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The soap film problem is to minimize area, and its dual is to

maximize the flux of a divergenceless bounded vector field.

This paper discretizes the continuous problem and solves it

numerically. This gives upper and lower bounds on the area of

the globally minimizing film. In favorable cases, the method

can be used to discover previously unknown films. No initial

assumptions about the topology of the film are needed. The

paired calibration or covering space model of soap films is used

to enable representation of films with singularities.

1. INTRODUCTIONThe soap �lm problem is to �nd the soap �lmthat minimizes area subject to appropriate con-straints. The two fundamental problems addressedby the numerical methods in this paper are �nd-ing a globally area-minimizing �lm for a given soap�lm problem, and proving that a given �lm is in-deed a global minimum. A precise de�nition ofwhat a soap �lm problem is will have to wait untilSection 3, but an intuitive idea is enough to see thedi�culties.Loosely speaking, soap �lms are area-minimizinghypersurfaces, but their treatment in full general-ity is complicated by the fact that they are notalways smooth manifolds, but may have singular-ities. For two-dimensional �lms in a three-dimen-sional ambient space, the possible singularities area triple line, where three �lms meet at 120� alonga curve, or a tetrahedral point, where six �lms andfour triple lines meet at equal angles [Taylor 1976].Further types of singularities are possible in higherdimensions [Brakke 1991; Sullivan 1995].A computer program such as the Surface Evolver[Brakke 1992] can represent a surface as a set of
at triangles (or curved patches in more general-ity), and hence provide an upper bound for area.
c
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But the topology of the surface has to be providedat the beginning, and although the topology maychange during the evolution to minimum area, allone has at the end is a local minimum of a dis-crete problem. In very limited circumstances, onecan show there is a smooth minimal surface nearby[Underwood 1993], but that is still only a local min-imum. The topology of the global minimum maybe entirely di�erent. What is needed is a lowerbound on the area of the global minimum. If onecan get the upper and lower bounds equal, thenone has a global minimum. Of course, the globalminimum may not be unique. For example, a cubi-cal wire frame bounds an apparent minimizer witha rounded square in the center, and that squarecan be parallel to any side of the cube.Fortunately, it often happens that a minimiza-tion problem has a corresponding maximizationproblem whose optimum has the same value. Suchproblems are called dual. A simple example isminimizing the circumference of a given area, andmaximizing the area bounded by a given lengthof circumference. A more relevant example hereis the max-
ow min-cut theorem of network the-ory: given a graph whose edges have �xed carry-ing capacities with some nodes designated sourcesand some designated sinks, �nd the maximum total
ow from sources to sinks. The dual minimizationproblem is to �nd a minimal cut, a set of edges withminimum total capacity that separates the sourcesfrom the sinks. A continuous version of this thatapplies to orientable, nonsingular soap �lms wasintroduced by Federer [1969; 1974] and named cal-ibration by Harvey and Lawson [1982]. The dualmaximization problem is to �nd a divergencelessvector �eld of maximum magnitude 1 with maxi-mum 
ux through the given boundary of the �lm.Intuitively, the vector �eld is the velocity of an in-compressible 
uid. The surface of minimal area isthe bottleneck to the 
ow, so for maximum velocity1 the maximum 
ux equals the minimum area.This paper treats only the area minimizationproblem with boundary constraints. In particu-lar, it does not treat soap bubble problems (with

volume constraints), nor capillary problems (withgravitational energy), although in favorable cir-cumstances these problems are susceptible to ex-tensions of the methods of this paper.Section 2 gives some preliminary background onsurfaces and 
ows. Section 3 describes a more gen-eral calibration model that can handle soap �lmsingularities. Section 4 describes discretization ofthe model into a form that is a standard optimiza-tion problem. Section 5 describes a particular im-plementation using the Surface Evolver and somecustom programs to generate data that can be fedto optimization software. Section 6 discusses someresults obtained so far. Brie
y, there is the �rstknown calibration of the network spanning the ver-tices of a regular hexagon, a novel solution foundby computer of another plane problem, and somepreliminary results on the conjectured minimal �lmspanning an octahedral frame. Section 7 discussessome works by others that have similarities to theapproach presented here. Section 8 concludes andoutlines some future prospects.
2. PRELIMINARIESThe only mathematical background necessary tothe understanding of this article consists of thestandard concepts of an advanced calculus course,such as surface integrals and the Divergence The-orem. Occasional references to more general con-cepts of integral geometry, such as currents anddi�erential forms, are tossed in for the cognoscenti.This section explains just enough about currentsand di�erential forms for our purposes. For fullerdiscussions, see [Federer 1969; Morgan 1995].The overall domain will be N -dimensional Eu-clidean space RN , although the ideas extend nat-urally to any Riemannian manifold. Domains forparticular problems are usually chosen to be com-pact convex sets, since a soap �lm is always con-tained in the convex hull of its boundary. All soap�lms will be (N � 1)-dimensional. The types ofintegrals needed will be integrals of scalar func-tions over regions and integrals of vector �elds over
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hypersurfaces. A region R may be de�ned by acharacteristic function �R(x), with the integral ofa scalar function f(x) beingZR f(x) dNx = ZRN f(x)�R(x) dNx:We will want to generalize the notion of region sothat its characteristic function becomes instead adensity function Q(x) with real values instead ofinteger values. We still can de�ne the integral off(x) as ZR f(x) dNx = ZRN f(x)Q(x) dNx:We call such an object a smeared region. Soap �lmswill be viewed as the boundaries of regions. Theboundary @R of a region R is de�ned precisely soas to make the Divergence Theorem true. If ~u(x) isa smooth vector �eld with compact support, thenZR div ~u(x) dNx = Z@R ~u(x) � ~N(x) dA:For an ordinary region R, the boundary @R is thesurface of the region with outward unit normal~N . For a smeared region, the boundary is rep-resentable by the negative gradient of the densityfunction:ZRN div ~u(x)Q(x) dNx = �ZRN ~u(x)�gradQ(x) dNx:This may be derived by applying the ordinary Di-vergence Theorem toZB div(~u(x)Q(x)) dNx;where B is some large ball containing the supportof ~u(x). The boundary of a smeared region is asmeared surface.Technically, objects one does k-dimensional inte-grals over are called k-currents, and the k-dimen-sional integrands are called di�erential k-forms.Thus our regions are N -currents, scalar functionsare N -forms, vector �elds are (N � 1)-forms, andsurfaces are (N � 1)-currents. Smeared surfaces

should still be regarded as (N�1)-dimensional ob-jects, even though they are smeared out over allN dimensions. The particular class of currents weneed are called 
at chains, and the vector �elds arethe class of 
at cochains. In particular, a 
ow willbe a divergenceless 
at (N � 1)-cochain. It turnsout to be relatively easy to characterize a 
ow. Itneed only be a measurable, bounded vector �eld,and have zero divergence in the weak sense. Thelatter means that if ~v is a vector �eld and f is asmooth function with compact support, thenZ ~v � grad f = 0:Flows need not be continuous, but at a surface ofdiscontinuity the components normal to the surfaceon both sides must be equal. This is enough toguarantee the integrability of 
ows on all surfacesof interest. The 
ows in this paper will be piecewiselinear and constructed to have zero divergence.The surfaces in the continuous theory are 
at(N � 1)-chains. Flat chains are dual to the 
atcochains. So a 
at chain is anything one can inte-grate 
at cochains over. A 
at N -chain is simplyan integrable scalar function. The boundary of a
at N -chain is automatically a 
at (N � 1)-chain,so the regions de�ned above with density functionsQ are 
at N -chains, and their boundaries are 
at(N�1)-chains. Another way to form a 
at chain isto take an oriented recti�able set. Flat chains thatare integer multiples of oriented recti�able sets arecalled integer 
at chains, and are what we usuallythink of as soap �lms. Recti�able 
at chains arerecti�able sets multiplied by real-valued densities.General 
at chains are called real 
at chains toemphasize the distinction. Hereafter we will oftenuse integer �lm as a synonym for integer 
at chain,and real �lm for real 
at chain.The equivalent of area for a 
at chain T is itsmass M(T ), de�ned as the maximum integral over
at cochains of maximum norm 1:M(T ) = sup~u �ZT ~u : k~u(x)k � 1 for all x�:
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Note that the supremum is over all 
at cochains,not just those with zero divergence. The mass neednot be �nite, although it will be for all our prob-lems. The mass of an integer 
at chain is just thearea of the recti�able set, times any multiplicities.If T is the boundary of a 
at N -chain with den-sity function Q, the mass of T is the total variationof Q: M(T ) = Z k gradQ(x)k dNx:Hence, for �nite surface mass, we may take Q tobe any function of bounded variation. If Q is acharacteristic function of a set, the boundary ofthe set is an integer 
at chain. De�ning the �lm bymeans of Q is the bounded variation approach tominimal surfaces of [Giusti 1984]. The 
at (N�1)-chains in this paper will either be unions of (N�1)-dimensional simplices or be boundaries of piecewiselinear functions.
3. THE CONTINUOUS MODELThe mathematical model of soap �lms used in thispaper is the paired calibration model [Lawlor andMorgan 1994] or the covering space model [Brakke1995]. The paired calibration model will be de-P1

P2P3 v2

v3 v1
S3

S1
S2

R1R3 R2

H31

H32 H12
FIGURE 1. Paired calibration of the tripod.

scribed �rst, since it is perhaps a little clearer.Then the fully general covering space model willbe de�ned.
The Paired Calibration ModelThe paired calibration model regards a soap �lm asa set of interfaces between regions that partitionthe domain. Figure 1 is a diagram of the modelfor the problem of �nding the shortest one-dimen-sional �lm joining the three vertices P1; P2; P3 ofan equilateral triangle.Let the regions be denoted R1; : : : ; Rs. Let Hijbe the interface between regions Ri and Rj, re-garded as an oriented surface, or 
at chain to bemore precise. Hence Hij = �Hji. Each region alsohas an outer boundarySi =Xj Hij � @Ri;
regarded as �xed. Si is called the reference surfacefor region Ri. The orientations are chosen here sothat Si andPjHij are homologous. Note that thismakes Si have inward normal. The minimizationproblem is: MinimizeXi<j area(Hij):
A paired calibration is a set of 
ows ~vi, one perregion, each de�ned over the entire domain, suchthat k~vi(x)� ~vj(x)k � 1 for all i; j and all x. Thetotal 
ux F of a paired calibration is de�ned as

F =Xi ZSi ~vi � ~dA:
Theorem 3.1. If f~vig is a paired calibration for theset of surfaces fSig, then for any regions fRig andcorresponding interfaces fHijg, the total 
ux is atmost the interface area:Xi ZSi ~vi � ~dA �Xi<j area(Hij):
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Proof. Since div~vi = 0, the Divergence Theoremand the 
ow di�erence bound imply, after somerearrangement:Xi ZSi ~vi � ~dA =Xi ZPj Hij ~vi � ~dA=Xi<j ZHij(~vi � ~vj) � ~dA
�Xi<j ZHij 1 dA=Xi<j area(Hij): �

Hence the total 
ux of a paired calibration providesa lower bound on the areas of possible soap �lms.If one can �nd a paired calibration whose 
ux isequal to the area of a soap �lm, one also has aproof that the soap �lm is a global minimum ofarea. We then say that the vector �elds calibratethe �lm. The calibration is far from unique. Theproof of Theorem 3.1 shows that the only seriousconstraint on it is that the di�erence of 
ows be aunit normal at the minimal �lms.Note that if there are multiple global minimal�lms (as for the cubical wire frame), any calibra-tion must calibrate all minimal �lms simultane-ously. This follows immediately from the proof.
Example: Simplicial ConesIn Figure 1, the minimal �lm consists of three seg-ments from the vertices P1; P2; P3 to the center ofthe triangle. Thus it is a cone generated by thethree vertices. I call this �lm the tripod. Thesimplest calibration consists of three vector �elds,each constant over all of R 2 , of magnitude 1=p3and parallel to a segment. Note that it is the mag-nitude of the di�erence between vector �elds thatis bounded by 1, not the magnitudes of the individ-ual vector �elds. The same kind of calibration canbe done to show that the (N�1)-dimensional conesover the (N � 2)-dimensional skeletons of regularN -simplices are absolutely minimizing [Lawlor andMorgan 1994].

ExistenceIt follows from [Brakke 1995, Theorem 6.1] that,for any set of reference surfaces fSig, there alwaysis a set of corresponding interfaces fHijg that canbe calibrated, but the notion of surface must beunderstood in the general sense of real 
at chains.Soap �lms are usually imagined to be integer den-sity surfaces, and the existence of global minimiz-ers among integer density �lms may be proved bycompactness. But there are cases where the realdensity minimum is di�erent from the integer den-sity minimum, and in that case the integer densityminimum cannot be calibrated. A prime exam-ple is the single bubble problem: to �nd the mini-mum area enclosing a given volume. (Although weare not otherwise considering volume constraints inthis paper, the techniques generalize.) The integer�lm minimum is just a sphere, but in the sense ofreal 
at chains, a sphere of twice the radius and 18the density bounds the same volume but has onlyhalf the mass. Hence the real 
at chain minimizerdoes not exist, as the radius goes to in�nity andthe density and mass go to zero.
The Covering Space ModelThe covering space model is a generalization of thepaired calibration model that can handle �lms thatdon't divide space into distinct regions, such as aM�obius band �lm, for example. Let M � RN be acompact region, which will be the domain holdingthe �lm. Let B � M be a closed set, meant tohold the boundary of the �lm. Let Y be a coveringspace of the complement M � B. Let W be thecovering space ofM�B that, over each point ofM ,has one sheet for each oriented pair of sheets of Y .Locally, one can talk about sheet i of Y and sheetij of W . For an oriented surface H in W , de�nethe projection �#H as the surface in Y obtainedby copying from sheet ij of W a positive copy tosheet i of Y and a negative copy to sheet j of Y .The relation to paired calibrations is that regionscorrespond to sheets of Y , and sets of interfacescorrespond to surfacesH inW . A reference surfaceS is de�ned to be a portion of the boundary of Y .
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A particular area minimization problem is de-�ned by a choice of Y , and a choice of S. Theproblem is:Minimize area(H)with �#H homologous to S.Intuitively, the idea is that the two sides of a soap�lm are oppositely oriented surfaces on di�erentsheets of Y , and the covering space W is there tomake sure that sides pair up. Homologous sim-ply means that �#H � S is the boundary of aregion. If one takes the N -current Q such that@Q = �#H�S, then Q is a scalar density functiontimes M . The current Q is intuitively the exteriorof the �lm, and we will denote the density functionas Q(y) and call it the exterior density function, orjust the exterior function. Q is required to be 1 onthe reference surface S and zero on the rest of theboundary of Y .A calibrating 
ow is a 
ow ~v in Y that at eachpoint of M satis�es k~vi � ~vjk � 1, where i and jrefer to sheets above the point. One can de�ne thelift of ~v to a vector �eld �#~v in W by(�#~v)ij = ~vi � ~vj;and then simply require k�#~vk � 1: The dual max-imization problem turns out to be:Maximize ZS ~v � ~dAwith div~v = 0 and k�#~vk � 1.The same existence theorem for covering space�lms holds as for paired calibrations, with the samecaveats. The surface S can be regarded as thesource of the 
ow (in analogy with the networkmax-
ow min-cut problem), and the rest of theboundary of Y as the sink.
SymmetriesIf the problem has symmetries, the calibrating 
owmay be assumed to share those symmetries. Theaction of a symmetry transformation must be de-�ned to include the permutation of regions in the

paired calibration model and of sheets in the cov-ering space model, so that reference surfaces getmapped to reference surfaces. To get a symmetriccalibration, simply take any calibrating 
ow andaverage over all symmetric transformations of it.Thus if there is a mirror symmetry which mapsa given region to itself, we may assume that the
ow for that region has no 
ux across the mirror.For example, Figure 2 (left) shows the equilateraltriangle divided into its six fundamental regions,labeled A through F . Use subscripts to denotesheets. By rotational symmetry, region A1 is sym-metric to C2 and E3. Including mirror symmetries,region A1 is symmetric to B1, D2, and F3. Thereare three symmetry classes, which can convenientlybe represented either by a single stack of trian-gles A1; A2; A3 on di�erent sheets, or by trianglesA2; B2; C2 on a single sheet. The single stack isused for calculations, and the single sheet is usefulfor display, as in Figure 5 (page 281). The sin-gle sheet can be visualized as folding up into thesingle stack, with creases along the mirror lines.These lines (OP2 and OJ in Figure 2, right) willbe referred to as fold lines. The edge HP2 is thereference surface for region R2, that is, the sourceedge with Q = 1. The edges P1J and JP2 are sinkedges with Q = 0. Since mirror symmetry alongHP1 maps region R2 to itself, there is identicallyzero 
ux across edges HO and OP1, and Q valuesare free to vary.

A BCDE F
P1

P2P3
A2B2C2H

JO

P1

P2
FIGURE 2. Left: Symmetric regions of tripod do-main. Right: One unfolded stack.
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Symmetries are very useful in cutting down thesize of problems. Symmetry does not mean that allminimizing �lms will be symmetric (recall the caseof the cubical frame). One can get a symmetricsoap �lm by taking a symmetric average of a �lm,but the result will generally be a real �lm insteadof an integer �lm. In general, the set of minimizingreal �lms is a convex set, since any convex combi-nations of minimizers is trivially also a minimizer.It is the extreme points of the solution set whichwe are usually interested in.
4. DISCRETE MODELSFor numerical calculations, the continuous prob-lems will be discretized into a standard optimiza-tion problem known as the \minimizing sum ofnorms" problem, or MSN for short. The goal ofMSN is to minimize the sum of Euclidean normsof � �-dimensional a�ne transforms of an n-dimen-sional vector X, subject to p linear constraints. Inour applications, � will be the dimension of the am-bient space (� = 2; 3), and X a large-dimensionalvector representing the solution to the problem.The primal problem is:

Minimize �Xi=1 kAiX �Bikwith EX = C, (4.1)

where X 2 R n , Ai 2 R ��n , Bi 2 R � , E 2 R p�n ,and C 2 R p .The dual problem is:MaximizeXi BTi Yi + CTZwithXi ATi Yi + ETZ = 0 and kYik � 1, (4.2)

where Yi 2 R � and Z 2 R p are the variables. (Thevectors Yi are not to be confused with the coveringspace Y .) More general formulations are possible,but the software available to me uses the one above.We will de�ne three discretizations of the mini-mal surface problem:

� The �rst model �nds a piecewise linear approxi-mation to the exterior function Q : Y ! R , andhence provides an upper bound.� The second model �nds a piecewise constantvector �eld, providing a lower bound on the to-tal 
ux.� The third model uses piecewise linear vector�elds, providing better lower bounds.The second model is included because it is a gen-tler introduction to the ideas involved, althoughthe third model performs much better in practice.The models are phrased in terms of arbitrary di-mension, but one-dimensional �lms in two-dimen-sional space illustrate all the ideas.In all models, the N -dimensional spaceM is tri-angulated into N -dimensional simplices in a man-ner consistent with the boundary set B. Let theset of simplices be indexed by Greek subscripts�; �; : : : . Let the vertices be V = v1; : : : ; vK . Allsimplices will share the positive orientation of M .We will also need to refer to (N � 1)-dimensionalfaces between simplices, and these will be indexedby ordered pairs ��. Index 0 will be used for miss-ing simplices outside M . Triangulations of Y andW are lifted fromM . Let s be the number of sheetsin the covering space Y . In general, it is not pos-sible to assign sheet numbers to simplices of Y soadjacent simplices have the same sheet number, sowe will not try. Instead, the simplices of Y overa simplex of M will arbitrarily labeled with sheetnumbers, although in practice a useful assignmentis made. Points of the �lm boundary B will bebranch points of Y . We will require that any sim-plex has no more than N � 1 branch points amongits N + 1 vertices.
The Upper Bound ModelWe seek a piecewise linear scalar function Q on Ysuch that Q(y) = 1 for y 2 S and Q(y) = 0 fory 2 @Y �S. The objective is to minimize the massof a 
at (N � 1)-chain H in W that projects tothe boundary of such a Q. The (N � 1)-chain Hneed not be the boundary of any N -chain in W ,
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but in this model we know H can be representedas a piecewise constant vector �eld ~f integratedover Lebesgue measure. The problem thus is:
Minimize ZW k~fkwith �# ~f = gradQ;Q(y) = � 1 for y 2 S,0 for y 2 @Y � S.We will de�ne Q by its values qk at the verticesvk of Y , and to be piecewise linear on simplices. Toevaluate the objective, introduce a vector ~f�ij foreach pair of sheets ij over simplex � ofM . Assume~f�ij = �~f�ji. Then the problem becomes:

MinimizeX� Xi<j k~f�ijk vol�with gradQ =Xj ~f�ij for each simplex �and each sheet i,Q(y) = � 1 for y 2 S,0 for y 2 @Y � S.The MSN vector X consists of all the qk and allthe f�ij.Another formulation with fewer variables andconstraints is to introduce vectors ~F�ij for 2 � i <j � s, again with ~F�ij = �~F�ji. Then the problemis
MinimizeX� Xi<j 


gradQi� gradQjs + ~F�ij


 vol�with Xi gradQi = 0;

Q(y) = � 1 for y 2 S,0 for y 2 @Y � S,where we are to understandF�1j = �X2�k F�kj:

Note that the F�ij are chosen to span the nullspaceof �#. The relation between the two formulationsis simplyf�ij = 1s (gradQi � gradQj) + ~F�ij:The linearity of Q is awkward around a branchpoint, since Q is changing very rapidly there. Forthis reason a modi�cation is introduced wherebythe value of Q at a branch point is not de�ned,but Q is de�ned on a simplex adjacent to a branchpoint by its values on the nonbranch vertices, bymeans of linear interpolation between them andlevel sets parallel to the faces containing all thebranch points. That is, in barycentric coordinateswith vertices v0; : : : ; vp on the branch set,Q(�0v0 + � � �+ �NvN) = �p+1qp+1 + � � �+ �NqN�p+1 + � � �+ �N :Because the piecewise linear Qs are a subset ofall possible 
at N -chains, solving the primal prob-lem (4.1) gives an upper bound to the solution ofthe continuous problem. The dual problem (4.2)solved at the same time does not produce a feasi-ble 
ow. It is only the dual problem of the discreteupper bound problem; it is not a discretization ofthe lower bound 
ow problem.
The Lower Bound Constant Vector Field ModelHere we assume a 
ow that has a constant value~u�i on each simplex � on sheet i of Y . The diver-genceless condition is trivial inside simplices, so weonly need to require matching 
uxes across faces.Also there is the bound on the di�erence of 
owsbetween pairs of sheets. The objective is to max-imize 
ux through the reference surface S. Theresult is the dual MSN problem (4.2):Maximize XfacesA�0i2S ~u�i � ~A�0iwith (~u�i � ~u�i) � ~A��i = 0;k~u�i � ~u�jk � 1 for sheets i; j:The notation gets a little awkward here, since sheetlabelings are not consistent across faces.
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Unfortunately, the software available to me atthe moment can only handle bounds on the normsof single variables, not on linear combinations. Sowe have to introduce vectors ~w�ij = ~u�i�~u�j , andvectors ~t� =Pi ~u�i. Thenu�i = 1s�~t� +Xj ~w�ij�:
Hence the problem becomes:
Maximize XfacesA�0i2S 1s�~t� +Xj ~w�ij� � ~A�i0with�1s�~t�+Xj ~w�ij�� 1s�~t�+Xj ~w�ij��� ~A��i = 0;~w�1i+ ~w�ij+ ~w�j1=0 for 2�i<j<s; k~w�ijk�1:The second set of constraints here is necessary andsu�cient for the ~w�ij to be di�erences of ~u's. Itis possible to eliminate the ~t's by subtracting ~t=sfrom each ~u. But in practice we will want to deletelarge portions of Y that are not critical for the �lm,leaving Y to be an uneven covering space. Thenthe ~t elimination does not work. So, in practice, sis really s�, depending on the simplex of M .Solving the dual MSN problem (4.2) gives a fea-sible 
ow for the continuous problem, hence a lowerbound on the continuous area. The simultaneoussolution of the primal problem (4.1) that is gener-ated is not a feasible �lm, but it should be an ap-proximation of the optimal continuous �lm. Theprimal solution generates a vector for each simplexpair inW , whose magnitude is the mass of the �lm.For visualizing this approximate �lm, the �lm canbe projected to Y with �#.
The Lower Bound Linear Vector Field ModelHere we assume a 
ow that is linear on each sim-plex of Y . The 
ow variables are a vector ~u�i� ateach vertex of each simplex �i of Y . Here � is thevertex index within a simplex. There is a separatevector for each simplex containing a given vertex.

Inside the simplex, the 
ow is given by linear in-terpolation, ~u = N+1X�=1 ��~u�i� ;where the �� are barycentric coordinates. The di-vergenceless condition inside a simplex turns outto be X� ~u�i� � ~A�i� = 0;
where ~A�i� is the normal vector (proportional toarea) of the face opposite vertex � . Divergence-lessness across faces can be guaranteed by requir-ing matching 
uxes at each endpoint of each face.The 
ux through a face is the same as for a con-stant 
ow equal to the average of the 
ows at thevertices of the face. Thus the problem becomes:Maximize XfacesA�0i2S 1N X�2A�0i ~u�i� � ~A�0iwith X� (~u�i� � ~u�i� ) � ~A��i� = 0;(~u�i� � ~u�i� ) � ~A��i = 0;k~u�i� � ~u�j�k � 1:Again, due to software limitations, we have tointroduce vectors ~w�ij� = ~u�i� � ~u�j� , and vectors~t�� =Pi ~u�i� . Thenu�i� = 1s�~t�� +Xj ~w�ij��:Hence the problem becomesMaximize XfacesA�i02S 1sN X�2A�~t�� +Xj ~w�ij�� � ~A�i0with�X� �~t��+Xj ~w�ij���X� �~t��+Xj ~w�ij���� ~A��i=0;�1s�~t��+Xj ~w�ij���1s�~t��+Xj ~w�ij���� ~A��i=0;~w�1i�+ ~w�ij�+ ~w�j1�=0 for 2�i<j<N ,k~w�ij�k�1:
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As in the constant vector �eld model, we do notwant to normalize ~t away since Y may be only anuneven cover of M .As with the constant 
ow model, solving thedual MSN problem (4.2) gives a feasible 
ow forthe continuous problem, hence a lower bound onthe continuous area. The simultaneous solution ofthe primal problem (4.1) that is generated is not afeasible �lm, but it should be an approximation ofthe optimal continuous �lm. The primal solutiongenerates a vector for each vertex of each simplexpair inW whose magnitude is the mass of the �lm.(See Figures 5 (bottom), 7, and 8, where the ap-proximate �lm is shown projected to Y.)
5. IMPLEMENTATIONThis section describes a particular implementationof the methods introduced in the preceding section,using the Surface Evolver [Brakke 1992], Knud An-dersen's GOPT package [Andersen 1995] (used tosolve MSN problems), and custom programs. Allthe programs, apart from the Evolver and GOPT,are still in their early stages, and are changingrapidly, so they are not described in detail here.
Two DimensionsA typical run for a problem in two dimensionsis schematically shown in Figure 3. The startingpoint is a �le in Evolver data format that de�nes

the basic simplicial structure for Y, listing the ini-tial triangulation, source edges, sink edges, foldedges, and branch points. This structure is thensuitably re�ned by the Evolver. Other programscould be used for this task; I use the Evolver be-cause of my familiarity with it and its wide range oftriangulation manipulation and visualization fea-tures.After Y is re�ned, the script trimake.cmd, writ-ten in the Evolver command language, writes outthe geometry in a custom format appropriate forinput to the next stage, tri2mps. This latter pro-gram produces a �le in the standard MPS format,for input to GOPT; it can produce MPS �les forall three types of models. The GOPT programthen processes the MPS �le and creates report �lescontaining solutions to both the primal and dualproblems.The report �les generated by GOPT are mergedwith an Evolver dump �le (created at the timeof the initial Evolver processing) by the programout2
m, which produces an Evolver data �le in-corporating the GOPT solution. The output ofout2
m depends on the model. For the upperbound model, the z-coordinate of each vertex is setto the value of the exterior function Q there, and a�lm mass for each triangle is derived from the dualsolution. The dual solution actually has a mass foreach pair of triangles in a stack (corresponding tothe bound on the magnitude of the di�erence of the
SurfaceEvolver tri2mps MPSformat GOPTreport�leout2
m

Evolver dump
trim.cmd
ps.cmdstarps.cmd graphicaloutput

numericaloutput

Surface Evolver

FIGURE 3. Schematic overview of programs used in two-dimensional experiments.
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Q gradients), and out2
m gives this mass to eachtriangle of the pair. For the lower bound model,each triangle gets a 
ow vector and a �lm vector.For the linear 
ow model, each triangle gets theaverage of the three 
ows at its corners, and thetotal of the three �lm masses.The output of out2
m can be loaded back intothe Evolver, with optional trimming by an Evolverscript, trim.cmd. Trimming means that zero masstriangles along the source and sink edges are re-moved: trim.cmd identi�es such triangles, deletesthem, and declares the new exposed edges to besource or sink edges as appropriate. The result isa covering space with an uneven covering of thebase space, but the models are set up to be ableto handle that. This is very useful in reducingthe size of the numerical problem, particularly athigher re�nements. Trimming can't hurt the up-per bound, since any legal exterior function onthe trimmed space can be trivially extended tothe original space, but it can give an invalid lowerbound, since it is not guaranteed to be possible toextend vector �elds. Nonetheless, trimming is stillvery useful in the lower bound model when explor-ing to �nd an unknown �lm. The output shown inFigure 9 has undergone trimming.The Evolver can also be used to generate graph-ical output in Postscript, through scripts ps.cmdand starps.cmd, which assemble the sheets of Y indi�erent ways. Figures 5 and 7 show examples ofoutput.
Higher DimensionsThere is a similar set of programs written for higherdimensions. We brie
y discuss their use in a three-dimensional problem. They require the use of thesimplex model of the Evolver. The main di�er-ence from the two-dimensional case is that here thecounterpart of edges, namely faces, is not available.Hence vertices are labeled according to whetherthey are on the sink or source. Branch points canbe on both. Which (N � 2)-dimensional faces aresink or source faces has to be deduced from thisinformation by sim2mps, the higher-dimensional

analog of tri2mps. This program takes an inputsimplex �le output by the Evolver and producesan MPS �le for GOPT. At the moment, the onlymodel supported is the lower bound linear 
owmodel. The simplex �le format is a simpli�ed ver-sion of the triangle �le format.Next, out3
m reads the GOPT report, and canproduce several types of output. One is an Evolverdata �le, with �lm and 
ow data merged into a pre-vious Evolver dump �le. Moreover, out3
m canproduce �les for the three-dimensional visualiza-tion program geomview [Phillips et al. 1993]: one�le for the 
ow, one for the �lm, and one for thesimplicial skeleton. Postscript �les can then be ob-tained from geomview. Figure 11 shows an exam-ple of graphical output.
Reliability of ResultsIn numerical calculations, there is always the ques-tion of the accuracy of results, and when one shouldbelieve one has found the solution. In one sense,the calibration results are extremely reliable for es-timating the mass of the minimizer. The upper andlower bound discrete models provide strict boundstheoretically. GOPT gives a \duality gap" for eachdiscrete problem, so one has strict bounds on thetrue objective value of the discrete problems. Fur-ther, one can check that the solutions given byGOPT do indeed satisfy the necessary constraints.On the other hand, the location of �lms foundnumerically is not so certain. There is no need forthe current solving the discrete approximation tobe near in 
at norm to the true minimizer. I knowof no theorems that restrict the location of mini-mizers, except the classical minimal surface barriertheorems [Morgan 1995, 10.4], which are usuallynot very informative for the covering space model.However, GOPT uses an interior point algorithmthat tends to converge to the center of the solutionset of currents. Hence the GOPT solution shouldbe a superposition of all possible solutions. So farno situations have turned up where the numericalsolution is misleading.
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level verts tris norms vars eqs objective gap time1 5 3 3 1 0 1:2159728 1:� 10�8 0:002 12 12 12 11 2 1:0399747 1:� 10�11 0:043 35 48 48 52 9 1:0187818 1:� 10�11 0:174 117 192 192 218 35 1:0087497 3:� 10�11 1:195 425 768 768 886 135 1:0040750 1:� 10�10 5:35
TABLE 1. Results obtained with the upper bound model for the tripod. The �rst three columns refer to Evolveroutput: re�nement level and total numbers of vertices and triangles for all sheets. The remaining columns referto GOPT output: number of Euclidean norms in the MSN problem, number of variables in the primal problem,number of equality constraints, value of the objective function (total 
ux or mass), gap between the primal anddual solutions of the MSN problem, and GOPT solution time in seconds on an SGI Indigo 2.

6. EXPERIMENTAL RESULTS

Tripod Upper Bound in Two DimensionsThe tripod (H12 + H23 + H32 in Figure 1) is theminimal one-dimensional �lm connecting the threevertices of an equilateral triangle. For numericalpurposes, the domain is taken to be the convexhull of the vertices, namely, the equilateral trian-gle. Further, symmetry is used to reduce the prob-lem by a factor of six. There are three regions,hence three sheets. The full equilateral triangle isinitially divided into its six symmetric fundamen-tal regions, each a 30�-60�-90� triangle, making 18triangles on all sheets together. By sixfold sym-metry, each stack of triangles is equivalent, so weneed to solve only one stack. The minimum of theobjective in the continuous case is known to be 1.Experimental results are given in Table 1.One conclusion that can be drawn here is thatthe upper bound model converges very slowly, atleast as presently set up. The basic problem is thata continuous piecewise linear function is trying toapproximate a step function. Faster convergence

could probably be obtained by selective re�nementof key regions. It may also be necessary to exertmuch more control over the directions of the edgesin the triangulation, to permit Q to bend the wayit wants. Due to its relatively poor performance,the upper bound model is neglected for the rest ofthis paper.
The HexagonThe integer �lm joining the vertices of a regularhexagon is known to consist of �ve of the hexagon'ssides, as shown in Figure 4, left. However, all at-tempts to calibrate it have previously failed. Doesthis very simple �lm have a complicated calibra-tion, or is there some fractional density �lm oflower mass? The paired calibration setup for thehexagon has six regions, and the reference surfacesare the six sides, S1; : : : ; S6, shown in Figure 4,middle. Using the 12-fold symmetry of the prob-lem, we reduce to one stack of six triangles, shownin Figure 4, right. The stack unfolds to a singlesheet, shown in Figure 5. Edge AB is the sourceedge, edges BC;CD;DE;EF; FG are sink edges,S1

S4
S2
S3S5

S6

FIGURE 4. Left: Integer �lm spanning hexagon. Middle: Reference surfaces. Right: Fundamental region.
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FIGURE 5. Top: Calibrating 
ow for the hexagon (from level 3 of the linear model). The 
ow is shown onseparate sheets covering a fundamental region. Bottom left: Same 
ow laid out on one sheet. Bottom right:The corresponding symmetric �lm (the average of six integer �lms). It has density 56 , coming from �ve interfacepairs of density 16 each. We see the density 56 along edge AB, and the other projections of the pairs give density16 along the sink edges.
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lower bound constant 
ow model lower bound linear 
ow modellevel verts tris norms vars eqs objective gap time norms vars eqs objective gap time1 20 24 60 117 8 0:3993794928 2:� 10�11 0:36 180 337 23 0:4140262160 3:� 10�11 1:302 63 96 240 466 32 0:4114536593 2:� 10�11 2:25 720 1346 94 0:4166362460 8:� 10�11 7:503 221 348 960 1860 128 0:4159658500 1:� 10�10 9:76 2880 1860 128 0:4166666667 3:� 10�10 43:734 825 1536 3840 7432 512 0:416663774 3:� 10�9 71:24
TABLE 2. Results obtained with the lower bound models for the hexagon. See Table 1 for the meaning of thecolumns.AO;OG are zero 
ux edges, and the other edgesare folds.The hexagon was run with both the lower boundconstant 
ow and lower bound linear 
ow in orderto compare the performance of the two models. Re-sults are in Table 2. If the integer �lm is indeed theminimum, the limit value of the objective functionshould be 512 = 0:41�6. The right-hand column ofthe table certainly corroborates this conjecture.The 
ow from level 3 of the linear model is shownin Figure 5, top and bottom left, and it is not some-thing to design by hand. The same �gure showsalso the corresponding symmetric �lm, the aver-age of all six integer �lms.The linear 
ow model is obviously much moree�cient than the constant 
ow model. Hereafter,all examples will be linear 
ow.

Crossed TripodsThis is an example where the minimal integer �lmis not the minimal real �lm. It is somewhat con-trived, but it is the two-dimensional analog of whathappens in the octahedron. Suppose the minimalreal �lm joining the vertices of a regular hexagon

FIGURE 6. Hypothetical minimal �lms spanningthe hexagon.

were as shown in Figure 6. (This is in fact betterthan Figure 4 (left) for a large hexagon in the hy-perbolic plane.) Any calibration would have to cal-ibrate both of these �lms simultaneously. In par-ticular, at the center it would have to calibrate twotripods simultaneously, in the con�guration shownin Figure 7, left, called the crossed tripods.The set of vertices of this con�guration formsa regular hexagon, but each reference surface isa pair of sides, joining alternate vertices. One tri-pod setup has reference surfaces S1; S2; S3, and theother has S4; S5; S6 (Figure 7, right). The mini-mal integer �lm for this problem is presumably thecrossed tripods of Figure 7, left. However, a cou-ple of years ago, I found the fractional density �lmshown in Figure 8, left. It has all �lms of density12 , and less mass than the crossed tripod.However, an even better �lm, shown on the rightin Figure 8, was obtained by running the lowerbound linear 
ow model. More precisely, I ran themodel on the data of Figure 7, right, modded outby the 12-fold symmetry, as in the previous exam-ple of the hexagon. Figure 9 shows the experimen-tally obtained 
ow and �lm. The source edges for

S2; S6

S1; S4 S1; S5
S2; S5S3; S6

S3; S4

FIGURE 7. Left: Crossed tripods. Right: Refer-ence surfaces for the crossed tripods.
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level verts tris norms vars eqs objective gap time1 8 6 45 79 5 0:49487172015 2:� 10�11 0:302 21 24 180 326 22 0:49487151606 2:� 10�11 1:653 65 96 720 1324 92 0:4954586682 2:� 10�10 6:024 225 384 2880 5336 376 0:4959077068 6:� 10�10 48:534� 78 119 429 836 245 0:49590770677 3:� 10�11 3:945� 238 412 1428 2885 903 0:4961183292 2:� 10�10 20:306� 679 1232 4416 8987 2719 0:496216250 2:� 10�9 118:547� 1981 3728 12060 25133 8655 0:496265 1:� 10�6 342:42
TABLE 3. Results for lower bound linear 
ow for crossed tripods. See Table 1 for the meaning of the columns.In the �rst column, an asterisk indicates that the domain was trimmed.

FIGURE 8. Left: Best �lm found by hand. Right:Best �lm found by computer.
the 
ow are ABC, the sink edges CDEFG, andthe zero 
ux edges GOA. There are three equal�lms coming out of vertex C, so each has den-sity 13 . By putting the whole �lm together fromthe piece that appears in Figure 9 one gets Fig-ure 8, right. The value of the objective function,reported in Table 3, converges (when extrapolatedto in�nite re�nement) to something consistent with0.496324707689899, or 112 of the total mass of the�lm of Figure 8, right, as reported by the Evolver.It seems therefore that this �lm is the absoluteminimum. (The �lm appears somewhat smeared

out in the bottom part of Figure 9, but that isprobably due the discretization.)
The OctahedronAt least �ve di�erent integer �lms can span an oc-tahedral frame. Of these, the one with the small-est area is shown in two orientations in Figure 10.It consists of 
at pieces, with a tetrahedral pointin the center. The two views show the two dif-ferent orientations possible for this �lm. Recallthat any calibration would have to calibrate boththese �lms simultaneously, hence calibrate two su-perposed tetrahedral points. This is the three-di-mensional version of the crossed tripod problem.Calibrating by hand has failed, and attempts to�nd a three-dimensional analog to either �lm inFigure 8 have also failed. So we turn to the linear
ow model. There are eight regions. Using the 48-fold symmetry, we need only compute the 
ow on16 of one face. The results are tabulated in Table 4,and the �lm is shown in Figure 11.The corresponding mass of the integer density�lm is 0.235702260395516, but that is not closeenough to claim calibration. The �lm in Figure 11

level verts tris norms vars eqs objective gap time1 10 8 112 307 11 0:23231724054 2:� 10�11 7:242 63 96 896 2461 93 0:2341254003 2:� 10�10 126:303 165 512 7168 19702 758 0:235256244 1:� 10�9 1523:53
TABLE 4. Results for lower bound linear 
ow for crossed tetrahedra. See Table 1 for the meaning of the columns.



284 Experimental Mathematics, Vol. 4 (1995), No. 4

E
F

D

C
B

A

G
O

FIGURE 9. Top: Crossed tripod 
ow on one sheet of a trimmed domain (level 6� in Table 3). Bottom:Fundamental region of minimal real �lm for crossed tripod problem (level 7� in Table 3).
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FIGURE 10. Two views of the presumed minimal�lm on octahedron.

FIGURE 11. Unfolded fundamental piece of octa-hedral �lm (level 3 in Table 4).looks like a cloud of surface bits. It might be ap-proximating the integer �lm, but it might not.This example does have an unexploited symme-try, namely homothetic symmetry. If there is acalibration, there will be one that is invariant radi-ally, in the sense that ~v(x) = ~v(cx) for any c > 0.This cuts the dimension of the problem from threeto two, permitting higher re�nements of the trian-gulation. I have implemented this conical model ina lower bound linear 
ow, the details of which are

omitted here. The objective value for crossed tetra-hedra is 0.353553390593274. Of all the re�nementschemes tried, the best series of results is this:level objective3 0:353544316244 0:353546311485 0:353547584186 0:35354843This gets close to the crossed tetrahedra value, butone couldn't claim it is converging to it.I have also tried a discretization of the upperbound model dual to the conical lower bound, butwas not able to get below the crossed tetrahedralvalue.The octahedron is the example that motivatedall this numerical work, but the octahedron �lmmust still be regarded as unresolved.
7. RELATED WORKMany schemes have been proposed for numericallycalculating minimal surfaces, but very few requireno assumption on the topology of the surface, andof those few none can handle soap �lm singularities.John Sullivan [1990] proposed a scheme in whichthe surface spanning a polygonal boundary is cho-sen from a large set of small polygonal surface el-ements of various orientations and locations. Theactual selection of the set is done by a max-
owmin-cut algorithm for a 
ow linking the bound-ary. Since an actual spanning surface is found, thescheme provides an upper bound on the area ofthe smooth absolute minimizer. The accuracy islimited by the available orientations of the set ofsurface elements, which is similar to some of thelimitations in the upper bound schemes of this pa-per.Harold Parks [1977; 1986; 1992] has developeda scheme in which minimal surfaces are the levelsets of a function of bounded variation that mini-mizes the L1 norm of its gradient in a convex do-main with given boundary values. The implemen-tation in [Parks 1992] represents the function as
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continuous piecewise linear on a simplicial decom-position of the domain. The discrete gradient normminimization turns out to be the same minimizing-sum-of-norms problem that appears in this paper,although the algorithm and software used to solveit are di�erent. The method �nds a spanning sur-face, hence an upper bound on the true minimumarea. The great advantage of this method is thatby representing the desired surface as just one levelset among many, an extra order of smoothness isgained. The orientation of the simplicial decom-position is not critical, since the level set can cutacross a simplex in any orientation. The main lim-itation is that it can only handle a boundary curveon the boundary of a convex domain, and it cannothandle unoriented surfaces or soap �lm singulari-ties, but within those limitations it would probablybe my method of choice.Harold Parks and Jon Pitts [1997] have anotherscheme to handle surfaces on arbitrary boundarycurves, such as linked and knotted curves. Theidea is to de�ne some arbitrary reference surfacethat spans the boundary and then minimize theL1 norm of the gradient of a function of boundedvariation that has a jump of magnitude 1 acrossthe reference surface. There will be a compensat-ing jump across the minimal surface, and the areaof the minimal surface is the L1 norm of the gra-dient. In the discretization, the function is contin-uous and piecewise linear on a simplicial decom-position of some domain enclosing the boundarycurve and reference surface, except for discontinu-ities across the reference surface. Again, the dis-crete minimization problem is minimizing a sumof norms. The accuracy of the method su�ers incomparison with the convex domain scheme be-cause here a discontinuous function with a jumpof 1 at the minimal surface is being approximatedby a continuous function. But there seems to beno obvious way to embed the surface in a foliationof minimal surfaces in order to gain smoothness ofthe bounded variation function. Essentially, thisscheme is the same as the upper bound model ofSection 4 of this paper, with two regions.

8. CONCLUSIONOne would wish that every problem turned out asclearly as the �lm in Figure 9, but the examplesshow the need for many practical improvements.Even simple problems rapidly reach the limits ofcurrent computers. Improvements will undoubt-edly be made to general optimization software suchas GOPT. But cutting down the size of the prob-lem will be far more important. The linear 
owmodel is more e�cient than the constant 
ow mod-els, and higher order models should be even better.The immediate problem is how to �t higher orderproblems into the MSN framework. How does oneguarantee a bound on the magnitude of a quadratic
ow using Euclidean norms at a �nite number ofpoints? In the upper bound model, can a discretefunction space be found which permits arbitrarilyoriented step functions? Trimming is another tech-nique that can be improved. Currently only sim-plices adjacent to source or sink edges are trimmed.As Figure 9 shows, there can be large interior areaswith no �lm. These could be excised and replacedwith a 
ux conservation constraint. There needto be methods of selective re�nement. There alsoneed to be \barrier theorems" that can restrict the�lm to a narrow region.Although only soap �lms are discussed in thispaper, the techniques extend to many related prob-lems involving surfaces. The area objective func-tion may be replaced with any positive de�nitequadratic form of the surface normal, and vectorintegrals over the surface may be included. Thispermits surfaces of di�erent surface tensions, Rie-mannian metrics, gravitational energies, and con-tact angles on walls. Linear constraints may beadded, volumes for example. All these will beadded to the software in the future. However, afundamental limitation will remain, that only real�lm minima can be treated. Thus one cannot usethese techniques to solve bubble clusters, becausethe real �lm minimizer does not exist. But enoughhas been demonstrated to show the beginnings ofa general \soap �lm technology."
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