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The Number Field Sieve (NFS) is the asymptotically fastest

known factoring algorithm for large integers. This article de-

scribes an implementation of the NFS, including the choice of

two quadratic polynomials, both classical sieving and a special

form of lattice sieving (line sieving), the block Lanczos method

and a new square root algorithm. Finally some data on factor-

izations obtained with this implementation are listed, including

the record factorization of 12151 � 1.

1. INTRODUCTIONThe Number Field Sieve (NFS), introduced in 1988[Pollard 1993a], is the asymptotically fastest knownalgorithm for factoring integers. Two forms of theNFS have been considered: the Special NFS, orSNFS, tailored especially to integers of the formn = c1rt + c2su, and the General NFS, or GNFS,applicable to arbitrary numbers. The NFS factorsintegers n in heuristic timeexp�(c+ o(1))(log n)1=3(log log n)2=3�as n ! 1, where c = � 329 �1=3 � 1:5 for the SNFSand c = � 649 �1=3 � 1:9 for the GNFS [Buhler et al.1993]. These expressions should be compared withthe timeexp�(1 + o(1))(log n)1=2(log log n)1=2�taken by the Multiple Polynomial Quadratic Sieve,or MPQS [Pomerance 1985], still the best general-purpose factoring algorithm for integers with lessthan approximately 105 digits.We describe here several experiments carried outwith an implementation of the NFS written by J.Buhler, R. M. Elkenbracht-Huizing, P. L. Mont-gomery, R. Robson and R. Ruby. It has been used,among others, for the record SNFS factorizationc A K Peters, Ltd.1058-6458/96 $0.50 per page



232 Experimental Mathematics, Vol. 5 (1996), No. 3of (12151 � 1)=11, a number of 162 decimal digits,and a GNFS factorization of a 107-digit cofactor of6223+1. We start with a description of the NFS andan outline of the implementation, then discuss inmore detail several aspects of the implementation,and �nally state the results of the factorization ex-periments. Detailed descriptions of the NFS can befound in [Lenstra et al. 1993b; Buhler et al. 1993].
2. DESCRIPTION OF THE NFSLet n be the odd number to be factored. It is easyto check whether n is a prime number or a primepower [Lenstra et al. 1993c, x 2.5], and we assumethat it is neither. Like MPQS, the NFS tries to�nd a solution of the equation v2 � w2 mod n. Forat least half of the pairs (v mod n; w mod n) withv2 � w2 mod n and v and w relatively prime to n,the greatest common divisor of n and v � w givesa nontrivial factor of n.To construct v and w we �rst choose two poly-nomialsf1(x) = c1;d1xd1 + c1;d1�1xd1�1 + � � �+ c1;0f2(x) = c2;d2xd2 + c2;d2�1xd2�1 + � � �+ c2;0over Z, with f1 6= �f2, both irreducible over Z andhaving content cont fi := gcd(ci;di ; : : : ; ci;0) equalto 1; we also choose an integer m that is a commonroot modulo n of f1 and f2. In our implementa-tion this is the only step in which the SNFS andthe GNFS di�er: in the SNFS we use the specialform of n to pick these polynomials by hand. Onepolynomial will have very small coe�cients com-pared to the coe�cients of the polynomials we willuse with the GNFS, where we search for a pairof polynomials with help of the computer. Thismakes SNFS faster than GNFS [Buhler et al. 1993,x 1]. See Section 5 for a detailed description of theselection of the polynomials.Let �i, for i = 1; 2, be a root of fi(x) in C .Let Qn denote the ring of rational numbers withdenominator coprime to n. We want to �nd anonempty set S of pairs (a; b) of coprime integerssuch that both QS(a � b�1) and QS(a � b�2) are

squares|�2 and 2, say| in Qn [�1] and Qn [�2],respectively. Applying to �2 and 2 the two nat-ural ring homomorphisms 'i : Qn [�i] ! Z=nZdetermined by 'i(�i) = m mod n gives '1(�2) �'2(2) mod n. This yields '1(�)2 � '2()2 mod n.When '1(�) and '2() are relatively prime to n,calculating gcd(n; '1(�)�'2()) will yield a non-trivial factor of n in at least half the cases.ForQS(a�b�i) to be a square in Qn [�i], its normN(QS(a� b�i)) must be a square in Q . Denote byFi(x; y) = ydifi(x=y) 2 Z[x; y] the homogeneousform of fi(x). From N(a � b�i) = Fi(a; b)=ci;diwe can deduce that if the cardinality of the set Sis even and if QS Fi(a; b) is a square in Z, thenN(QS(a� b�i)) is a square in Q .The algorithm searches for a pair (a; b) of co-prime integers such that both integers Fi(a; b) fac-tor completely over the prime numbers below someuser-determined bounds Bi. We call such integersFi(a; b) smooth and such (a; b)-pairs relations. Fora relation (aj ; bj) we can writeF1(aj ; bj) = Yp2K1 pe1(j;p);F2(aj ; bj) = Yp2K2 pe2(j;p); (2.1)where ei(j; p) 2 N, for i = 1; 2, and where K1 andK2 contain �1 and the prime numbers below B1and B2, respectively.In order forQS Fi(a; b) to be a square in Z, everyexponent PS ei(j; p) inY(aj ;bj)2SFi(aj ; bj) = Yp2Ki pPS ei(j;p)should be even. Let v(aj ; bj) be a vector of length1 + jK1j + jK2j, constructed as follows: its �rstentry is 1 and the rest of v(aj ; bj) is �lled withall exponents e1(j; p) and e2(j; p) modulo 2, in anorder which is �xed for all (aj ; bj). If S is a subset ofthe relations such that P(a;b)2S v(a; b) � 0 mod 2,then the cardinality of S is even and PS ei(j; p) �0 mod 2 for i = 1; 2 and all p 2 Ki; hence bothN(QS(a� b�i)) are squares in Q .



Elkenbracht-Huizing: An Implementation of the Number Field Sieve 233Unfortunately N(QS(a� b�i)) being a square inQ is not su�cient for QS(a � b�i) to be a squarein Qn [�i]. By looking at what kind of p dividesFi(a; b), we will almost overcome this problem. Foreach prime number p we de�ne the setRi(p) = f(r1 : r2) 2 P1(Fp) j Fi(r1; r2) � 0 mod pg;
(2.2)where P1(Fp) denotes the projective line over Fp .For a and b coprime, the integer Fi(a; b) is divisibleby a prime number p if and only if (a mod p : b modp) 2 Ri(p). Therefore the set Ri(p) is partitioningall (a; b)-pairs for which p divides Fi(a; b) accordingto (a mod p : b mod p).Next, for C 2 N, let Fi(C) be the set of pairs(p; (r1 : r2)), where p is a prime less than C and(r1 : r2) 2 Ri(p). Heuristically, jFi(C)j is approxi-mately the number of primes below C [Lang 1970,Chapter VIII, x 4]. F1(B1) and F2(B2) are calledthe factor bases. We now can write (2.1) asFi(aj ; bj) = � Y(p;(r1:r2))2Fi(Bi) pei(j;p;r1;r2); (2.3)for i = 1; 2, where ei(j; p; r1; r2) = ei(j; p) if(aj mod p : bj mod p) = (r1 : r2)and 0 otherwise.In order forQS(a�b�i) to be a square in Qn [�i],every exponent PS ei(j; p; r1; r2) inY(aj ;bj)2SFi(aj ; bj) = � Y(p;(r1:r2))2Fi(Bi) pPS ei(j;p;r1;r2)should be even. Let v(aj ; bj) be a vector of length1+ jF1(B1)j+ jF2(B2)j containing 1 and the valuesof e1(j; p; r1; r2) mod 2 and e2(j; p; r1; r2) mod 2, inan order that is �xed for all relations (aj ; bj). Anonempty subset S of relations such thatXS v(a; b) � 0 mod 2is almost su�cient to ensure that QS(a� b�i) be asquare in Qn [�i] for i = 1; 2 [Buhler et al. 1993,x 12.7]. That it is not totally su�cient is onlypartly caused by the fact that we only forced the

product QS jFi(a; b)j to be a square in Z. We cansee that it is not totally su�cient from the follow-ing example: In the �eld Q(p3) generated by aroot of the polynomial f(x) = x2 � 3, the element2 + p3 has norm F (2;�1) = 1. So all exponentse1(j; p; r1; r2) and e2(j; p; r1; r2) will be zero. Fur-thermore v(2;�1) + v(1; 0) � 0 mod 2. But thesquare root of 2+p3 is (p6+p2)=2, which is notan element of Q(p3).The small gap between being almost a squareand being practically certainly a square is over-come by using quadratic characters, following anidea of Adleman [1991]. For S a set consisting ofpairs (a; b) of coprime integers, letQS(a�b�i) be asquare in Qn [�i], and let q be an odd prime numbernot dividing c1;d1c2;d2 . If (s1 : s2) 2 Ri(q) is suchthat f 0i(s1s�12 mod q) 6� 0 mod q and (a mod q :b mod q) 6= (s1 : s2) for all (a; b) 2 S, thenY(a;b)2S�a� b (s1s�12 mod q)q � = 1 (2.4)where � vw� denotes the Legendre symbol [Buhler etal. 1993, x 8, x 12.7]. We use this by taking for eachpolynomial several primes q larger than Bi and notdividing ci;di , together with an element (s1 : s2) 2Ri(q) such that f 0i(s1s�12 mod q) 6� 0 mod q. Sinceq > Bi we have (a mod q : b mod q) 6= (s1 : s2) forall relations (a; b). Append to the vector v(a; b) forall pairs (q; (s1 : s2)) a 0 if�a� b (s1s�12 mod q)q � = 1and a 1 otherwise. Now a nonempty subset Sof all relations such that PS v(a; b) � 0 mod 2guarantees that (2.4) holds for all chosen primesq together with their elements (s1 : s2) 2 Ri(q).Taking enough quadratic characters|we took 32per polynomial|makes it practically certain thatboth QS(a� b�i) are squares in Qn [�i]. The coun-terexample given earlier could have been caughtwith the use of quadratic characters: take q = 11and (s1 : s2) = (5; 1) 2 R(11). The Legendre sym-bol becomes � 2+511 �, which is �1.



234 Experimental Mathematics, Vol. 5 (1996), No. 3If Q is the total number of quadratic charac-ters used, then a nonempty subset S such thatPS v(a; b) � 0 mod 2 can always be found if thenumber of relations exceeds1 + jF1(B1)j+ jF2(B2)j+Q:
3. OUTLINE OF THE IMPLEMENTATIONThe implementation can be divided into �ve stages.In the �rst stage we select the polynomials f1(x)and f2(x) in Z[x], and the integer m such thatm is a common root of f1(x) and f2(x) modulon. We also choose the sieving region|that is,the collection of (a; b)-pairs for which both Fi(a; b)are checked for smoothness|and, for each poly-nomial, a factor base bound Bi.The second stage, the sieving in which the re-lations are found, is the most time-consuming. Inthis implementation a relation is a pair (a; b) fromthe sieving region such that both Fi(a; b) factorcompletely over the primes below Bi, except for atmost two large prime numbers, which should bebetween Bi and a large prime bound Li. By usinglattice sieving [Pollard 1993b]|a special form ofwhich will be desribed in Section 6|one of the twointegers Fi(a; b) is allowed to have three primes be-tween Bi and Li. The product in (2.3) is taken overF(Li), and the vectors v(a; b) have to be adaptedaccordingly.This is followed by a �ltering stage with the pur-pose of reducing the amount of data. Here some re-lations are eliminated and others are grouped intorelation-sets.In the fourth stage, we construct a matrix bytaking the vectors v(a; b) and the vectorsX(a;b)2Vv(a; b)for all remaining relations and relation-sets V ascolumns. Finding a nonempty set S such thatXS v(a; b) � 0 mod 2

is the same as calculating a nontrivial vector fromthe null space of this matrix over F2 . For hugesparse matrices the best known methods are iter-ative ones, such as the block Lanczos algorithm[Montgomery 1995]. The output of this stage is asubset S of the relations such that bothQS(a�b�1)and QS(a � b�2) are squares �2 and 2 in Qn [�1]and Qn [�2], respectively.The �nal stage consists of extracting the squareroots � and . This is done by a new algorithm,developed by Montgomery [1994] and also itera-tive. Successive approximations are found, leavingover \smaller" remainders of which we have to ex-tract the square root. If the remainder is smallenough we use a conventional method. Finally weapply the homomorphisms '1 and '2 to the squareroots � and , respectively, and calculate the gcdof n and '1(�)�'2(), which will split n into twonontrivial factors in at least half of the cases.
4. FREE RELATIONSDenote the order of the Galois group of f1(x)f2(x)by g. For approximately 1=g of the primes q <min(L1; L2), both polynomials Fi(x; y) split into dilinear factors modulo q [Frobenius 1896, x 2, The-orem 1; Neukirch 1992, p. 566]:Fi(x; y) = ci;di diYj=1�r(j)2 x� r(j)1 y� mod q (4.1)If such a prime q does not divide the discriminantsof f1(x) or f2(x) (and therefore both polynomialsFi(x; y) split into di di�erent linear factors moduloq) and if q does not divide c1;d1 � c2;d2 , we call q afree prime. This terminology comes from the factthat we can select such primes that are smallerthan min(B1; B2) without extra e�ort when cal-culating the factor bases Fi(Bi). They are saidto give rise to free relations because we now re-quire �Qp2T p��Q(a;b)2S(a�b�i)� to be a square inQn [�i], for i = 1; 2, where T is a suitably chosensubset of the set of free primes. With N(p) = pdi ,we have



Elkenbracht-Huizing: An Implementation of the Number Field Sieve 235N��Qp2T p�� Q(a;b)2S(a� b�i)��= �Qp2T pdi�� Q(a;b)2SFi(a; b)ci;di �;which represents a square in Q if jSj is even and�Qp2T pdi��Q(a;b)2S Fi(a; b)� is a square in Z. Aswe partitioned the primes p dividingQ(a;b)2SFi(a; b)according to the roots (a mod p : b mod p) 2 Ri(p),we consider pdi as the product of one factor p forevery root (r1 : r2) 2 Ri(p). We associate with ev-ery free prime p < min(L1; L2) a vector v(p) oflength 1 + jF1(L1)j+ jF2(L2)j+Q, which containsa one for every (p; (r(j)1 : r(j)2 )) occurring in (4.1) forboth polynomials, and for every quadratic charac-ter (q; (s1 : s2)) for which (pq ) = �1. The rest is�lled with zeros. We will look for T and S suchthat Pp2T v(p) +P(a;b)2S v(a; b) � 0 mod 2.
5. CHOICE OF THE POLYNOMIALSThe conjectured running time for the applicationof the SNFS to a number of the form n = c1rt+c2sudepends on the size of n. If only small factors ofn are known, the SNFS algorithm is certainly thebest one to use. If already a substantial nonalge-braic factor of n is known, the GNFS or the MPQSmight be faster.Using the SNFS for a factor n of an integerc1rt + c2su with gcd(c1r; c2s) = 1, we pick the twopossibly nonmonic polynomials by hand. Select asmall positive integer d1|usually 4 or 5| whichwill be the degree of f1(x). Write t = d1t0 + t00and u = d1u0 + u00 with t00; u00 2 f0; 1; : : : ; d1 � 1g.In practice f1(x) := c2su00xd1 + c1rt00 is irreducibleover Z, and f1(x), f2(x) := rt0x � su0 , and m :=su0r�t0 mod n satisfy the requirements mentionedin Section 2. If f1(x) is not irreducible, a nontriv-ial factor of f1 is likely to give rise to a nontrivialfactor of n, and otherwise f1 can be replaced bya suitable factor. (This is also applicable in thecase of the GNFS.) An algorithm to test whethera polynomial is irreducible and to factor it if it isnot can be found in [Lenstra et al. 1982]. If we

encounter a polynomial fi(x) with cont fi(x) 6= 1,we can divide all coe�cients of fi(x) by the con-tent, assuming that cont fi(x) and n are relativelyprime. Using the SNFS we sometimes �nd betterpairs of polynomials, together with a value for m,by trying to factor a multiple of n. Examples canbe found in the last section of this article.Using the GNFS one can �nd two polynomialsby the base m method. Select a small positive in-teger d1|usually 4 or 5|which will again be thedegree of f1(x). Set m = bn1=d1c and write n inbase m asn = cd1md1 + cd1�1md1�1 + � � �+ c0;with 0 � ci < m. Nowf1(x) = cd1xd1 + cd1�1xd1�1 + � � � + c0and f2(x) = x �m satisfy the requirements. Thismethod implies cd1 = 1 [Buhler et al. 1993, x 3].In [Buhler et al. 1993, x 12.2] one can �nd slightlybetter variants of this method, resulting in a lin-ear and a higher-degree polynomial with leadingcoe�cients possibly larger than one and possiblynegative coe�cients. For these variants the poly-nomial coe�cients are O(n1=(d1+1)).The task is to �nd suitable polynomials f1 andf2, factor base bounds B1, B2, large prime boundsL1, L2, and a sieving region. For a good choicefour characteristics of the polynomials should betaken into account. First, the maximal values ofjFi(a; b)j should be small, making them more likelyto be smooth over the primes below Bi. Secondly,when a polynomial has many real roots, more ra-tios a=b will be near a root and more values Fi(a; b)are expected to be small. As a re�nement of thischaracteristic we can look at the absolute value ofthe real roots. A polynomial having a real rootnear max jaj=max jbj is a good choice. The impor-tance of this characteristic is made clear in Fig-ure 1. Thirdly, polynomials that have many rootsmodulo (preferably di�erent) small primes are pre-ferred over ones that do not. This enlarges theprobability that Fi(a; b) is small after dividing it by



236 Experimental Mathematics, Vol. 5 (1996), No. 3these small prime numbers, making it more likelyto be smooth over the primes below Bi. Finally, itis better to choose polynomials for which the orderof the Galois group of f1(x)f2(x) is small, since wesaw in the previous section that they provide morefree relations. With these criteria in mind we se-lect the pair of polynomials which is expected tobe the best.

0
20000# 0 300000b 106 �1060 a

FIGURE 1. Number of relations found for 60000a-values and 8625 b-values for the factorization ofa 119-digit factor of 3319 � 1 (see Section 10 fordetails). One polynomial is f1(x) = x5+x4�4x3�3x2 + 3x + 1, with 5 real roots. The �ve ridgesindicate a higher yield for pairs (a; b) with a=b neara root.We experimented with a choice of two quadraticpolynomials selected according to ideas of Mont-gomery [Buhler et al. 1994]. He observed thatf1(x) = c1;2x2 + c1;1x + c1;0 and f2(x) = c2;2x2 +c2;1x + c2;0 2 Z[x] have a common root m modulon if and only if the vectors a = (c1;0; c1;1; c1;2)T andb = (c2;0; c2;1; c2;2)T are orthogonal to (1;m;m2)Tover Z=nZ using the standard inner product. Sup-pose f1(x) and f2(x) are irreducible over Z, havecontent 1, and do not satisfy f1(x) = �f2(x). Aswill be explained further on, we can �nd in prac-tice a and b of which the coe�cients are appoxi-mately O(n1=4), so the space orthogonal to a andb has rank 1 (both over Z and over Z=nZ). If

c = a� b (cross product), then c must be a multi-ple of (1;m;m2)T over Z=nZ. The fact that f1(x)and f2(x) are not multiples of each other ensuresthat c is not the zero vector. If c = (c0; c1; c2)T ,then c0; c1; c2 is a geometric progression in Z=nZ.It is not a geometric progression over Z, since thenf1(x) and f2(x) would have a common factor x�mover Z.Montgomery's algorithm for �nding f1(x) andf2(x) reverses this construction and starts with avector c = (c0; c1; c2)T 2 Z3, where c0; c1; c2 is a ge-ometric progression with ratio m over Z=nZ, butnot over Z. The vector c can be constructed asfollows: for p prime such that p < pn and n aquadratic residue modulo p, choose c1 such thatc21 � n mod p and jc1 � n1=2j � p=2. The elementsof c = (p; c1; (c21�n)=p)T form a geometric progres-sion with ratio c1=p over Z=nZ, not over Z. Fur-thermore ci = O(n1=2) (i=0,1,2). Take s 2 Z=pZsuch that c1s � 1 mod p. With c2 = (c21 � n)=p,the vectorsa0 = 0@ c1�p0 1A ; b0 = 0@ (c1(c2s mod p)� c2)=p� (c2s mod p)1 1Aare both orthogonal to c. From a0 � b0 = �c andgcd(c0; c1; c2) = 1 we deduce that a0 and b0 spanthe sublattice of Z3 orthogonal to c. Denote by(a; b) the inner product of a and b, and rememberthat a (a; b)=(a;a) is the projection of b on a. Byreducing the basis fa0; b0g, one can �nd \small"vectors a and b with fa; bg a basis of the sublatticeof Z3 orthogonal to c, such that���� (a; b)(a;a) ���� � 12 and ����(a; b)(b; b) ���� � 12 :The angle � between these vectors will be between60� and 120�. Since the surface of the parallelo-gram spanned by a and b is both equal to ka� bkand kak � kbk sin �, we havekak � kbk = kcksin � � 2kckp3 = O(kck) = O(n1=2):
(5.1)



Elkenbracht-Huizing: An Implementation of the Number Field Sieve 237In practice both kak and kbk are O(n1=4). For dif-ferent values of p we will get a di�erent pair ofpolynomials. The program findquad tries to �ndtwo polynomials each having two real roots, manyroots modulo small primes, and such that the in-tegral of Pi=1;2 log jFi(x; y)j is small, where (x; y)runs through the sieving region for (a; b).When using line sieving (a special form of lat-tice sieving, explained in Section 6), we like touse a large range of a-values, say jaj < M andonly b = 1. To try to induce Fi(a; 1) = ci;2a2 +ci;1a + ci;0 to be smooth over the prime numbersbelow Bi, we would prefer ci;2 = O(n1=4=M), ci;1 =O(n1=4), and ci;0 = O(n1=4M) rather than all ofthem being O(n1=4). We achieve this by �rst choos-ing c0 = p = O(pn=M), whence c1 = O(pn)and c2 = O(pnM). The resulting coe�cients ofa0 = (a00; a01; a02) and b0 = (b00; b01; b02) have approx-imately the right ratio. To keep this ratio whilereducing the basis, we reduce the vectors a00 =(a00; a01M;a02M 2) and b00 = (b00; b01M; b02M 2) instead.Note that a00�b00 =Mc00 with c00= (c0M 2; c1M; c2),which is still a geometric progression with ratioc1=pM over Z=nZ, not over Z. Using (5.1) withc = Mc00 we �nd that the resulting vectors a =(a0; a1M;a2M 2) and b = (b0; b1M; b2M 2) will beboth O(n1=4M). Using f1(x) = a2x2+a1x+a0 andf2(x) = b2x2+b1x+b0 results in the desired ordersof the coe�cients of f1 and f2.We also have to choose the factor base boundsBi, the large prime bounds Li, and the sievingregion. In the experiments described in Section10, where we factored numbers in the 98{162 dig-its range with the SNFS and numbers in the 87{107 digits range with the GNFS, we used factorbase bounds between 5 � 105 and 2:9 � 106 and largeprime bounds between 12 � 106 and 4 � 107. Whenusing classical sieving, the sieving region was arectangle for which we took a in a subinterval of[�2 � 106; 2 � 106] and b between 1 and some upperbound, in our experiments between 16 � 103 and48 � 104. First we chose the factor base bounds andgenerated the corresponding factor bases Fi(Bi),as described in the next section. Then we chose

the large prime bounds Li and �xed a range of a-values. For all these a-values and a few b-values,preferably equidistributed over the expected rangeof b-values, we checked whether the (a; b)-pair is arelation, in a way we will describe in the next sec-tion. Allowing Fi(a; b) to contain two large primesbetween Bi and Li, instead of demanding it to besmooth over the primes below Bi, we increase theprobability that (a; b) is a relation. On the otherhand, Fi(a; b) is now factored over Fi(Li) insteadof Fi(Bi), which enlarges the number of relationsneeded too. In practice this adjustment has shownto be useful. In our experiments we needed approx-imately 0:8 � f�(L1) + �(L2) � �(min(L1; L2))=ggrelations.From the number of relations we got for thesefew b-values we could estimate the range of b-valuesneeded and from the time the experiment took wecould estimate the time needed for the whole siev-ing step. In this way we selected a good combi-nation of pair of polynomials, factor base bounds,large prime bounds and sieving region.
6. THE SIEVINGThe sieving is the part of the algorithm duringwhich we collect the relations. Before we startthe sieving we have to generate the factor basesFi(Bi) de�ned on page 233, just before (2.3). Ifwe identify P1(Fp) with Fp [ f1g by identifying(r1 : r2) with r1=r2, then Ri(p) (de�ned in (2.2))consists of those r = r1=r2 2 Fp for which fi(r) �0 mod p, together with 1 if ci;di � 0 mod p. Theprogram rootfinder �nds for both polynomialsfi(x) and for all primes p below Bi all roots mod-ulo p. Repeated roots appear only once in thelist. When the prime p divides the leading coe�-cient ci;di , rootfinder includes the projective root(1; 0), which it represents by p. We recall that for aand b coprime, p j Fi(a; b) if and only if (a mod p :b mod p) 2 Ri(p). In terms of the roots of fi(x)this means that for a and b coprime, p j Fi(a; b) ifand only if (a � br mod p and fi(r) � 0 mod p) or(p j ci;di and p j b).



238 Experimental Mathematics, Vol. 5 (1996), No. 3Two ways of sieving have been implemented: the\classical" sieve [Lenstra et al. 1993b, x 4; Buhleret al. 1993, x 12], and line sieving, a special form oflattice sieving [Pollard 1993b].In the classical way of sieving we �rst choosethe a-interval and the b-interval. We start sievingwith b = 1 and augment b until we reach its upperbound. The program gnfs estimates the maximumvalue of Fi(a; b) over all values of a and b for bothpolynomials. The polynomial for which this esti-mate is larger is sieved �rst. Probably fewer pairs(a; b) will have a smooth value of Fi(a; b) for thispolynomial, so fewer pairs have to be stored. Fur-thermore this largest value is used to decide uponthe base of the logarithm, which we choose in sucha way that the log of the maximum �ts in one byte.Suppose we start sieving with polynomial fj .To sieve for the �rst polynomial fj we �x b andinitialize to zero an array that contains one byteper a-value. For every prime p < Bj and ev-ery r with fj(r) � 0 mod p we add [log p] (where[ � ] is the nearest integer function) to all arrayelements corresponding with a � br mod p. Forevery prime p < Bj with p j cj;dj and p j b weadd [log p] to every array element. Then we splitthe a-interval recursively in subintervals until thevalue of cj(a; b) = Fj(a; b)=L2j does not vary morethan a prescribed amount within a subinterval. Ifthe value of an array element is close enough tolog cj(a; b), then Fj(a; b) is potentially smooth andwe store the value of a. Now the same sieving pro-cess takes place for the other polynomial f3�j. Iffor a pair (a; b) both F1(a; b) and F2(a; b) are poten-tially smooth|(a; b) is now called a candidate re-lation|, we use trial division (where we �rst test ifa � br mod p before applying an expensive multi-ple precision division of Fi(a; b) on p) to extract allfactors below Bi from Fi(a; b), for i = 1; 2. This isnecessary, since during the sieving we use roundedlogarithms and other techniques, which not onlymake the sieving faster, but also make the �nalvalue in the array elements less accurate.(In [Golliver et al. 1994] experiments were madewith repeating the sieving procedure once again,

instead of using trial division. The candidate rela-tions are marked in the sieving array. In a secondsieving round the primes p themselves are storedinstead of adding [log p] to the array elements forthe candidate relations. Next the integers F1(a; b)and F2(a; b) are calculated for the candidate rela-tions and the stored primes are divided out. Thisapproach costs more memory, but is likely faster.)By increasing p, and comparing the sieved log-arithms with the sum of the logarithms of primesdivided out of Fi(a; b) during trial division so far,one can sometimes skip an interval of primes. Ifafter the trial division there remains a compositepart smaller than L2i , we try to factor it �rst us-ing SQUFOF, and if that fails using Pollard Rho[Riesel 1985, pp. 191{198, 174{183]. A pair (a; b) isa relation if both Fi(a; b) factor over the primes be-low Bi except for at most two large primes betweenBi and Li. It is stored together with the primes di-viding Fi(a; b) that exceed some user-determinedprinting bounds Wi, where i = 1; 2. With thesebounds Wi one can monitor the amount of outputof the gnfs program. They should be chosen insuch a way that it �ts in the available disk space.Using the lattice sieve, we only sieve over pairs(a; b) of which we know that one Fi(a; b), say fori = j 2 f1; 2g, is divisible by a special large primebetween L(l) and L(u), which are the user-chosenlower and upper bound for the large primes, re-spectively. The advantage is that the remainingpart of Fj(a; b) is more likely to be smooth. Onthe other hand we will miss the relations for whichboth Fi(a; b) are smooth over the primes below L(l).For the implementation of the lattice sieve we usean extra feature implemented in the classical wayof sieving. There we have a possibility of sievingover a sublattice of the (a; b)-pairs. We can choosean integral, nonsingular matrix M and sieve overpairs (a; b) of the form:� ab� =M �xy� ;while the program sieves over x and y. This isdone by substituting the expressions of a and b in



Elkenbracht-Huizing: An Implementation of the Number Field Sieve 239terms of x and y in both Fi(a; b) resulting in newpolynomials Gi(x; y), which are now the polyno-mials whose values should be smooth. Of coursethe roots of the polynomials Fi have to be adaptedto the roots of the polynomials Gi. When a pair(x; y) is a relation, the corresponding pair (a; b),together with the primes dividing Gi(x; y) and ex-ceeding Wi, are stored.The lattice sieve sieves for every prime q in therange [L(l); L(u)], for a �xed value of b over all roots(r1 : r2) 2 fR1(q)[R2(q)g with r2 6= 0. When siev-ing over a root (r1 : r2) of Rj(q) we sieve only overthe a-values with a � br1r�12 mod q, thus guaran-teeing that Fj(a; b) is divisible by q. This is thesame as using a matrixM = � q r1r�12 mod q0 1 � ;with y �xed to b and x in an interval such that qx+b(r1r�12 mod q) just �ts in the a-interval. (Notethat, when we compare our notation with thatused in [Pollard 1993b], we have V1 = (q; 0) andV2 = (r1r�12 mod q; 1), and that we are applyingthe \sieving by rows" strategy.) Gj(x; y)=q shouldbe smooth over the primes below Bj , except forat most two large primes between Bj and q. Theother G3�j(x; y) should be smooth over the primesbelow B3�j , except for at most two large primesbetween B3�j and q. Not allowing primes equal toor bigger than q to divide one of the Gi(x; y) avoidsgenerating duplicate relations, but misses relationshaving two large primes smaller than q for Gj(x; y)and a large prime larger than q for G3�j(x; y). Af-ter we have sieved over all roots in R1(q) and R2(q)we take the next value of b; after we have sievedover all values of b we take the next prime in the in-terval [L(u); L(l)]. We implemented lattice sievingonly for the case of two quadratic polynomials.Since the sieving is the most time-consumingstep of the algorithm, its implementation is critical.It is a lot of work to sieve over a small prime p, andjust a small amount of [log p] is added to the arrayelements. Therefore we sieve only over primes andprime powers larger than 30. Also we do not add

[log p] to all array elements for primes p < Bj withp j cj;dj and p j b, but we divide cj(a; b) by p. Fur-thermore we split the a-interval into subintervalsthat �t in the secondary cache of the computer,making the sieving faster. For a group of smallprimes, which consists of the primes for which wesieve over a power rather than over the prime it-self, we again split the subintervals into smallersubintervals which �t into the primary cache. Theuser can install several \early abort" bounds: if theleftover part of Fi(a; b) after trial division over allprimes below a boundB < Bi is bigger than a user-speci�ed constant times the square of the largeprime bound, then the pair (a; b) is not consideredto be a candidate for a relation and is thrown away.In the case of lattice sieving, the values of a witha � br1r�12 mod q are far away from each other fora �xed value of b. In Section 5 we explained howwe select polynomials such that we can increase thee�ciency of the sieving by taking a huge a-intervaland b = 1. Therefore we call it line sieving.
7. THE FILTERINGThe aim of �ltering is just the reduction of theamount of data. We want to �nd a subset S of allrelations f(a; b)g found in the sieving step and asubset T of the set of free rational primes p suchthat �QT p��QS(a � b�i)� is a square in Qn [�i],for i = 1; 2. Therefore every algebraic prime p di-viding one of the products �QT pdi��QS Fi(a; b)�for a certain root (r1 : r2) 2 Ri(p) (from now ondenoted by p(r1 :r2)) must occur to an even powerwith respect to this root. (Here we should seepdi as the product of one factor p for every root(r1 : r2) 2 Ri(p)). A prime p(r1 :r2) occurs in a rela-tion (a; b) for polynomial i if p divides Fi(a; b) and(a mod p : b mod p) = (r1 : r2). A prime p(r1 :r2)occurs in a free relation for both polynomials if pis a free prime. We say that a prime p(r1 :r2) occursin a relation for polynomial i if it occurs in a rela-tion (a; b) for polynomial i or if p is a free prime.It is obvious that a relation in which some primep(r1 :r2) occurs to an odd power for one of the two



240 Experimental Mathematics, Vol. 5 (1996), No. 3polynomials is useless, if this prime is not occur-ring in some other relation to an odd power for thesame polynomial. The �ltering stage throws awaysuch relations. If a prime p(r1 :r2) occurs to an oddpower in just two relations for the same polyno-mial and one of them belongs to the set S, theother one should also be part of S. In the �lteringstage the two relations are grouped into a relation-set. If one relation from a relation-set is chosenin the set S, then all relations from that relation-set should be in S. By creating the relation-set wehave eliminated the need to take care of the primep(r1 :r2) when looking for the set S. In this way theamount of data and the size of the matrix for thenext linear algebra step are reduced.The relations found in the sieving step are readin sequentially. In order to regulate the amountof memory used, the user �rst chooses a numberof temporary �les among which the data will bedistributed. During the �ltering process data fromonly one temporary �le will be in the working mem-ory of the computer. A hash function is imple-mented that distributes the primes equally overthe temporary �les. For all the primes in the input�le with norm larger than some user-determinedbound U � max(W1;W2) and occurring to an oddpower in one of the Fi(a; b), the filter programcalculates the index of the corresponding tempo-rary �le by using the hash function on the prime.The relation is written to the �le with the small-est number it gets from all these primes. We storea, b, and the primes that were written in the in-put �le. Extra features in this program have beenadded, such as looking only at the primes belowsome user-determined bound and throwing awayall the relations containing a prime bigger thansome user-determined bound.When all relations are read in and stored in thecorresponding �les, the combining and throwingout process starts. First all relations (a; b) of the�rst �le are read in and stored in a heap [Stan-dish 1980, x 3.7.1] in descending order accordingto the largest prime that led to the storage of therelation in this �le. We start by considering the

relations in which the largest prime p correspond-ing to this �le occur. We calculate the root (r1 : r2)for this prime for the relations (a; b) by calculating(a mod p : b mod p). If d1 + d2 di�erent roots forthis prime appear in these relations, we append thefree relation for this prime. If, while looking at aprime p(r1 :r2), we see the same relation (a; b) twice,we throw out one of the occurrences. If some primep(r1 :r2) occurs exactly once for one of the polynomi-als, the corresponding relation is thrown out. If aprime p(r1 :r2) occurs twice for one of the polynomi-als, the two corresponding relations are grouped ina relation-set. If the user wishes, for primes p(r1 :r2)that occur just three times for one of the polynomi-als, the program replaces the three correspondingrelations by two relation-sets of two relations each.Next the resulting relation-sets and the relationsthat were not combined are stored at the next placecorresponding to the hash function. If the rela-tion or relation-set contains smaller primes to anodd power that correspond to the same �le, wekeep the relation(-set) in the working memory. Westore the relation(-set) in the heap according to thelargest of those primes. Otherwise, if the relation(-set) contains primes to an odd power that corre-spond to other �les, we store the relation(-set) inthe �le among those with the smallest number ex-ceeding the number of the �le which we currentlyhave in memory, or, if there is no such �le, in the�le among those with the smallest number. If therelation(-set) only contains larger primes to an oddpower that correspond to the same �le, we keep therelation(-set) in the same �le, but write it to disk.If the relation(-set) does not contain any primeslarger than Wi to an odd power anymore, we writeit to an output �le. This circular queue is con-structed in such a way that, when trying to throwout relation(-set)s or combining relation(-set)s into(new) relation-sets for some prime p, all relation(-set)s containing that prime to an odd power willbe considered. When we store a relation-set westore all relations it contains, together with theirprimes exceeding Wi and the free primes of therelation-set.



Elkenbracht-Huizing: An Implementation of the Number Field Sieve 241After the �rst temporary �le is treated in thisway, the same process takes place consecutivelyon the other �les. Of course, relation-sets canalso be combined with each other. Relation-setsthat become too large, in the sense that they con-tain more relations than a user-determined bound,are thrown away, in an attempt to keep the ma-trix for the next linear algebra step sparse. Theuser can �x the maximum number of relation-setsthat can be thrown away. When the last �le hasbeen processed the program starts again on the�rst �le, until no changes have taken place in thelast round or the number of passes has reached auser-chosen bound. Then all relation(-set)s thatare still in the temporary �les are written to theoutput �le.The filter program counts the number of rela-tions and relation-sets that remain and the numberof primes p(r1 :r2) occurring to an odd power in oneof the relations or relation-sets with norm largerthan U . From these data one can estimate whetherthere are enough relations.In practice we used filter several times for onenumber. To save disk space we chose big printingbounds, W1 =W2 = 106, say. First we applied thefilter program to the output of the sieving stepwith U = W1. On the remaining relation(-set)swe applied the program factorrelations to com-pute the prime factors between a smaller boundW 0 and Wi of F1(a; b) and F2(a; b) for all relations(a; b) and store the relation(-set)s, now with allprimes exceeding W 0. Then we again applied thefilter program, now on all primes exceeding U 0,with W 0 � U 0 < U . These steps were repeated un-til we reached a bound below which many primesoccur at least four times, so no combining or throw-ing out could be done, or until we were content withthe resulting matrix size.Another method that can be used for reducingthe amount of data is structured Gaussian elimina-tion, described in [LaMacchia et al. 1991], for ex-ample. A comparison between our �ltering methodand structured Gaussian elimination has not yetbeen made.

8. THE BLOCK LANCZOS METHODAfter enough relations have been collected and thefilter program has reduced the amount of data,we try to �nd a subset S of the remaining rela-tions and a subset T of the set of free primes suchthat �QT p��QS(a�b�i)� is a square in Qn [�i], fori = 1; 2. For simplicity, from now on we view a re-lation left after the �ltering stage as a relation-setcontaining only one relation. To this collection ofrelation-sets we append a relation-set for every freeprime below max(W1;W2), containing this prime.A relation-set V consists of two (possibly empty)subsets Vf and Vr that contain the free primes andthe relations of V, respectively. For every relation-set V we construct a vectorv(V) =XVp v(p) +XVr v(a; b):The vectors v(a; b) are as described in Sections 2and 3; the vectors v(p) are described in Section 4.We build a matrix M whose columns are all vec-tors v(V). We remove the rows that contain onlyzeros. They correspond to primes (q; (r1 : r2)) oc-curring to an even power in every relation-set V.We want to calculate some nontrivial vectors ofthe null space of this matrix.Since Gaussian elimination [Knuth 1981, x 4.6.2,Algorithm N] requires too much memory for thelarge sparse matrices we have, we use a variationof the iterative Lanczos method. Proofs on bothstandard Lanczos and block Lanczos can be foundin [Montgomery 1995]. The standard Lanczos al-gorithm starts with a symmetric, positive de�nitek� k matrix A over the �eld K = R. If b 2 Rk wesolve Ax = b by the following iterative procedure:set w0 = b andwi = Awi�1 � i�1Xj=0 cijwj (8.1)for i > 0, where cij = wTj A2wi�1wTj Awj :



242 Experimental Mathematics, Vol. 5 (1996), No. 3It can be shown that after at most k iterations wewill �nd wi = 0. If l is the �rst value of i suchthat wi = 0, we have wTi Awi 6= 0 for 0 � i < l,wTj Awi = 0 for i 6= j, and AW � W, where W isthe span of w0;w1; : : : ;wl�1. One can deduce thatx = l�1Xi=0 wTi bwTi Awiwiis a solution of Ax = b. Since wTj A2wi�1 = 0 forj < i� 2 we can simplify the calculation of wi towi = Awi�1 � ci;i�1wi�1 � ci;i�2wi�2 (8.2)for i � 2.Standard Lanczos can also be applied over other�elds, provided thatwTi Awi 6= 0 whenwi 6= 0 dur-ing this process. Working over the �eld F2 insteadof R has the advantage that one can apply a ma-trix to N di�erent vectors simultaneously, whereN is the computer word size. Inspired by workof Coppersmith [1993], Montgomery [1995] imple-mented the block Lanczos method, which exploitsthis advantage.The block Lanczos algorithm creates a sequenceof subspaces Wi instead of vectors wi. Applyingstandard Lanczos over F2 has the problem that inapproximately half of the cases the requirementwTi Awi 6= 0 if wi 6= 0 is violated. In the blockLanczos algorithm the analogous requirement isthat no nonzero vector in Wi is A-orthogonal toWi. This will hold when W Ti AWi is invertible,where Wi is a matrix whose column vectors spanWi.For A a symmetric k � k matrix over a �eld Kand V0 an arbitrary k�N matrix, the block Lanc-zos algorithm proceeds by setting, for i = 0; 1; : : :,Wi = ViSi (8.3)Ci+1;j = (W Tj AWj)�1W Tj A(AWiSTi + Vi); (8.4)Vi+1 = AWiSTi + Vi � iXj=0WjCi+1;j : (8.5)

In (8.4), j ranges from 0 through i. In (8.3) theN�Ni matrix Si (where Ni � N) consists of zerosexcept for exactly one 1 per column and at mostone 1 per row, thus selecting columns from Vi forWi. We choose the columns of Vi in such a waythat the corresponding columns of V Ti AVi are alinearly independent spanning set of all columns ofV Ti AVi. Thus Ni = rank(V Ti AVi), and one canprove that the resulting matrixW Ti AWi is invert-ible. The iteration process stops when V Ti AVi =0, for i = l say.If Vl = 0, the matrix W Ti AWi is invertible for0 � i < l, and we haveW Tj AWi = 0 for i 6= j; (8.6)W Tj AVi = 0 for 0 � j < i � l; (8.7)and �nally AW � W, where W is the span ofW0;W1; : : : ;Wl�1. If b 2 W one can further de-duce that the vectorx = l�1Xi=0 Wi(W Ti AWi)�1W Ti bis a solution of Ax = b.If we can choose Si in such a way that span(Vi) �span(W0;W1; : : : ;Wi+1), it is possible to simplifythe calculation of Vi+1 in (8.5) in a way similar tothat in which the calculation of wi in (8.1) wassimpli�ed to (8.2):Vi+1 = AWiSTi + Vi �WiCi+1;i�Wi�1Ci+1;i�1 �Wi�2Ci+1;i�2; (8.8)for i � 2. The requirement is ful�lled when thecolumns of Vi are in span(Wi;Wi+1). From (8.8)we can deduce thatVi+1 = AWiSTi + Vi �W ;where W is a k � N matrix whose columns arelinear combinations of the columns of Wi, Wi�1and Wi�2. Notice that the columns that were notselected from Vi are zero in STi and in AWiSTias well. Therefore a nonselected column of Vi isequal to the sum of the corresponding columns of



Elkenbracht-Huizing: An Implementation of the Number Field Sieve 243Vi+1 and W . Using (8.7) and (8.6) we can de-duce that such a column of W must be a linearcombination of the columns of Wi only. Choos-ing the columns of Vi+1 which were not selectedin Vi guarantees that the nonselected columns ofVi are in span(Wi;Wi+1). If these columns of Viare independent but the corresponding columns ofV Ti+1AVi+1 are dependent we cannot ful�ll the re-quirement that W Ti+1AWi+1 is invertible, and thealgorithm fails. In practice this has never hap-pened. Otherwise we choose a spanning set ofcolumns for V Ti+1AVi+1 including the columns thatwere not selected for Vi, and choose Si+1 accord-ingly.To apply the block Lanczos method to our ma-trixM , we have to deal with several obstructions.First M need not be symmetric and therefore weapply the algorithm to the symmetric matrix A =MTM . It is obvious that any solution ofMx = 0satis�es Ax = 0, but the converse need not betrue. Secondly, if we want to �nd a vector fromthe null space of A and start with b = 0, we will�nd the trivial solution. We overcome this prob-lem by starting with a random vector y and takingb = Ay. When x is a solution of Ax = b = Ay,then x � y will be a random vector from the nullspace of A. Thirdly, several vectors from the nullspace of M have to be found, since not every de-pendency corresponding with such a vector willlead to a nontrivial factor of n. Note that duringthe iteration steps the vector b only is involved inthe calculation of the solution vector x. Thereforereplacing b by a k�N matrix B in the calculationof x will give a solution of AX = B, with X alsoa k�N matrix. To �nd several vectors in the nullspace of A we start with a random k � N matrixY and calculate solutions of AX = AY . The Ncolumn vectors ofX�Y will be random vectors inthe null space of A and we extract the ones whichare also in the null space of M .Final obstructions are the two requirements forx to be a solution of Ax = b. First b has tobe in W = span(W0;W1; : : : ;Wl�1). This can bearranged by initializing V0 as AY , where Y is a

random k � N matrix. Secondly, the algorithmoften terminates with V Tl AVl = 0 but Vl 6= 0.Montgomery presumes that the column vectors ofA(X � Y ) and AVl are both in span(Vl), whichhas maximal rank N , but in practice the rank ismuch smaller. We may expect that some linearcombinations of these vectors are in the null spaceof A. Combined with the need to �nd vectors inthe null space of M instead of A, it su�ces toconstruct a suitable matrix U such that MZU =0, where Z is a k � 2N matrix of the columns ofX � Y and Vl. We �rst compute MZ. Then wedetermine a matrix U whose columns span the nullspace of MZ. The output is a basis for ZU .For implementing the calculation of Vi+1 in (8.8)one can bring further down the number of calcula-tions by using the following steps: for i = 0; 1; : : :,setVi+1 = AViSiSTi +ViDi+1+Vi�1Ei+1+Vi�2Fi+1;whereDi+1 = IN �W �i (V Ti A2ViSiSTi + V Ti AVi);W �i = Si(STi V Ti AViSi)�1STi ;Ei+1 = �W �i�1V Ti AViSiSTi ;Fi+1 = �W �i�2(IN � V Ti�1AVi�1W �i�1)(V Ti�1A2Vi�1Si�1STi�1 + V Ti�1AVi�1)SiSTi ;and where, for i < 0, W �i and Vi are 0 and Si isIN . When Si�1 = IN then Fi+1 = 0 and the termVi�2Fi+1 in the expression for Vi+1 can be omitted.For large sparse matrices Lanczos' algorithm re-quires less storage than Gaussian elimination. Itonly needs the original matrix and some extra vec-tors of length k and some N � N matrices, whileGaussian elimination causes �ll-in and thereforeneeds approximately k2 bits. WhenM has d non-zero entries per row on average, the time neededby block Lanczos is O(dk2=N) + O(k2). When dis much smaller than k this is considerably betterthan O(k3=N) for Gaussian elimination.In practice we makeM extra sparse by removingthe �rst row containing only ones and not append-



244 Experimental Mathematics, Vol. 5 (1996), No. 3ing any character rows. Also one could implementthe possibility to remove some of the dense rowscorresponding to small primes. If M is a k1 � k2matrix, the output of the block Lanczos algorithmwill consist of a k2�N matrix P with N \pseudo-dependencies" of which we still have to �nd linearcombinations to get a set S we look for. We solvethis problem here, although in our implementationit is a part of the square root program. For sev-eral quadratic characters (q; (s1 : s2))|chosen asdescribed in Section 2 with q larger than any primedividing any Fi(a; b)|we form a vector q(q;(s1 :s2))of length k2 by inserting a zero for all of the k2relation-sets V withYVp �pq�YVf �a� b (s1s�12 mod q)q � = 1and a one otherwise. A vector of length N or-thogonal to all vectors q(q;(s1 :s2))P is indicating alinear combination of the N pseudo-dependencieswhich is favourable to all chosen quadratic charac-ters. We construct a basis for the space orthogo-nal to all vectors q(q;(s1 :s2))P . Each of these basisvectors indicates which pseudo-dependencies of Pshould be combined for a real dependency, therebyindicating a set S.
9. EXTRACTING THE SQUARE ROOTAt this stage we have two squares �2 = �Qp2T p���Q(a;b)2S(a�b�1)� and 2 = �Qp2T p��Q(a;b)2S(a�b�2)� in Qn [�1] and Qn [�2], respectively. We haveto calculate � and . If we write both squaresas polynomials of degree less than di in �i, thecoe�cients will be gigantic. Then a conventionalmethod such as the one described in [Cohen 1993,x 3.6.2] cannot be used. Couveignes [1993] calcu-lates the square roots modulo several primes andapplies the Chinese Remainder Theorem, a methodthat presently works only for number �elds of odddegree.Montgomery [1994] attacks the problem using aniterative process. He starts by partitioning the setS in two subsets S1 and S2 and the set T in two

subsets T1 and T2 to advance the cancellation ofprimes p(r1 :r2) in both productsQp2T1 pdiQ(a;b)2S1 Fi(a; b)Qp2T2 pdiQ(a;b)2S2 Fi(a; b) ; (9.1)i = 1; 2. Here, the expressions pdi for the freeprimes p 2 fT1[T2g should be seen as the productof one factor p for every root (r1 : r2) 2 Ri(p). Wecan for example choose S1 = S, S2 empty, T1 = Tand T2 empty; or we can distribute S and T overthe sets Sj and Tj randomly. At the end of thissection we will see how we tried to optimize thisselection.Set �21 = QT1 pQS1(a� b�1)QT2 pQS2(a� b�1) ;�22 = QT1 pQS1(a� b�2)QT2 pQS2(a� b�2) ;then we will calculate �1 and �2, for which the con-gruence ('1(�1))2 � ('2(�2))2 mod n holds. Thefollowing algorithm is applied twice, �rst to calcu-late � = �1 and then to calculate � = �2. In therest of this section we suppress the index i whenreferring to �i, fi, di, ci;k and �i.Starting with �1 = �2, where � is unknown, wewill approximate in iteration step j � 1 the numer-ator (if j is odd) or the denominator (if j is even)of p�j by �j (to be explained below) and calculate�j+1 using the formula�j+1 = �j � (�2j )(�1)j : (9.2)Hence �2 = �j+1Qb j+12 cl=1 �22l�1Qb j2 cl=1 �22l : (9.3)The product of the norms of the numerator andthe denominator of �j+1 in (9.3) will decrease atevery iteration step. Small norms of numeratorand denominator, however, do not guarantee thatthe coe�cients of �j+1 as a polynomial of degree� d � 1 in � are small. Let �1; �2; : : : ; �d be theconjugates of �. For any polynomial h(x) 2 Q [x]



Elkenbracht-Huizing: An Implementation of the Number Field Sieve 245of degree at most d� 1 the Lagrange interpolationformula givesh(x) = d�1Xk=0 xk dXl=1 h(�l)ckl;where the ckl can be calculated fromf(x)(x� �l)f 0(�l) = d�1Xk=0 cklxk:Therefore we can bound the coe�cients of h(x)in terms of the jh(�l)j. We use this observationby choosing the approximation �j in such a waythat not only the product of the numerator andthe denominator norms of the successive �j+1's de-creases, but also j�j+1(�l)j tends to decrease for alll. When the norms and the embeddings becomesmall enough, we will express the �nal �j+1 as apolynomial of degree � d � 1 in � and �nd itssquare root by using the computer package PARI[Batut et al. 1995].In order to �nd the �j 's we work with ideals.Denote by O the ring of integers in Q [�] and forxj 2 Q [�] by hx1; : : : ; xniO the fractional ideal gen-erated by x1; : : : ; xn in O. Supposehp�jiO = Ql2Lj1 PcllQl2Lj2 Pcll (9.4)is the factorization of hp�jiO into prime ideals Plof O, where cl 2 Z+ for all l. At each iteration stepwe select an ideal I dividing the numerator (if jis odd) or the denominator (if j is even) of (9.4).The approximation �j will be a `small' element ofI. If I divides the numerator, we divide hp�jiO byh�jiO and this will result in the disappearance ofI in the numerator of hp�jiO and the appearanceof a new integral ideal Q of O in the denominatorof hp�jiO. If I divides the denominator the con-verse happens. If N(I) is su�ciently large, thanN(Q) will be much smaller than N(I). In this waythe product of the numerator and the denominatornorms will decrease every iteration step.

To factor h�jiO into prime ideals, we use the idealJ = hcd; cd�+ cd�1; cd�2 + cd�1�+ cd�2; : : : ;cd�d�1 + cd�1�d�2 + � � � + c1iO:We have J � O and h1; �iOJ = O [Montgomery1994]. From this we deduce ha�b�iOJ � O. There-fore, if we multiply an ideal ha� b�iO by J we canfactor the result in prime ideals, all with a positiveexponent. The ideals hpiO with p 2 T are alreadyintegral, so multiplication with J is not necessaryfor these ideals. We start withh�1iO = J#S2QT1hpiOQS1fha� b�iOJgJ#S1QT2hpiOQS2fha� b�iOJg (9.5)and factor the ideals hpiO and ha � b�iOJ intoprime ideals. Therefore we split the primes intwo subsets: the set of \special" primes which di-vide the index [O : Z[�]] and the remaining primeswhich we call normal. To every prime p and everyroot (r1 : r2) 2 R(p) there correspond prime idealsdividing hpiO if p is an element of T1[T2 or dividingha � b�iOJ if p divides F (a; b) ((a; b) 2 S1 [ S2).For a special prime there may exist more primeideals corresponding to the same root, but for anormal prime p the prime ideal P correspondingto a root (r1 : r2) 2 R(p) is uniquely determined.Based on practical experience Montgomery sus-pects|which we cannot prove|that in the lattercase the correspondence is given byP=8<: hp; cd�� cdr1r�12 mod piO if p - cd,hpiO+ J if p j cd, r2 = 0,J � hp; �� r1r�12 mod piO if p j cd, r2 6= 0.
(9.6)For the special primes p and for all their roots(r1 : r2) 2 R(p), we calculate the ideal P using (9.6)and factor it into prime ideals with help of thecomputer package PARI. While we read in the freeprimes and relations we accumulate a product ofthe factors of the right hand side of (9.5). We makea hash table containing an entry for each normalprime p and (r1 : r2) 2 R(p) we encounter. Eachentry contains the exponent of the correspondingprime ideal in the accumulated product so far: if



246 Experimental Mathematics, Vol. 5 (1996), No. 3we meet a normal prime p(r1 :r2) dividing a freeprime or F (a; b) in the numerator (or denomina-tor) of h�1iO to the power x, we add (or subtract)x to this exponent. If we encounter a special primep(r1 :r2), dividing a free prime p or one of the F (a; b),we use PARI to calculate the valuation of hpiO orha � b�iOJ, respectively, at the ideals of p(r1 :r2)we computed earlier. Also for these special idealswe keep track of the exponent of the ideal in theaccumulated product so far. We also have to keeptrack of the exponent of J in the accumulated prod-uct. For each ideal ha � b�iOJ in the numeratoror denominator we add or subtract 1, respectively.When we have read in all free primes and rela-tions we have factored h�1iO into prime ideals anda power of J.Now we start the iterative approximation pro-cess in which we use the LLL lattice basis reductionalgorithm [Lenstra et al. 1982]. Assume we wantto simplify the numerator. The algorithm selectsan ideal I = Ps11 : : :Pskk dividing the numerator ofhp�jiO, with sr > 0 for all r. N(I) should bechosen as large as computationally convenient forthis �rst lattice basis reduction. Let fa1; : : : ; adgbe an integral bases of O. With help of PARI weconstruct a basis in Hermite Normal Form (HNF)[Cohen 1993, x 4.7.2] expressed in fa1; : : : ; adg foreach prime ideal Pl occurring in I. PARI uses thesebases to construct a basis of I, also in HNF ex-pressed in fa1; : : : ; adg. Then we apply a latticebasis reduction to these d basis vectors of I. We�nd a basis of I consisting of `small' vectors. Inpractice, when using one of these small vectors forour approximation �j , the norm of the numeratorof h�j+1iO will decrease by a factor N(I) in com-parison with the norm of the numerator of h�jiO.In comparison with the norm of the denominatorof h�jiO, the norm of the denominator of h�j+1iOwill increase by a factor much smaller than N(I).We apply a second lattice basis reduction to aslight modi�cation of the basis which we �nd afterthe �rst lattice basis reduction, to search for anelement �j in I, which still has the same e�ect onthe norm of h�j+1iO, but yields small j�j+1(�l)j for

all l. Let v(1), v(2), : : :, v(d) be the reduced basisafter the �rst lattice basis reduction, where v(r) =Pd�1k=0 v(r)k �k. While we read in the free primes andrelations we calculate an approximation of �1(�l)for 1 � l � d. We choose c such thatcd = Lmax (N(�j))1=2N(I) (Disc(f=cd))1=2 ;where Disc(g) is the discriminant of the polynomialg and Lmax = 10100. If all conjugates �1; : : : ; �d of� are real, we construct the vectorsTv(r) = �v(r)0 ; v(r)1 ; : : : ; v(r)d�1;c v(r)(�1)j�j(�1)j1=2 ; : : : ; c v(r)(�d)j�j(�d)j1=2�Tfor 1 � r � d. If �s and �t are complex conjugates,we replacec v(r)(�s)j�j(�s)j1=2 by cp2Re(v(r)(�s))j�j(�s)j1=2and c v(r)(�t)j�j(�t)j1=2 by cp2Im(v(r)(�s))j�j(�s)j1=2in the construction of Tv(r). In this way all entriesof the Tv(r) will be real and the absolute valueof the determinant of the matrix formed by thelast d entries of these vectors remains the same.The determinant equals�Lmax, which constant hasbeen chosen in such a way that the second latticebasis reduction algorithm performs well. We applythe second lattice basis reduction to the vectorsfTv(r)gdr=1 and take the �rst d coordinates of oneof the resulting vectors for �j . When dividing �jby �2j the ideal I in the numerator of h�jiO willdisappear. At the same time the denominator ofh�jiO will be multiplied by the square of a newideal h�jiO=I =: Q: (9.7)In practice also for this �j we have that N(Q) ismuch smaller than N(I).



Elkenbracht-Huizing: An Implementation of the Number Field Sieve 247If we simplify the denominator of �j we selectan ideal I = Ps11 : : :Pskk which divides the denom-inator of hp�jiO. For the �rst LLL reduction thealgorithm proceeds as above. For the second LLLreduction the vectors Tv(r) becomeTv(r) = �v(r)0 ; : : : ; v(r)d�1;cv(r)(�1)j�j(�1)j1=2; : : : ; cv(r)(�d)j�j(�d)j1=2�Tfor 1 � r � d, and we replace cv(r)(�s)j�j(�s)j1=2by cp2Re(v(r)(�s))j�j(�s)j1=2 andcv(r)(�t)j�j(�t)j1=2 by cp2 Im(v(r)(�s))j�j(�s)j1=2in the construction of Tv(r) if �s = ��t. The con-stant c should be calculated fromcd = LmaxN(I) (Disc(f=cd))1=2 (N(�j))1=2 :In the next iteration step we avoid factoring Qinto prime ideals by including this ideal as a fac-tor of the new I. Its basis in HNF is found byusing (9.7). Furthermore we need the embeddingsof �j for the second LLL reduction. Using (9.2) wecan calculate j�j+1(�l)j from j�j(�l)j and j�j(�l)j2.We stop with the iterative process when the normsof numerator and denominator and the embeddingsof �j+1 are small enough.Next we calculate the square root p�j+1 withhelp of PARI. We �rst write �j+1 as a polynomialin �. We construct an integer t, being the productof the index and the norms of all ideals which arestill in the denominator of �j+1. Hence t�j+1 is apolynomial of degree d in � with coe�cients in Z.During the algorithm we keep track of the coe�-cients of the numerator and the denominator of �jas a polynomial in � of degree < d modulo severallarge primes. We use this to express the �nal t�j+1as a polynomial in � of degree < d modulo theseprimes and we use the Chinese Remainder Theo-rem to �nd its coe�cients in Z. We divide thiselement of Z[�] by t and �nd its square root by us-ing the method mentioned in [Cohen 1993, x 3.6.2].This completes the computation of �.

We now apply the homomorphism 'i, for i =1; 2, to the expressions found for �i:'i(�i) = p�j+1 (m)Qb j+12 cl=1 �2l�1(m)Qb j2 cl=1 �2l(m) mod n:Here the �i(m) mod n are calculated and multi-plied with the �j(m) mod n, for j < i, straightafter �i has been calculated, so there is no need tostore a history. We calculate gcd('1(�1)�'2(�2); n)and hope to �nd a nontrivial factor of n.In practice the second lattice basis reduction ap-plied to the Tv(r) will yield linear combinations ofthe v(1)(�i); : : : ; v(di)(�i) with small coe�cients.Therefore we can round the entries of the Tv(r)without introducing a lot of round-o� accumula-tion. This is the reason why we do not performone single lattice basis reduction. Now both re-ductions use integer arithmetic.It is important for the speed of the algorithmto select the sets S1; S2;T1 and T2 such that weget as much cancellation of primes p(r1 :r2) as pos-sible. We start with putting half the number ofrelations of S and half the number of free primes ofT in S1 and T1, respectively, and the rest in S2 andT2. While we read in all relations and free primesfor one of the polynomials, fi(x) say, and accumu-late the prime ideal factorization of the numeratorand the denominator of �i, we decide whether itis pro�table to put the current relation (a; b) orfree prime p in the denominator while it was orig-inally scheduled for the numerator (or vice-versa).If we decide to do so, then we put this relation forthis fi in the denominator and compensate this bymultiplying the �nal 'i(�i) with a � bm mod n orp mod n respectively.When using PARI for calculations in number�elds it is necessary to use the function initalg,which calculates amongst others an integral basis.This function needs to factor the discriminant ofthe polynomial, which can be too hard for PARI.We solve this problem by factoring the discrimi-nant ourselves and giving the primes to PARI withthe function addprimes.
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10. EXPERIMENTAL RESULTSIn this section we summarize factorization runs forseveral integers of up to 162 digits, indicating thetime spent on each major step of the algorithm.Except for 7299+1, all numbers were initially ex-posed to trial division and the elliptic curve method[Cohen 1993, x 10.3] to �nd the factors below 40digits. Thus, in the tables, \C98 from 7128 + 6128"means a 98-digit divisor of 7128 + 6128 obtained byelimination of \small" primes (3329 and 7329793).If we found only a few small factors we applied theSNFS; otherwise we applied the GNFS.The numbers factored with the SNFS are listedbelow, and the relevant statistics appear in Table 1.Figure 1 on page 236 showed the dependence ona and b of the number of relations found, for the

C119 from 3319�1. Figure 2 shows the dependenceon b of the number of relations, and Figure 3 theaverage computation time per relation, for the C98from 7128 + 6128.The numbers factored with the GNFS are listedbelow, and the relevant statistics appear in Table 2.Figure 4 shows, for the C97 from 12441+1, the e�ectthat varying the printing bounds W1 = W2 hason the time needed for the square root step. Thesquare root program needs the full factorization ofboth integers Fi(a; b) of the relations in S. Primeslarger than Wi are printed in the input �le, whilesmaller ones have to be found with trial division.With large printing bounds trial divisions becomevery time-consuming. This dependence explainsthe varying results for square root timings in thepreceding tables.C98 from 7128 + 6128, factored into two primes of 49 and 50 digits,1066005182572362964065225039667736303849504290049 and57198455483606292671608097698721205785907158143489.C106 from 2543 � 1, factored into two primes of 42 and 64 digits,534955385319592511227419175872576025063351 and2307880312514050317434773233753379487634082230810808744501836223.C119 from 3319 � 1, factored into two primes of 41 and 79 digits,26425387421490471188793734763177943613329 and2742852582186302944625818325876362221386271693831170052360109818510078843584437.Note that g1(x) = x10 + x9 + � � �+ x+ 1, g2(x) = x� 329, and m = 329 satisfy the requirements. Now expressg1(x)=x5 as a polynomial in x+ (1=x).C123 from 2511 � 1, factored into two primes of 57 and 67 digits,144780974187086260903935034761413745643636578290924150417 and2537599745025519134156761164267591913521835535529224725592538658153.Note that g1(x) = x6 + x5 + � � �+ x+ 1, g2(x) = x� 273, and mg = 273 satisfy the requirements. Expressingg1(x)=x3 as a polynomial in x+ (1=x) yields h1(x) = x3 + x2 � 2x� 1 with mh = 273 + 2�73. Usemh = 2((236 + 2�37)2 � 1) to rewrite h1(x) as a polynomial in 236 + 2�37. This yieldsk1(x) = 8x6 � 20x4 + 12x2 � 1 and mk = 236 + 2�37. Finally f1(x) = 8k1(x=2), so mf = 237 + 2�36.C135 from 7373 + 1, factored into two primes of 55 and 80 digits,4596369165585291112352829637852339157090144708807832677 and30968642349372168556028560872092954382289515106526406243465921744900645899326733.The C162 (12151 � 1)=11, factored into two primes of 44 and 119 digits,16537237851564688924261407041648853990657743 and 49717867800323378818763399005960016\487476598349539211569747005759153228241911167043200927016884285731030248831349126419.Numbers factored with the SNFS.



Elkenbracht-Huizing: An Implementation of the Number Field Sieve 249C98 C106 C119factor of 7128 + 6128 2543 � 1 3319 � 1f1(x) x4 + 1 4x4 + 2x2 + 1 x5 + x4 � 4x3 � 3x2 + 3x+ 1f2(x) 632x� 732 x� 290 329x� 358 � 1m 7326�32 mod n 290 329 + 3�29 mod nsieving region jaj � 2 � 106 jaj � 3:5 � 105 jaj � 16 � 105, 1 � b � 103000;1 � b � 16 � 103 1 � b � 105 jaj � 12 � 105, 103001 � b � 345000B1 1:6 � 106 5 � 105 106B2 1:6 � 106 8:1 � 105 1:4 � 106L1 3 � 107 12 � 106 2 � 107L2 3 � 107 12 � 106 2:5 � 107sieving time 450 hours 250 hours 800 hours# sieving rel. 2,337,618 1,106,949 2,221,686# �lter rel. / sets 982,672/587,076 264,583/126,254 774,265/349,961matrix size 539; 020� 620; 650 128; 546� 133; 738 348; 852� 367; 182bl. Lanczos time 74 min 6 min 38 minsquare root time 69 min 47 min 62 min# trials 1 2 1C123 C135 C162factor of 2511 � 1 7373 + 1 12151 � 1f1(x) x6 � 10x4 + 24x2 � 8 x5 + 732 12x5 � 1f2(x) 236x� 273 � 1 x� 7315 x� 1230m 237 + 2�36 mod n 7315 1230sieving region jaj � 6 � 105 jaj � 2 � 106 ?1 � b � 37 � 104 1 � b � 2:6 � 105B1 15 � 105 2 � 106 ?B2 11 � 105 2 � 106 ?L1 3 � 107 3 � 107 108L2 2:5 � 107 3 � 107 108sieving time 700 hours 2150 hours see caption# sieving rel. 1,901,187 2,746,848 8:98 � 106# �lter rel. / sets 420,896/222,014 1,154,111/583,631 1,807,808/822,361matrix size 430; 018� 439; 058 581; 870� 590; 573 828; 077� 833; 017bl. Lanczos time 97 hours 92 min 205 minsquare root time 13 hours 130 min 10.5 hours# trials 1 1 2
TABLE 1. Statistics of SNFS runs. The square root timings are given for one dependency. \Sieving time" isa rough estimate on an SGI Indy workstation (100MHz R4000SC processor), except for the C162, where itrepresents 8 weeks of idle time on 30 workstations at Oregon State University, Corwallis (USA). \Block Lanczostime" is time on one processor of a Cray C98, except for the C123, where it is on one processor of an SGIChallenge (150MHz R4400SC processor). \Square root time" is always on one 150MHz R4400SC processor ofan SGI Challenge. A question mark indicates that records have been lost. See also Figure 1 for the C119 andFigures 2 and 3 for the C98.
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provements. I also thank the referee for remarksthat helped improve the presentation in Section 10.This work was sponsored by the Stichting Na-tionale Computerfaciliteiten (National ComputingFacilities Foundation, NCF) for the use of super-computer facilities, with �nancial support from theNederlandse Organisatie voor WetenschappelijkOnderzoek (Netherlands Organization for Scien-ti�c Research, NWO).C87 from 7299 + 1, factored into two primes of 28 and 59 digits,8097540789168990910686588841 and 16798259634305265460776431824065479289925925226507262384081.15112 89658 85928 67299 7 x2 � 14454 82064 03710 35730 30x� 82891 10711 41503 38627 2810193 02053 49942 54454 47 x2 + 69591 00565 51957 53864 28x� 73926 15678 48940 75263 91512971 49181 97797 46345 57652 15830 55986 93259 36651 20309 00057 23712 50151 97604 40714 27556 35889 0672987 9993 x2 + 19574 91701 87826 93290 2x� 77557 88285 64247 72330 65859 26647 481621732 17947 x2 � 79076 05467 51140 42573 56 x� 23092 86246 66134 62049 23942 78524 7117591584 63560 41789 38356 37052 93002 21754 09773 28747 97358 88020 12186 39497 14431 09944 13684 20046 6C97 from 12441 � 1, factored into two primes of 44 and 53 digits,80563595863991546010661115881806884967004027 and34988882229141372324919456579820527956234275361821641.�30177 43825 3x2 + 43549 18245 10787 39544 8959 x+ 35629 87893 56423 22360 48460 61872 83613 50�53619 92778 05x2 � 48039 40130 45794 97453 61008 x+ 63307 94281 94378 06775 38097 94819 80102 85828793 29914 27719 83147 13924 73244 89082 52443 26896 13883 6873469449 40161 32035 13827 86658 32257 58151 28653 4C105 from 3367 � 1, factored into two primes of 52 and 54 digits,1511495257840070716998865694022937935039928231350493 and501953997389244528404247906279090654105468962124251929.34291 05277 37x2 + 86817 06933 35194 65483 64161 2x+ 54075 90626 04782 97135 71395 36186 42487 477112420 60255 079 x2 � 91304 92731 81768 81696 25532 18 x+ 12912 87673 00065 23363 11682 29536 26798 24208 0022914 35905 55869 46906 21150 13538 55768 19231 64235 75426 62177 65793 56350 02756 74926 89398 72232 45481 40116 05440 05942C106 from 12157 + 1 was factored into two primes of 43 and 63 digits,5907648479166682692493875790809420049637197 and780034754594869441475241918877754732415095147758932024091338271.19003 04761 13x2 � 10164 31637 34436 73606 69602 94 x� 32430 28756 04959 76143 91031 71598 23376 25514 4�78508 32606 39x2 � 40196 86460 51742 27034 42801 72 x+ 16408 60800 01456 03417 92387 66543 25668 77138 2717900 44128 75726 25768 48153 41213 37659 37899 09788 88143 77815 81676 91054 76827 69666 52099 45565 82560 64297 87588 58169 9C107 from 6223 + 1, factored into 2 primes of 48 and 59 digits,835790655259197870586319955878764574136853697743 and16660359818385555664068601979347465063709118473978852096987.�54016 17762 83x2 � 42570 42830 28714 25377 92693 15 x� 46786 96410 85791 79806 10186 34789 10720 07155 8�24179 95148 05x2 + 76311 97031 66287 85485 31988 89x� 31165 39943 59418 67031 97753 30136 43451 35069 8612637 53059 94677 76761 85312 84126 24277 13734 77298 51839 92404 83922 87605 24925 32707 97264 40981 32306 53725 40515 54848 92Numbers factored with the GNFS. After each factorization we give the polynomials f1 and f2 used in the run,and the integer m. The C87 was factored twice, once with classical sieving (�rst set of values of f1; f2;m) andonce with lattice sieving. See also Figure 4 for the C97.



Elkenbracht-Huizing: An Implementation of the Number Field Sieve 251C87 C87 C97factor of 7299 + 1 7299 + 1 12441 + 1sieving method classical lattice latticesieving region jaj � 2 � 106, 1 � b � 48 � 104 jaj � 7:5 � 1012, b = 1 jaj � 25 � 1012, b = 1B1 = B2 1:6 � 106 106 2:2 � 106L(l) (L1 = 4 � 107) 106 10 � 106L(u) (L2 = 4 � 107) 2:346 � 106 L(u) = 24 � 106sieving time 2100 hours 1500 hours 3500 hours# sieving rel. 3,480,325 521,901 3,599,014# �lter rel. / sets 741,930/338,580 426,241/409,699 1,247,094/604,205matrix size 364; 215� 366; 907 273; 475� 437; 441 637; 711� 644; 950bl. Lanczos time 41 min(2) 26 min(2) 123 min(2)square root time 128 min(3) 36 min(3) 78 min(3)# trials 1 2 2C105 C106 C107factor of 3367 � 1 12157 + 1 6223 + 1sieving method lattice lattice latticesieving region jaj � 7:5 � 1014, b = 1 jaj � 1015, b = 1 jaj � 1015, b = 1B1 = B2 1:6 � 106 2:7 � 106 2:9 � 106L(l) 23 � 106 2:7 � 107 2:72 � 107L(u) 30 � 106 3 � 107 3 � 107sieving time see caption 11900 hours 11200 hours# sieving rel. 3:59 � 106 3,272,224 3,098,987# �lter rel. / sets ?/1,218,633 2,151,431/1,191,636 2,152,685/1,155,270matrix size 1; 284; 719� 1; 294; 861 1; 266; 098� 1; 295; 043 1; 226; 577� 1; 252; 846bl. Lanczos time 439 min(2) 423 min(2) 421 min(2)square root time 4.8 hours(3) 2.0 hours(4) 2.1 hours(3)# trials 1 1 5
TABLE 2. Statistics of GNFS runs. The square root timings are given for one dependency. \Sieving time" isa rough estimate on an SGI Indy workstation (100MHz R4000SC processor), except for the C105, where itrepresents 8 weeks of idle time on 40 workstations at Oregon State University, Corwallis (USA). \Block Lanczostime" is time on one processor of a Cray C98. \Square root time" is on one processor of an SGI Challenge(150MHz R4400SC processor), except for the C106, where the clock rate was 200MHz. A question markindicates that records have been lost. See also Figure 4 for the C97.

REFERENCES[Adleman 1991] L. M. Adleman, \Factoring numbersusing singular integers", pp. 64{71 in Proceedings23rd Annual ACM Symposium on Theory of Com-puting (New Orleans, 1991), ACM, New York, 1991.[Batut et al. 1995] C. Batut, D. Bernardi, H. Cohen
and M. Olivier, User's Guide to Pari-GP. Thismanual is part of the program distribution, availableby anonymous ftp from the host megrez.math.u-bordeaux.fr.[Buhler et al. 1993] J. P. Buhler, H. W. Lenstra, Jr., andC. Pomerance, \Factoring integers with the number�eld sieve", pp. 50{94 in [Lenstra et al. 1993a].
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FIGURE 2. Number of relations found in eachrange of 500 b-values for the factorization of theC98 from 7128 + 6128.

0:9
1:0
sec

0 5000 10000 15000 b
FIGURE 3. Approximate average time per relationneeded in the factorization run of the C98 from7128 + 6128, again as a function of b. Times are onan SGI Indy workstation with a 100MHz R4000SCprocessor.
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FIGURE 4. Square root timings (on one 150MHzR4400SC processor of an SGI Challenge) for theC97 from 12441 + 1.
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FIGURE 5. All matrices from the experiments hadclose to the average of 30.3 nonzero elements perrow. Here we show the dependence of the blockLanczos timings on the product of the number ofrows and columns.
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