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Our investigations in the 1980’s of Thue’s method yielded de-

terminants that we were only able to analyse successfully in

part. We explain the context of our work, recount our expe-

riences, mention our conjectures, and allude to a number of

open questions.

1. INTRODUCTIONDuring 1983, and again in 1986, we attempted theexplicit construction of the auxiliary polynomialrequired in Thue's method, as then recently re-�ned by the �rst author. That led to our battling,and partly taming, some interesting determinants.Of course, the moment we �nished we found aneasier way. Nevertheless, the context warrants ex-plaining, and our experiences seem worth recount-ing. Although our program has been only partiallysuccessful, we hope that telling its story may con-tribute to its eventual completion.In passing, and perhaps peripheral to our prin-cipal objective, we noticed a host of fascinatingfacts and some curious identities. All are surelyof intrinsic interest. We mention those facts anddisplay our conjectured identities.
2. APPROXIMATION OF ALGEBRAIC NUMBERS BY

ALGEBRAIC NUMBERSLet � 6= 0 be algebraic of degree r over Q , withminimal polynomial over Z given byf(X) = a0Xr + a1Xr�1 + � � �+ ar�1X + ar= a0Y� (X � ��);
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where � runs over all distinct embeddings of Q (�)into C .We de�ne the absolute logarithmic height h(�)of � byh(�) = logH(�)= 1r�log ja0j+X� max(0; log j��j)�
= 1rXv dv log+ j�jv;with the latter sum over the appropriately nor-malised absolute values v of Q (�); here dv is thedegree of the complete �eld Q (�)v over the com-plete �eld Q v . As usual, log+ x = max(0; log x). Itis also convenient to de�ne h(0) = 0. The abso-lute values are normalized so that their restrictionto the rational �eld Q coincide with the usual p-adic or real absolute values. The second de�nitionof height, with the same normalization for the ab-solute values, makes sense in any number �eld Kcontaining �, provided we take r to be the degreeof K; the height so de�ned is independent of K,whence the name absolute height.It is a nice exercise to verify thatlogH(�) = 1r Z 10 log jf(e2�it)j dt:It is a theorem of Kronecker, and not completelytrivial, that h(�) = 0 if and only if � is a root ofunity or 0.We also have the useful facts, which we shall usewithout further warning, thath(1=�) = h(�);h(�1 + � � �+ �n) � h(�1) + � � �+ h(�n) + log n;h(��) � h(�) + h(�);the �rst equation being of course restricted to non-zero �.The product formula says that either � = 0 orPv log j�jv = 0. We easily deduce the fundamentalinequality of diophantine approximation:� = 0 or log j�j � �rh(�):

Then, if p=q 2 Q and � 6= p=q, we have a preciseform of Liouville's Theorem:j�� p=qj � (2H(�)max(jpj; jqj))�r:Indeed, set � = �� p=q. Thenh(�) � h(�) + h(p=q) + log 2;and the result follows from h(1=�) = h(�) and thefundamental inequality.It is worthwhile to endeavour to sharpen Liou-ville's inequality. Henceforth let r � 3. Considerthe binary formY rf(X=Y )=F (X;Y )= a0Xr+a1Xr�1Y + � � �+ar�1XY r�1+arY rand an equation F (X;Y ) = m:If j� � p=qj > q���" for q > Q0("), any " > 0and a �xed � < r, then the equation has only�nitely many solutions in integers. In fact, sup-pose qrf(p=q) = F (p; q) = m. Let � be the zero off closest to p=q. Taking the logarithmic derivativewe obtain����f 0(p=q)f(p=q) ���� � Xf(�)=0 1jp=q � �j � rjp=q � �j ;therefore j�� p=qj � r jmj q�r jf 0(p=q)j�1. Sincef(p=q) = mq�r;we have that p=q is close to � for su�ciently large q,and since f 0(�) 6= 0 we see that f 0(p=q) is boundedaway from zero for large q. This contradicts thesharpened Liouville inequality.A. Thue showed in 1909 thatj�� p=qj > q���";with � = 12r+1, for q > Q0("). This was improvedby Siegel in 1921 to, in e�ect, � = 2pr. F. Dysonin 1947, and independently A. O. Gel'fond in 1949,obtained � = p2r. Finally, K. F. Roth in 1955proved the best possible result � = 2, independentof r > 2.
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But these results are ine�ective. One proves thatQ0 exists, but there is no method for obtaining itexplicitly.More recently, there have been general e�ectiveresults. The ideas introduced by A. Baker in 1966led to � = r��, e�ectively, thus obtaining the e�ec-tive solution of the general Thue equation. Baker'smethods are quite di�erent from those describedhere, and � > 0 is in general rather small.Loosely speaking, the reason for the ine�ectiv-ity in Thue's method and its developments is asfollows: Thue's method, as re�ned by Gel'fond,leads to the result that there are two functionsQ1 = Q1(�; ") and Q2 = Q2(�; "; q1) such that ifj�� p1=q1j < q��11 and j�� p2=q2j < q��22for qi > Qi, then �1�2 � 2r+ ". Taking �1 = �2 >p2r we easily see that we cannot have an in�nitesequence of solutions to j�� p=qj < q��1 , which isthe Dyson{Gel'fond Theorem.Ine�ectivity comes from the fact that Q2 de-pends on the denominator q1 of the �rst approxi-mation: One must exhibit the approximation p1=q1in order to determine Q2. Unfortunately Q1 israther large, so large that no examples of the �rstinequality being satis�ed with �1 usefully largerthan 2 are known to us. Thus although Q1 and Q2are explicit there is nothing to which to attach, oranchor, Thue's method to obtain e�ective results.That Q1 is large was inherent to Thue's originalmethod. The basic argument can be summarizedas follow.
Step 1. Construct an auxiliary polynomial P 2Z[X;Y ], of bidegree (N1; N2) and with small co-e�cients, such that the initial Taylor coe�cientsof P at (�; �) vanish.
Step 2. Next, note that P (p1=q1; p2=q2) is a rationalnumber with denominator at most qN11 qN22 , henceeither it is 0 or at least 1=(qN11 qN22 ) in absolutevalue. Then use the Taylor expansion of P at (�; �)and step 1 to deduce that j��pi=qij < q��ii impliesthat P (p1=q1; p2=q2) is exceedingly small, and so,by the preceding remark, that P (p1=q1; p2=q2) = 0.

Step 3. Prove directly that, possibly replacing P bya partial derivative of rather small order, we haveP (p1=q1; p2=q2) 6= 0, and deduce that we cannothave the two approximations j� � pi=qij < q��ii ,where i = 1; 2, whose existence was supposed instep 2.The basic idea used by Thue and other researchersto show the key step 3, namely P (p1=q1; p2=q2) 6=0, was a two-dimensional version of the obvious factthat a polynomial g in one variable, with rationalintegral coe�cients and with a rational root p=qof multiplicity m, has leading coe�cient divisibleby qm. In particular, for some h � m, there is aderivative g(h)(p=q) 6= 0 as soon as q > H(g)1=m,that is, if q is su�ciently large.This approach to step 3 obviously required q1large, and Thue's method remained ine�ective. In1982, however, the �rst author noticed in Dyson'swork a di�erent method for showing that the auxil-iary function does not vanish at the approximatingpoint.The old method relied on the principle that theheight of a zero of P is controlled in terms of theheight of P|hence the large size of Q1. Dyson'sobservation was that the number of zeros, countedaccording to multiplicity, in a �nite set of zerosof P is controlled by the bidegree of P and thenumber of distinct such zeros. The upshot is thatthere need be no lower bound on Q1 at all.Suppose we have constructed a polynomial
P (X;Y ) = N1Xj1=0 N2Xj2=0 aj1j2Xj1Y j2 2 Z[X;Y ]

such that P 6� 0 but lots of partial derivatives van-ish:
P (i1;i2)(�1; �2) = 0 for �1i1=N1 + �2i2=N2 < t:
Here Q (�1) = Q (�2) is of degree r over Q , and the�i and t are parameters satisfying �1�2 = 1, witht < �2 < t�1 and 12rt2 < 1.
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Say we have constructed P with height H(P )|the height of the vector of coe�cients of P|wherelogH(P ) < A1N1 logH(�1) + A2N2 logH(�2):Here A1 and A2 depend on the various parametersof the question. This is not di�cult to achieve,and should be seen as little more than de�ning theAi. In fact, we will see that the construction isa matter of somehow solving � 12rt2N1N2 linearequations in � N1N2 unknowns.Then carrying out the three steps outlined before(but using Dyson's method in step 3) yields whatmay be called the Thue{Siegel Principle [Bombieri1982]:
Thue–Siegel Principle. Suppose that �1 and �2 arerationals, that �1 is algebraic of degree r � 2 andthat �2 2 Q (�1). Let also t, � be real numbers withp2� rt2 < � < t. Then, ifj�1 � �1j < �cA1H(�1)A1H(�1)�� 2�1t��andcA2H(�2)A2H(�2) > �cA1H(�1)A1H(�1)� rrt2+�2�2 ;we havej�2 � �2j > �cA2H(�2)A2H(�2)�� 2�2t�� :Here c is a small absolute constant: c = 3 will do.There is no lower bound on H(�1).We should mention that this introductory de-scription readily allows the base �eld Q to be re-placed by any �xed number �eld; moreover, theabsolute value j j may be deemed to stand for anyproperly normalized absolute value, archimedeanor nonarchimedean. Versions involving several ab-solute values, useful for certain applications, canalso be obtained rather easily.By construction, P vanishes � 12 t2N1N2 timesat each of the r conjugate points (��1; ��2). Allwill be well if P does not vanish too often (thatis, if not too many contiguous partial derivativesvanish) at (�1; �2). SayP (i1;i2)(�1; �2) 6= 0

for some (i1; i2) with�1i1N1 + �2i2N2 � �:In this context, Dyson's Lemma asserts that12rt2N1N2 + 12� 2N1N2 < N1N2 + 12rN22:On the left is the number of zeros counted accord-ing to multiplicity. There are however just r+1 dis-tinct such zeros. On the right we have, as it were,the \volume" N1N2 of P , and an adjustment term12rN22 depending on the number of distinct zeros.Of course it is the asymmetric form of that ad-justment term that provides the real pro�t. Thatbounds � , allowing one to employ P (�), so to speak,as one's auxiliary function in place of P , the pointbeing that automatically P (�)(�1; �2) 6= 0, yieldingthe key step 3. In the argument one eventually letsN1, N2 !1 so that N2=N1 ! 0.Ideally, also t % p2=r, �2 & t and � & 0. In-deed, if one could always perform the constructionwith A1 = 1, allowing � & 0, one would seeminglyeven have Roth's Theorem. But in practice onestill has di�culties with the anchor conditionj�1 � �1j < (cA1H(�1)A1H(�1))� 2�1t�� ;although even back in 1982 that could be arrangedto hold in in�nitely many number �elds. The trou-ble was, and remains, that the only obvious generalconstruction leads toA1 � 12rt2=(1� 12rt2);which unfortunately increases to 1 as t%p2=r.That led Bombieri and Vaaler [1983] to restudythe problem of solving systems of linear equationsand obtaining economical integer solution vectors.In vulgar terms, they show that one obtains a gen-eralisation of Cramer's rule yielding solutions asquotients of determinants. In more highbrow terms,they �nd an upper bound for the geometric meanof the heights of a basis of solution vectors in termsof the height of the linear system. Whatever, in the
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present situation one �nds oneself studying deter-minants of the maximal square minors of a matrixwith typical entry�j1i1��j2i2�xj1�i1h yj2�i2h :Here columns are indexed by the pairs (j1; j2) androws by the triples (h; i1; i2). Constraints are 0 �Z = j1=N1 � 1 and 0 � W = j2=N2 � 1; and onsetting w = i1=N1, z = i2=N2 also �1z + �2w < t.We found it congenial to write (xh; yh) for(�h�1; �h�2);so h = 1, 2, : : : , r.One's hope is to discover that these determinantshave many factors in common. Then such factorsmay be `cancelled' and the complementary factorsremaining might allow one to proceed to the limitt%p2=r, so also � & 0, leading to a small A1.Accordingly, during much of 1983, Bombieri andvan der Poorten made a detailed and exhaustingstudy of determinants�����j1i1��j2i2�xj1�i1h yj2�i2h ���� :The need to bolster our agging con�dence even-tually led us to designate David Hunt to assist andhit these objects with his computer.
Remark. This `setting the scene' section, and thecomments immediately following, are a reasonablyfaithful rendition of a lecture given by the third au-thor at the annual meeting of the Japanese Mathe-matical Society in April, 1984. Since then, Dyson'sLemma has been explained [Viola 1985], trivialised[Beukers et al 1991], generalised [Vojta 1989], andextended to the case of many variables [Esnaultand Viehweg 1984]. See also [Vojta 1991; Viola1992]. The several-variable result [Esnault andViehweg 1984] yields Roth's theorem in ine�ectiveform|the chain of anchor conditions cannot berealised|but with signi�cantly improved explicitparameters; see [Bombieri and van der Poorten1988].

The new approximation method has acquiredthe name `The Thue Principle'. There is a va-riety of applications; see, for example, [Bombieriand Mueller 1983]. More recently [Bombieri 1993]it has become apparent that an equivariant gener-alization of the Principle, with various re�nementswhose genesis is about to be described, does yielde�ective approximation in all algebraic extensionsof number �elds.
3. CONFLUENT VANDERMONDE DETERMINANTSThus, in 1983, the �rst and third authors attackedthe determinants�����j1i1��j2i2�xj1�i1h yj2�i2h ���� ;
with the hope that all such determinants mightshare substantial common factors in the `variables'xh and yh, thereby signi�cantly decreasing the crit-ical parameter A1.Recall that the rows are given by the triples(i1; i2; h) with z = i1=N1 and w = i2=N2 lying inthe triangle �1z+�2w < t. Because h = 1, 2, : : :, r,there are r such triangles, each of `volume' � 12 t2 inthe normalised unit square. So, as already noted,we must have 12rt2 < 1.The columns are pairs (j1; j2). Setting Z =j1=N1 and W = j2=N2, the columns of each deter-minant in e�ect comprise a subset J of area 12rt2 ofthe `column unit square'. Thus we are concernedwith factors common to all the determinants as Jranges over all subsets with jJ j � 12rt2. In theone-dimensional case our determinants reduce to��� ji �xj�ih ��, and one is faced by a conuent Vander-monde determinant. This is not all that dread-ful. Suppose we have rt = 1, and study the fulldeterminant �, corresponding to 12rt2 = 1 in thetwo-dimensional case. A na��ve strategy to copewith these conuent objects is simply to consideran honest-to-goodness Vandermonde determinantjxjhij, viewing variables xhi with the same h as dif-fering only by in�nitesimals. One now divides by
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the in�nitesimals, to wit byQrh=1Qi<i0(xhi�xhi0),nakedly revealing that� = �V (1+o(1))t2N2xwith Vx = Qh<h0(xh � xh0). The na��ve strategyalso exposes the detail of the symmetric factor ad-ditional to the di�erence product in the generalcase rt < 1. These matters are mentioned in theliterature, and one can turn to [Muir 1911] and thetreatise [Muir 1933] with advantage; see also [vander Poorten 1976]. Incidentally, in studying thatgeneral case it turns out to be a good strategy topretend to still be in the easy full case �. Thus,rather than omitting (1�rt)N columns, one simplyacknowledges that (1�rt)N of the rows are ghosts,present only as 0 's and a 1 in the column that wasto have been omitted. The xhi corresponding toghost rows thus manifest themselves as a sort of �-function, with all their powers in�nitesimal, otherthan that xj(hi)hi = 1. Here the j(hi)-th column isthe one reprieved by the spectre of the hi-th row.In the two-dimensional case it is not at all obvi-ous a priori that our determinants have any di�er-ence factors at all, even if 12rt2 = 1. The troubleis that xh and yh are tied together: if all pairs(xh; yh0) were to appear, our problem would fac-torise as a Kronecker product of matrices in oneset of variables. But in general there need be nodi�erence factors at all; yet, remarkably:For r = 3, the full determinant (thus 12rt2 = 1)� = �����j1i1��j2i2�xj1�i1h yj2�i2h ����factorises completely as a product of di�erence fac-torsc( ; t)V ( 14 t2� 16 �2t3+o(1))N21N2x V ( 14 t2�16 �1t3+o(1))N1N22y :
We say more about the constant c( ; t) be-low. Actually, we should be more careful in quot-ing those exponents, because we failed to say thatour remark above presumes N1, N2 ! 1. In the

`�nite' case the exact exponent of Vx is, for exam-ple, 2N1j j � 12N1(N1 + 1)N2 �X i1:When 12rt2 < 1, as it must be in the actualconstruction of an auxiliary polynomial, one losessome di�erence factors: : : in fact, possibly as manyas (1 � 123t2)N 21N2 copies of Vx. The upshot ap-peared to be that we could prove that 1 � A1 � 3,depending on delicate properties of �1. For �1 =rpa our arguments plainly suggested A1 = 1. As ithappened, that case was understood [Bombieri andMueller 1983], and our joy subsided as it rapidlydawned on us that we were choosing to forget theinuence of c( ; t) on the actual value of A1.When above we de�ned the Ai in describing theheight of the auxiliary polynomial P we might haveconstructed, we should have written something likelogH(P ) < B1N1 logH(�1) +B2N2 logH(�2)+ C1N1 + C2N2;emphasising that the Ai come in two parts, withthe parts Ci independent of the H(�i). Our re-marks immediately above apply to B1, rather thanto A1. Still, our temporary lapse had proved prof-itable. Our fervor to factorise � might have beengreatly lessened had we been fully conscious thatit was just a �rst easier step.There is little purpose in trying to detail thecontortions that led to our, now seen to be par-tial, success in the case r = 3. Once we had thefactorisation of � we rapidly found simpler ex-planations for it. Still, it may be interesting tomention that, en route, as we discovered more andmore batches of di�erence factors more and moreclosely comprising all, our con�dence did falter. Intruth, we had not anticipated the complete factori-sation in the general cubic case, and feared we musthave overshot. During a long afternoon, evening,and night the �rst author computed, by hand, an18 � 18 determinant for r = 3 with N1 = 5 andN2 = 2 and found it to be divisible by all the dif-ference factors to their appropriate multiplicities.
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That had an amusing side e�ect in severely balk-ing the attempts by the second author to debug hisprograms, for those programs persisted in claimingthat this determinant vanished identically. It waschastening to realise, eventually, that indeed in thiscase c( ; t) = 0.
4. QUESTIONS, AND SOME ANSWERSJust why does the full determinant � factorisecompletely into di�erence factors when r = 3? Onemight argue as follows. The determinant � van-ishes when some of the conditions placed on thecurve P (X;Y ) are redundant. If one studies thecon�guration of singularities we impose, one seessingularities at (1; 0; 0), (0; 1; 0) and at the �nitepoints (xh; yh). The in�nite singularities are ourimposition of the bidegree of P . Now the only de-generate con�gurations of the �ve points are whentwo of the �nite points line up with a singularityat 1|that is, exactly when xh = xh0 or yh = yh0 ,for some h 6= h0. We might have avoided some her-culean calculations had we just chosen to employpure thought!When r = 4 there is an additional degeneratecon�guration. Indeed, the six points might all lieon a conic, suggesting the presence of the factor

Bx;y =
��������
1 x1 y1 x1y11 x2 y2 x2y21 x3 y3 x3y31 x4 y4 x4y4

�������� :We had already seen this numerically in the caseN1 = 9, N2 = 3 and = , �nding� = V 20x B10x;y :In this case � is a 40� 40 determinant.Of course, and so on. We started thinking aboutclassical invariants. However, it remains an openproblem how to predict the factorisation of � inany of the cases r > 3, even knowing the shapesof the possible factors. In the case r = 3 it suf-�ces to know that the only factors are di�erences,

because then symmetry and counting degrees suf-�ces to write the factorisation. That is not the caseonce more complicated factors can appear.On looking closely at some �nite examples, wedid realise that when r = 3 we could handle theeasiest, almost degenerate, caseN2 = 1 completely.In this case the `triangle' is just the points (0; 0),(0; 1), : : :, (0; 13(2N1 + 1)). It will be useful to setN1 = 3N +1. As it happened, we laboriously eval-uated the determinants, thereby usefully honingour skills, but we then realised that we had alreadyknown the exact formula. The idea goes back toHermite and is generalised by Mahler. There is abrief introductory summary in the obituary [vander Poorten 1991]. Mahler remarks thatIj�j=R (1� z)�Qmi=1Q�ik=1(� � i � k + 1) d�= mXi=1 Ai(z)(1� z)i = O(z�1+����m�1) :
Here R is so large so that all the poles of the in-tegrand are included in the contour. The Ai(z) onthe right are polynomials of degree not exceeding�i�1; that is readily seen on evaluating the integralby residues. Viewing the contour as being around1 immediately yields the alleged vanishing.We need m = 2 and �1 = �2 = N + 1, and wetake 1 = 2N + 1, 2 = 0. Now replace 1� z by xand Ai(1� x) = ui(x) and consider

p(x; y) = u1(x)x2N+1 + u2(x)y
as a polynomial of bidegree (3N + 1; 1). We claimit is clear that

p(i;0)(0; 0) = p(i;0)(1; 1) = p(i;0)(1;1) = 0
for i = 0; 1; : : : ; 2N . Given that, we need only somesleight of hand. Note, incidentally, by a more care-
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ful look at the integral, that up to a normalisationwe have
u1(x)= NXj=0 u1jxj= NXj=0(�1)N�j�3N+1N�j ��N+jj �xj ;
u2(x)= NXj=0 u2jxj= NXj=0(�1)N�j�3N+1j ��2N�jN�j �xj :
Then we assert that N2 = 1 implies that, up toa normalisation, the required auxiliary polynomialof bidegree (3N + 1; 1) is essentiallyP (X;Y )= NXj=0 u1j� x1�Xx1�x2�2N+j+1�X�x3x2�x3�N�j� Y �y3y2�y3 �+ NXj=0 u2j� x1�Xx1�x2�j�X�x3x2�x3�3N+1�j� y1�Yy1�y2 �:
The correct vanishing at (x1; y1) and (x3; y3) isplain, and our construction was to guarantee thatP (X;Y ) = O((X�x2)2N+1)+O(Y �y2). Inciden-tally, the quali�cation `essentially' is there becauseif P is to have coe�cients in the base �eld it maybe necessary to take an appropriate trace.All this is a little better than it may look, be-cause one sees that asN2 !1 an appropriate aux-iliary polynomial of bidegree ((3N + 1)N2; N2) isgiven by (P (X;Y ))N2 . Speci�cally, this is the casewhere is de�ned by �2 = t, least favourablefor applications. This is essentially the construc-tion �rst essayed by Thue, before he instituted thedramatic innovation now known as Siegel's lemma,whereby one shows the existence of the auxiliaryfunction rather than displaying it explicitly. None-theless, the Thue construction does not guaran-tee the existence of an anchor pair in every cu-bic extension. Whether that can be attained bythe present methods remains unclear. It seemedworthwhile to see whether we could learn anythingabout the exact form of the auxiliary polynomialin cases di�erent from �2 = t.

5. SOME EXTRAORDINARY DETERMINANTSSet N1 = 3N . In the case N2 = 0 our problem isto �nd a polynomial of degree 3N that vanishes Ntimes at each of the points 0, 1 and 1. That istrivial. The required polynomial is XN(X � 1)N ,with coe�cients of height O(2N).In general, let N1 and N2 be positive integerswith N1 � N2. In this context a `triangle' is asequence= fN1 � l0 > l1 > � � � > lM = � � � = lN2 = 0 gof integers li with sum P li satisfying 3P li <(N1 + 1)(N2 + 1); but not too much less than.Our problem is to �nd a polynomial P (X;Y ) =P aj1;j2Xj1Y j2 of bidegree (N1; N2) vanishing at(0; 0), (1; 1), and (1;1) `on' the triangle; that is,so that P (i1;i2)(1; 1) = 0 for all derivatives withi1 < li2 . The conditions at (0; 0) and (1;1) en-tail respectively that the coe�cients aj1;j2 vanishfor j1 < lj2 and for j1 > N1� lN2�j2; that is, all butthe coe�cients aj1;j2 in the lozenge de�ned bylj2 � j1 � N1 � lN2�j2 must be zero. Once N2 > 0one cannot just write down a solution. It seemsnecessary to study the maximal minors of the ma-trix with entries �j1i1��j2i2�;with rows indexed by (i1; i2) 2 and columnsby (j1; j2) 2 . These determinants are of heightO(cN21N2), but one can hope that they share so largea common factor that one obtains coe�cients aj1;j2of height just O(cN1). This is the case for the de-generate examples N2 = 0 and N2 = 1, when theentries are each just a single binomial coe�cient.We carried out a number of sporadic calculations toconvince ourselves that we were not being exagger-atedly hopeful. We did �nd very substantial com-mon factors compatible with our hopes. But, ofcourse, such computations cannot distinguish be-tween an exponent N1 and, say, N1 logN1.The �rst step in an exact construction seemedto be to understand the `complete' case for which



Bombieri, Hunt and van der Poorten: Determinants in the Study of Thue’s Method and Curves with Prescribed Singularities 95

j j = j j, that is, 3j j = (N1 + 1)(N2 + 1).There is then just one determinant, �.In 1986 we computed many examples of the cases= f2N2l; 2(N2 � 1)l; : : : ; 2l; 0gwith N1 = 3lN2 � 1, and found that apparently
� = � Ql�1k=0 k!Q3l�1k=2l k!�Q2l�1k=l k!�2

!(N2+23 )
= ��(l!!)33l!!(2l!!)3 �(N2+23 ) :

Here l!! is a convenient shorthand forQl�1k=0 k!. Theremarks of Section 4 allow one to verify our com-putation in the case N2 = 1, but for the rest thesecomputational results remain an enigma. In par-ticular, we do not even have an arm-waving argu-ment to explain why one should get powers of thecase N2 = 1; or, even given that, why the exponentshould be 16N2(N2+1)(N2+2). Brute attempts toevaluate the determinants have not given any realinsight into why the evaluation should hold.Nevertheless, the computation does support ourguess that only small primes|those not exceedingN1|would appear in the evaluation. This guessis based on the following remark. The linear sys-tem of equations we want to solve corresponds toconstructing a curve of bidegree (N1; N2) on thequadric P1 � P1 , with certain speci�c singularitiesat (0; 0), (1; 1), (1;1). In the `complete' case,� 6= 0 means that the number of conditions im-posed by the singularities on the curve equals thenumber of parameters at our disposal, and there isno such curve. Suppose, however, that p is a primethat divides �. Then � vanishes modulo p, andthere is such a curve de�ned over the �nite �eldwith p elements. It is now tempting to try to liftthis curve to a curve in characteristic 0. Locally,the singularities are de�ned by derivations of ordernot exceeding N1 (say N1 > N2), and there is noproblem in extending these derivations if p > N1.The points 0, 1, 1 remain distinct modulo p for

any p, and P1 n f0; 1;1g has no moduli. Thusit is conceivable that if p > N1 there should beno obstructions to lifting a solution mod p to onein characteristic 0, and this would mean that anyprime divisor p of � satis�es p � N1. It is alsoconceivable that congruences modulo powers of pmay be related to lifting solutions over Z=pnZ tothe Witt ring, but in any case we could not reallyunderstand why three singularities should be inde-pendent. On the other hand, the conjecture thatonly small primes appear in a factorization of �led quite naturally to the conjecture that combi-natorial identities lie behind the problem.Recently, the second author evaluated an exten-sive collection of �'s in the case N2 = 2, with= fbl; cl; 0g; here gcd(b; c) = 1. It turns out tobe convenient to set l = 2a. On the basis of thosecomputations one may con�dently conjecture that:
Conjecture. (i) �(bl; cl; 0) = 0 if b is even and bothc and l are odd ;
(ii) if any of these conditions does not hold and 2c <b, then��(bl; cl; 0)= [(2b� c)a]2[(2b� 4c)a][(b+ c)a]2[(b� c)a]6[ca]6[2(b� c)a]3[ba]6[(b� 2c)a]2[2ca]3 ;

where [s] = s!! =Qs�1k=0 k! if s is an integer , and[s]2 = (s+ 12)!!(s� 12)!! if s 2 Z + 12 ;
(iii) if any of the conditions in (i) does not hold and2c � b, then��(bl; cl; 0) = 22(b�2c)a�(bl; (b� c)l; 0):It appears to be an interesting, if not easy, under-taking to elucidate this problem, with its relationsto algebraic geometry, hypergeometric functions,combinatorics and diophantine approximation. Itmay be that when we are eventually able to guesssuch a result for arbitrary N2 we will have somehint as to how to prove these evaluations. Thatmay then allow us to evaluate the cofactors andthence to construct the polynomials.
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