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Non-positively curved triangles of finite groups are of cohomo-

logical dimension 2 over the rationals and have Property FA.

We classify triangles of finite groups which satisfy certain ge-

ometric conditions including the Gauss–Bonnet theorem. We

investigate whether or not these groups are virtually torsion-

free, contain a free abelian subgroup of rank 2, are residually

finite or are linear.In this article we classify a collection of groupsthat have characteristics in common with certainhyperbolic Coxeter groups. The classi�cation ofhyperbolic reection groups in dimension three hasbeen known since Lann�er's thesis in 1950 [Coxeterand Moser 1980]. There are 9 co-compact and28 noncompact �nite volume discrete subgroupsof hyperbolic 3-space [Humphreys 1990], all withquotient a single simplex. The noncompact groupshave Euler characteristic zero by duality; see [Serre1970]. Any hyperbolic reection group is a �nitelygenerated complex linear group, and so is residu-ally �nite and virtually torsion-free [Alperin 1987].Furthermore, in the noncompact case, the link ofan ideal vertex, of the tesselation by tetrahedra,is a (at horospherical) plane with a free abelianrank 2 group of symmetries. In fact, there is al-ways a subdiagram of the Coxeter diagram hav-ing the shape 4 4 , 6 , or and givingrise to the virtually free abelian subgroup. Otherinteresting information on certain hyperbolic Cox-eter groups can be found in [Milnor 1994], whichconsiders the volumes of those 10 groups with a\straight line" Coxeter diagram corresponding tothe orthosimplex condition.When the Coxeter group has an ideal vertex,we can retract the complex onto a contractible 2-complex, which is the barycentric subdivision of
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192 Experimental Mathematics, Vol. 7 (1998), No. 3the Coxeter complex retracted away from the ver-tices at in�nity of the tetrahedral packing [Alperin1980]. Now, the rotation subgroup of index 2 inthe Coxeter group has a particularly nice presen-tation [Brunner et al. 1985] as a triangle of groupsin terms of its triangle fundamental domain. More-over, these groups satisfy a form of the Gauss{Bonnet Theorem based on the angular defect ofthis triangle. There are 9 of the 28 noncompact �-nite volume hyperbolic manifolds for which all thevertex stabilizers are �nite. The remainder havesome of their vertex stabilizers of Euler character-istic zero, that is virtually free abelian of rank 2.Upon retraction of the Coxeter complex onto itsassociated 2-complex, the at horospherical planesurvives.Here we shall classify the (minimal) groups thathave a triangle of groups decomposition satisfy-ing a Gauss{Bonnet condition, for which the Eu-ler characteristic is zero and the vertex stabiliz-ers are �nite. Our less restrictive conditions allowmore families of our so called Platonic groups. Im-posing certain \geometric" conditions, we obtain aclassi�cation very nearly the same as the rotationsubgroups of hyperbolic reection groups describedabove. These are the spherical or toroidal atPlatonic groups. We also determine here the geo-metric Platonic groups that are negatively curved.Many of these are also Coxeter groups; they arenot hyperbolic in the Coxeter group sense but, infact, do act on hyperbolic space yielding an in�nitevolume hyperbolic orbifold.Our main results, stated roughly, are that thereare �nitely many at Platonic triangles of �nitegroups, and that there are �nitely many families ofnonpositively curved geometric Platonic trianglesof �nite groups.I thank Paul Brown for allowing access to hisprograms and other results of his thesis, and alsoP. Huneke and H. Glover for discussions on graphembeddings. The coset enumerations and othergroup-theoretic calculations have been programedusing GAP and MAGMA. Using GAP, Brown's

program computes the diameter and adjacency re-lations of the vertex link graphs. These can then bedisplayed and simpli�ed using the program calledGroups&Graphs2.4.These results would not have been obtained with-out a signi�cant degree of experimentation usingcomputer calculations. The organizational featuresof this investigation only became clear after manycomputations, and it became possible to formulatethe de�nition of a Platonic triangle of groups. Cer-tainly, the proof that a nonpositively curved trian-gle of �nite groups is virtually torsion-free is stillan outstanding problem.Extending these ideas to classify \nongeomet-ric" Platonic triangles of groups seems daunting, ifnot impossible, without further theoretical results.The at Platonic triangles, however, seem accessi-ble. Also, it would be very interesting to determinethe graph-theoretic restrictions necessary for a �-nite graph to have a �nite cover that is planar.Moreover, making the connection of the geometricPlatonic groups with the (orbifold) fundamentalgroup of special 3-dimensional manifolds is a fasci-nating open problem.
1. INTRODUCTION TO TRIANGLES OF GROUPSWe �rst review the basic ideas and theorems abouttriangles of groups proved by Gersten and Stallings[Stallings 1991]. Fundamental to the investigationof triangles of groups is the angle at a vertex ofthe triangle. If we have groups E and F witha \common" subgroup D and injective homomor-phisms E ! A, F ! A agreeing on D, the angleat group A between E and F (along D) is de�nedas �r , where 2r is the length of the shortest alter-nating word, e1f1e2f2 � � � erfr with ei 2 E�D andfi 2 F �D, that lies in the kernel of the inducedhomomorphismE �DF ! A. A triangle of groups isthe universal group given by vertex, edge and facedata as follows: vertex groups A;B;C and edgegroups E;F;G with a common face group D, to-gether with homomorphisms to A;B;C such thatthe angle at A between E and F (along D) is �r ,



Alperin: Platonic Triangles of Groups 193the angle at B between F and G (along D) is �s ,the angle at C between E and G (along D) is �t .The triangle group�(T) = �(A;B;C;E;F;G;D; r; s; t)is the universal group extending the given homo-morphisms with associated triangle T having an-gles [�r ; �s ; �t ]. The curvature characteristic of thetriangle, �T, is de�ned as 1r + 1s + 1t � 1. A trian-gle is nonpositively curved if �T � 0. Gersten andStallings showed that if the triangle group is asso-ciated to a nonpositively curved triangle then thereis a contractible two-complex on which �(T) actswith a single triangle as fundamental domain hav-ing vertex, edge and face stabilizers as given by thedata; in particular, vertex, edge and face groups in-ject in the triangle group. Moreover, any boundedsubgroup (and in particular any �nite subgroup)of �(T) is conjugate to a subgroup of one of thevertex stabilizers.If the triangle is negatively curved and all thevertex groups are �nite, the Corollary to TheoremA of [Bridson 1995] implies that either the group �is word hyperbolic and hence any abelian subgroupis virtually cyclic or the 2-complex of Gersten{Stallings contains a at plane; furthermore, theseconditions are mutually exclusive. Moreover, ifthe group is word hyperbolic, Sela [Sela 1993] hasshown that it is Hop�an. For general �nitely gener-ated groups, residually �nite implies Hop�an. Bythe remarks above, there are only �nitely manyconjugacy classes of elements of �nite order in atriangle of �nite groups; in such situations, resid-ually �nite groups are virtually torsion-free. Wemight expect that nonpositively curved trianglesof �nite groups are residually �nite; however, thisis not generally true as has been recently shown byHsu and Wise [1998].The automatic nature and bicombings of trian-gles of �nite groups have been studied in [Floydand Parry 1997; Noskov 1995]. Also, Wise (un-published) has exhibited F2 � F2 as a subgroupin a certain triangle of �nite groups, consequently

showing that triangles of �nite groups are not nec-essarily coherent.For our at geometric Platonic groups, we showthat the groups are virtually torsion-free. In thecase of hyperbolic Coxeter groups of Euler char-acteristic zero, there is a free abelian subgroup ofrank 2 as discussed above. Our classi�cation indi-cates that the associated 2-complex to a at Pla-tonic group is almost always the same as the 2-complex for one of the hyperbolic Coxeter group.Thus, there is an isometric at plane and conse-quently, by results of P. Brown [1997], there is arank-2 free abelian subgroup. Thus, none of thesecases yield word hyperbolic groups. It would ap-pear then that the distinct Platonic groups that acton the same 2-complex may just be di�erent lat-tices in the automorphism group of the complex.We hope to pursue these issues in a subsequentpaper.
2. HOMOLOGICAL RESTRICTIONSA group G is said to have Property FA if wheneverit acts (without inversions) on a tree then there is apoint �xed by all of G. In [Alperin 1996] we showedthat a triangle of �nite groups has Property FA.This can be generalized as follows. We shall calla triangle of groups minimal if each of the vertexgroups is generated by its associated edge groups.
Theorem 2.1. Suppose that � = �(T) is a mini-mal nonpositively curved triangle of groups so thatall edge groups properly contain the face group andsuch that all orders of elements of �nite order in� are invertible in the ring R. If each of the ver-tex stabilizers has Property FA and cdR � 2 andeach of the edge stabilizers has cdR � 1, then �has Property FA and cdR(�) = 2.
Proof. It follows immediately from the spectral se-quence (Quillen's Lemma [Serre 1971]) for the ac-tion of � on the contractible 2-complex X con-structed by Gersten and Stallings [Stallings 1991]that cdR(�) � 2. Now if cdR(�) � 1, then equiv-alently by [Dicks and Dunwoody 1989, Theorem



194 Experimental Mathematics, Vol. 7 (1998), No. 33.13] there is a nontrivial action on a treeW (with-out inversions), having �nite vertex stabilizers oforder invertible in R. Since the vertex groups, A,B and C, of � have Property FA, they �x the ver-tices x, y and z ofW. If these vertices are distinct,then consider a common point P in yz \ xz \ xy.The segment yz is �xed by F , xz is �xed by Gand xy is �xed by E. Thus, since � is generatedby its edge groups, the common point P is �xedby � and hence � is �nite since the action on thetree has �nite stabilizers. Also, if there is a singlevertex x = y = z, or if these vertices are reducedto two, say x 6= y = z, then since B;C stabilize y,the group � stabilizes y since it is generated by theedge groups. Thus �, being �nite, �xes a vertex forits action on the 2 complex X by the theorem ofGersten andStallings. By a conjugation then say� � A and also the opposite edge group G � �so that � stabilizes the entire triangle fundamen-tal domain, and hence is contained in D. This is acontradiction, so the cohomological dimension is 2.�
Corollary 2.2. Suppose that � = �(T) is a nonpos-itively curved triangle of �nite groups so that alledge groups properly contain the face group andsuch that all orders of elements of �nite order in �are invertible in the ring R, then cdR(�) = 2.
Proof. Consider the group �1 generated by the edgegroups of �; it is a minimal triangle of groupswith the same angles as �. By Quillen's Lemma[Serre 1971], cdR(�) � 2. From the theorem, �1has cohomological dimension 2, and thus cdR(�) �cdR(�1) = 2. �Thus, it follows that a nonpositively curved trian-gle of �nite groups has no free abelian subgroups ofrank greater than 2. Note that triangle groups areexamples of groups with FA and vcdR = 2. An in�-nite group of vcdR = 1 does not have Property FA.Observe also that if one of the edge groups istrivial, then � is a free product with amalgamation.We can realize the group as the graph of groupsB �E A �F C, if G = f1g. If, moreover, the vertex

groups are �nite, then the group is virtually freeand hence of virtual cohomological dimension � 1.
Question 2.3. A nonpositively curved triangle of freegroups is of cohomological dimension at most 2, ifthe face group is trivial. Is it of cohomologicaldimension 2 if the angles are all nonzero?
Question 2.4. Can one describe in group theoreticterms a nonpositively curved triangle of groupsthat has Property FA and is of cohomological di-mension 2 over a ring R? Theorem 2.1 describessome of these groups, but one can now iterate thisprocedure to get more complicated groups.It follows from [Serre 1971] that a triangle of �-nite groups is of type VFL if it is virtually torsion-free; also, if it is virtually torsion-free, then it hasan Euler{Wall characteristic. If the Euler{Wallcharacteristics exist for the vertex, edge and facegroups, we de�ne the orbifold characteristic as�(�(T)) = �(A) + �(B) + �(C)��(E)� �(F )� �(G) + �(D):This agrees with the Euler{Wall characteristic of�, if it exists.
3. PLATONIC RESTRICTIONSOur interest is in the situation where the trianglegroup data satis�es the following conditions:
(i) The triangle is nonpositively curved, with allnonzero angles.
(ii) All vertex groups have nonnegative Euler char-acteristic.
(iii) All edge groups are nontrivial and D = f1g.
(iv) The triangle group data is minimal.
(v) 2�(�(T)) = �T.When all these conditions are satis�ed we call �(T)a Platonic group. If, furthermore, the triangle T isa Euclidean triangle, we call this a at Platonicgroup. If all the vertex groups are �nite, we call itis a Platonic triangle of �nite groups.We shall, in fact, assume for the rest of this arti-cle that all vertex groups are �nite. Properties (i),



Alperin: Platonic Triangles of Groups 195(ii) and (iii) guarantee cohomological dimension 2as we have shown above. Property (v) is a fakeGauss{Bonnet condition. Notice that, if jAj = a,jBj = b, etc., we have�(�(T)) = 1a + 1b + 1c � 1e � 1f � 1g + 1:Thus, �(�(T)) can only be nonpositive if 1e+ 1f+ 1g >1, and this happens for precisely the orders as indi-cated below in Proposition 3.1. In all other situa-tions, since the curvature characteristic is nonpos-itive, we will have 2�(�(T)) > �T; so the Platonicsituation of condition (v) is in a sense extremal.
Proposition 3.1. If �(�(T)) � 0, the possibilities forthe orders of any edge group (up to a permutation)are [2; 2; n]; with n � 2 (type D),[2; 3; 3] (type T),[2; 3; 4] (type O),[2; 3; 5] (type I ).
Proof. The condition �(�(T)) � 0 implies0 < 1a + 1b + 1c � 1e + 1f + 1g � 1:It is well known (and easy to check) that the onlysolutions for e, f and g to this inequality are thosegiven in the statement of the proposition. Thenames of the types come from the parallel classi�-cation of �nite subgroups of SO(3): the dihedral,tetrahedral, octahedral, and icosahedral symmetrygroups. �
Remark. If we don't have just �nite vertex groupsbut still assume nonnegative Euler characteristicof the vertices then the other possible edge con�g-urations are [2; 3; 6], [2; 4; 4], and [3; 3; 3].
Corollary 3.2. For a Platonic group,1e + 1f + 1g � 1 = 8>>><>>>: 1n for type D,16 for type T,112 for type O,130 for type I .

and 1a + 1b + 1c = 8>>><>>>: 12�T + 1n for type D,12�T + 16 for type T,12�T + 112 for type O,12�T + 130 for type I .
Question 3.3. Which Platonic groups contain a 3-manifold group as a subgroup of �nite index?
4. VERTEX DATA

Numerical ConditionsWe call a group A an amalgam of its subgroups Eand F along D if E;F generate A and E \ F =D. Thus for an amalgam the natural surjectivehomomorphism �A = E �D F ! A has a kernel KAthat trivially intersects the conjugates of E and F .If, moreover, the group A is �nite, then we call ita �nite amalgam.For a vertex group A of a negatively curved tri-angle of groups we assume that E and F properlycontain D, E \ F = D, and also that the vertexgroup is generated by E and F . Thus the vertexgroup is an amalgam of its associated edge groupsalong the face group. The group �A has a natu-ral action on a tree constructed as follows. Theedges are the right cosets of D in �A and the edgesare of two types, either the cosets of E or F in�A. The incidence relation is Ex is joined to Fy ifDx = Dy. The group �A acts on the right on thistree as a group of isometries. Now by the proper-ties of the homomorphism the action of KA on thistree is free and hence is a free group. The quotientof this tree by KA is a bipartite graph XA thatcan be identi�ed with the graph obtained from thecoset construction, as above, applied to A, namelyits vertices are the cosets of E and F in A and itsedges are the cosets of D in A. The incidence re-lation is de�ned similarly. The angle at vertex Ais determined by the length of the shortest cyclein this graph. If D is trivial then the edges of thisgraph are in one-to-one correspondence with theelements of A.



196 Experimental Mathematics, Vol. 7 (1998), No. 3Now assume that the Platonic conditions (i){(iv)hold. Consider the vertex at A. Suppose that KAhas rank kA. The graph XA, which is bipartitehaving jAj = a edges; vA = vE + vF vertices, vE ofdegree e = jEj, vF of degree f = jF j and e � vE =a = f � vF ; kA independent cycles, so that kA =a� vA+1. The length of the smallest cycle in thisgraph is 2A corresponding to the angle at vertexA of �A . From the Euler characteristic formulawe have 1e + 1f � 1 = 1�kAa or equivalently 1+kAa =2a + 1� 1e � 1f . Given a triangle of groups we mayadd each of these Euler characteristic conditions atthe three vertices to obtain the formula2�(�(T)) = 1 + kAa + 1 + kBb + 1 + kCc � 1:We have A � 2 since D = f1g. We assume thatf � e.
Proposition 4.1. We have1 + kAa � 1A ;except in the following cases:{ A = 2 and either 2 = f < e or 3 = f � e, or{ A = 3 and 2 = f < e � 5.
Proof. Since 1 + kAa = 2a + 1� 1e � 1fand A � 2, the inequality is easily satis�ed fore; f � 4. Also, if e = f = 2 then the group isdihedral so a = 2A and kA = 1 and we have anequality. Now, if e; f � 3 and A � 3 or if f = 2,e � 6,  � 3 then the inequality is also obviouslysatis�ed. Furthermore, if  � 2, f = 3, e � 6 thenthe inequality is valid. �Thus, in the generic situation e; f; g � 6, we have2�(�(T)) � �T:Let �(E;F :m) denote the set of �nite amal-gams A of E and F along f1g having angle �m ;let �(p; q :m) denote the set of all �nite amalgamshaving angle �m where jEj = p, jF j = q, p � q.

Set E0 = E � f1g and F 0 = F � f1g.
Proposition 4.2. Suppose A 2 �(p; q :m).
(1) If m is even, the sets f1g, E0, F 0, E0F 0, F 0E0,E0F 0E0, F 0E0F 0, . . . , F 0(E0F 0)(m=2)�1, (E0F 0)m=2are disjoint as subsets of A.
(2) If m is odd , the sets f1g, E0, F 0, E0F 0, F 0E0,E0F 0E0, F 0E0F 0, . . . , E0(F 0E0)(m�1)=2 are disjointas subsets of A.
Proof. Arguing by contradiction, we may modify apotential overlap of two of these sets, say w = uto wu�1 or u�1w and also conjugate if necessaryto get an alternating word in E � F that gives arelation in A but of length smaller than 2m. �Notice that, if the sets as described in the state-ment of Proposition 4.2 are disjoint, the angle isin fact at most �m . Let gm be the total number ofelements counted by these disjoint sets. Considerthe case where the potential amalgam is obtainedfrom one relator w, of alternating length m, i.e.,A(w) = E � F=

w��.
Question 4.3. If E;F inject into the group A(w) andorder(A(w)) � gm, is A 2 �(E;F :m)?
Corollary 4.4. (1) If A 2 �(p; q : 2), then jAj � pq.
(2) If A 2 �(p; q : 3), then jAj � p(p(q � 1) + 1).
(3) If A 2 �(p; q : 4), then jAj � pq(pq� p� q+2).
(4) If A 2 �(p; q : 5), then jAj � p(p2q2+p2�2p2q+3pq � q2p� 2p+ 1).
(5) If A 2 �(p; q : 6), then jAj � pq(p2q2 � 2p2q �2pq2 + p2 + q2 + 5pq � 3p� 3q + 3).
(6) If A 2 �(p; 2 :m), then jAj > (p� 1)dm=2e.The values of (p; q : g3; g4; g5; g6) for 5 � p � q � 2are (2; 2 : 6; 8; 10; 12);(3; 2 : 12; 18; 30; 42);(4; 2 : 20; 32; 68; 104);(5; 2 : 30; 50; 130; 210);(n; 2 :n(n+1); 2n2; n3+n; 2n(n2�n+1));(3; 3 : 21; 45; 93; 189);



Alperin: Platonic Triangles of Groups 197(4; 3 : 36; 84; 228; 516);(5; 3 : 55; 135; 455; 1095);(4; 4 : 52; 160; 484; 1456);(5; 4 : 80; 260; 980; 3140);(5; 5 : 105; 425; 1705; 6825):Suppose E and F generate the group A. Cer-tainly if E \ F 6= f1g, when D = f1g, then theangle is �.
Remark. Whenever E \ NA(F ) 6= f1g there is arelation xyx�1 = y0 with x 2 E and y; y0 2 F sothat the angle is at least �2 . Thus, if F is normalin A, the angle is at least �2 .
Geometric Types: Spherical and ToroidalWe investigate the possible maps (cf. [Coxeter andMoser 1980]) that support the link of a vertex in atriangle of groups. If the triangle of �nite groupshas a vertex link, which is a graph having a �nitecover that is planar, then we might hope that thereis a �nite index subgroup of the triangle group thatcan be thickened up to a three manifold group. Amap is a decomposition of a surface X withoutboundary into N2 faces, each of which are disks, asthe complement of a graph having N1 edges andN0 vertices. Given a graph, we shall assume thatthe map has maximal number of faces or equiva-lently that the Euler characteristic of the surfaceis maximal. If the average degree of a vertex is dand the average length of a face circuit is c thenthe Euler characteristic of a map with this graphis � = N0�N1+N2 = 2N1d �N1+N2 = 2N1d �N1+2N1c = 2N1( 1d + 1c � 12). The Riemann{Hurwitz for-mula for branched coverings implies that an r-foldcovering graph lies on a surface Y with �Y � r�X .Thus it follows that any graph or �nite cover of itcan only support a map of nonpositive � if1d + 1c � 12 :If the graph is the link of a vertex in a triangleof groups or any �nite cover of it, we know fromour previous remarks that

d = (evE + fvF )(vE + vF ) = 2avAand c � 2A, where the angle at vertex A betweenedge groups E and F is � . SincevAa � 1 = (1� kA)a = 1e + 1f � 1;we have 2�1d + 1c � 12� � 1e + 1f + 1A � 1and thus if 1e + 1f + 1A < 1 any �nite cover canonly support a map of negative Euler character-istic. We refer to the vertex group as cosphericalif there is a �nite cover of the coset graph at thevertex that is a spherical graph. We shall say a tri-angle of groups is spherical if all the vertex groupsare cospherical. If a graph or �nite cover of it sup-ports a map on the torus but no map on the spherethen the vertex is called cotoroidal. Certainly thecondition 1c+ 1d = 12 is necessary. We shall say a tri-angle of groups is toroidal if the vertex groups arespherical or toroidal, but not all spherical. If thevertex groups are cotoroidal or cospherical, thenthe link is called geometric type. The triangle ofgroups is geometric type if all of its vertex groupsare of geometric type. The condition1e + 1f + 1A � 1 (4–1)must be satis�ed at each vertex for the triangle ofgroups to be geometric type. Adding these equa-tions we obtain the restriction1a + 1b + 1c � 2�(�(T))� �T:Of course, this inequality is satis�ed if the triangleof groups is Platonic. The solutions to the geomet-ric inequality (4{1) for e � f are given in Table 1.We begin the classi�cation of geometric Platonicgroups.
Lemma 4.5. �(2; 2 :m) = fDmg.
Proof. Suppose that A is a �nite amalgam quotientof Z2 � Z2, injective on the factors, with shortest



198 Experimental Mathematics, Vol. 7 (1998), No. 3A (e; f)2 f(2; 2); (3; 3); (3; 2); (4; 4); (4; 3); (4; 2);(5; 3); (5; 2); (6; 3); (6; 2); (n; 2) for n � 7g3 f(2; 2); (3; 3); (3; 2); (4; 2); (5; 2); (6; 2)g4 f(2; 2); (3; 2); (4; 2)g5 f(2; 2); (3; 2)g6 f(2; 2); (3; 2)g� 7 f(2; 2)g
TABLE 1. Solutions to inequality (4{1) with e � f .relator (xy)m, where x and y are the generatorsof the factors. Any other relator is (xy)n and bythe Euclidean algorithm m divindes n. Thus thegroup is the dihedral group of order 2m having thepresentationDm = 
x; y j x2; y2; (xy)m�:(The strings on the right represent relations x2 = 1,y2 = 1, (xy)m=1.)The dihedral group also has the presentationDm = 
x; y j x2; ym; xyxy�: �

Lemma 4.6. For p an odd prime and r � 1, we have�(Zpr ; Z2 : 2) = fZ2pr ;Dprg.
Proof. Suppose that A is a �nite amalgam quotientof Z2 �Zrp injective on the factors, and x; y are therespective generators of each factor. If the shortestrelator is of length 4, it is xynxym for some n;m.Since the second factor is of prime power order wemay replace the generator y by yk for k relativelyprime to p and may assume then that the relationis xypixy�pjm, for m relatively prime to p. By thisrelation, ypi and y�pjm have the same order andthus i = j. Nowypi = xxypixx = xypimx = yp2im2 ;and thus pim2 = 1 mod pn�i. But this is impos-sible unless i = 0; hence we assume i = 0. Sincethe group of units mod pr is cyclic there are justtwo solutions m = �1. Hence we obtain just two

possible relations, xyxy or xyxy�1. This gives thedihedral group and a cyclic group. �
Lemma 4.7. (i) �(3; 3 : 2) = fA4; Z3 � Z3g.(ii) �(3; 2 : 3) = fA4g.(iii) �(3; 2 : 4) = fS4;Cu18;Cu24g.
Proof. In the �rst case we suppose that A is a �nitequotient of Z3 � Z3, injective on the factors, andx; y are the generators of the factors. The possiblerelations of length 4, after changing x to x�1 or yto y�1 if necessary, or possibly switching the rolesof x and y, are xyxy, xyx�1y�1 or xyxy�1. Forthe last relation we see that y2 commutes with xand hence y commutes with x and therefore fromthis relation x maps trivially; this contradicts thefaithfulness of each of the factors. The other tworelations give the respective groups, either Z3�Z3for the second relation or for the �rst relation,A4 = 
x; y j x3; y3; (xy)2�:They have no quotients for which the factors inject.In the other cases we suppose that A is a �-nite quotient of Z2 � Z3, injective on the factors,and x; y are the generators of the factors. Thepossible relations after changing y to y�1 if nec-essary are: of length 6, xyxyxy or xyxyxy�1; oflength 8, xyxyxyxy, xyxyxyxy�1, xyxyxy�1xy�1,xyxy�1xyxy�1. Certainly we haveA4 = 
x; y j x2; y3; (xy)3�;S4 = 
x; y j x2; y3; (xy)4�:The only relations that give presentations of �nitegroups with injective factors areCu18 = 
x; y j x2; y3; (xy)2(xy�1)2�of order 18 andCu24 = 
x; y j x2; y3; (xyxy�1)2�of order 24. Both of these groups abelianize to Z6.In this group of order 18, the element (xy)2 = (yx)2is central of order 3 with quotient D3. The groupCu24 has a center of order 2 generated by (xy)3and having quotient A4. It is easy to see that the



Alperin: Platonic Triangles of Groups 199group Cu18 is isomorphic to D3 � Z3 (cf. Lemma6.8 below) and that Cu24 is isomorphic to Z2 �A4(cf. Proposition 4.10 below). �We can re�ne Proposition 4.1 to handle some othercases.
Proposition 4.8. (i) 1 + kA � vA=A, except if 2 =A = f and e = 4.(ii) 1 + kA � a=A, except if A = 2 = f and e iscomposite, or if A = 2 and 3 = f < e, or ifA = 3, f = 2, and 4 � e � 5.
Proof. Since jEj; jF j � 2, we have a = (e(vE) +f(vF ))=2 � vA, so the second inequality is harderto satisfy. We assume that f � e. For the �rstinequality we have (1+kA)=vA = (a=vA)+(2=vA)�1 and a = (e(vE)+f(vF ))=2, so that (1+kA)=vA =(e(vE)+f(vF ))=(2(vE+vF )) + 2=vA � 1. Hence ife; f � 3,1 + kAvA � 3(vE + vF )2(vE + vF ) + 2vA � 1 > 12 ;so that the inequality is valid for A � 2. If f = 2and e � 3 then a = 2(vF ) = e(vE), vA = (e=2+1)�vF and therefore, for e � 6,1 + kAvA � e� 2e+ 2 � 12 � 1A :If f = 2 and A � 3, the �rst inequality is alsovalid for e � 2.If f = 2,  = 2 and e is an odd prime thena = 2p by Lemma 4.6; hence the second inequalityis satis�ed. If f = e = 3 and  = 2 then eithera = 9 or a = 12 by Lemma 4.7, and in both casesthe second inequality is satis�ed. There remainsto consider the case of f = 2, e = 3,  = 3; byLemma 4.7, we have a = 12 and the second in-equality is valid. This also settles the unresolvedcases of the �rst inequality. �
Lemma 4.9. (i) �(5; 3 : 2) = fZ15; A5g.(ii) �(5; 2 : 3) = fA5g.(iii) �(3; 2 : 5) = fA5g.
Proof. In the �rst case we suppose that A is a �nitequotient of Z3 � Z5, injective on the factors, and

x; y are the generators of the factors. The possiblerelations of length 4 are xyxyi or xyx�1yi. In thelatter case, it follows that i3 = �1 mod 5 andhence i = �1 so that the group is Z15. In the �rstcase we �nd by a coset enumeration that if i = 2or i = 3 the group is trivial, and if i = 4 the groupis of order 5. The only appropriate case then isi = 1; hence we obtainA5 = 
x; y j x3; y5; (xy)2�:In case (ii) we suppose that A is a �nite quotientof Z2 �Z5, injective on the factors, and x; y are thegenerators of the factors. The possible relations toconsider of length 6 arefxyxy2xy3; xyxy2xy4; xyxyxyi for i = 1; : : : ; 4g:The only nontrivial quotient groups are for the re-lations (xy)3 or xyxyxy3. The latter is a group oforder 5. Thus we obtain only the alternating groupA5 = 
x; y j x2; y5; (xy)3�:In case (iii) we suppose that A is a �nite quo-tient of Z2 � Z3, injective on the factors, and x; yare the generators of the factors. The possible re-lations to consider after possibly changing y to y�1of length 10 are (xy)5, (xy)4xy�1, (xy)3(xy�1)2,(xyxy�1)2xy. The quotients by these relations haveorders 60, 3, 1, 1, respectively. Thus, we obtainonly the alternating groupA5 = 
x; y j x2; y3; (xy)5�: �
Proposition 4.10. (i) In any �nite amalgam of(a) D3 �Z2 Z4,(b) D3 �Z2 D2(�= PGL2(Z)),(c) Z6 �Z2 D2(�= Z2 � PSL2(Z)), or(d) Z6 �Z2 Z4 �= SL2(Z),of order greater than 12, the image of the uniquesubgroup of order 3 in the �rst factor is not nor-mal .(ii) The �nite amalgams of order 24 are, respec-tively ,(a) none,(b) PGL2(Z3) (�= S4),



200 Experimental Mathematics, Vol. 7 (1998), No. 3(c) Z2 � PSL2(Z3) (�= Cu24),(d) SL2(Z3) (isomorphic to the universal centralextension A4).
Proof. For the �rst part we use the fact that thesubgroup of order three is the unique subgroup ofeither D3 or Z6. Suppose that this element of or-der three is x and that the element generating thesecond factor (modulo Z2) is y. Denote by z thecommon element of order two that together with xgenerates the �rst factor of order 6. In case (a),D3 �Z2 Z4 = 
x; y; z j x3; y4; zy�2; (zx)2�;and if y centralizes x then �nite quotient has orderless than 12; morever, if yxy�1 = x�1 the �niteamalgam is of order 12. In case (b),D3 �Z2 D2 = 
x; y; z j x3; y2; z2; (yz)2; (zx)2�;so that if y centralizes x then y commutes withthe group 
x; z� and the amalgam is of order 12.Otherwise, if (yx)2 = 1 then the group is also oforder 12. In case (c),Z6 �Z2 D2 = 
x; y; z j x3; y2; z2; (yz)2; xzx�1z�;so that if y centralizes x then the group is a directproduct and of order 12; otherwise the quotient is
x; y; z j x3; y2; z2; (yz)2; (yx)2; xzx�1z�;also of order 12. In case (d),Z6 �Z2 Z4 = 
x; y; z j x3; y4; zy�2; zxzx�1�;if y centralizes x then the group is a direct productof 
x� and 
y�; otherwise if yxy�1 = x the groupis the semidirect product 
x; y j x3; y4; yxy�1x�1�of order 12.Now, to analyze a �nite amalgam quotient G oforder 24, it follows from part (i) that there are 4 Sy-low 3-subgroups and thus by conjugation we obtaina homomorphism G ! S4, with kernel K equalto the intersection of the normalizers of the Sy-low 3-subgroups. Since the normalizers N1; N2 oftwo di�erent Sylow-subgroups have order six theircommon intersection N1 \N2 has order at most 2.Hence either K = f1g and G �= S4 or there is acentral subgroup K of order 2 with G=K �= A4.

In the latter case the Sylow 2-subgroup is nor-mal, since it covers the Sylow 2-subgroup of A4,and the group is not a direct product by (i); thusthe Sylow 2-subgroup has an automorphism of or-der 3. This situation occurs only in case the Sylow2-subgroup is Z32 or Q8, the quaternions. In the�rst case every element has order 2, while in thesecond there is an element of order 4 whose squareis central.In case (a), z = y2 is central and thus x2 =(zx)2 = 1; so there are no amalgams of order 24.In case (b), if an amalgam has a normal Sylow2-subgroup it must have only elements of order 2,since the group contains contains a D2. The au-tomorphism of order 3, �, conjugation by x, satis-�es �2 = � + 1 and thus we have x(xzx�1)x�1 =z(xzx�1) = (zxz)x�1 = x�2 = x, which is impos-sible. Therefore the only amalgam is S4.In case (c), since S4 has no elements of order6, the amalgam has a central element of order 2,with quotient A4; now x centralizes z and cannotcentralize y or else the amalgam is of order 12; thusxyx�1 is an element of order 2 commuting with y,and 
x; y� has order 12 and is isomorphic to A4.The amalgam is a direct product of 
z� and 
x; y�.In case (d), again the group is not S4 becauseof the elements of order 6. Since the Sylow 2-subgroup is normal, the �nite amalgam is a semidi-rect product of Q8 with an element of order 3;hence the nontrivial central extension of A4.The quotients are then easily described becauseof the given identi�cations with subgroups and quo-tients of GL2(Z). �
Lemma 4.11. The vertex groups in �(4; 2 : 3) are de-termined by(i) �(Z4; Z2 : 3) = fS4; O20; certain D3 �Z2 Z4 �niteamalgamsg,(ii) �(D2;Z2 :3)=fcertain D3�Z2D2 �nite amalgamsg:The �nite amalgams arising from the free productswith amalgamation have order divisible by 12.
Proof. Suppose that A is a amalgam quotient ofZ2 �Z4 having x; y as the generators of the factors.



Alperin: Platonic Triangles of Groups 201The possible relations of length 6 after changing yto y�1 if necessary are: (xy)3, (xy)2xy�1, (xy)2xy2,xyxy�1xy2, xy(xy2)2, (xy2)3. The relations thatgive �nite quotients that are injective on the factorsare S4 = 
x; y j x2; y4; (xy)3�;of order 24, orO20 = 
x; y j x2; y4; xyxy�1xy2�;of order 20. The last relation yields the free prod-uct with amalgamationD3 �Z2 Z4 = 
x; y j x2; y4; (xy2)3�;so we obtain �nite amalgams of it.For the second part, if A is a quotient of Z2 �D2having x; y; z as the generators of the factors. Thepossible relations of length 6, after changing inde-pendent generators of D2 to y and z, are (xy)3,(xy)2xz, xyxzxyz. The latter has order 4 andhence does not give an amalgam. The second quo-tient after replacing z by xyxyx, gives (xy)6 = 1,which cannot be an amalgam with m = 3 since itsorder is too small. There remains only the �niteamalgams of PGL2(Z),D3 �Z2 D2 = 
x; y; z j x2; y2; z2; (yz)2; (xy)3�:By a calculation of the Euler characteristic ofthese free amalgams, the free kernel has rank 1 +a12 and thus the order of the �nite amalgams isdivisible by 12. �
Remark. It is interesting to note in connection withQuestion 4.3 that the group obtained above fromthe relation (xy)2xz is an amalgam of the sub-groups speci�ed, it is in fact isomorphic to D6, butthere is the shorter relation (xzy)2 of length 4.
Corollary 4.12. S4 is the only group of order 24 in�(4; 2 : 3), and it occurs in both �(Z4; Z2 : 3) and�(D2; Z2 : 3).
Proof. From Lemma 4.11 it follows that the groupsorder 24 are either S4 or arise as �nite amalgams ofD3 �Z2Z4 or D3 �Z2D2. By Proposition 4.10, the onlyamalgam of order 24 is isomorphic to S4 occuring

as an amalgam of D3 �Z2 D2. In this latter case, wehave the presentation in �(D2; Z3 : 2)S4 = 
x; y; z j x2; y2; z2; (yz)2; (xy)3; (xz)3�: �
Lemma 4.13. The groups in �(4; 2 : 2) are deter-mined by(i) �(Z4; Z2 : 2) = f2Dm; 20Dm with m eveng,(ii) �(D2; Z2 : 2) = fD2m; Z2 �Dm with m � 2g.
Proof. In the �rst case suppose that A is a quo-tient of Z2 � Z4 having x; y as the generators ofthe factors. The possible relations of length 4 afterchanging y to y�1 if necessary are (xy)2, xyxy�1,(xy2)2. These relations give the groupsD4 = 
x; y j x2; y4; (xy)2�;the abelian group Z2�Z4, and amalgams ofD2 �Z2Z4.This last group after factoring out by the centralelement y2 has as its amalgam quotients the dihe-dral groups Dm. Using the relation yxy�1 = y�1xyrepeatedly, we may write the presentation as either2Dr+s = 
x; y j x2; y4; (xy2)2; (xy)r(xy�1)s�;or20Dr+s = 
x; y j x2; y4; (xy2)2; (xy)r(xy�1)sy2�;for r + s = m. We can see that 2D(r�1)+(s+1) =20Dr+s, by rewriting the relation in the form(xy)r(xy�1)sy2 = (xy)r(xy�1)sxy�2x= (xy)r(xy�1)s+1y�1x;hence, (xy)r�1(xy�1)s+1 = 1 if and only if(xy)r(xy�1)sy2 = 1:Next observe that if we replace the term (xy�1)sby (xy�1)sy4t for appropriate t, then (xy�1)s equals(xy)s or (xy)sy2 depending on the parity of s. Thusthe presentations become2Dm = 
x; y j x2; y4; (xy2)2; (xy)m�;20Dm = 
x; y j x2; y4; (xy2)2; (xy)my2�:Set u = xy, so that u�1 = yuy and thus u�m =(yuy)m = y2m�2yumy, so that if m is odd we get



202 Experimental Mathematics, Vol. 7 (1998), No. 3u�my2 = yumy2y. For the presentations above thisgives y2 = 1, so that it is not an amalgam. Form even we can rewrite the presentation using x =uy�1, to get (uy)2 = 1; (uy�1)2; and thus for meven 2Dm = 
u; y j y4; (uy)2; (uy�1)2; um�;20Dm = 
u; y j y4; (uy)2; (uy�1)2; umy2�:This is a group of order 4m having a central ele-ment of order 2 with quotient Dm.In case (ii) we consider amalgam quotients ofD2�Z2. Let x generate the second factor. The pos-sible length 4 relations are xyxz or (xy)2, where yand z generate D2. For the �rst relation we obtaina group of order 4 so it is not an amalgam. For thesecond relation we obtainD2 �Z2 D2 = 
x; y; z j x2; y2; z2; (yz)2; (xy)2�;which has center generated by y with quotient Z2 �Z2. The amalgam quotients are then eitherZ2�Dm = 
x; y; z j x2; y2; z2; (yz)2; (xy)2; (xz)m�or 
x; y; z j x2; y2; z2; (yz)2; (xy)2; (xz)my�1�:Since yz = (xz)mz = (xz)m�1x; xy = x(xz)m =z(xz)m�1 we can use the relations x2 = y2 = z2 = 1to deduce (yz)2 = (xy)2 = 1; thus this presentationsimpli�es toD2m = 
x; z j x2; z2; (xz)2m�:Finally, the only groups of order not divisible by 8in �(4; 2 : 2) are in �(D2; Z2 : 2) and are either D2mor Z2 �Dm for m odd. �
Corollary 4.14. (i) The order-8 groups in �(Z4; Z2 : 2)are D4 and Z4 � Z2.(ii) The order-8 groups in �(D2; Z2 : 2) are D4 andZ2 �D2.
Proof. This follows easily from the previous Lemma.If m = 2 the presentations given above simplify to20Dm = 
x; y j x2; y4; (xy2)2; (xy)2y2�;

which is Z4 � Z2, or2D2 = 
x; y j x2; y4; (xy2)2; (xy)2�;which is D4. �
Lemma 4.15. The vertex groups in �(4; 3 : 2) are de-termined by(i) �(Z4; Z3 : 2) = fS4; T; Z12; certain D3 �Z2 Z4 orZ6 �Z2 Z4 �nite amalgamsg,(ii) �(D2;Z3 :2) = fCu24; certain D3 �Z2D2 or Z6 �Z2D2�nite amalgamsg.
Proof. Consider �rst the amalgam quotients of Z3 �Z4 having x; y as the generators of the factors.The possible relations of length 4, after changingy to y�1 if necessary, are (xy)2, xyxy�1, xyx�1y,xyx�1y�1, (xy2)2, xy2x�1y2, xyxy2 and xyx�1y2.It is easy to see that the last two relations give thetrivial group. The �rst group isS4 = 
x; y j x3; y4; (xy)2�:The next group is of order 12:T = 
x; y j x3; y4; xyxy�1�:The next relation gives a group of order 6 so it notan amalgam. From the next relation we get Z12.The next two relations give the free amalgamsD3 �Z2 Z4 = 
x; y; z j x3; y4; (xy2)2�;Z6 �Z2 Z4 = 
x; y; z j x3; y4; xy2x�1y2�:In case (ii) the relations are (xy)2, xyx�1y, xyxz,xyx�1z, where y; z generate D2. The �rst relationgives the groupD3 �Z2 D2 = 
x; y; z j x3; y2; z2; (yz)2; (xy)2�;so we get �nite amalgams. The next relation givesZ6 �Z2 D2 = 
x; y; z j x3; y2; z2; (yz)2; xyx�1y�;so we get central extensions of order 2 of Z3 � Z2amalgams. In the other cases we can eliminate zto get 
x; y j x3; y2; (xyx)2; (yxyx)2�;



Alperin: Platonic Triangles of Groups 203which is Z6 and so not an amalgam, since it has noelement of order 4. The last case with z = xyx�1gives Cu24 = 
x; y j x3; y2; (yxyx�1)2�: �
Corollary 4.16.The groups of order 24 in �(Z4; Z3 : 2)are S4 and SL2(Z3). The groups of order 24 in�(D2; Z3 : 2) are Cu24 and S4 �= PGL2(Z3).
Proof. From Proposition 4.10, the groups of or-der 24 in �(Z4; Z3 : 2) are either S4 or SL2(Z3).From Lemma 4.15, that the groups of order 24 in�(D2; Z3 : 2) are either S4 (as presented in Corol-lary 4.12) or Cu24 respectively, or arise as �niteamalgams as in Proposition 4.10. We use the pre-sentationSL2(Z3) = 
x; y j x3; y4; xy2x�1y2; (xy)3�;and alsoCu24 = 
x; y; z j x3; y2; z2; (yz)2; zxy�1x�1�: �
CoplanarityLet G(A :E;F :m) denote the coset graph of thevertex A 2 �(E;F :m). Denote the complete bi-partite graph on sets of size m and n as K(m;n).
Proposition 4.17. The coset graphs of the groups de-scribed in Lemmas 4.5{4.9 and in Corollaries 4.12and 4.14 are coplanar .
Proof. The graph G(Dm :Z2; Z2 :m) is a single cir-cuit having 2m vertices, so it is planar. The graphsG(Dpr :Zpr ; Z2 : 2) andG(Z2pr :Zpr ; Z2 : 2) are bothK(pr; 2), which can be viewed as an equator of prvertices connected to a N and S pole on S2; hencethey are planar.The graph G(A4 :Z3; Z3 : 2) can be viewed as the8 vertices and 12 edges of a cube.The graph G(Z3 � Z3 :Z3; Z3 : 2) = K(3; 3) canbe imbedded in P 2 and hence it has a cover inS2. The graph G(A4 :Z3; Z2 : 3) is the barycentricsubdivision of the 1-skeleton of the dual graph ofthe faces and edges of a tetrahedron, so is planar.The graph G(Cu18 :Z3; Z2 : 4) is the barycentricsubdivision of K(3; 3), so it has a planar cover.

The graphG(S4 :Z3; Z2 : 4) is the barycentric sub-division of the 1-skeleton of the barycentric subdi-vision of dual graph of the faces and edges of anoctahedron, so it forms the vertices and edges, withbarycenters, of a cube; it is planar.The graph G(Cu24 :Z3; Z2 : 4) can be viewed asbarycentric subdivision of the edges of a cube.For Lemma 4.9, the graph G(A5 :Z5; Z3 : 2) canbe viewed on the sphere with an upper and lowerhemispherical pentagon joined by 5 edges at themidpoints of their sides. Inside each of the pen-tagons is a 5-pointed star having ten sides, withpoints at the midpoints of the surrounding pen-tagon. Inside each of the stars is a single vertexjoined to the 5 non-star vertices. See Figure 1.

FIGURE 1. G(60 : 5; 3 : 2)The graph G(Z15 :Z5; Z3 : 2) = K(5; 3) imbedsin a Klein bottle.The graph G(A5 :Z5; Z2 : 3) is the 1-skeleton ofthe barycentric subdivision of the faces and edgesof a dodecahedron, so is the vertices and edges,with barycenters, of an icosahedron; hence it is pla-nar.The graph G(A5 :Z3; Z2 : 5) is the 1-skeleton ofthe barycentric subdivision of faces and edges ofan icosohedron, so it is the vertices and edges, withbarycenters, of a dodecahedron; hence it is planar.



204 Experimental Mathematics, Vol. 7 (1998), No. 3The graphs G(S4 :Z4;Z2 : 3) and G(S4 :D2;Z2 : 3)occurring in Corollary 4.12 are both obtained fromthe 1-skeleton of the faces and edges of a cube, sothey are the vertices and edges, with barycenters,of an octahedron; hence they are planar.The graphs of Corollary 4.14 are K(4; 2) and caneasily be viewed on the sphere as a north and southpoles and 4 vertices on the equator joined to thepoles. �
Proposition 4.18. The coset graphs G(S4 :Z4; Z3 : 2)and G(Cu24 :D2; Z3 : 2) in Corollary 4.16 are bothplanar . The coset graphs of G(S4 :D2; Z3 : 2) andG(SL2(Z3) :Z4; Z3 : 2) are not spherical or toroidal ;hence these graphs are not cospherical or cotoroidal .
Proof. The �rst assertion is justi�ed by Figure 2.

FIGURE 2. G(24 : 4; 3 : 2), planarIn Corollary 4.16, the graphs of G(S4 :D2; Z3 : 2)and G(SL2(Z3) :Z4; Z3 : 2) are the same; they areobtained by gluing two copies of the barycentricsubdivision of the 1-skeleton of a tetrahedron atthe barycenters. This graph has no imbedding inP 2 and S2 by the solutions to the imbedding prob-lems for P 2 and S2. It also has no torus or Kleinbottle imbeddings by observing that a tetrahedronis imbedded uniquely with two faces in an essen-tally unique way up to the sizes of the polygonsand this can not be extended to the other tetrahe-dron. This graph does have a genus 2 imbeddingso it follows from the Riemann{Hurwitz inequalitythen that any �nite cover can not be spherical ortoroidal. �

Proposition 4.19. The coset graphs of the groups T ,Z12, and O20 imbed in P 2 and thus have a 2-foldplanar cover .
Proof. (See Figure 3.) The graphs G(T :Z4; Z3 : 2)and G(Z12 :Z4; Z3 : 2) are both K(4; 3), and so canbe imbedded in P 2 and have planar covers on S2.The graph G(O20 :Z4; Z2 : 3) can be imbedded ina M�obius band with boundary (see Figure 4) andhence in P 2, so it has a planar cover. �

FIGURE 3. G(12 : 4; 3 : 2) on P 2

FIGURE 4. G(20 : 4; 2 : 3)
5. NEGATIVELY CURVED GEOMETRIC PLATONIC

GROUPSIn this section we shall classify the data for theclass of geometric Platonic triangles of groups. Weare also interested in showing that these trianglesof �nite groups are virtually torsion-free. Certainly,



Alperin: Platonic Triangles of Groups 205this follows if the group has a faithful complex lin-ear representation since it is residually �nite andany torsion is conjugate to a vertex stabilizer. Analternate way to show that a triangle of groups �is virtually torsion-free is to construct enough ho-momorphisms to �nite quotients so that the ver-tex groups inject into one of the quotients. Weare also interested in determining the minimal in-dex of a torsion-free subgroup of �nite index. Fora triangle of groups there is an obvious surjectivehomomorphism �! A1 obtained by factoring outby the normal subgroup generated by the oppositeedge group G, where A1 is the quotient of A ob-tained. We call this a collapse. A more generalcollapse would identify a conjugate of a subgroupof G with a subgroup of A. There are also ho-momorphisms obtained by a folding. A folding isobtained by identi�cation of a subgroup of a con-jugate of a subgroup of E with a subgroup of F .
Theorem 5.1. (i) Any Platonic group of icosahedraltype is negatively curved . There are no geo-metric negatively curved triangles of icosahedraltype.(ii)A nonpositively curved geometric Platonic groupof octahedral type is toroidal and has angles �2 ,�3 , �6 .(iii)Any geometric negatively curved tetrahedral tri-angle of groups is one ofTh1 = �(A4; S4; A5 :Z3; Z3; Z2 : 2; 4; 5);Th2 = �(A4;Cu24; A5 :Z3; Z3; Z2 : 2; 4; 5);Th3 = �(A4; A5; A5 :Z3; Z3; Z2 : 2; 5; 5):(iv)Any negatively curved dihedral triangle of spher-ical groups is either an ordinary triangle groupor one of these families:Dma3 = �(D3; A4;Dm :Z2; Z3; Z2 : 2; 3;m); m � 7;Dmb3 = �(Z6; A4;Dm :Z2; Z3; Z2 : 2; 3;m); m � 7;Dmc3 = �(D3; S4;Dm :Z2; Z3; Z2 : 2; 4;m); m � 5;Dmd3 = �(Z6; S4;Dm :Z2; Z3; Z2 : 2; 4;m); m � 5;Dme3 = �(D3;Cu24;Dm :Z2; Z3; Z2 : 2; 4;m); m � 5;Dmf3 = �(Z6;Cu24;Dm :Z2; Z3; Z2 : 2; 4;m); m � 5;

Dmg3 = �(D3; A5;Dm :Z2; Z3; Z2 : 2; 5;m); m � 4;Dmh3 = �(Z6; A5;Dm :Z2; Z3; Z2 : 2; 5;m); m � 4;Dmi3 = �(A4; A4;Dm :Z2; Z3; Z2 : 3; 3;m); m � 4;Dmj3 = �(A4; S4;Dm :Z2; Z3; Z2 : 3; 4;m); m � 3;Dmk3 = �(A4;Cu24;Dm :Z2; Z3; Z2 : 3; 4;m); m � 3;Dml3 = �(A4; A5;Dm :Z2; Z3; Z2 : 3; 5;m); m � 3;Dmm3 = �(S4; S4;Dm :Z2; Z3; Z2 : 4; 4;m); m � 3;Dmn3 = �(S4;Cu24;Dm :Z2; Z3; Z2 : 4; 4;m); m � 3;Dmo3 = �(Cu24;Cu24;Dm :Z2; Z3; Z2 : 4; 4;m); m � 3;Dmp3 = �(S4; A5;Dm :Z2; Z3; Z2 : 4; 5;m); m � 3;Dmq3 = �(Cu24; A5;Dm :Z2; Z3; Z2 : 4; 5;m); m � 3;Dmr3 = �(A5; A5;Dm :Z2; Z3; Z2 : 5; 5;m); m � 2;Dma4 = �(D4; S4;Dm :Z2; Z4; Z2 : 2; 3;m); m � 7;Dmb4 = �(Z4�Z2; S4;Dm :Z2; Z4; Z2 : 2; 3;m); m � 7;Dmc4 = �(D4; S4;Dm :Z2;D2; Z2 : 2; 3;m); m � 7;Dmd4 = �(D2�Z2; S4;Dm :Z2;D2; Z2 : 2; 3;m); m � 7;Dme4 = �(S4; S4;Dm :Z2; Z4; Z2 : 3; 3;m); m � 4;Dmf4 = �(S4; S4;Dm :Z2;D2; Z2 : 3; 3;m); m � 4;Dma5 = �(D5; A5;Dm :Z2; Z5; Z2 : 2; 3;m); m � 7;Dmb5 = �(Z10; A5;Dm :Z2; Z5; Z2 : 2; 3;m); m � 7;Dmc5 = �(A5; A5;Dm :Z2; Z5; Z2 : 3; 3;m); m � 4:
Proof. In a cospherical Platonic triangle of groupsthe vertex groups satisfy1e + 1f + 1A > 1:Hence a vertex group is of one of the followingtypes: �(2; 2 :m) for 2 � m; �(3; 2 :m) for 2 �m � 5; �(4; 2 :m) for 2 � m � 3; �(5; 2 :m) for 2 �m � 3; �(n; 2 :m) for m = 2 and n � 6; �(3; 3 :m)for m = 2; �(4; 3 :m) for m = 2; �(5; 3 :m) form = 2.
Icosahedral type. Since 1a + 1b + 1c � 130 , any vertexgroup has order greater than 30. If the triangle isat, there are two possibilities: all angles are �3|but then there is a vertex group in �(3; 2 : 3), andits order is too small; or there is a vertex angle of�2 and thus there is a vertex group in �(5; 2 : 2),�(3; 2 : 2), or �(5; 3 : 2). In the �rst two cases the



206 Experimental Mathematics, Vol. 7 (1998), No. 3order is too small to satisfy the condition above.Hence, the vertex group must be A5 and one ofthe other vertex groups must be in �(3; 2 : 3) or�(5; 2 : 3). In all of these cases it is imposssible tosatisfy Corollary 3.2. Thus also there is no aticosahedral triangle of �nite groups.Next, if a nonpositively curved Platonic groupis of icosahedral type with cospherical or cotoroi-dal vertices, the angles in �(5; 3 :m1), �(5; 2 :m2),�(3; 2 :m3) are determined by the arguments aboveor by the restrictions (4{1) on page 197. We have�m1 = �2 ; hence �m2 = �3 ; thus there are no solutionsfor �m3 , according to the remarks above.
Octahedral type. If a nonpositively curved sphericalPlatonic group is of octahedral type, then the an-gles in �(4; 3 :m1), �(4; 2 :m2), �(3; 2 :m3) are bythe above restrictions: �m1 = �2 ; hence �m2 = �3 ; thusthere are no solutions for �m3 that give a nonpos-itively curved triangle. If the group is cotoroidal,then �m3 = �6 .
Tetrahedral type. If a negatively curved geometricPlatonic group is of tetrahedral type, the restric-tions (4{1) imply that the angles in �(3; 3 :m1),�(3; 2 :m2), �(3; 2 :m3) are either �m1 = �2 , �m2 = �4 ,�m3 = �5 or �m1 = �2 , �m2 = �5 , �m3 = �5 . By Corol-lary 3.2, this gives 1a + 1b + 1c= 17120 or 760 . How-ever, a = 9 or a = 12 and b = 18 or b = 24 byLemma 4.7, in casem2 = 4 or b = 60 by Lemma 4.9in case m2 = 5. The only solutions have a = 12,b = 24, c = 60 or a = 12, b = 60, c = 60 and aregiven by the families described above.
Dihedral type. If a negatively curved geometric Pla-tonic group is of dihedral type, (4{1) implies thatthe angles in �(n; 2 :m1), �(n; 2 :m2), �(2; 2 :m3)are �m1 = �m2 = �2 in case n � 6, so not negativelycurved.The equation from Corollary 3.2 now yields1a + 1b = 1n + 12m1 + 12m2 � 12 : (5–1)If n = 5, the possible values of the right-handside of this equation are 130 (for m1 = 2 and m2 =3) and 760 (for m1 = m2 = 3); while by Lemmas 4.6

and 4.9, the values of the left-hand side are a = 10,b = 60 and a = b = 60, respectively. Both of thesegive negatively curved groups in the Dm5 family.If n = 4 then the possible values of the right-hand side are 16 (for m1 = 2 and m2 = 3) and 112(for m1 = m2 = 3); while by Corollary 4.4, thevalues of the left-hand side are a � 8, b � 20 anda; b � 20, respectively. Each of these possibilitiesgives solutions using Corollaries 4.12 and 4.14 forthe Dm4 family. The solution a = 20, for example,does not yield a value of b divisible by 12.If n = 3, Lemmas 4.6, 4.7 and 4.9 and Corol-lary 4.4 give the following facts: A 2 �(3; 2 : 2) hasorder 6, B 2 �(3; 2; 3) has order 12; A 2 �(3; 2 : 2)has order 6, B 2 �(3; 2; 4) has order 18 or 24;A 2 �(3; 2 : 2) has order 6, B 2 �(3; 2; 5) has order60; A 2 �(3; 2 : 3) has order 12, B 2 �(3; 2; 3) hasorder 12; A 2 �(3; 2 : 3) has order 12, B 2 �(3; 2; 4)has order 18 or 24; A 2 �(3; 2 : 3) has order 12,B 2 �(3; 2; 5) has order 60; A 2 �(3; 2 : 4) has or-der 18 or 24, B 2 �(3; 2; 4) has order 18 or 24;A 2 �(3; 2 : 4) has order 18 or 24, B 2 �(3; 2; 5) hasorder 60; A 2 �(3; 2 : 5) has order 60, B 2 �(3; 2; 5)has order 60. Meanwhile, the right-hand side of(5{1) is 14 , 524 , 1160 , 16 , 18 , 110 , 112 , 7120 , 130 . Using theprevious corollaries we obtain all the group data ofthe family Dm3. �It is straightforward to obtain presentations forthese groups. In all cases the groups are uniquelydetermined from the data. Some of the groups canbe described as Coxeter groups or their rotationsubgroups. A Coxeter group with reection gen-erators R1; R2; R3; R4 and products of orders mijhas a subgroup of index two that is its rotation sub-group. This subgroup is generated by a = R2R1,b = R4R1, c = R3R1 having relationsam12 = bm14 = cm13 = (ba�1)m24= (ca�1)m23 = (bc�1)m34 = 1:The following groups are rotation subgroups ofCoxeter groups or full Coxeter groups (the latter



Alperin: Platonic Triangles of Groups 207are marked with y). Hence they are residually �niteand virtually torsion-free:Th1 = 
x; y; z j x3; y3; z2; (xy)2; (xz)4; (yz)5�;Th3 = 
x; y; z j x3; y3; z2; (xy)2; (xz)5; (yz)5�;Dma3 = 
x; y; z j x2; y2; z3; (xy)m; (xz)2; (yz)3�;Dmc3 = 
x; y; z j x2; y2; z3; (xy)m; (xz)2; (yz)4�;Dmg3 = 
x; y; z j x2; y2; z3; (xy)m; (xz)2; (yz)5�;Dmi3 = 
x; y; z j x2; y2; z3; (xy)m; (xz)3; (yz)3�;Dmj3 = 
x; y; z j x2; y2; z3; (xy)m; (xz)3; (yz)4�;Dml3 = 
x; y; z j x2; y2; z3; (xy)m; (xz)3; (yz)5�;Dmm3 = 
x; y; z j x2; y2; z3; (xy)m; (xz)4; (yz)4�;Dmp3 = 
x; y; z j x2; y2; z3; (xy)m; (xz)4; (yz)5�;Dmr3 = 
x; y; z j x2; y2; z3; (xy)m; (xz)5; (yz)5�;Dma4 = 
x; y; z j x2; y2; z4; (xy)m; (xz)2; (yz)3�;yDmd4 = 
x; y; z j x2; y2; z2; w2; (zw)2;(xy)m; (yz)3; (yw)3; (xz)2; (xw)4�;Dme4 = 
x; y; z j x2; y2; z4; (xy)m; (xz)3; (yz)3�;yDmf4 = 
x; y; z j x2; y2; z2; w2; (zw)2;(xy)m; (yz)3; (yw)3; (xz)3; (xw)3�;Dma5 = 
x; y; z j x2; y2; z5; (xy)m; (xz)2; (yz)3�;Dmc5 = 
x; y; z j x2; y2; z5; (xy)m; (xz)3; (yz)3�:The rest are not rotation subgroups or Coxetergroups:Th2 = 
x;y;z j x3; y3; z2; (xy)2; (xz)5; (zyzy�1)2�;Dmb3 = 
x;y;z j x2; y2; z3; (xy)m; (yz)3; xzx�1z�1�;Dmd3 = 
x;y;z j x2; y2; z3; (xy)m; (yz)4; xzx�1z�1�;Dme3 = 
x;y;z j x2; y2; z3; (xy)m; (xz)2; (yzyz�1)2�;Dmf3 = 
x;y;z j x2; y2; z3; (xy)m; (yzyz�1)2; xzx�1z�1�;Dmh3 = 
x;y;z j x2; y2; z3; (xy)m; (yz)5; xzx�1z�1�;Dmk3 = 
x;y;z j x2; y2; z3; (xy)m; (xz)3; (yzyz�1)2�;Dmn3 = 
x;y;z j x2; y2; z3; (xy)m; (xz)4; (yzyz�1)2�;Dmo3 = 
x;y;z j x2; y2; z3; (xy)m; (xzxz�1)2; (yzyz�1)2�;Dmq3 = 
x;y;z j x2; y2; z3; (xy)m; (yz)5; (xzxz�1)2�;Dmb4 = 
x;y;z j x2; y2; z4; (xy)m; (yz)3; xzx�1z�1�;

Dmc4 = 
x;y;z j x2; y2; z2; w2; (zw)2; (xy)m;(yz)3; (yw)3; (xz)2; (xw)4z�1�;Dmb5 = 
x;y;z j x2; y2; z5; (xy)m; (yz)3; xzx�1z�1�:The groups Dmd3, Dme3, Dmf3 , Dmn3 , Dmo3 havea collapse onto Dm for z = 1. Furthermore, if mis even we may replace m by 2 and consider thefolds or collapses for these groups to get injectionsof the other two vertex stabilizers. The groupsD2d3=
x; y; z jx2; y2; z3; (xy)2; (yz)4; xzx�1z�1�;D2e3=
x; y; z jx2; y2; z3; (xy)2; (xz)2; (yzyz�1)2�;D2f3=
x; y; z jx2; y2; z3; (xy)2; (yzyz�1)2; xzx�1z�1�are of order 48 and the vertex stabilizers inject.Folding x = y onD2o3=
x; y; z jx2; y2; z3; (xy)2; (xzxz�1)2; (yzyz�1)2�gives an injection of the vertex stabilizers. ThegroupD2n3 =
x; y; z jx2; y2; z3; (xy)2; (xz)4; (yzyz�1)2�has a permutation representationx! (34)(56);y ! (35)(46);z ! (123)(578)with image of order 192 that gives an injection ofthe two vertex stabilizers.Thus the groups Dmd3, Dme3, Dmf3 , Dmn3 , Dmo3are virtually torsion-free for all m even.The group Th2 has a permutation representationx! (234)(798);y ! (235)(687);z ! (12)(36)(57)(8 10)with image of order 960, which gives an injectionof each of the vertex stabilizers and hence it is vir-tually torsion-free.
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6. FLAT PLATONIC GROUPS

Tetrahedral

Theorem 6.1. The tetrahedral at Platonic groupshaving an angle of �2 areT1 = �(A4; S4; S4 :Z3; Z3; Z2 : 2; 4; 4);T2 = �(A4;Cu24;Cu24 :Z3; Z3; Z2 : 2; 4; 4);T3 = �(A4; S4;Cu24 :Z3; Z3; Z2 : 2; 4; 4):These groups are uniquely determined by the tri-angle of groups data. They are all spherical andvirtually torsion-free.
Proof. In the tetrahedral case the vertex angle �2has edges of orders 3 and 3, since otherwise byLemma 4.6 the vertex order would be of order 6contradicting Corollary 3.2. Hence by Lemma 4.7the order there is 9 or 12. In the isosceles cases theother vertices have order 18 or 24 by Lemma 4.7.Now by Corollary 3.2 and Lemma 4.7, it followsthat the only possibilities are Ti, i = 1; 2; 3.If the triangle is not isosceles, there is anothervertex group of order 12 by Lemma 4.7. Hence inthis case it is impossible to satisfy Corollary 3.2.They are spherical by Proposition 4.17.The presentations of the groups of Theorem 6.1areT1=
x; y; z jx3; y3; z2; (xy)2; (xz)4; (yz)4�;T2=
x; y; z jx3; y3; z2; (xy)2; (zxzx�1)2; (zyzy�1)2�;T3=
x; y; z jx3; y3; z2; (xy)2; (xz)4; (zyzy�1)2�:In each of these cases, if we change the mappingof an edge to a vertex group, say x to x�1, this givesan equivalent presentation so the data determinesthe groups. In general, we can use the followingequivalences to rewrite presentations: 1 = (xy)k ifand only if 1 = (yx)k, and also if x is of order 2then 1 = (xy)k if and only if 1 = (y�1x)k if andonly if 1 = (xy�1)k.In the �rst case the group T1 is in fact the ro-tation subgroup of index 2 in the Coxeter groupwith diagram 44 . The group T1 is a discrete

group of isometries in hyperbolic space so it is vir-tually torsion-free. By a fold of the edge groups oforder 3, x = zyz, we have a surjective homomor-phism T1 ! S4, which is injective on all the vertexgroups. Thus, the minimal torsion-free index is 24,since there is a subgroup S4.By a fold of the edge groups, x�1 = zyz, wehave a homomorphism T2 ! Cu24 that is injectiveon the vertex groups. Thus, T2 is virtually torsion-free. Also, the minimal torsion-free index is 24,since there is a subgroup Cu24To see that T3 is virtually torsion is more com-plicated. There is a homomorphism T3 ! S7 de-�ned by: x ! (235)(476), y ! (246)(375), z !(12)(46). The image is the simple group of order168. It is easy to see that this homomorphism isinjective on the vertex groups; hence the kernel ofthis homomorphism is torsion-free. �
Equilateral

Theorem 6.2. A at Platonic group with angles[�3 ; �3 ; �3 ] is of dihedral type and is one ofE2 = �(D3;D3;D3;Z2; Z2; Z2; 3; 3; 3);E3 = �(D3; A4; A4;Z2; Z2; Z3; 3; 3; 3);E4 = �(D3; S4; S4;Z2; Z2; Z4; 3; 3; 3);E22= �(D3; S4; S4;Z2; Z2;D2; 3; 3; 3);E5 = �(D3; A5; A5;Z2; Z2; Z5; 3; 3; 3):These groups are uniquely determined by the tri-angle of groups data. They are all spherical andvirtually torsion-free.
Proof. Now in a triangle with all three angles equalto 3, there is for dihedral type, a vertex group A 2�(2; 2 : 3) that has order 6, and for the other typesthere is a vertex groupA 2 �(3; 2 : 3) that has order12. The latter is impossible in the octahedral typesince that order is too large. For the tetrahedraltype, we have also B 2 �(3; 2 : 3) of order 12, andthis gives a sum contradicting Corollary 3.2. Now,for the dihedral type we have16 + 1b + 1c = 1g ;



Alperin: Platonic Triangles of Groups 209and hence g � 5. By Lemma 4.5, if g = 2 thenB = C = D3, so we get E2; by Lemma 4.7, ifg = 3 then B = C = A4, so we obtain E3; if g = 5then B;C 2 �(5; 2 : 3), which by Lemma 4.9 is A5,so we obtain E5. Now if g = 4 then vertex groupsB;C 2 �(4; 2 : 3) and hence by Lemma 4.11 and itsCorollary 4.12 we obtain either E4 or E22 dependingon whether or not the edge group of order 4 is cyclicor not. A group B of order 20 is impossible sincethen c = 30 and is not divisible by 12.The presentations of these groups areE2 = 
x; y; z j x2; y2; (xy)3; z2; (xz)3; (yz)3�;E3 = 
x; y; z j x2; y2; (xy)3; z3; (xz)3; (yz)3�;E4 = 
x; y; z j x2; y2; (xy)3; z4; (xz)3; (yz)3�;E22=
x; y; z; w jx2; y2; z2; w2; (zw)2;(xy)3; (xz)3; (xw)3; (yz)3; (yw)3�;E5 = 
x; y; z j x2; y2; (xy)3; z5; (xz)3; (yz)3�:If we change any edge identi�cations, say z toz�1, this gives an equivalent presentation in casesEi, for i = 3; 4; 5. In the case of E22 the subgroupD2 has the automorphism z ! z, w ! wz. We caneasily modify the presentation using a Tietze trans-formation t = wz to get the equivalent presenta-tion E22 = 
x; y; z; w j x2; y2; z2; w2; (zw)2; (xy)3;(xz)3; (xwz)3; (yz)3; (ywz)3�. Hence, the presen-tations in all cases are uniquely determined fromthe data.The group E2 is a triangle group, hence a Coxetergroup with diagram . The groups E3;E4;E5are rotation subgroups of Coxeter groups with therespective diagrams; 4 ; and 5 :The group E22 is, in fact, the Coxeter group withthe diagram . Thus these are all virtuallytorsion-free since they are complex linear groups.We can fold xy = 1 to obtain homomorphismsE3 ! A4, E22 ! S4, and E5 ! A5, and also foldz = x to obtain E4 ! D3 � S4;

which give injections on some of the vertex stabi-lizers.In fact, E3 is isomorphic to PSL2�Z�12(1+p�3)��[Alperin 1980] and the minimal index torsion-freenormal subgroup has index 12. In the case E4, fac-toring by the normal subgroup generated by (xyz)2gives a quotient of order 72 injective on all vertexstabilizers. �
Dihedral

Lemma 6.3. The groups of �(2p; 2 : 2), for odd primesp, are(i) �(Z2p; Z2 : 2) = fD2p; Z2 � Z2p, extensions ofa cyclic group of order p by a dihedral group,central extensions of a cyclic group of order 2by a dihedral groupg,(ii) �(Dp;Z2 :2)=fD2p, extensions of a cyclic groupof order p by a dihedral groupg.
Proof. In the �rst case we consider the possiblerelations xyxy, xyxy�1, xy2xy2, xypxyp, where xgenerates the Z2 factor and y generates the Z2pfactor. The �rst relation gives the dihedral groupD2p. The second relation gives Z2�Z2p. The nextrelation gives amalgams ofDp �Zp Z2p = 
x; y; z j x2; y2p; (xy2)2�;after factoring out by the group generated by y2 oforder p we get dihedral groups. The last relationgives amalgams ofD2 �Z2 Z2p = 
x; y; z j x2; y2p; (xyp)2�;after factoring out by the central group generatedby yp of order 2 we get dihedral groups.In the second case, we consider the possible rela-tions xyxz, xyzxyz and xyzxzy where x generatesthe Z2 factor and y; z are elements of order 2 thatgenerate the Dp factor. The groups that arise areD2p = 
x; y; z j x2; y2; z2; (yz)p; xyxz�;amalgams ofDp �Zp Dp = 
x; y; z j x2; y2; z2; (yz)p; (xyz)2�;



210 Experimental Mathematics, Vol. 7 (1998), No. 3which are extensions of a cyclic group generated byyz of order p by a dihedral group or amalgams ofZ2p �Zp Dp = 
x; y; z j x2; y2; z2; (yz)p; xyzxzy�;which are extensions of a cyclic group generated byyz of order p by a dihedral group. �
Proposition 6.4. A dihedral Platonic group with an-gles [�2 ; �4 ; �4 ] has order data given by one ofR2 = �(4; 8; 8; 2; 2; 2; 2; 4; 4);R3 = �(4; 24; 24; 2; 2; 3; 2; 4; 4);R4 = �(24; 6; 8; 2; 3; 2; 4; 2; 4);R16 = �(72; 36;D4; 2; 6; 2; 4; 2; 4);R26 = �(120; 30;D4; 2; 6; 2 : 4; 2; 4):
Proof. A vertex group A 2 �(2; 2 : 2) is of order 4,and it follows from Corollary 3.2 that in the dihe-dral case the other edge group has order f � 3. Iff = 2, this determines R2. If f = 3, then the ver-tex groups are in �(3; 2 : 4) and this by Lemma 4.7gives the family R3.Otherwise, there is a vertex group B 2 �(f; 2 : 2)and a vertex group C 2 �(2; 2 : 4) of order 8; nowa; b are divisible by f , so a = a1f , a1 � 2, b = b1f ,b1 � 2 so that 1a1f + 1b1f + 18 = 1fby Corollary 3.2. Thereforef8 = 1� 1a1 � 1b1 ;so that 3 � f � 7. It follows from Lemma 4.6now that f = 5; 7 can not satisfy the equation ofCorollary 3.2. For f = 3 we obtain C = D4, ei-ther B = Z6 or B = D3 and either A = S4 orA = Cu24. These give the R4 family. If f = 4then we have the equation 12 = 1a1 + 1b1 having solu-tions in (a1; b1) 2 f(4; 4); (3; 6); (6; 3)g. By Corol-lary 4.4, A 2 �(4; 2 : 4) is of order at least 32 byCorollary 4.4, and thus this case is impossible. Iff = 6 we have A 2 �(6; 2 : 4) of order at least 72;also, 14 = 1a1 + 1b1 , with a1 � 12, b1 � 5, so the

solutions are (a1; b1) 2 f(20; 5); (12; 6)g giving thepotential family R6. �
Theorem 6.5. A dihedral Platonic group with angles[�2 ; �4 ; �4 ] that is of geometric type is spherical andone of the following :R2 = �(D2;D4;D4;Z2; Z2; Z2; 2; 4; 4);R13 = �(D2; S4; S4;Z2; Z2; Z3; 2; 4; 4);R23 = �(D2;Cu24;Cu24;Z2; Z2; Z3; 2; 4; 4);R33 = �(D2; S4;Cu24;Z2; Z2; Z3; 2; 4; 4);R14 = �(S4;D3;D4;Z2; Z3; Z2; 4; 2; 4);R24 = �(Cu24;D3;D4;Z2; Z3; Z2; 4; 2; 4);R34 = �(S4; Z6;D4;Z2; Z3; Z2; 4; 2; 4);R44 = �(Cu24; Z6;D4;Z2; Z3; Z2; 4; 2; 4):These groups are uniquely determined by the trian-gle of groups data. They are virtually torsion-free.
Proof. The group data follows immediately from theprevious proposition and the previous lemmas.The group R2 is the Coxeter group with diagram4 4 . The groups R13 and R14 are rotation sub-groups of Coxeter groups with the diagrams4 44 and 4 4 :In fact, R14 �= PGL2(Z[i]).The presentations for these groups areR13=
x; y; z jx2; y2; z3; (xy)2; (yz)4; (xz)4�;R23=
x; y; z jx2; y2; z3; (xy)2; (yzyz�1)2; (xzxz�1)2�;R33=
x; y; z jx2; y2; z3; (xy)2; (yz)4; (xzxz�1)2�;R14=
x; y; z jx2; y3; z2; (xz)4; (yz)2; (xy)4�;R24=
x; y; z jx2; y3; z2; (xz)4; (yz)2; (xyxy�1)2�;R34=
x; y; z jx2; y3; z2; (xz)4; zyzy�1; (xy)4�;R44=
x; y; z jx2; y3; z2; (xz)4; zyzy�1; (xyxy�1)2�:If we change any edge identi�cations, say z to z�1or y to y�1, we get an equivalent presentation.



Alperin: Platonic Triangles of Groups 211We collapse z = 1 and fold x = y to obtainhomomorphismsR13 ! D2 � S4;R23 ! D2 �Cu24 :We �rst collapse z = 1, then collapse y = 1, thencollapse x = 1 to obtain a homomorphismR33 ! D2 � Cu24�S4:These three homomorphisms give injections on thevertex stabilizers for Ri3 for i = 1; 2; 3.Factoring Ri4 by the normal subgroup generatedby (xzy)k for certain k gives a �nite group forwhich all vertex stabilizers inject: for i = 1, (xzy)4gives a group of order 480; for i = 2, (xzy)2 gives agroup of order 48; for i = 3, (xzy)4 gives a group oforder 384; for i = 4, (xzy)5 gives a group of order720. �
Proposition 6.6. A dihedral Platonic group with an-gles [�6 ; �2 ; �3 ] has order data given by one ofB2 = �(12; 4; 6; 2; 2; 2; 6; 2; 3);B3 = �(12; 6; 12; 2; 2; 3; 6; 2; 3);B4 = �(12; 8; 24; 2; 2; 4; 6; 2; 3);B5 = �(12; 10; 60; 2; 2; 5; 6; 2; 3);B8 = �(12; 32; 96; 2; 2; 8; 6; 2; 3);B9 = �(12; 54; 108; 2; 2; 9; 6; 2; 3);B10= �(12; 10b; 10c; 2; 2; 10; 6; 2; 3);where(b; c) 2 f(7; 42); (8; 24); (9; 18); (10; 15); (12; 12)g:
Proof. For the dihedral type, if the vertex group atangle �2 has edges of order 2, then n � 3 and sowe get either B2 or there is a vertex B 2 �(3; 2 : 3)of order 12 by Lemma 4.7, but this is impossibleby Corollary 3.2. Therefore we may assume eitherthat there is a vertex group A 2 �(2; 2 : 3) of order6 or A 2 �(2; 2 : 6) of order 12.In the �rst case, A 2 �(2; 2 : 3) of order 6, wehave B 2 �(g; 2 : 2) and C 2 �(g; 2 : 6), 2 < g < 6.Let b = gb1, c = gc1 so that 1 � 1b1 � 1c1 = g6 . If

g 2 f3; 5g then b1 = 2 by Lemma 4.6. Now byCorollary 3.2, these are impossible. If g = 4, thenc1 � 26 by Corollary 4.4 and hence this equationhas no solutions.Now consider the case of A 2 �(2; 2 : 6) of order12. We have B 2 �(g; 2 : 2) and C 2 �(g; 2 : 3),with 2 < g < 12. Let b = gb1, c = gc1 so that1 � 1b1 � 1c1 = g12 . If g 2 f3; 5; 7; 11g, then b1 = 2by Lemma 4.6. If g 2 f7; 11g, then the equationabove is not solvable. If g = 3, then c = 12; andif g = 5, then c = 60; this yields B13, B23, B15, B25.Now by Corollary 4.4, C 2 �(g; 2 : 3) has order atleast g(g + 1). If g = 4, then c1 � 5 by Corol-lary 4.4 and hence b1 � 2 and therefore b1 = 2and c1 = 6, which gives rise to the B4 family us-ing Corollary 4.12 for the group of order 24 andCorollary 4.14 for the group of order 8.If g = 6, then 1b1 + 1c1 = 12 , b1 � 3, c1 � 7, whichhas no solutions.If g = 8, then 1b1 + 1c1 = 13 , b1 � 4, c1 � 9, whichhas the solution b1 = 4, c1 = 12. This gives thefamily of groups B8.If g = 9, then 1b1 + 1c1 = 14 , b1 � 5, c1 � 10,which has the solutions b1 = 5, c1 = 20 and b1 = 6,c1 = 12, and this gives the family B9. However thevertex group B has even order so we have only thecase listed above.If g = 10, then 1b1 + 1c1 = 16 , b1 � 7, c1 � 11,which has solutions(b1; c1) 2 f(7;42); (8;24); (9;18); (10;15); (12;12)g:This gives the family B10. �
Theorem 6.7. A dihedral Platonic group with angles[�6 ; �2 ; �3 ] that is of geometric type is spherical andis one of the following :B2 = �(D6;D2;D3;Z2; Z2; Z2; 6; 2; 3);B13 = �(D6;D3; A4;Z2; Z2; Z3; 6; 2; 3);B23 = �(D6; Z6; A4;Z2; Z2; Z3; 6; 2; 3);B14 = �(D6;D4; S4;Z2; Z2; Z4; 6; 2; 3);B24 = �(D6; Z4 � Z2; S4;Z2; Z2; Z4; 6; 2; 3);B122= �(D6;D2 � Z2; S4;Z2; Z2;D2; 6; 2; 3);



212 Experimental Mathematics, Vol. 7 (1998), No. 3B222= �(D6;D4; S4;Z2; Z2;D2; 6; 2; 3);B15 = �(D6;D5; A5;Z2; Z2; Z5; 6; 2; 3);B25 = �(D6; Z10; A5;Z2; Z2; Z5; 6; 2; 3):These triangles of groups are uniquely determinedby the group data. All of these triangles of groupsare virtually torsion-free.
Proof. The geometric type restriction (4{1) (seepage 197) implies that the families B8;B9;B10 donot occur. The data for each of the families followseasily from the previous proposition and proof. Itis easy to show that the groups are uniquely deter-mined by the data.The group B2 is the Coxeter group with dia-gram 6 . The groups B13, B14, B15 are rotationsubgroups of the Coxeter groups with respectivediagrams 6 , 64 , 65 . Infact, we have B13 �= PGL2�Z[ 12(1 + p�3 )]�. Thegroup B122 is the Coxeter group with diagram6 :In the groups of the families B4;B22 we use thepresentationS4 = 
x; z; w j x2; w2; z2; (wz)2; (xw)3; (xz)3�:The presentations for these groups areB13= 
x; y; z jx2; y2; z3; (xy)6; (yz)2; (xz)3�;B23= 
x; y; z jx2; y2; z3; (xy)6; yzyz�1; (xz)3�;B14= 
x; y; z jx2; y2; z4; (xy)6; (yz)3; (xz)2�;B24= 
x; y; z jx2; y2; z4; (xy)6; (yz)3; xzxz�1�;B15= 
x; y; z jx2; y2; z5; (xy)6; (yz)2; (xz)3�;B25= 
x; y; z jx2; y2; z5; (xy)6; yzyz�1; (xz)3�;B122= 
x; y; z; w jx2; y2; z2; w2; (zw)2;(xy)6; (xz)3; (xw)3; (yz)2; (yw)2�;B222= 
x; y; z; w jx2; y2; z2; w2; (zw)2;(xy)6; (xz)3; (xw)3; (yz)4; w; (yz)2�:These groups are determined by the group datasince, for example, changing z to z�1 leads to an

equivalent presentation for Bi, for i = 3; 4; 5. Inthe case of B222 , other than the relation (yz)4 = 1in D4 we could have another element of order 2,w = (yz)2, w = yzy or w = zyz but in the lattertwo cases the angle is not correct.Factoring B by the normal subgroup generatedby (xzy)k for certain k gives a �nite group forwhich all vertex stabilizers inject: for B13, (xzy)4gives a group of order 120; for B23, (xzy)4 gives agroup of order 1008; for B14, (xzy)2 gives a groupof order 48; for B24, (xzy)4 gives a group of order384; for B15, (xzy)4 gives a group of order 6840;for B25, (xzy)4 gives a group of order 14400. Inthe case of B15, we can also obtain a permutationrepresentation B15 ! S10, x ! (24)(35)(69)(710),y ! (12)(36)(47)(59)(810), z ! (135107)(24896),which is injective on the vertex stabilizers. Theimage is of order 120 so this gives a minimal in-dex torsion-free subgoup, since A5 has no elementsof order 6. This is related to a question raised in[Milnor 1994].Factoring B122 by the normal subgroup generatedby (ywxz)4 gives a group of order 192 for which allvertex stabilizers inject. Factoring B222 by the nor-mal subgroup generated by (xyz)6 gives a group oforder 34560 for which all vertex stabilizers inject.In this last case, we can also obtain a surjective per-mutation representation B222 ! S6, x ! (23)(56),y ! (24), z ! (12)(45), which is injective on thevertex stabilizers. �
OctahedralThe �nite groups in the family �(3; 2 : 6) have beenconsidered by Burnside and Coxeter. There arethree subgroups of index 2 in the reection groupof a triangle with angles �2 ; �3 ; �6 ; the rotation sub-group 
x; y j x2; y3; (xy)6�;the reections in the doubled triangle, with angles�3 ; �3 ; �3 ,
x; y; z j x2; y2; z2; (xy)3; (yz)3; (zx)3�;



Alperin: Platonic Triangles of Groups 213and the group generated by a rotation of orderthree at the vertex of an isosceles triangle with an-gle 2�3 and the reection in the opposite side,
x; y j x2; y3; (xyxy�1)3�:The �nite quotients are related to representationsof integers by the norm forma2 + ab+ b2 = (a+ b!)(a+ b!�1)in the quadratic �eld Q(!), !2 = !� 1. Note thattwo solutions to a2 + ab+ b2 = m in integers haveratio in Q(!) of norm 1 and hence the ratio is apower of !. Multiplication by ! takes the solutiona+ b! to �b+ (a+ b)!.
Lemma 6.8. The groups in �(3; 2 : 6) are of order 42,48 or obtained from amalgam quotients of certain2-dimensional crystallographic groups having order6m, where m = a2 + ab+ b2, for integers a; b.
Proof. Consider the amalgam quotients of Z3 � Z2having y; x as the generators of the factors. Thepossible relations of length 6 after changing y toy�1 if necessary are (xy)6, (xy)5xy�1, (xy)4(xy�1)2,((xy)2xy�1)2, (xy)3(xy�1)3, (xy)3(xy�1)(xy)(xy�1),(xy)2(xy�1)(xy)(xy�1)2, (xyxy�1)3. The groupsobtained from these relations have orders 1, 2,6, 48, 48, 2, 42, 1. Thus we get amalgams of thevirtually free abelian (rank 2) groupsCu1(2;3;6) = 
x; y j x2; y3; (xy)6�and Cu2(2;3;6) = 
x; y j x2; y3; (xyxy�1)3�:These amalgams have been classi�ed by Burnside[1911, p. 419] and Sinkov [1936, Theorem 7]. Ac-cording to Burnside, the �nite amalgams of the2,3,6 triangle group Cu1(2;3;6) are the groupsCuha;bi = 
x; y j x2; y3; (xy)6; (yxy�1x)a(y�1xyx)b�of order 6m = 6(a2 + ab + b2), and di�erent solu-tions to m = (a2 + ab + b2) give the same group.

According to Sinkov, the �nite amalgams of Cu2(2;3;6)areCu(b;c) = 
x; y j x2; y3; (xyxy�1)3; (yx)2b(y�1x)2c�of order 6(b2 + bc + c2). We can see that we getthe same group for a di�erent solution to the normequation as follows. First, it follows from the com-mutator equation that (xy)2 commutes with (yx)2and hence also (xy)�2(yxy)2 = (yx)2. Repeatedlyapplying this relation yields(xy)�2c(yxy)2(b+c) = (yx)2c(yxy)2b:It follows by a conjugation by y�1 that(yx)2b(y�1x)2c = 1 (=) (yx)2c(yxy)2b = 1or equivalently, by a conjugation, that (yx)2c =(y�1x)2(b+c).The others obtained areCu42 = 
x; y j x2; y3; (xy)2(xy�1)(xy)(xy�1)2�;and two groups of order 48, distinguished by theorder of xy, either 8 or 12:Cua48 = 
x; y j x2; y3; ((xy)2xy�1)2�;Cub48 = 
x; y j x2; y3; (xy)3(xy�1)3�: �
Corollary 6.9. The groups of order 48, 54, 72 and 96in �(Z3; Z2 : 6) are Cua48, Cub48, Cu54, Cua72, Cub72,Cua96, Cub96 with the presentations given below . Inthe family , �(Z3; Z2 : 6), there are no groups of or-der divisible by 5 but not 25.
Proof. According to Lemma 6.8, the groups of order48 in �(3; 2 : 6) are then Cua48;Cub48. The groups oforder 54, 72, 96 are either Cu(c;d), c2 + d2 + cd =9; 12; 16 or Cuha;bi, a2 + b2 + ab = 9; 12; 16. Ac-cording to the arguments above the groups Cu(c;d)of order 6m are isomorphic for any solution toc2 + cd + d2 = m; similar arguments apply forCuha;bi. It follows that the group of order 54 isuniquely determined,Cu54 = 
x; y j x2; y3; (xy)6; (yxy�1x)3�:



214 Experimental Mathematics, Vol. 7 (1998), No. 3There are two groups of order 72, distinguished bytheir derived series:Cua72 = 
x; y j x2; y3; (xy)6; (yxy�1x)2(y�1xyx)2�;Cub72 = 
x; y j x2; y3; (xyxy�1)3; (yx)4(y�1x)4�:There are two groups of order 96, distinguished bytheir derived series:Cua96 = 
x; y j x2; y3; (xy)6; (xy�1xy)4�;Cub96 = 
x; y j x2; y3; (xyxy�1)3; (xy)8�:Note that, since a2 + ab+ b2 mod 5 has no solu-tions except a = b = 0 mod 5, none of these ordersare divisible by 5 but not 25. Further results forpowers of 2 or odd powers of 5 can also be easilydeduced. �
Proposition 6.10. The octahedral at Platonic groupshaving an angle of �2 have triangle and vertex dataas speci�ed below :O(n;l)1 = �(S4; 4n; 12l : 3; 2; 4 : 4; 2; 4);O(n;l)2 = �(Cu24; 4n; 12l : 3; 2; 4 : 4; 2; 4);for (n; l) 2 f(7; 14); (8; 8); (9; 6); (10; 5); (12; 4);(18; 3)g;O(m;k)3 = �(Cu18; 4m; 12k : 3; 2; 4 : 4; 2; 4);for (m; k) 2 f(10; 30); (12; 12)g;O(n;l)4 = �(S4; 4n; 12l : 3; 2; 4 : 4; 4; 2);O(n;l)5 = �(Cu24; 4n; 12l : 3; 2; 4 : 4; 4; 2);for (n; l) 2 f(7; 14); (8; 8); (9; 6); (10; 5); (12; 4);(18; 3)g;O(m;k)6 = �(Cu18; 4m; 12k : 3; 2; 4 : 2; 4; 4);for (m; k) 2 f(10; 30); (12; 12); (18; 6)g;O(r;s)7 = �(S4; 6r; 4s :Z4; Z3; Z2 : 2; 6; 3);O(r;s)8 = �(S4; 6r; 4s :D2; Z3; Z2 : 2; 6; 3);O(r;s)9 = �(SL2(Z3); 6r; 4s :Z4; Z3; Z2 : 2; 6; 3);O(r;s)10 = �(Cu24; 6r; 4s :D2; Z3; Z2 : 2; 6; 3);

for (r; s) 2 f(8; 12); (12; 9)g; orO11 = �(48; 48; 16 : 4; 3; 2 : 3; 6; 2);O12 = �(36; 54; 16 : 4; 3; 2 : 3; 6; 2);O13 = �(96; 72; 16 : 4; 3; 2 : 3; 6; 2);O14 = �(432; 96; 16 : 4; 3; 2 : 3; 6; 2);O15 = �(144; 72; 24 : 4; 3; 2 : 3; 6; 2):
Proof. In the octahedral case the vertex of angle�2 has edges of orders 2 and 4 or 3 and 4, sinceotherwise by Lemma 4.6 the vertex order would beof order 6 contradicting Corollary 3.2. There aretwo cases for the arrangement of angles dependingon which is the angle �2 according to the previousremarks.In case the triangle is isosceles, there is a vertexin �(3; 2 : 4) of order 18 or 24. This gives rise toequations 112 = 118 + 14m + 112k or 112 = 124 + 14n + 112l .Simplifying this gives the equations1 = 6n + 2l ; 1 = 9m + 3k :An easy analysis yields the solutions to the �rstequation:(n;l) 2 f(7;14); (8;8); (9;6); (10;5); (12;4); (18;3)g:The solutions to the second equation are (m; k) 2f(10;30); (12;12); (18;6)g. There are two cases forthe edge groups of order 4. Notice, however, thatl; k � 7 in case the vertex group is in �(4; 3 : 4) byCorollary 4.4.These calculations give the families Oi, for i =1; : : : ; 6.If the triangle is not isoceles we obtain the moregeneral equation, 112 = 16r + 14s + 112t , rewritten as1 = 2r + 3s + 1t :Thus t � 2. Again, there are two cases for thevertex angle �2 . Also, since a group in �(3; 2 : 3)has order 12 and a group in �(3; 2 : 2) has order 6,it must be the case that the angle between edges oforders 2 and 3 is �6 . In this case the vertex groupin �(3; 2 : 6) has order 6r, r � 7.



Alperin: Platonic Triangles of Groups 215Now a vertex group in �(4; 2 : 3) has order 4s,s � 8, by Corollary 4.4. A vertex group in �(4;3:2)has order 12t, t � 2. Since 27 + 38 + 1t < 1, for t � 3,it follows that the only solutions are for t = 2 andthese are easily determined as(r; s) 2 f(7; 14); (8; 12); (10; 10); (12; 9); (16; 8)g:But now, by Lemma 4.11, the groups of �(4; 2 : 3)of order greater than 20 have order divisible by 12and thus s is a multiple of 3. Thus the solutionsare (r; s) 2 f(8; 12); (12; 9)g. This gives the familyof groups Oi, i = 7; : : : ; 10. The groups of order48, r = 8, and of order 72, r = 12, in �(3; 2 : 6)are described above. The groups of order 48, s =12, and of order 36, s = 9, in �(4; 2 : 3) can bedetermined by Lemma 4.11 and Proposition 4.10.Next, by the remarks above, there is no ver-tex group �(3; 2 : 3), so we must have a vertex in�(3;2:6) of order 6r, r � 7, by Corollary 4.4. Also,there is a vertex group �(4;3:3) of order 12t, t � 3,by Corollary 4.4 and a vertex group in �(4;2 :2) oforder 4s, s � 4 by Corollary 3.2.Since 27 + 38 + 13 < 1, it follows that the solutionsoccur for r � 7, 4 � s � 7, t � 3. Analyzing bycases we �nd that for s = 7, r � 7, 2r + 1t = 47 , thent � 3 and hence no solutions; for s = 6, r � 7,2r + 1t = 12 , then t � 4 and hence solutions (r; t) 2f(12; 3); (8; 4)g; for s = 5, r � 7, 2r + 1t = 25 , thent � 9 and hence solutions (r; t) 2 f(30; 3); (10; 5)g;for s = 4, r � 9, 2r + 1t = 14 , then t � 36 andhence solutions (r; t) 2 f(9; 36); (10; 20); (12; 12);(16; 8); (24; 6); (40; 5)g. By the remarks above onthe representations of integers by the form a2 +ab+b2 we see that r = 10;24;30;40 are impossible.This gives the solutions (r;s;t) 2 f(8;6;4); (9;4;36);(12;4;12); (12;6;3); (16;4;8)g. The groups of order16 and 24 in �(4; 2 : 2) are then easily determinedfrom Lemma 4.11. �
Proposition 6.11. (i) The �nite amalgam of D3 �Z2D2in �(4; 2 : 3) of order 48 is the Coxeter reectiongroupB48 = 
x; y; z j x2; y2; z2; (xy)3; (yz)2; (xz)4�:

(ii) There are no amalgams of order 48 of D3 �Z2 Z4in �(4; 2 : 3).
Proof. The abelianization of these two amalgamsare (i) D2 or (ii) Z4 respectively, and hence theabelianization of any �nite quotient is a 2-groupof order at most 4. By Proposition 4.10 the im-age of the cyclic subgroup of order 3 is not normal,hence there are either 4 or 16 3-Sylow subgroups.If there are 16, then this leads to 32 elements oforder 3 and hence the 2-Sylow subgroup is nor-mal, contradicting the abelianization result above.Therefore we obtain a homomorphism of the amal-gam G, G! S4. Now the normalizer of a 3-Sylowsubgroup has order 12 and any two can meet onlyon a subgroup of order 2 or 4. Hence the kernelK of this homomorphism is either of order 2 or 4.If K is of order 4, then the image of the homo-morphism is A4. In this case lifting the 2-Sylowsubgroup of A4 back to G gives a normal 2-Sylowsubgroup, contradicting the abelianization result.Thus G is an extension of S4 by a normal subroupof order 2 (hence central). Now in the �rst casei) we have by Proposition 4.10 that there are noamalgam quotients of order 24. Now in the secondcase the image of xz in S4 has order 2, 3, or 4.However the group
x; y; z j x2; y2; z2; (xy)3; (yz)2; (xz)2�has order 12 and the group
x; y; z j x2; y2; z2; (xy)3; (yz)2; (xz)3�has order 24. Thus, since
x; y; z j x2; y2; z2; (xy)3; (yz)2; (xz)4�has order 48, this is the uniquely determined amal-gam. �
Proposition 6.12. (i) Any �nite amalgam of D3 �Z2D2in �(4; 2 : 3) of order 36 isF a36 = 
x; y; z j x2; y2; z2; (xy)3; (yz)2; (xyz)2(yxz)2�:



216 Experimental Mathematics, Vol. 7 (1998), No. 3(ii) Any �nite amalgam of D3 �Z2 Z4 in �(4; 2 : 3) oforder 36 isF b36 = 
x; y j x2; y4; (xy2)3; (xy)4�:
Proof. Since the abelianizations are 2-groups of or-der less than 4, the 2-Sylow subgroups are not nor-mal. If there are four Sylow 3-subgroups, then theyare abelian and equal to their normalizers so by thenormal p-complement theorem there is a normal 2-complement. Thus the Sylow 3-subgroup is normaland the group is a split extension. If there is anelement of order 9 then there is a unique elementof order 3. The group of order 4 acts via inversion,so that the element of order 3 is �xed, thus givinga normal subgroup of order 3 contradicting Propo-sition 4.10. Thus the group is a split extension ofZ23 by D2 or Z4 depending on case (i) or (ii).In the �rst case, if the D2 acts trivially on oneof the Z3 factors we get a Z6 homomorphic imagecontradiciting the abelianization. Thus the groupis isomorphic to S3 � S3. Since D2 = 
y; z�, xyis of order 3 and so is zxyz, these two elements

commute: xyzxyz = zxyzxy. Addition of this re-lation su�ces to give the group of order 36,
x; y; z j x2; y2; z2; (xy)3; (yz)2; (xyz)2(yxz)2�:In the second case to avoid a Z3 factor, the Z4acts by interchanging the Z3 factors. The elementy conjugates xy2 of order 3 to yxy, and these com-mute to give the group
x; y j x2; y4; (xy2)3; (xy)4�: �
Proposition 6.13. (i) The coset graphs G(48 : 3; 2 : 6),G(72 : 3; 2 : 6) of Corollary 6.9 are toroidal .(ii) The coset graph G(48 : 4; 2 : 3) of Proposition6.11 is planar .(iii) The coset graphs G(36 : 4; 2 : 3) of Proposition6.12 are imbeddable in P 2.
Proof. The graphs of the two groups of order 48are isomorphic. Realizing the graph as having 24(barycentrically marked) edges and 16 vertices ofdegree 3, we imbed it in the torus as 8 hexagons.See Figure 5.

FIGURE 5. Left: G(48 : 3; 2 : 6). Right: The same graph on the torus (hexagonal identi�cations).
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FIGURE 6. Left: G(72 : 3; 2 : 6). Right: The same graph on the torus (octagonal identi�cations).The graphs of the two groups of order 72 are iso-morphic. Realizing the graph as having 36 (bary-centrically marked) edges and 24 vertices of degree3, we imbed it in the torus as 12 hexagons. SeeFigure 6.The graph of Proposition 6.11 is obtained fromtwo copies of an 8-gon attached to a 16-gon alongalternate and every fourth vertex, respectively. Thetwo copies are attached along the 16-gons at everyfourth vertex symmetrically centered between theother fourths. See Figure 7.The graphs of Proposition 6.12 of groups of order36 are isomorphic and easily imbeddable in P 2, butnot in the plane. See Figure 8. �
Theorem 6.14. The octahedral at Platonic groupshaving an angle of �2 that are of geometric type aretoroidal and have triangle and vertex dataOg1 = �(Cu24; B;B48 :D2; Z3; Z2 : 2; 6; 3);Og2 = �(Cu24; B; F a36 :D2; Z3; Z2 : 2; 6; 3);Og3 = �(S4; B; F b36 :Z4; Z3; Z2 : 2; 6; 3);for B 2 fCua48;Cub48;Cua72;Cub72g.

FIGURE 7. G(48 : 4; 2 : 3).The presentations of these groups are easily deter-mined, and are shown at the top of the next page.All these groups are virtually torsion-free. Theyeach have a subgroup of index less than or equal to18 that yields a normal core which is torsion-free.
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x; y; z; w j x2; y3; z2; (wz)2; w2; (xz)3; (xw)4; yzy�1w; ((xy)2xy�1)2�Ogq1
x; y; z; w j x2; y3; z2; (wz)2; w2; (xz)3; (xw)4; yzy�1w; (xy)3(xy�1)3�Ogr1
x; y; z; w j x2; y3; z2; (wz)2; w2; (xz)3; (xw)4; yzy�1w; (xy)6; (yxy�1x)2(y�1xyx)2�Ogs1
x; y; z; w j x2; y3; z2; (wz)2; w2; (xz)3; (xw)4; yzy�1w; (xyxy�1)3; (yx)4(y�1x)4�Ogp2
x; y; z; w j x2; y3; z2; (wz)2; w2; (xz)3; (xzw)2(zxw)2; yzy�1w; ((xy)2xy�1)2�Ogq2
x; y; z; w j x2; y3; z2; (wz)2; w2; (xz)3; (xzw)2(zxw)2; yzy�1w; (xy)3(xy�1)3�Ogr2
x; y; z; w j x2; y3; z2; (wz)2; w2; (xz)3; (xzw)2(zxw)2; yzy�1w; (xy)6; (yxy�1x)2(y�1xyx)2�Ogs2
x; y; z; w j x2; y3; z2; (wz)2; w2; (xz)3; (xzw)2(zxw)2; yzy�1w; (xyxy�1)3; (yx)4(y�1x)4�Ogp3
x; y; z j x2; y3; z4; (yz)2; (xz2)3; (xz)4; ((xy)2xy�1)2�Ogq3
x; y; z j x2; y3; z4; (yz)2; (xz2)3; (xz)4; (xy)3(xy�1)3�Ogr3
x; y; z j x2; y3; z4; (yz)2; (xz2)3; (xz)4; (xy)6; (yxy�1x)2(y�1xyx)2�Ogs3
x; y; z j x2; y3; z4; (yz)2; (xz2)3; (xz)4; (xyxy�1)3; (yx)4(y�1x)4�Presentations for the groups in Theorem 6.14.

FIGURE 8. G(36 : 4; 2 : 3) on P 2.
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