
as (1 — £3t*) N7 N, copies of V,. The upshot ap-
peared to be that we could prove that 1 < A; < 3,
depending on delicate properties of ;. For a; =
v/a our arguments plainly suggested 4; = 1. As it
happened, that case was understood [Bombieri and
Mueller 1983], and our joy subsided as it rapidly
dawned on us that we were choosing to forget the
influence of ¢(™. ,t) on the actual value of A;.

When above we defined the A; in describing the
height of the auxiliary polynomial P we might have
constructed, we should have written something like

log H(P) < By N, log H(a1) + BaNylog H ()
+ C1N1 + C2 Ny,

emphasising that the A; come in two parts, with
the parts C; independent of the H(c;). Our re-
marks immediately above apply to B;, rather than
to A;. Still, our temporary lapse had proved prof-
itable. Our fervor to factorise A might have been
greatly lessened had we been fully conscious that
it was just a first easier step.

There is little purpose in trying to detail the
contortions that led to our, now seen to be par-
tial, success in the case r = 3. Once we had the
factorisation of A we rapidly found simpler ex-
planations for it. Still, it may be interesting to
mention that, en route, as we discovered more and
more batches of difference factors more and more
closely comprising all, our confidence did falter. In
truth, we had not anticipated the complete factori-
sation in the general cubic case, and feared we must
have overshot. During a long afternoon, evening,
and night the first author computed, by hand, an
18 x 18 determinant for r = 3 with N; = 5 and
N, = 2 and found it to be divisible by all the dif-
ference factors to their appropriate multiplicities.
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That had an amusing side effect in severely balk-
ing the attempts by the second author to debug his
programs, for those programs persisted in claiming
that this determinant vanished identically. It was
chastening to realise, eventually, that indeed in this

case c(I\.,t) = 0.

4. QUESTIONS, AND SOME ANSWERS

Just why does the full determinant A factorise
completely into difference factors when » = 37 One
might argue as follows. The determinant A van-
ishes when some of the conditions placed on the
curve P(X,Y) are redundant. If one studies the
configuration of singularities we impose, one sees
singularities at (1,0,0), (0,1,0) and at the finite
points (zx,ysr). The infinite singularities are our
imposition of the bidegree of P. Now the only de-
generate configurations of the five points are when
two of the finite points line up with a singularity
at oo—that is, exactly when z, = x5/ or y, = yu,
for some h # h'. We might have avoided some her-
culean calculations had we just chosen to employ
pure thought!

When r = 4 there is an additional degenerate
configuration. Indeed, the six points might all lie
on a conic, suggesting the presence of the factor

1 Y1 1y
T2 Y2 T2Y2
T3 Yz T3Y3
Ty Ysa TqYs

B,

Y

U T T W

We had already seen this numerically in the case
Ni =9, N, =3 and D = ::: ., finding

_ 172010
A=V,"B,,-

In this case A is a 40 x 40 determinant.

Of course, and so on. We started thinking about
classical invariants. However, it remains an open
problem how to predict the factorisation of A in
any of the cases r > 3, even knowing the shapes
of the possible factors. In the case r = 3 it suf-
fices to know that the only factors are differences,

because then symmetry and counting degrees suf-
fices to write the factorisation. That is not the case
once more complicated factors can appear.

On looking closely at some finite examples, we
did realise that when r = 3 we could handle the
easiest, almost degenerate, case N, = 1 completely.
In this case the ‘triangle’ is just the points (0, 0),
(0,1), ..., (0,3(2N; + 1)). It will be useful to set
N; = 3N +1. As it happened, we laboriously eval-
uated the determinants, thereby usefully honing
our skills, but we then realised that we had already
known the exact formula. The idea goes back to
Hermite and is generalised by Mahler. There is a
brief introductory summary in the obituary [van
der Poorten 1991]. Mahler remarks that

(12
i’ﬂ_R TG -kt D)%

= A2 = 0.

Here R is so large so that all the poles of the in-
tegrand are included in the contour. The A4;(z) on
the right are polynomials of degree not exceeding
p:—1; that is readily seen on evaluating the integral
by residues. Viewing the contour as being around
oo immediately yields the alleged vanishing.

We need m = 2 and p; = p = N + 1, and we
take y3 = 2N + 1, v, = 0. Now replace 1 — z by =
and A;(1 — z) = u;(z) and consider

p(w,y) = ua (2)z*"" + us()y

as a polynomial of bidegree (3N + 1,1). We claim
it is clear that

p(i,O) (07 0) = p(i70)(]—a ]-) = p(i,O)(oo, OO) =0

fori =0,1,...,2N. Given that, we need only some
sleight of hand. Note, incidentally, by a more care-
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ful look at the integral, that up to a normalisation
we have

Z ulja:J Z 1)N

_j(3N+1)(N+j>xj,

= N-j/\ j
N .
/3N +1\ /2N — .
z =S () ()=
= J J

Then we assert that N, = 1 implies that, up to
a normalisation, the required auxiliary polynomial
of bidegree (3N + 1, 1) is essentially

P(X,Y)
N 21— X \2N+i+1 X — 23\ N7 /Y —ys
S (223" (2T ()
S (B (X))
o 1 —T2 T2 — X3 Y1 —92

The correct vanishing at (z;,y:) and (z3,ys3) is
plain, and our construction was to guarantee that
P(X,Y)=0((X —22)*™1)+ O(Y —y2). Inciden-
tally, the qualification ‘essentially’ is there because
if P is to have coefficients in the base field it may
be necessary to take an appropriate trace.

All this is a little better than it may look, be-
cause one sees that as Ny — 0o an appropriate aux-
iliary polynomial of bidegree ((3N + 1)Na, Ns) is
given by (P(X,Y))™2. Specifically, this is the case
where . is defined by 6, = t, least favourable
for applications. This is essentially the construc-
tion first essayed by Thue, before he instituted the
dramatic innovation now known as Siegel’s lemma,
whereby one shows the existence of the auxiliary
function rather than displaying it explicitly. None-
theless, the Thue construction does not guaran-
tee the existence of an anchor pair in every cu-
bic extension. Whether that can be attained by
the present methods remains unclear. It seemed
worthwhile to see whether we could learn anything
about the exact form of the auxiliary polynomial
in cases different from 6, = ¢.

5. SOME EXTRAORDINARY DETERMINANTS

Set N; = 3N. In the case N, = 0 our problem is
to find a polynomial of degree 3N that vanishes IV
times at each of the points 0, 1 and oco. That is
trivial. The required polynomial is XV(X — 1)V,
with coefficients of height O(2V).

In general, let N; and N, be positive integers
with N; > N,. In this context a ‘triangle’ is a
sequence

MN={NM>h>L> ->ly=---=ly,=0}

of integers [; with sum ) [; satisfying 3> 1l; <
(N1 + 1)(Ny + 1); but not too much less than.
Our problem is to find a polynomial P(X,Y) =
> ay, 5, XY 72 of bidegree (N, N,) vanishing at
(0,0), (1,1), and (o0, 00) ‘on’ the triangle; that is,
so that P(“"2 (1,1) = 0 for all derivatives with
i1 < l;,. The conditions at (0,0) and (o0, 00) en-
tail respectively that the coeflicients a;, ;, vanish
for j; < l;, and for j; > Ny —In,_j,; that is, all but
the coefficients a;, ;, in the lozenge X defined by
l;, <ji1 < Ny —ln,—j, must be zero. Once N, > 0
one cannot just write down a solution. It seems
necessary to study the maximal minors of the ma-

trix with entries
Jr\ [ J2
i is)’

with rows indexed by (i1,72) € D\ and columns
by (j1,72) € . These determinants are of height
O(cM"z), but one can hope that they share so large
a common factor that one obtains coefficients a;, ;,
of height just O(c™*). This is the case for the de-
generate examples Ny = 0 and N, = 1, when the
entries are each just a single binomial coefficient.
We carried out a number of sporadic calculations to
convince ourselves that we were not being exagger-
atedly hopeful. We did find very substantial com-
mon factors compatible with our hopes. But, of
course, such computations cannot distinguish be-
tween an exponent N; and, say, IV; log V;.

The first step in an exact construction seemed
to be to understand the ‘complete’ case for which
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|| = S, that is, 3| | = (Mg + 1)(Ns + 1).
There is then just one determinant, A.
In 1986 we computed many examples of the cases

h — {2N2l, 2(N2 - ].)l, c ey 2l,0}

N2+2)

with N; = 3IN; — 1, and found that apparently
-1 31-1 ("%
oo K T2 k!)
2
21-1
(I«

A:i(
+2

sy (%)
a i( (2un)? ) '

Here [!! is a convenient shorthand for HL_:IO k!. The
remarks of Section 4 allow one to verify our com-
putation in the case N, = 1, but for the rest these
computational results remain an enigma. In par-
ticular, we do not even have an arm-waving argu-
ment to explain why one should get powers of the
case N, = 1; or, even given that, why the exponent
should be ¢ Ny(Nz+1)(N;,+2). Brute attempts to
evaluate the determinants have not given any real
insight into why the evaluation should hold.
Nevertheless, the computation does support our
guess that only small primes—those not exceeding
N;—would appear in the evaluation. This guess
is based on the following remark. The linear sys-
tem of equations we want to solve corresponds to
constructing a curve of bidegree (Ny, N3) on the
quadric P! x P!, with certain specific singularities
at (0,0), (1,1), (00,00). In the ‘complete’ case,
A # 0 means that the number of conditions im-
posed by the singularities on the curve equals the
number of parameters at our disposal, and there is
no such curve. Suppose, however, that p is a prime
that divides A. Then A vanishes modulo p, and
there is such a curve defined over the finite field
with p elements. It is now tempting to try to lift
this curve to a curve in characteristic 0. Locally,
the singularities are defined by derivations of order
not exceeding N; (say N; > N,), and there is no
problem in extending these derivations if p > Nj.
The points 0, 1, co remain distinct modulo p for

any p, and P' \ {0,1,00} has no moduli. Thus
it is conceivable that if p > N; there should be
no obstructions to lifting a solution mod p to one
in characteristic 0, and this would mean that any
prime divisor p of A satisfies p < N;. It is also
conceivable that congruences modulo powers of p
may be related to lifting solutions over Z/p"Z to
the Witt ring, but in any case we could not really
understand why three singularities should be inde-
pendent. On the other hand, the conjecture that
only small primes appear in a factorization of A
led quite naturally to the conjecture that combi-
natorial identities lie behind the problem.
Recently, the second author evaluated an exten-
sive collection of A’s in the case N, = 2, with
. = {bl,cl,0}; here ged(b, ¢) = 1. It turns out to
be convenient to set [ = 2a. On the basis of those
computations one may confidently conjecture that:

Conjecture. (i) A(bl,cl,0) =0 if b is even and both
c and l are odd;

(i) 3f any of these conditions does not hold and 2¢ <
b, then

+A(bl, cl,0)
_ [(2b — c)a?[(2b — 4c)a]((b + c)a]*[(b — c)a]°[ca]®
[2(b — ¢)a]®[ba]®[(b — 2¢)a]?[2cal?

)

where [s] = sl = Z;E k! if s is an integer, and
2= (s+IN(s—NifseZ+ 1

(iii) if any of the conditions in (i) does not hold and
2c > b, then

+A(bl, cl,0) = 220292 A(bl, (b — ¢)1,0).

It appears to be an interesting, if not easy, under-
taking to elucidate this problem, with its relations
to algebraic geometry, hypergeometric functions,
combinatorics and diophantine approximation. It
may be that when we are eventually able to guess
such a result for arbitrary N, we will have some
hint as to how to prove these evaluations. That
may then allow us to evaluate the cofactors and
thence to construct the polynomials.
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