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The soap film problem is to minimize area, and its dual is to
maximize the flux of a divergenceless bounded vector field.
This paper discretizes the continuous problem and solves it
numerically. This gives upper and lower bounds on the area of
the globally minimizing film. In favorable cases, the method
can be used to discover previously unknown films. No initial
assumptions about the topology of the film are needed. The
paired calibration or covering space model of soap films is used
to enable representation of films with singularities.

1. INTRODUCTION

The soap film problem is to find the soap film
that minimizes area subject to appropriate con-
straints. The two fundamental problems addressed
by the numerical methods in this paper are find-
ing a globally area-minimizing film for a given soap
film problem, and proving that a given film is in-
deed a global minimum. A precise definition of
what a soap film problem is will have to wait until
Section 3, but an intuitive idea is enough to see the
difficulties.

Loosely speaking, soap films are area-minimizing
hypersurfaces, but their treatment in full general-
ity is complicated by the fact that they are not
always smooth manifolds, but may have singular-
ities. For two-dimensional films in a three-dimen-
sional ambient space, the possible singularities are
a triple line, where three films meet at 120° along
a curve, or a tetrahedral point, where six films and
four triple lines meet at equal angles [Taylor 1976].
Further types of singularities are possible in higher
dimensions [Brakke 1991; Sullivan 1995].

A computer program such as the Surface Evolver
[Brakke 1992] can represent a surface as a set of
flat triangles (or curved patches in more general-
ity), and hence provide an upper bound for area.
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But the topology of the surface has to be provided
at the beginning, and although the topology may
change during the evolution to minimum area, all
one has at the end is a local minimum of a dis-
crete problem. In very limited circumstances, one
can show there is a smooth minimal surface nearby
[Underwood 1993], but that is still only a local min-
imum. The topology of the global minimum may
be entirely different. What is needed is a lower
bound on the area of the global minimum. If one
can get the upper and lower bounds equal, then
one has a global minimum. Of course, the global
minimum may not be unique. For example, a cubi-
cal wire frame bounds an apparent minimizer with
a rounded square in the center, and that square
can be parallel to any side of the cube.
Fortunately, it often happens that a minimiza-
tion problem has a corresponding maximization
problem whose optimum has the same value. Such
problems are called dual. A simple example is
minimizing the circumference of a given area, and
maximizing the area bounded by a given length
of circumference. A more relevant example here
is the max-flow min-cut theorem of network the-
ory: given a graph whose edges have fixed carry-
ing capacities with some nodes designated sources
and some designated sinks, find the maximum total
flow from sources to sinks. The dual minimization
problem is to find a minimal cut, a set of edges with
minimum total capacity that separates the sources
from the sinks. A continuous version of this that
applies to orientable, nonsingular soap films was
introduced by Federer [1969; 1974] and named cal-
ibration by Harvey and Lawson [1982]. The dual
maximization problem is to find a divergenceless
vector field of maximum magnitude 1 with maxi-
mum flux through the given boundary of the film.
Intuitively, the vector field is the velocity of an in-
compressible fluid. The surface of minimal area is
the bottleneck to the flow, so for maximum velocity
1 the maximum flux equals the minimum area.
This paper treats only the area minimization
problem with boundary constraints. In particu-
lar, it does not treat soap bubble problems (with

volume constraints), nor capillary problems (with
gravitational energy), although in favorable cir-
cumstances these problems are susceptible to ex-
tensions of the methods of this paper.

Section 2 gives some preliminary background on
surfaces and flows. Section 3 describes a more gen-
eral calibration model that can handle soap film
singularities. Section 4 describes discretization of
the model into a form that is a standard optimiza-
tion problem. Section 5 describes a particular im-
plementation using the Surface Evolver and some
custom programs to generate data that can be fed
to optimization software. Section 6 discusses some
results obtained so far. Briefly, there is the first
known calibration of the network spanning the ver-
tices of a regular hexagon, a novel solution found
by computer of another plane problem, and some
preliminary results on the conjectured minimal film
spanning an octahedral frame. Section 7 discusses
some works by others that have similarities to the
approach presented here. Section 8 concludes and
outlines some future prospects.

2. PRELIMINARIES

The only mathematical background necessary to
the understanding of this article consists of the
standard concepts of an advanced calculus course,
such as surface integrals and the Divergence The-
orem. Occasional references to more general con-
cepts of integral geometry, such as currents and
differential forms, are tossed in for the cognoscenti.
This section explains just enough about currents
and differential forms for our purposes. For fuller
discussions, see [Federer 1969; Morgan 1995].

The overall domain will be N-dimensional Eu-
clidean space RY, although the ideas extend nat-
urally to any Riemannian manifold. Domains for
particular problems are usually chosen to be com-
pact convex sets, since a soap film is always con-
tained in the convex hull of its boundary. All soap
films will be (N — 1)-dimensional. The types of
integrals needed will be integrals of scalar func-
tions over regions and integrals of vector fields over



hypersurfaces. A region R may be defined by a
characteristic function xg(z), with the integral of
a scalar function f(z) being

| 1@~ [ f@xat s

We will want to generalize the notion of region so
that its characteristic function becomes instead a
density function Q(z) with real values instead of
integer values. We still can define the integral of

f(z) as
/R f@)d%s = [ f@)Q() .

We call such an object a smeared region. Soap films
will be viewed as the boundaries of regions. The
boundary OR of a region R is defined precisely so
as to make the Divergence Theorem true. If @(z) is
a smooth vector field with compact support, then

—

/ divii(z) d™e = / u(z) - N(z)dA.

R 8R

For an ordinary region R, the boundary OR is the
surface of the region with outward unit normal
N. For a smeared region, the boundary is rep-
resentable by the negative gradient of the density
function:

/R divi(@)Q(z) Y = /R i(a)-grad Qo) s,

This may be derived by applying the ordinary Di-
vergence Theorem to

| divti)(a) a*.

where B is some large ball containing the support
of i(xz). The boundary of a smeared region is a
smeared surface.

Technically, objects one does k-dimensional inte-
grals over are called k-currents, and the k-dimen-
sional integrands are called differential k-forms.
Thus our regions are N-currents, scalar functions
are N-forms, vector fields are (N — 1)-forms, and
surfaces are (N — 1)-currents. Smeared surfaces
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should still be regarded as (N — 1)-dimensional ob-
jects, even though they are smeared out over all
N dimensions. The particular class of currents we
need are called flat chains, and the vector fields are
the class of flat cochains. In particular, a flow will
be a divergenceless flat (N — 1)-cochain. It turns
out to be relatively easy to characterize a flow. It
need only be a measurable, bounded vector field,
and have zero divergence in the weak sense. The
latter means that if ¢’ is a vector field and f is a
smooth function with compact support, then

/17-gra,df:0.

Flows need not be continuous, but at a surface of
discontinuity the components normal to the surface
on both sides must be equal. This is enough to
guarantee the integrability of flows on all surfaces
of interest. The flows in this paper will be piecewise
linear and constructed to have zero divergence.

The surfaces in the continuous theory are flat
(N — 1)-chains. Flat chains are dual to the flat
cochains. So a flat chain is anything one can inte-
grate flat cochains over. A flat N-chain is simply
an integrable scalar function. The boundary of a
flat N-chain is automatically a flat (N — 1)-chain,
so the regions defined above with density functions
() are flat N-chains, and their boundaries are flat
(N —1)-chains. Another way to form a flat chain is
to take an oriented rectifiable set. Flat chains that
are integer multiples of oriented rectifiable sets are
called integer flat chains, and are what we usually
think of as soap films. Rectifiable flat chains are
rectifiable sets multiplied by real-valued densities.
General flat chains are called real flat chains to
emphasize the distinction. Hereafter we will often
use integer film as a synonym for integer flat chain,
and real film for real flat chain.

The equivalent of area for a flat chain T is its
mass M(T), defined as the maximum integral over
flat cochains of maximum norm 1:

M(T) = Sl{p{/Tﬁ: |@(z)]| < 1 for all :v}

u
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Note that the supremum is over all flat cochains,
not just those with zero divergence. The mass need
not be finite, although it will be for all our prob-
lems. The mass of an integer flat chain is just the
area of the rectifiable set, times any multiplicities.
If T is the boundary of a flat N-chain with den-
sity function @, the mass of 7" is the total variation

of Q:
(0 = [ |grad Qo)) .

Hence, for finite surface mass, we may take Q) to
be any function of bounded variation. If @ is a
characteristic function of a set, the boundary of
the set is an integer flat chain. Defining the film by
means of () is the bounded variation approach to
minimal surfaces of [Giusti 1984]. The flat (N —1)-
chains in this paper will either be unions of (N —1)-
dimensional simplices or be boundaries of piecewise
linear functions.

3. THE CONTINUOUS MODEL

The mathematical model of soap films used in this
paper is the paired calibration model [Lawlor and
Morgan 1994] or the covering space model [Brakke
1995]. The paired calibration model will be de-

U3

Py

FIGURE 1.

Paired calibration of the tripod.

scribed first, since it is perhaps a little clearer.
Then the fully general covering space model will
be defined.

The Paired Calibration Model

The paired calibration model regards a soap film as
a set of interfaces between regions that partition
the domain. Figure 1 is a diagram of the model
for the problem of finding the shortest one-dimen-
sional film joining the three vertices P;, P», P3 of
an equilateral triangle.

Let the regions be denoted R,,..., R,. Let H;;
be the interface between regions R; and R;, re-
garded as an oriented surface, or flat chain to be
more precise. Hence H;; = —Hj;. Each region also
has an outer boundary

Si=) Hij—0R;,
J

regarded as fixed. §; is called the reference surface
for region R;. The orientations are chosen here so
that S; and Zj H;; are homologous. Note that this
makes S; have inward normal. The minimization
problem is:

Minimize Z area(H;;).

i<j

A paired calibration is a set of flows ¥;, one per
region, each defined over the entire domain, such
that [|¥;(x) — U;(z)|| < 1 for all ¢,j and all . The
total flux F of a paired calibration is defined as

Theorem 3.1. If {¥;} is a paired calibration for the
set of surfaces {S;}, then for any regions {R;} and
corresponding interfaces {H;;}, the total flux is at
most the interface area:

Z/ 7, - dA < Zarea(Hij).
i YSi

i<j



Proof. Since div#; = 0, the Divergence Theorem
and the flow difference bound imply, after some
rearrangement:

Z/ﬁi-d}l=2/ 7 - dA
i U5 i

7 Ej Hij
:Z/ (@ — ) - dA
i<j Y Hij
<> [ 1aa
i<j Y Hii
= Z area(H;;). O
i<j

Hence the total flux of a paired calibration provides
a lower bound on the areas of possible soap films.
If one can find a paired calibration whose flux is
equal to the area of a soap film, one also has a
proof that the soap film is a global minimum of
area. We then say that the vector fields calibrate
the film. The calibration is far from unique. The
proof of Theorem 3.1 shows that the only serious
constraint on it is that the difference of flows be a
unit normal at the minimal films.

Note that if there are multiple global minimal
films (as for the cubical wire frame), any calibra-
tion must calibrate all minimal films simultane-
ously. This follows immediately from the proof.

Example: Simplicial Cones

In Figure 1, the minimal film consists of three seg-
ments from the vertices Py, P,, P3 to the center of
the triangle. Thus it is a cone generated by the
three vertices. 1 call this film the tripod. The
simplest calibration consists of three vector fields,
each constant over all of R?, of magnitude 1/ V3
and parallel to a segment. Note that it is the mag-
nitude of the difference between vector fields that
is bounded by 1, not the magnitudes of the individ-
ual vector fields. The same kind of calibration can
be done to show that the (N —1)-dimensional cones
over the (N — 2)-dimensional skeletons of regular
N-simplices are absolutely minimizing [Lawlor and
Morgan 1994].
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Existence

It follows from [Brakke 1995, Theorem 6.1] that,
for any set of reference surfaces {S;}, there always
is a set of corresponding interfaces {H;;} that can
be calibrated, but the notion of surface must be
understood in the general sense of real flat chains.
Soap films are usually imagined to be integer den-
sity surfaces, and the existence of global minimiz-
ers among integer density films may be proved by
compactness. But there are cases where the real
density minimum is different from the integer den-
sity minimum, and in that case the integer density
minimum cannot be calibrated. A prime exam-
ple is the single bubble problem: to find the mini-
mum area enclosing a given volume. (Although we
are not otherwise considering volume constraints in
this paper, the techniques generalize.) The integer
film minimum is just a sphere, but in the sense of
real flat chains, a sphere of twice the radius and %
the density bounds the same volume but has only
half the mass. Hence the real flat chain minimizer
does not exist, as the radius goes to infinity and
the density and mass go to zero.

The Covering Space Model

The covering space model is a generalization of the
paired calibration model that can handle films that
don’t divide space into distinct regions, such as a
Mobius band film, for example. Let M C RY be a
compact region, which will be the domain holding
the film. Let B C M be a closed set, meant to
hold the boundary of the film. Let Y be a covering
space of the complement M — B. Let W be the
covering space of M — B that, over each point of M,
has one sheet for each oriented pair of sheets of Y.
Locally, one can talk about sheet ¢ of Y and sheet
17 of W. For an oriented surface H in W, define
the projection m4H as the surface in Y obtained
by copying from sheet ¢j of W a positive copy to
sheet 7 of Y and a negative copy to sheet j of Y.
The relation to paired calibrations is that regions
correspond to sheets of Y, and sets of interfaces
correspond to surfaces H in W. A reference surface
S is defined to be a portion of the boundary of Y.
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A particular area minimization problem is de-
fined by a choice of Y, and a choice of S. The
problem is:

Minimize area(H)
with 74 H homologous to S.

Intuitively, the idea is that the two sides of a soap
film are oppositely oriented surfaces on different
sheets of Y, and the covering space W is there to
make sure that sides pair up. Homologous sim-
ply means that mxH — S is the boundary of a
region. If one takes the N-current ) such that
0Q =7mxH — S, then Q is a scalar density function
times M. The current @ is intuitively the exterior
of the film, and we will denote the density function
as Q(y) and call it the exterior density function, or
just the exterior function. @ is required to be 1 on
the reference surface S and zero on the rest of the
boundary of Y.

A calibrating flow is a flow ¢ in Y that at each
point of M satisfies ||v; — ;|| < 1, where ¢ and j
refer to sheets above the point. One can define the
lift of ¥ to a vector field 7#¥ in W by

(7% 3)y; = T; — 7y,
and then simply require ||7#%|| < 1. The dual max-
imization problem turns out to be:

Maximize / 7-dA
s
with dive' = 0 and ||7# 9] < 1.

The same existence theorem for covering space
films holds as for paired calibrations, with the same
caveats. The surface S can be regarded as the
source of the flow (in analogy with the network
max-flow min-cut problem), and the rest of the
boundary of Y as the sink.

Symmetries

If the problem has symmetries, the calibrating flow
may be assumed to share those symmetries. The
action of a symmetry transformation must be de-
fined to include the permutation of regions in the

paired calibration model and of sheets in the cov-
ering space model, so that reference surfaces get
mapped to reference surfaces. To get a symmetric
calibration, simply take any calibrating flow and
average over all symmetric transformations of it.
Thus if there is a mirror symmetry which maps
a given region to itself, we may assume that the
flow for that region has no flux across the mirror.
For example, Figure 2 (left) shows the equilateral
triangle divided into its six fundamental regions,
labeled A through F. Use subscripts to denote
sheets. By rotational symmetry, region A4; is sym-
metric to Cy and Ej3. Including mirror symmetries,
region A; is symmetric to By, D,, and F3. There
are three symmetry classes, which can conveniently
be represented either by a single stack of trian-
gles A;, Ay, A3 on different sheets, or by triangles
As, By, Cy on a single sheet. The single stack is
used for calculations, and the single sheet is useful
for display, as in Figure 5 (page 281). The sin-
gle sheet can be visualized as folding up into the
single stack, with creases along the mirror lines.
These lines (OP, and OJ in Figure 2, right) will
be referred to as fold lines. The edge HP; is the
reference surface for region R,, that is, the source
edge with @@ = 1. The edges P;J and JP; are sink
edges with Q = 0. Since mirror symmetry along
H P, maps region R, to itself, there is identically
zero flux across edges HO and OP;, and @) values
are free to vary.

Py Py
F | A Ay ‘
O
D | C Cy
P P H Py

FIGURE 2. Left: Symmetric regions of tripod do-
main. Right: One unfolded stack.



Symmetries are very useful in cutting down the
size of problems. Symmetry does not mean that all
minimizing films will be symmetric (recall the case
of the cubical frame). One can get a symmetric
soap film by taking a symmetric average of a film,
but the result will generally be a real film instead
of an integer film. In general, the set of minimizing
real films is a convex set, since any convex combi-
nations of minimizers is trivially also a minimizer.
It is the extreme points of the solution set which
we are usually interested in.

4. DISCRETE MODELS

For numerical calculations, the continuous prob-
lems will be discretized into a standard optimiza-
tion problem known as the “minimizing sum of
norms” problem, or MSN for short. The goal of
MSN is to minimize the sum of Euclidean norms
of k v-dimensional affine transforms of an n-dimen-
sional vector X, subject to p linear constraints. In
our applications, v will be the dimension of the am-
bient space (v = 2,3), and X a large-dimensional
vector representing the solution to the problem.
The primal problem is:

Minimize » _[|4;X — Byl
i=1

with EX = C,

4.1)

where X € R*, A; € R"*™, B; € R¥, E € RP*",
and C € RP.
The dual problem is:

Maximize Y _ BYY; + C"Z
with Y~ ATY; + E"Z =0 and ||Yi|| < 1,

where Y; € R and Z € RP are the variables. (The
vectors Y; are not to be confused with the covering
space Y.) More general formulations are possible,
but the software available to me uses the one above.

We will define three discretizations of the mini-
mal surface problem:
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e The first model finds a piecewise linear approxi-
mation to the exterior function ) : Y — R, and
hence provides an upper bound.

e The second model finds a piecewise constant
vector field, providing a lower bound on the to-
tal flux.

e The third model uses piecewise linear vector
fields, providing better lower bounds.

The second model is included because it is a gen-
tler introduction to the ideas involved, although
the third model performs much better in practice.
The models are phrased in terms of arbitrary di-
mension, but one-dimensional films in two-dimen-
sional space illustrate all the ideas.

In all models, the N-dimensional space M is tri-
angulated into N-dimensional simplices in a man-
ner consistent with the boundary set B. Let the
set of simplices be indexed by Greek subscripts
a,(,.... Let the vertices be V = vq,...,vg. All
simplices will share the positive orientation of M.
We will also need to refer to (N — 1)-dimensional
faces between simplices, and these will be indexed
by ordered pairs af. Index 0 will be used for miss-
ing simplices outside M. Triangulations of Y and
W are lifted from M. Let s be the number of sheets
in the covering space Y. In general, it is not pos-
sible to assign sheet numbers to simplices of Y so
adjacent simplices have the same sheet number, so
we will not try. Instead, the simplices of Y over
a simplex of M will arbitrarily labeled with sheet
numbers, although in practice a useful assignment
is made. Points of the film boundary B will be
branch points of Y. We will require that any sim-
plex has no more than NV — 1 branch points among
its N + 1 vertices.

The Upper Bound Model

We seek a piecewise linear scalar function Q on Y
such that Q(y) = 1 for y € S and Q(y) = 0 for
y € Y —S. The objective is to minimize the mass
of a flat (N — 1)-chain H in W that projects to
the boundary of such a Q. The (N — 1)-chain H
need not be the boundary of any N-chain in W,
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but in this model we know H can be represented
as a piecewise constant vector field f integrated
over Lebesgue measure. The problem thus is:

Minimize / I1£]
w
with 7y f =gradQ,

_J1 foryes,
Q(y)_{o for y € 9Y — S.

We will define @) by its values g, at the vertices
v, of Y, and to be piecewise linear on simplices. To
evaluate the objective, introduce a vector f(;ij for
each pair of sheets 5 over simplex o of M. Assume
f:”-]- = - f;ji. Then the problem becomes:

Minimize Z Z ||f_;ij || vol o

a i<j
with grad Q = Z f,;ij for each simplex «
J and each sheet 1,

_J1 foryels,
Q(y)_{o for y € Y — S.

The MSN vector X consists of all the g, and all
the faij;.

Another formulation with fewer variables and
constraints is to introduce vectors ﬁm-j for2<i<
j < s, again with ﬁaij = —ﬁaji. Then the problem
is

Minimize Z Z ‘

a i<j

with Z grad Q; = 0,
_J1 foryelsS,
Q) = {0 fory € Y — S,
where we are to understand

Farj=—Y Fai.

2<k

grad@Q;—grad @; =
s

+ Faij vol

Note that the F,,;; are chosen to span the nullspace
of m4. The relation between the two formulations
is simply

foss = (Brad @, — grad @) + Fu.

The linearity of ) is awkward around a branch
point, since @ is changing very rapidly there. For
this reason a modification is introduced whereby
the value of () at a branch point is not defined,
but @ is defined on a simplex adjacent to a branch
point by its values on the nonbranch vertices, by
means of linear interpolation between them and
level sets parallel to the faces containing all the
branch points. That is, in barycentric coordinates
with vertices vy, ..., v, on the branch set,

Apt1dpt1 + -+ Angn

Aovo + -+ + A =
Q( 0% NUN) >\p+1+'--+)\N

Because the piecewise linear (s are a subset of
all possible flat N-chains, solving the primal prob-
lem (4.1) gives an upper bound to the solution of
the continuous problem. The dual problem (4.2)
solved at the same time does not produce a feasi-
ble flow. It is only the dual problem of the discrete
upper bound problem; it is not a discretization of
the lower bound flow problem.

The Lower Bound Constant Vector Field Model

Here we assume a flow that has a constant value
q; on each simplex « on sheet i of Y. The diver-
genceless condition is trivial inside simplices, so we
only need to require matching fluxes across faces.
Also there is the bound on the difference of flows
between pairs of sheets. The objective is to max-
imize flux through the reference surface S§. The
result is the dual MSN problem (4.2):

E Ui * Aaoi
faces Aq0: €S

—

Wlth (ﬁai — ﬁ,@i) . Aa,@i = 0,

Maximize

||ai — Uaj|| <1 for sheets 1, j.

The notation gets a little awkward here, since sheet
labelings are not consistent across faces.



Unfortunately, the software available to me at
the moment can only handle bounds on the norms
of single variables, not on linear combinations. So
we have to introduce vectors Wy;; = Ua; — Uqj;, and
vectors t, = > Uai- Then

1/,
at — ta _‘ai' .
U 5 ( + Z w J)
J
Hence the problem becomes:
Maximize > = (fa+ S uss ) - Auio
s - !

faces Aqpi€S
with

]_ — N ]_ — - -
g togon) s
J J

wa1i+waij+waj1:0 for 2S?:<j<8, ||’Ll7a”||S1
The second set of constraints here is necessary and
sufficient for the w,;; to be differences of u’s. It
is possible to eliminate the ’s by subtracting f'/ S
from each #. But in practice we will want to delete
large portions of Y that are not critical for the film,
leaving Y to be an uneven covering space. Then
the ¢ elimination does not work. So, in practice, s
is really s,, depending on the simplex of M.

Solving the dual MSN problem (4.2) gives a fea-
sible flow for the continuous problem, hence a lower
bound on the continuous area. The simultaneous
solution of the primal problem (4.1) that is gener-
ated is not a feasible film, but it should be an ap-
proximation of the optimal continuous film. The
primal solution generates a vector for each simplex
pair in W, whose magnitude is the mass of the film.
For visualizing this approximate film, the film can
be projected to Y with 7.

The Lower Bound Linear Vector Field Model

Here we assume a flow that is linear on each sim-
plex of Y. The flow variables are a vector i,;, at
each vertex of each simplex ai of Y. Here 7 is the
vertex index within a simplex. There is a separate
vector for each simplex containing a given vertex.
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Inside the simplex, the flow is given by linear in-
terpolation,

u = )‘Tuai'ra

where the A\, are barycentric coordinates. The di-
vergenceless condition inside a simplex turns out

to be
Zﬁai‘r : Eair = 07

where ffair is the normal vector (proportional to
area) of the face opposite vertex 7. Divergence-
lessness across faces can be guaranteed by requir-
ing matching fluxes at each endpoint of each face.
The flux through a face is the same as for a con-
stant flow equal to the average of the flows at the
vertices of the face. Thus the problem becomes:

1 . -
Maximize E I E Unir * Aaoi
faces Aq0:€S TEA0i

—

with Z(ﬁair - ﬂ:ﬁi‘r) . Aa,@ir = 07

—

(ﬁai‘r - ,E[ﬁzf) ’ Aaﬁi = 07
||’Jai‘r - /L_I:aj‘r” S 1.

Again, due to software limitations, we have to
introduce vectors Wy;jr = Uair — Uajr, and vectors
tar = Y _; Uair- Then

1/~
Uair = — ta‘r + U_jai it |-
(B )
J
Hence the problem becomes

1 N o
Z S_N Z <ta‘r +Z waij‘r) ’ AaiO
J

faces Aqi0€ES TEA

Maximize

with

(Z ({ar Z waij-r) 72 (‘E)ﬂT+Z wﬁijr)) 'gaﬂizoa
J T J

T

1/. 1/- .

—| tar _)oci ir | — | tar i) ijT 'Aoc i —U,

I YA
J J

Watir +Waijr +Waji, =0 for 2<i<j<N,

(| Waijr || <1
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As in the constant vector field model, we do not
want to normalize ¢ away since Y may be only an
uneven cover of M.

As with the constant flow model, solving the
dual MSN problem (4.2) gives a feasible flow for
the continuous problem, hence a lower bound on
the continuous area. The simultaneous solution of
the primal problem (4.1) that is generated is not a
feasible film, but it should be an approximation of
the optimal continuous film. The primal solution
generates a vector for each vertex of each simplex
pair in W whose magnitude is the mass of the film.
(See Figures 5 (bottom), 7, and 8, where the ap-
proximate film is shown projected to Y.)

5. IMPLEMENTATION

This section describes a particular implementation
of the methods introduced in the preceding section,
using the Surface Evolver [Brakke 1992], Knud An-
dersen’s GOPT package [Andersen 1995] (used to
solve MSN problems), and custom programs. All
the programs, apart from the Evolver and GOPT,
are still in their early stages, and are changing
rapidly, so they are not described in detail here.

Two Dimensions

A typical run for a problem in two dimensions
is schematically shown in Figure 3. The starting
point is a file in Evolver data format that defines

the basic simplicial structure for Y, listing the ini-
tial triangulation, source edges, sink edges, fold
edges, and branch points. This structure is then
suitably refined by the Evolver. Other programs
could be used for this task; I use the Evolver be-
cause of my familiarity with it and its wide range of
triangulation manipulation and visualization fea-
tures.

After Y is refined, the script trimake.cmd, writ-
ten in the Evolver command language, writes out
the geometry in a custom format appropriate for
input to the next stage, tri2mps. This latter pro-
gram produces a file in the standard MPS format,
for input to GOPT; it can produce MPS files for
all three types of models. The GOPT program
then processes the MPS file and creates report files
containing solutions to both the primal and dual
problems.

The report files generated by GOPT are merged
with an Evolver dump file (created at the time
of the initial Evolver processing) by the program
out2flm, which produces an Evolver data file in-
corporating the GOPT solution. The output of
out2flm depends on the model. For the upper
bound model, the z-coordinate of each vertex is set
to the value of the exterior function () there, and a
film mass for each triangle is derived from the dual
solution. The dual solution actually has a mass for
each pair of triangles in a stack (corresponding to
the bound on the magnitude of the difference of the

Surface Evolver

Evolver dump [ | —---=f====-
P out2flm : |
|
report A : |
file | |
Surface . MPS Ly ) :
Evolver bri2mps g ar] GOPT : = trim.cmd |
| |
: : graphical
\ ps.cmd | output
: " | starps.cmd |
| |
| I numerical
! l output
L ______ j =
FIGURE 3. Schematic overview of programs used in two-dimensional experiments.



Q gradients), and out2flm gives this mass to each
triangle of the pair. For the lower bound model,
each triangle gets a flow vector and a film vector.
For the linear flow model, each triangle gets the
average of the three flows at its corners, and the
total of the three film masses.

The output of out2flm can be loaded back into
the Evolver, with optional trimming by an Evolver
script, trim.cmd. Trimming means that zero mass
triangles along the source and sink edges are re-
moved: trim.cmd identifies such triangles, deletes
them, and declares the new exposed edges to be
source or sink edges as appropriate. The result is
a covering space with an uneven covering of the
base space, but the models are set up to be able
to handle that. This is very useful in reducing
the size of the numerical problem, particularly at
higher refinements. Trimming can’t hurt the up-
per bound, since any legal exterior function on
the trimmed space can be trivially extended to
the original space, but it can give an invalid lower
bound, since it is not guaranteed to be possible to
extend vector fields. Nonetheless, trimming is still
very useful in the lower bound model when explor-
ing to find an unknown film. The output shown in
Figure 9 has undergone trimming.

The Evolver can also be used to generate graph-
ical output in Postscript, through scripts ps.cmd
and starps.cmd, which assemble the sheets of Y in
different ways. Figures 5 and 7 show examples of
output.

Higher Dimensions

There is a similar set of programs written for higher
dimensions. We briefly discuss their use in a three-
dimensional problem. They require the use of the
simplex model of the Evolver. The main differ-
ence from the two-dimensional case is that here the
counterpart of edges, namely faces, is not available.
Hence vertices are labeled according to whether
they are on the sink or source. Branch points can
be on both. Which (N — 2)-dimensional faces are
sink or source faces has to be deduced from this
information by sim2mps, the higher-dimensional
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analog of tri2mps. This program takes an input
simplex file output by the Evolver and produces
an MPS file for GOPT. At the moment, the only
model supported is the lower bound linear flow
model. The simplex file format is a simplified ver-
sion of the triangle file format.

Next, out3flm reads the GOPT report, and can
produce several types of output. One is an Evolver
data file, with film and flow data merged into a pre-
vious Evolver dump file. Moreover, out3flm can
produce files for the three-dimensional visualiza-
tion program geomview [Phillips et al. 1993]: one
file for the flow, one for the film, and one for the
simplicial skeleton. Postscript files can then be ob-
tained from geomview. Figure 11 shows an exam-
ple of graphical output.

Reliability of Results

In numerical calculations, there is always the ques-
tion of the accuracy of results, and when one should
believe one has found the solution. In one sense,
the calibration results are extremely reliable for es-
timating the mass of the minimizer. The upper and
lower bound discrete models provide strict bounds
theoretically. GOPT gives a “duality gap” for each
discrete problem, so one has strict bounds on the
true objective value of the discrete problems. Fur-
ther, one can check that the solutions given by
GOPT do indeed satisfy the necessary constraints.

On the other hand, the location of films found
numerically is not so certain. There is no need for
the current solving the discrete approximation to
be near in flat norm to the true minimizer. I know
of no theorems that restrict the location of mini-
mizers, except the classical minimal surface barrier
theorems [Morgan 1995, 10.4], which are usually
not very informative for the covering space model.
However, GOPT uses an interior point algorithm
that tends to converge to the center of the solution
set of currents. Hence the GOPT solution should
be a superposition of all possible solutions. So far
no situations have turned up where the numerical
solution is misleading.
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level verts tris norms vars eqs objective gap time
1 5 3 3 1 0 1.2159728 1.x 1078 0.00
2 12 12 12 11 2 1.0399747 1.x107'*  0.04
3 35 48 48 52 9 1.0187818 1.x107'' 0.17
4 117 192 192 218 35 1.0087497 3.x 107! 1.19
5 425 768 768 886 135 1.0040750 1.x 107 5.35
TABLE1. Results obtained with the upper bound model for the tripod. The first three columns refer to Evolver

output: refinement level and total numbers of vertices and triangles for all sheets. The remaining columns refer
to GOPT output: number of Euclidean norms in the MSN problem, number of variables in the primal problem,
number of equality constraints, value of the objective function (total flux or mass), gap between the primal and
dual solutions of the MSN problem, and GOPT solution time in seconds on an SGI Indigo 2.

6. EXPERIMENTAL RESULTS

Tripod Upper Bound in Two Dimensions

The tripod (H;s + Has + Hjy in Figure 1) is the
minimal one-dimensional film connecting the three
vertices of an equilateral triangle. For numerical
purposes, the domain is taken to be the convex
hull of the vertices, namely, the equilateral trian-
gle. Further, symmetry is used to reduce the prob-
lem by a factor of six. There are three regions,
hence three sheets. The full equilateral triangle is
initially divided into its six symmetric fundamen-
tal regions, each a 30°-60°-90° triangle, making 18
triangles on all sheets together. By sixfold sym-
metry, each stack of triangles is equivalent, so we
need to solve only one stack. The minimum of the
objective in the continuous case is known to be 1.
Experimental results are given in Table 1.

One conclusion that can be drawn here is that
the upper bound model converges very slowly, at
least as presently set up. The basic problem is that
a continuous piecewise linear function is trying to
approximate a step function. Faster convergence

FIGURE 4.

S4

Left: Integer film spanning hexagon. Middle: Reference surfaces. Right: Fundamental region.

could probably be obtained by selective refinement
of key regions. It may also be necessary to exert
much more control over the directions of the edges
in the triangulation, to permit @ to bend the way
it wants. Due to its relatively poor performance,
the upper bound model is neglected for the rest of
this paper.

The Hexagon

The integer film joining the vertices of a regular
hexagon is known to consist of five of the hexagon’s
sides, as shown in Figure 4, left. However, all at-
tempts to calibrate it have previously failed. Does
this very simple film have a complicated calibra-
tion, or is there some fractional density film of
lower mass? The paired calibration setup for the
hexagon has six regions, and the reference surfaces
are the six sides, Si,...,S56, shown in Figure 4,
middle. Using the 12-fold symmetry of the prob-
lem, we reduce to one stack of six triangles, shown
in Figure 4, right. The stack unfolds to a single
sheet, shown in Figure 5. Edge AB is the source
edge, edges BC,CD,DE,EF, FG are sink edges,
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FIGURE 5. Top: Calibrating flow for the hexagon (from level 3 of the linear model). The flow is shown on
separate sheets covering a fundamental region. Bottom left: Same flow laid out on one sheet. Bottom right:
The corresponding symmetric film (the average of six integer films). It has density %, coming from five interface

pairs of density % each. We see the density % along edge AB, and the other projections of the pairs give density

% along the sink edges.
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lower bound constant flow model lower bound linear flow model

level verts tris | norms vars eqs objective gap time | norms vars eqs objective gap time
1 20 24 60 117 8 0.3993794928 2. x 10! 0.36| 180 337 23 0.4140262160 3. x 10~'! 1.30
2 63 96| 240 466 32 0.4114536593 2. x 10~!! 2.25| 720 1346 94 0.4166362460 8. x 107! 7.50
3 221 348| 960 1860 128 0.4159658500 1. x 1071° 9.76 | 2880 1860 128 0.4166666667 3. x 1010 43.73
4 825 1536 | 3840 7432 512 0.416663774 3.x 1079 71.24
TABLE 2. Results obtained with the lower bound models for the hexagon. See Table 1 for the meaning of the
columns.

AQO, OG are zero flux edges, and the other edges
are folds.

The hexagon was run with both the lower bound
constant flow and lower bound linear flow in order
to compare the performance of the two models. Re-
sults are in Table 2. If the integer film is indeed the
minimum, the limit value of the objective function
should be % = 0.416. The right-hand column of
the table certainly corroborates this conjecture.

The flow from level 3 of the linear model is shown
in Figure 5, top and bottom left, and it is not some-
thing to design by hand. The same figure shows
also the corresponding symmetric film, the aver-
age of all six integer films.

The linear flow model is obviously much more
efficient than the constant flow model. Hereafter,
all examples will be linear flow.

Crossed Tripods

This is an example where the minimal integer film
is not the minimal real film. It is somewhat con-
trived, but it is the two-dimensional analog of what
happens in the octahedron. Suppose the minimal
real film joining the vertices of a regular hexagon

FIGURE 6. Hypothetical minimal films spanning
the hexagon.

were as shown in Figure 6. (This is in fact better
than Figure 4 (left) for a large hexagon in the hy-
perbolic plane.) Any calibration would have to cal-
ibrate both of these films simultaneously. In par-
ticular, at the center it would have to calibrate two
tripods simultaneously, in the configuration shown
in Figure 7, left, called the crossed tripods.

The set of vertices of this configuration forms
a regular hexagon, but each reference surface is
a pair of sides, joining alternate vertices. One tri-
pod setup has reference surfaces Sy, Ss, S3, and the
other has Sy, Ss,Ss (Figure 7, right). The mini-
mal integer film for this problem is presumably the
crossed tripods of Figure 7, left. However, a cou-
ple of years ago, I found the fractional density film
shown in Figure 8, left. It has all films of density
%, and less mass than the crossed tripod.

However, an even better film, shown on the right
in Figure 8, was obtained by running the lower
bound linear flow model. More precisely, I ran the
model on the data of Figure 7, right, modded out
by the 12-fold symmetry, as in the previous exam-
ple of the hexagon. Figure 9 shows the experimen-
tally obtained flow and film. The source edges for

51,854

51,855

53,54

S37 Sﬁ

S, 56

FIGURE 7. Left: Crossed tripods. Right: Refer-
ence surfaces for the crossed tripods.

S2755
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level verts tris norms vars  eqs objective gap time
1 8 6 45 79 5 0.49487172015 2. x 10~ 0.30
2 21 24 180 326 22 0.49487151606 2. x 10! 1.65
3 65 96 720 1324 92 0.4954586682 2. x 10710 6.02
4 225 384 2880 5336 376 0.4959077068 6.x 10710 4853
4 78 119 429 836 245 0.49590770677 3.x 10~ 3.94
5k 238 412 1428 2885 903 0.4961183292 2.x 107! 20.30
6% 679 1232 4416 8987 2719 0.496216250 2.x 1079 118.54
7+ 1981 3728 12060 25133 8655 0.496265 1.x 1076  342.42

283

TABLE 3.

Results for lower bound linear flow for crossed tripods. See Table 1 for the meaning of the columns.

In the first column, an asterisk indicates that the domain was trimmed.

FIGURE 8. Left: Best film found by hand. Right:
Best film found by computer.

the flow are ABC, the sink edges CDEFG, and
the zero flux edges GOA. There are three equal
films coming out of vertex C, so each has den-
sity % By putting the whole film together from
the piece that appears in Figure 9 one gets Fig-
ure 8, right. The value of the objective function,
reported in Table 3, converges (when extrapolated
to infinite refinement) to something consistent with
0.496324707689899, or 11—2 of the total mass of the
film of Figure 8, right, as reported by the Evolver.
It seems therefore that this film is the absolute

minimum. (The film appears somewhat smeared

out in the bottom part of Figure 9, but that is
probably due the discretization.)

The Octahedron

At least five different integer films can span an oc-
tahedral frame. Of these, the one with the small-
est area is shown in two orientations in Figure 10.
It consists of flat pieces, with a tetrahedral point
in the center. The two views show the two dif-
ferent orientations possible for this film. Recall
that any calibration would have to calibrate both
these films simultaneously, hence calibrate two su-
perposed tetrahedral points. This is the three-di-
mensional version of the crossed tripod problem.
Calibrating by hand has failed, and attempts to
find a three-dimensional analog to either film in
Figure 8 have also failed. So we turn to the linear
flow model. There are eight regions. Using the 48-
fold symmetry, we need only compute the flow on
% of one face. The results are tabulated in Table 4,
and the film is shown in Figure 11.

The corresponding mass of the integer density
film is 0.235702260395516, but that is not close

enough to claim calibration. The film in Figure 11

level verts tris norms vars  eqs objective gap time
1 10 8 112 307 11 0.23231724054 2. x 101! 7.24
2 63 96 896 2461 93 0.2341254003 2. x 1071  126.30
3 165 512 7168 19702 758 0.235256244 1.x107° 1523.53

TABLE 4.

Results for lower bound linear flow for crossed tetrahedra. See Table 1 for the meaning of the columns.
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Top: Crossed tripod flow on one sheet of a trimmed domain (level 6+ in Table 3).

Fundamental region of minimal real film for crossed tripod problem (level 7+ in Table 3).

FIGURE 9.
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FIGURE 10. Two views of the presumed minimal
film on octahedron.

FIGURE 11. Unfolded fundamental piece of octa-
hedral film (level 3 in Table 4).

looks like a cloud of surface bits. It might be ap-
proximating the integer film, but it might not.
This example does have an unexploited symme-
try, namely homothetic symmetry. If there is a
calibration, there will be one that is invariant radi-
ally, in the sense that ¥(z) = ¥(cx) for any ¢ > 0.
This cuts the dimension of the problem from three
to two, permitting higher refinements of the trian-
gulation. I have implemented this conical model in
a lower bound linear flow, the details of which are
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omitted here. The objective value for crossed tetra-
hedra is 0.353553390593274. Of all the refinement
schemes tried, the best series of results is this:

level objective
3 0.35354431624
4 0.35354631148
5 0.35354758418
6 0.35354843

This gets close to the crossed tetrahedra value, but
one couldn’t claim it is converging to it.

I have also tried a discretization of the upper
bound model dual to the conical lower bound, but
was not able to get below the crossed tetrahedral
value.

The octahedron is the example that motivated
all this numerical work, but the octahedron film
must still be regarded as unresolved.

7. RELATED WORK

Many schemes have been proposed for numerically
calculating minimal surfaces, but very few require
no assumption on the topology of the surface, and
of those few none can handle soap film singularities.

John Sullivan [1990] proposed a scheme in which
the surface spanning a polygonal boundary is cho-
sen from a large set of small polygonal surface el-
ements of various orientations and locations. The
actual selection of the set is done by a max-flow
min-cut algorithm for a flow linking the bound-
ary. Since an actual spanning surface is found, the
scheme provides an upper bound on the area of
the smooth absolute minimizer. The accuracy is
limited by the available orientations of the set of
surface elements, which is similar to some of the
limitations in the upper bound schemes of this pa-
per.

Harold Parks [1977; 1986; 1992] has developed
a scheme in which minimal surfaces are the level
sets of a function of bounded variation that mini-
mizes the L; norm of its gradient in a convex do-
main with given boundary values. The implemen-
tation in [Parks 1992] represents the function as
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continuous piecewise linear on a simplicial decom-
position of the domain. The discrete gradient norm
minimization turns out to be the same minimizing-
sum-of-norms problem that appears in this paper,
although the algorithm and software used to solve
it are different. The method finds a spanning sur-
face, hence an upper bound on the true minimum
area. The great advantage of this method is that
by representing the desired surface as just one level
set among many, an extra order of smoothness is
gained. The orientation of the simplicial decom-
position is not critical, since the level set can cut
across a simplex in any orientation. The main lim-
itation is that it can only handle a boundary curve
on the boundary of a convex domain, and it cannot
handle unoriented surfaces or soap film singulari-
ties, but within those limitations it would probably
be my method of choice.

Harold Parks and Jon Pitts [1997] have another
scheme to handle surfaces on arbitrary boundary
curves, such as linked and knotted curves. The
idea is to define some arbitrary reference surface
that spans the boundary and then minimize the
L1 norm of the gradient of a function of bounded
variation that has a jump of magnitude 1 across
the reference surface. There will be a compensat-
ing jump across the minimal surface, and the area
of the minimal surface is the L; norm of the gra-
dient. In the discretization, the function is contin-
uous and piecewise linear on a simplicial decom-
position of some domain enclosing the boundary
curve and reference surface, except for discontinu-
ities across the reference surface. Again, the dis-
crete minimization problem is minimizing a sum
of norms. The accuracy of the method suffers in
comparison with the convex domain scheme be-
cause here a discontinuous function with a jump
of 1 at the minimal surface is being approximated
by a continuous function. But there seems to be
no obvious way to embed the surface in a foliation
of minimal surfaces in order to gain smoothness of
the bounded variation function. Essentially, this
scheme is the same as the upper bound model of
Section 4 of this paper, with two regions.

8. CONCLUSION

One would wish that every problem turned out as
clearly as the film in Figure 9, but the examples
show the need for many practical improvements.
Even simple problems rapidly reach the limits of
current computers. Improvements will undoubt-
edly be made to general optimization software such
as GOPT. But cutting down the size of the prob-
lem will be far more important. The linear flow
model is more efficient than the constant low mod-
els, and higher order models should be even better.
The immediate problem is how to fit higher order
problems into the MSN framework. How does one
guarantee a bound on the magnitude of a quadratic
flow using Euclidean norms at a finite number of
points? In the upper bound model, can a discrete
function space be found which permits arbitrarily
oriented step functions? Trimming is another tech-
nique that can be improved. Currently only sim-
plices adjacent to source or sink edges are trimmed.
As Figure 9 shows, there can be large interior areas
with no film. These could be excised and replaced
with a flux conservation constraint. There need
to be methods of selective refinement. There also
need to be “barrier theorems” that can restrict the
film to a narrow region.

Although only soap films are discussed in this
paper, the techniques extend to many related prob-
lems involving surfaces. The area objective func-
tion may be replaced with any positive definite
quadratic form of the surface normal, and vector
integrals over the surface may be included. This
permits surfaces of different surface tensions, Rie-
mannian metrics, gravitational energies, and con-
tact angles on walls. Linear constraints may be
added, volumes for example. All these will be
added to the software in the future. However, a
fundamental limitation will remain, that only real
film minima can be treated. Thus one cannot use
these techniques to solve bubble clusters, because
the real film minimizer does not exist. But enough
has been demonstrated to show the beginnings of
a general “soap film technology.”
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