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Non-positively curved triangles of finite groups are of cohomo-
logical dimension 2 over the rationals and have Property FA.
We classify triangles of finite groups which satisfy certain ge-
ometric conditions including the Gauss—Bonnet theorem. We
investigate whether or not these groups are virtually torsion-
free, contain a free abelian subgroup of rank 2, are residually
finite or are linear.

In this article we classify a collection of groups
that have characteristics in common with certain
hyperbolic Coxeter groups. The classification of
hyperbolic reflection groups in dimension three has
been known since Lannér’s thesis in 1950 [Coxeter
and Moser 1980]. There are 9 co-compact and
28 noncompact finite volume discrete subgroups
of hyperbolic 3-space [Humphreys 1990], all with
quotient a single simplex. The noncompact groups
have Euler characteristic zero by duality; see [Serre
1970]. Any hyperbolic reflection group is a finitely
generated complex linear group, and so is residu-
ally finite and virtually torsion-free [Alperin 1987].
Furthermore, in the noncompact case, the link of
an ideal vertex, of the tesselation by tetrahedra,
is a (flat horospherical) plane with a free abelian
rank 2 group of symmetries. In fact, there is al-
ways a subdiagram of the Coxeter diagram hav-
ing the shape e—e"e o—e"e or and giving
rise to the virtually free abelian subgroup. Other
interesting information on certain hyperbolic Cox-
eter groups can be found in [Milnor 1994], which
considers the volumes of those 10 groups with a
“straight line” Coxeter diagram corresponding to
the orthosimplex condition.

When the Coxeter group has an ideal vertex,
we can retract the complex onto a contractible 2-
complex, which is the barycentric subdivision of
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the Coxeter complex retracted away from the ver-
tices at infinity of the tetrahedral packing [Alperin
1980]. Now, the rotation subgroup of index 2 in
the Coxeter group has a particularly nice presen-
tation [Brunner et al. 1985] as a triangle of groups
in terms of its triangle fundamental domain. More-
over, these groups satisfy a form of the Gauss
Bonnet Theorem based on the angular defect of
this triangle. There are 9 of the 28 noncompact fi-
nite volume hyperbolic manifolds for which all the
vertex stabilizers are finite. The remainder have
some of their vertex stabilizers of Euler character-
istic zero, that is virtually free abelian of rank 2.
Upon retraction of the Coxeter complex onto its
associated 2-complex, the flat horospherical plane
survives.

Here we shall classify the (minimal) groups that
have a triangle of groups decomposition satisfy-
ing a Gauss Bonnet condition, for which the Eu-
ler characteristic is zero and the vertex stabiliz-
ers are finite. Our less restrictive conditions allow
more families of our so called Platonic groups. Im-
posing certain “geometric” conditions, we obtain a
classification very nearly the same as the rotation
subgroups of hyperbolic reflection groups described
above. These are the spherical or toroidal flat
Platonic groups. We also determine here the geo-
metric Platonic groups that are negatively curved.
Many of these are also Coxeter groups; they are
not hyperbolic in the Coxeter group sense but, in
fact, do act on hyperbolic space yielding an infinite
volume hyperbolic orbifold.

Our main results, stated roughly, are that there
are finitely many flat Platonic triangles of finite
groups, and that there are finitely many families of
nonpositively curved geometric Platonic triangles
of finite groups.

I thank Paul Brown for allowing access to his
programs and other results of his thesis, and also
P. Huneke and H. Glover for discussions on graph
embeddings. The coset enumerations and other
group-theoretic calculations have been programed

using GAP and MAGMA. Using GAP, Brown’s

program computes the diameter and adjacency re-
lations of the vertex link graphs. These can then be
displayed and simplified using the program called
Groups&Graphs2.4.

These results would not have been obtained with-
out a significant degree of experimentation using
computer calculations. The organizational features
of this investigation only became clear after many
computations, and it became possible to formulate
the definition of a Platonic triangle of groups. Cer-
tainly, the proof that a nonpositively curved trian-
gle of finite groups is virtually torsion-free is still
an outstanding problem.

Extending these ideas to classify “nongeomet-
ric” Platonic triangles of groups seems daunting, if
not impossible, without further theoretical results.
The flat Platonic triangles, however, seem accessi-
ble. Also, it would be very interesting to determine
the graph-theoretic restrictions necessary for a fi-
nite graph to have a finite cover that is planar.
Moreover, making the connection of the geometric
Platonic groups with the (orbifold) fundamental
group of special 3-dimensional manifolds is a fasci-
nating open problem.

1. INTRODUCTION TO TRIANGLES OF GROUPS

We first review the basic ideas and theorems about
triangles of groups proved by Gersten and Stallings
[Stallings 1991]. Fundamental to the investigation
of triangles of groups is the angle at a vertex of
the triangle. If we have groups E and F with
a “common” subgroup D and injective homomor-
phisms £ — A, F — A agreeing on D, the angle
at group A between E and F' (along D) is defined
as =, where 2r is the length of the shortest alter-
nating word, e; fiesfo - - €, f, with e; € E— D and
fi € F — D, that lies in the kernel of the induced
homomorphism E x I — A. A triangle of groups is
the universal group given by vertex, edge and face
data as follows: vertex groups A, B,C and edge
groups E, F,G with a common face group D, to-
gether with homomorphisms to A, B, C' such that
the angle at A between E and F' (along D) is T,



the angle at B between F' and G (along D) is
the angle at C' between E and G (along D) is
The triangle group

EIENE]

I'(T)=TI(A,B,C;E,F,G;D;r,s,t)

is the universal group extending the given homo-
morphisms with associated triangle T having an-
gles [T, T, Z]. The curvature characteristic of the
triangle, kg, is defined as % + é + % — 1. A trian-
gle is nonpositively curved if kg < 0. Gersten and
Stallings showed that if the triangle group is asso-
ciated to a nonpositively curved triangle then there
is a contractible two-complex on which I'(T) acts
with a single triangle as fundamental domain hav-
ing vertex, edge and face stabilizers as given by the
data; in particular, vertex, edge and face groups in-
ject in the triangle group. Moreover, any bounded
subgroup (and in particular any finite subgroup)
of I'(T) is conjugate to a subgroup of one of the
vertex stabilizers.

If the triangle is negatively curved and all the
vertex groups are finite, the Corollary to Theorem
A of [Bridson 1995] implies that either the group I
is word hyperbolic and hence any abelian subgroup
is virtually cyclic or the 2-complex of Gersten—
Stallings contains a flat plane; furthermore, these
conditions are mutually exclusive. Moreover, if
the group is word hyperbolic, Sela [Sela 1993] has
shown that it is Hopfian. For general finitely gener-
ated groups, residually finite implies Hopfian. By
the remarks above, there are only finitely many
conjugacy classes of elements of finite order in a
triangle of finite groups; in such situations, resid-
ually finite groups are virtually torsion-free. We
might expect that nonpositively curved triangles
of finite groups are residually finite; however, this
is not generally true as has been recently shown by
Hsu and Wise [1998].

The automatic nature and bicombings of trian-
gles of finite groups have been studied in [Floyd
and Parry 1997; Noskov 1995]. Also, Wise (un-
published) has exhibited F, x F, as a subgroup
in a certain triangle of finite groups, consequently
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showing that triangles of finite groups are not nec-
essarily coherent.

For our flat geometric Platonic groups, we show
that the groups are virtually torsion-free. In the
case of hyperbolic Coxeter groups of Euler char-
acteristic zero, there is a free abelian subgroup of
rank 2 as discussed above. Our classification indi-
cates that the associated 2-complex to a flat Pla-
tonic group is almost always the same as the 2-
complex for one of the hyperbolic Coxeter group.
Thus, there is an isometric flat plane and conse-
quently, by results of P. Brown [1997], there is a
rank-2 free abelian subgroup. Thus, none of these
cases yield word hyperbolic groups. It would ap-
pear then that the distinct Platonic groups that act
on the same 2-complex may just be different lat-
tices in the automorphism group of the complex.
We hope to pursue these issues in a subsequent

paper.

2. HOMOLOGICAL RESTRICTIONS

A group G is said to have Property FA if whenever
it acts (without inversions) on a tree then there is a
point fixed by all of G. In [Alperin 1996] we showed
that a triangle of finite groups has Property FA.
This can be generalized as follows. We shall call
a triangle of groups minimal if each of the vertex
groups is generated by its associated edge groups.

Theorem 2.1. Suppose that I' = T'(T) is a mini-
mal nonpositively curved triangle of groups so that
all edge groups properly contain the face group and
such that all orders of elements of finite order in
I' are invertible in the ring R. If each of the ver-
tex stabilizers has Property FA and cdgp < 2 and
each of the edge stabilizers has cdr < 1, then T’
has Property FA and cdg(T") = 2.

Proof. It follows immediately from the spectral se-
quence (Quillen’s Lemma [Serre 1971]) for the ac-
tion of I' on the contractible 2-complex X con-
structed by Gersten and Stallings [Stallings 1991]
that cdg(I") < 2. Now if cdi(I") < 1, then equiv-
alently by [Dicks and Dunwoody 1989, Theorem
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3.13] there is a nontrivial action on a tree W (with-
out inversions), having finite vertex stabilizers of
order invertible in R. Since the vertex groups, A,
B and C, of I have Property FA, they fix the ver-
tices x, y and z of W. If these vertices are distinct,
then consider a common point P in yz N xz N xy.
The segment yz is fixed by F, zz is fixed by G
and zy is fixed by E. Thus, since I' is generated
by its edge groups, the common point P is fixed
by I' and hence I is finite since the action on the
tree has finite stabilizers. Also, if there is a single
vertex © = y = z, or if these vertices are reduced
to two, say = # y = z, then since B, C stabilize y,
the group I stabilizes y since it is generated by the
edge groups. Thus I, being finite, fixes a vertex for
its action on the 2 complex X by the theorem of
Gersten andStallings. By a conjugation then say
I' C A and also the opposite edge group G C T’
so that I' stabilizes the entire triangle fundamen-
tal domain, and hence is contained in D. This is a
contradiction, so the cohomological dimension is 2.

O

Corollary 2.2. Suppose that I' = I'(T) is a nonpos-
stiwely curved triangle of finite groups so that all
edge groups properly contain the face group and
such that all orders of elements of finite order in I’
are invertible in the ring R, then cdg(I') = 2.

Proof. Consider the group I'; generated by the edge
groups of I'; it is a minimal triangle of groups
with the same angles as I'. By Quillen’s Lemma
[Serre 1971], c¢dz(I') < 2. From the theorem, I'y
has cohomological dimension 2, and thus cdg(I") >
cdgr(T'y) = 2. O

Thus, it follows that a nonpositively curved trian-
gle of finite groups has no free abelian subgroups of
rank greater than 2. Note that triangle groups are
examples of groups with FA and vedgp = 2. An infi-
nite group of vedr = 1 does not have Property FA.

Observe also that if one of the edge groups is
trivial, then I is a free product with amalgamation.
We can realize the group as the graph of groups
BxAxC, if G = {1}. If, moreover, the vertex

groups are finite, then the group is virtually free
and hence of virtual cohomological dimension < 1.

Question 2.3. A nonpositively curved triangle of free
groups is of cohomological dimension at most 2, if
the face group is trivial. Is it of cohomological
dimension 2 if the angles are all nonzerol’

Question 2.4. Can one describe in group theoretic
terms a nonpositively curved triangle of groups
that has Property FA and is of cohomological di-
mension 2 over a ring RI' Theorem 2.1 describes
some of these groups, but one can now iterate this
procedure to get more complicated groups.

It follows from [Serre 1971] that a triangle of fi-
nite groups is of type VFL if it is virtually torsion-
free; also, if it is virtually torsion-free, then it has
an Euler-Wall characteristic. If the Euler—Wall
characteristics exist for the vertex, edge and face
groups, we define the orbifold characteristic as

X(D(T)) = X(A) + X(B) + X(C)
“X(BE) — X(F) — X(G) + X(D).

This agrees with the Euler Wall characteristic of
I, if it exists.

3. PLATONIC RESTRICTIONS

Our interest is in the situation where the triangle
group data satisfies the following conditions:

(i) The triangle is nonpositively curved, with all
nonzero angles.

(i) All vertex groups have nonnegative Euler char-
acteristic.

(iii) All edge groups are nontrivial and D = {1}.

(iv) The triangle group data is minimal.

v) 2X(T(7)) = K.

When all these conditions are satisfied we call I'(T)
a Platonic group. If, furthermore, the triangle T is
a Euclidean triangle, we call this a flat Platonic
group. If all the vertex groups are finite, we call it
is a Platonic triangle of finite groups.

We shall, in fact, assume for the rest of this arti-
cle that all vertex groups are finite. Properties (i),



(ii) and (iii) guarantee cohomological dimension 2
as we have shown above. Property (v) is a fake
Gauss—Bonnet condition. Notice that, if |A| = a,
|B| = b, etc., we have

Thus, X(I'(T)) can only be nonpositive if {+5+ >
1, and this happens for precisely the orders as indi-
cated below in Proposition 3.1. In all other situa-
tions, since the curvature characteristic is nonpos-
itive, we will have 2X(I'(T)) > kg; so the Platonic
situation of condition (v) is in a sense extremal.

Proposition 3.1. If X(I'(T)) < 0, the possibilities for
the orders of any edge group (up to a permutation)
are

(2,2,n], withn>2 (type D),
[2,3,3] (type T),
[2,3,4] (type 0),
(2,3, 5] (type I).

Proof. The condition X(I'(T)) < 0 implies
1

11 1
0<—+-+-<

a b ¢
It is well known (and easy to check) that the only
solutions for e, f and g to this inequality are those
given in the statement of the proposition. The
names of the types come from the parallel classifi-
cation of finite subgroups of SO(3): the dihedral,
tetrahedral, octahedral, and icosahedral symmetry
groups. g

Remark. If we don’t have just finite vertex groups
but still assume nonnegative FKuler characteristic
of the vertices then the other possible edge config-
urations are (2,3, 6], [2,4,4], and [3, 3, 3].

Corollary 3.2. For a Platonic group,

% for type D,
1+l+1_1: & for type T,
e [ g 75 for type O,
+ for type I.
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and
sk + = for type D,
1 1 1 ke + % for type T,
—+trt-=91 1
a b ¢ ske + 15 for type O,

%HT‘F 31—0 for type I.

Question 3.3. Which Platonic groups contain a 3-
manifold group as a subgroup of finite indexI

4. VERTEX DATA

Numerical Conditions

We call a group A an amalgam of its subgroups £
and F along D if E, F generate A and ENF =
D. Thus for an amalgam the natural surjective
homomorphism I'y = FE % F — A has a kernel K4
that trivially intersects the conjugates of F and F.
If, moreover, the group A is finite, then we call it
a finite amalgam.

For a vertex group A of a negatively curved tri-
angle of groups we assume that £ and F' properly
contain D, K N F = D, and also that the vertex
group is generated by F and F. Thus the vertex
group is an amalgam of its associated edge groups
along the face group. The group I'4 has a natu-
ral action on a tree constructed as follows. The
edges are the right cosets of D in I'; and the edges
are of two types, either the cosets of F or F in
I' 4. The incidence relation is Fx is joined to Fy if
Dx = Dy. The group I'4 acts on the right on this
tree as a group of isometries. Now by the proper-
ties of the homomorphism the action of K4 on this
tree is free and hence is a free group. The quotient
of this tree by K, is a bipartite graph X, that
can be identified with the graph obtained from the
coset construction, as above, applied to A, namely
its vertices are the cosets of £ and F in A and its
edges are the cosets of D in A. The incidence re-
lation is defined similarly. The angle at vertex A
is determined by the length of the shortest cycle
in this graph. If D is trivial then the edges of this
graph are in one-to-one correspondence with the
elements of A.
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Now assume that the Platonic conditions (i)—(iv)
hold. Consider the vertex at A. Suppose that K4
has rank k4. The graph X4, which is bipartite
having |A| = a edges; va = vy + vy vertices, vy of
degree e = |E|, vy of degree f = |F| and e - vy =
a = [ -wvp; ka independent cycles, so that ky =
a—v4+ 1. The length of the smallest cycle in this
graph is 2y, corresponding to the angle at vertex
A of % From the Euler characteristic formula
we have % + % —1= % or equivalently % =
% +1— % — % Given a triangle of groups we may
add each of these Euler characteristic conditions at
the three vertices to obtain the formula

1+ k 1+k 1+k
_ A+ + B+ + K¢
a b c

We have v4 > 2 since D = {1}. We assume that
f<e

2X(I'(T)) 1

Proposition 4.1. We have
14+ ka > 1

a A

except in the following cases:

Ya =2 and either 2 =f <eor3=f <e, or
Yya=3and2=f <e<5.

Proof. Since
1+ k 2 1 1
Rl +1
a a e f

and v4 > 2, the inequality is easily satisfied for
e,f > 4. Also, if e = f = 2 then the group is
dihedral so ¢ = 2y, and k4 = 1 and we have an
equality. Now, if e, f > 3 and y4 > 3 or if f = 2,
e > 6, v > 3 then the inequality is also obviously
satisfied. Furthermore, if v > 2, f =3, ¢ > 6 then
the inequality is valid. O

Thus, in the generic situation e, f, g > 6, we have
2X(I(T)) > kg
Let T'(E,F:m) denote the set of finite amal-

s

gams A of E and F along {1} having angle Z;
let T'(p, g:m) denote the set of all finite amalgams

s

having angle T where |E| =p, |[F| =¢,p > q.

Set B' = E— {1} and F' = F — {1}.

Proposition 4.2. Suppose A € T'(p,q:m).

(1) If m is even, the sets {1}, E', F', E'F', F'E'
E’F’E’, F’E’F’, o F/(E/FI)(m/Z)fl’ (E/F/)m/2
are disjoint as subsets of A.

(2) If m is odd, the sets {1}, E', F'. E'F', F'FE'
E'F'E', F'E'F', ..., E(F'E")™=Y/2 qre disjoint
as subsets of A.

Proof. Arguing by contradiction, we may modify a

potential overlap of two of these sets, say w = u

to wu~! or ulw and also conjugate if necessary

to get an alternating word in E % F' that gives a
relation in A but of length smaller than 2m. O

Notice that, if the sets as described in the state-
ment of Proposition 4.2 are disjoint, the angle is
in fact at most --. Let g,, be the total number of
elements counted by these disjoint sets. Consider
the case where the potential amalgam is obtained
from one relator w, of alternating length m, i.e.,

Question 4.3. If E, F' inject into the group A(w) and

order(A(w)) > gm, s A€ T'(E,F:m)l

Corollary 4.4. (1) If A € T'(p,q:2), then |A| > pq.

(2) If A€T(p,q:3), then |[A| > p(p(qg —1) +1).

(3) If A € (p,q:4), then |A] > pq(pg—p—q+2).

4) If A€ L(p,q:5), then |A] > p(p*q*+p* —2p°q+
3pq —q’p — 2p +1).

(5) If A € I'(p,q:6), then |A| > pq(p*q® — 2p*q —
2pq* + p* + ¢* + 5pg — 3p — 3q + 3).

6) If A € T'(p,2:m), then |A| > (p — 1)I™/21.

The values of (p,q:9gs, 91, 95, 9¢) for 5>p > ¢q>2

are

2,2:6,8,10,12),

3,2:12, 18,30, 42),

4,2:20,32,68,104),

5,230, 50,130, 210),

n,2:n(n+1),2n% n*+n,2n(n®> —n+1)),
3,3:21,45,93,189),



(4,3:36,84,228,516),
(5,3:55,135,455,1095),
(4,4:52,160, 484, 1456),
(5,4:80,260, 980, 3140),
(5,5:105,425,1705, 6825).
Suppose E and F' generate the group A. Cer-

tainly if E N F # {1}, when D = {1}, then the
angle is 7.

Remark. Whenever £ N N4(F) # {1} there is a
relation zyz~! = ¢’ with x € F and y,y' € F so
that the angle is at least Thus, if F' is normal
in A, the angle is at least

PIELE]

Geometric Types: Spherical and Toroidal

We investigate the possible maps (cf. [Coxeter and
Moser 1980]) that support the link of a vertex in a
triangle of groups. If the triangle of finite groups
has a vertex link, which is a graph having a finite
cover that is planar, then we might hope that there
is a finite index subgroup of the triangle group that
can be thickened up to a three manifold group. A
map is a decomposition of a surface X without
boundary into N, faces, each of which are disks, as
the complement of a graph having N; edges and
Ny vertices. Given a graph, we shall assume that
the map has maximal number of faces or equiva-
lently that the Euler characteristic of the surface
is maximal. If the average degree of a vertex is d
and the average length of a face circuit is ¢ then
the Euler characteristic of a map with this graph
isX=Ng—Ni+Ny =22 N+ N, =2 — N, +
2 = 2N, (2 +1 —1). The Riemann Hurwitz for-
mula for branched coverings implies that an r-fold
covering graph lies on a surface Y with Xy < rXx.
Thus it follows that any graph or finite cover of it
can only support a map of nonpositive X if

1 1 1

R

d ¢~ 2

If the graph is the link of a vertex in a triangle

of groups or any finite cover of it, we know from
our previous remarks that
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(eve + for)  2a
(UE_'_UF) - VA

and ¢ > 27v,4, where the angle at vertex A between

edge groups E and F is o Since

1—k 1 1
U_A_lzgz__k__l’
a a e f
we have
1 1 1 1 1 1
2(c4--) <+
ateT2) f+%4

and thus if 1 + % + VLA < 1 any finite cover can
only support a map of negative Euler character-
istic. We refer to the vertex group as cospherical
if there is a finite cover of the coset graph at the
vertex that is a spherical graph. We shall say a tri-
angle of groups is spherical if all the vertex groups
are cospherical. If a graph or finite cover of it sup-
ports a map on the torus but no map on the sphere
then the vertex is called cotoroidal. Certainly the
condition %—I—% = % is necessary. We shall say a tri-
angle of groups is toroidal if the vertex groups are
spherical or toroidal, but not all spherical. If the
vertex groups are cotoroidal or cospherical, then
the link is called geometric type. The triangle of
groups is geometric type if all of its vertex groups
are of geometric type. The condition

1 1 1

-—+—-+—2>1 (4-1)

e [ va
must be satisfied at each vertex for the triangle of
groups to be geometric type. Adding these equa-
tions we obtain the restriction

1

1 1
—+ -+ = >2X(I'(7)) — K-
a b ¢

Of course, this inequality is satisfied if the triangle
of groups is Platonic. The solutions to the geomet-
ric inequality (4-1) for e > f are given in Table 1.

We begin the classification of geometric Platonic
groups.

Lemma 4.5. I'(2,2:m) = {D,, }.

Proof. Suppose that A is a finite amalgam quotient
of Z, x Z,, injective on the factors, with shortest
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VA (eaf)

21{(2,2), (3,3), (3,2), (4,4), (4,3), (4,2),
(5,3), (5,2), (6,3), (6,2), (n,2) for n > 7}

31{(2,2), (3,3), (3,2), (4,2), (5,2), (6,2)}
41{(2,2), (3,2), (4,2)}
51{(2,2), (3,2)}
61{(2,2), (3,2)}

>71{(2,2)}

TABLE 1. Solutions to inequality (4 1) with e > f.

relator (zy)™, where x and y are the generators
of the factors. Any other relator is (zy)™ and by
the Euclidean algorithm m divindes n. Thus the
group is the dihedral group of order 2m having the
presentation

Dy, = (z,y | 2%, y*, (zy)™).

(The strings on the right represent relations 2% = 1,

y* =1, (zy)"=1))
The dihedral group also has the presentation

Dy, = (z,y | 2*, y™, wyzy). O

Lemma 4.6. For p an odd prime and r > 1, we have

T(Zye, Zy:2) = { Zope, Dy .

Proof. Suppose that A is a finite amalgam quotient
of Z, * 7] injective on the factors, and z,y are the
respective generators of each factor. If the shortest
relator is of length 4, it is xy"xy™ for some n, m.
Since the second factor is of prime power order we
may replace the generator y by y* for k relatively
prime to p and may assume then that the relation
is J;y”fa:y*”'y_m, for m relatively prime to p. By this
relation, y? and '™ have the same order and
thus ¢ = 5. Now

i i i 24,2
Yy =zxy’ zx =axy’? "r =y ,

n—1i

and thus p'm? = 1 mod p"~*. But this is impos-
sible unless ¢ = 0; hence we assume ¢ = 0. Since
the group of units mod p” is cyclic there are just
two solutions m = +1. Hence we obtain just two

possible relations, zyxy or xyxy—'. This gives the
dihedral group and a cyclic group. O

Lemma 4.7. (i) I'(3,3:2) = {A4, Z5 x Z3}.
(i) T'(3,2:3) = {A,}.
(iii) I'(3,2:4) = {S4, Cuyg, Cuyy }.

Proof. In the first case we suppose that A is a finite
quotient of Zs; % Z3, injective on the factors, and
x,1y are the generators of the factors. The possible
relations of length 4, after changing = to 7' or y
to y~ ' if necessary, or possibly switching the roles
of z and y, are ryxy, xyxr 'y~ ' or zyxy '. For
the last relation we see that y? commutes with x
and hence y commutes with z and therefore from
this relation z maps trivially; this contradicts the
faithfulness of each of the factors. The other two
relations give the respective groups, either Z; x Z;
for the second relation or for the first relation,

A4 = <7"7y | mB’ y37 (Ty)2>

They have no quotients for which the factors inject.

In the other cases we suppose that A is a fi-
nite quotient of Z, * Zs, injective on the factors,
and z,y are the generators of the factors. The
L if nec-
L of

possible relations after changing y to y~
essary are: of length 6, zyxyzry or zyryzy~
length 8, zyzyxyzy, vyryryxy ', vyzyry oy L,
xyry tzyxy . Certainly we have

Ay =(z,y |2, y°, (2y)’),
Sy = (z,y 2% y*, (zy)").
The only relations that give presentations of finite
groups with injective factors are
Cuyg = <51:,y | 2%, 9°, (rI:y)2(51:y71)2>
of order 18 and

Cuyy = (z,y | 2*, °, (wyay™)?)

of order 24. Both of these groups abelianize to Zg.
In this group of order 18, the element (zy)* = (yz)?
is central of order 3 with quotient D3. The group
Cuyy has a center of order 2 generated by (xy)?
and having quotient A4. It is easy to see that the



group Cu;g is isomorphic to D3 X Zs (cf. Lemma
6.8 below) and that Cuy4 is isomorphic to Z, x A,
(cf. Proposition 4.10 below). O

We can refine Proposition 4.1 to handle some other
cases.

Proposition 4.8. (i) 1 + ka > va/va, except if 2 =
Ya = f and e = 4.

(i) 1 + ka > a/va, except if ya =2 = f and e is
composite, or if yva = 2 and 3 = f < e, or if
Ya=3, f=2,and 4 <e<5.

Proof. Since |E|,|F| > 2, we have a = (e(vg) +
f(wr))/2 > va, so the second inequality is harder
to satisfy. We assume that f < e. For the first
inequality we have (1+k4)/va = (a/va)+(2/va)—
1l and a = (e(ve)+ f(vr))/2, so that (14+ka)/va =
(e(vg)+f(vr))/(2(vg+vr)) + 2/va — 1. Hence if

67f237
1+ka 3(vE+vF)+i_1>17

va  2(ve+op) wva 2
so that the inequality is valid for y4 > 2. If f =2
and e > 3 thena = 2(vp) = e(vg), va = (€/241) X
vp and therefore, for e > 6,
1+ka e—2

>
vg e+ 2

1
YA
If f = 2 and y4 > 3, the first inequality is also
valid for e > 2.

If f =2 ~v=2andeisan odd prime then
a = 2p by Lemma 4.6; hence the second inequality
is satisfied. If f = e = 3 and 7 = 2 then either
a =9 or a =12 by Lemma 4.7, and in both cases
the second inequality is satisfied. There remains
to consider the case of f = 2, e =3, v = 3; by
Lemma 4.7, we have a = 12 and the second in-
equality is valid. This also settles the unresolved
cases of the first inequality. O

Lemma 4.9. (i) I'(5,3:2) = {Z}5, A5}.
(i) T'(5,2:3) = {A5}.
(iii) ['(3,2:5) = {A;5}.

Proof. In the first case we suppose that A is a finite
quotient of Zs; % Zs, injective on the factors, and

>

N —

Alperin: Platonic Triangles of Groups 199

x,y are the generators of the factors. The possible
relations of length 4 are xyzy’ or zyz 'y’. In the
latter case, it follows that * = —1 mod 5 and
hence 1 = —1 so that the group is Z;5. In the first
case we find by a coset enumeration that if 1 = 2
or ¢ = 3 the group is trivial, and if i = 4 the group
is of order 5. The only appropriate case then is
1 = 1; hence we obtain

AB = <7:7y ‘ mBa y57 ((I’.y)2>

In case (ii) we suppose that A is a finite quotient
of Z, * Zs, injective on the factors, and x,y are the
generators of the factors. The possible relations to
consider of length 6 are

{ryzy’xy®, zyry’zy®, syxyzy’ fori=1,...,4}.

The only nontrivial quotient groups are for the re-
lations (zy)?* or zyxyxy®. The latter is a group of
order 5. Thus we obtain only the alternating group

A5 = <$U,y ‘ xzu y57 (a:y)3>

In case (iii) we suppose that A is a finite quo-
tient of Z, x Z3, injective on the factors, and x,y
are the generators of the factors. The possible re-
lations to consider after possibly changing y to y—*
of length 10 are (xy)®, (xy)*zy~', (xy)?*(xy—1)2,
(zyxy~1)?zy. The quotients by these relations have
orders 60, 3, 1, 1, respectively. Thus, we obtain
only the alternating group

AB = <7:7y ‘ .’1’12, y37 ((I’.y)5> U

Proposition 4.10. (i) In any finite amalgam of
(a) Ds % Zs,
(b) D3 2 D, (= PGLy(2)),
(¢) Zs 3 D, (= Z, x PSLy(Z)), or
(d) Zs g 7 = SLa(2),
of order greater than 12, the image of the unique
subgroup of order 3 in the first factor is not nor-
mal.

(ii) The finite amalgams of order 24 are, respec-
tively,

(a) none,

(b) PGLy(Z3) (= Sa),
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(C) ZQ X PSLz(Zg) (g CUQ4),
(d) SLy(Z3) (isomorphic to the universal central
extension Ay).

Proof. For the first part we use the fact that the
subgroup of order three is the unique subgroup of
either D3 or Zg. Suppose that this element of or-
der three is x and that the element generating the
second factor (modulo Z,) is y. Denote by z the
common element of order two that together with x
generates the first factor of order 6. In case (a),

Dy 71 Zy = <TI3,ZJ,Z ‘ '/I;Sa y41 Zy727 (ZQ’J)2>,

and if y centralizes x then finite quotient has order
less than 12; morever, if yzy~' = x~! the finite
amalgam is of order 12. In case (b),

D3 7j<2 D2 - <«T,y,Z | Iga y27 2527 (yz)Q, (ZJJ)2>7

so that if y centralizes = then y commutes with
the group <51:, z> and the amalgam is of order 12.
Otherwise, if (yz)? = 1 then the group is also of
order 12. In case (c),

Z6 7j<2 D2 = <J},y,Z | .’,US, y27 2’2, (yZ)Q, .’,UZ.’,U712,’>7

so that if y centralizes = then the group is a direct
product and of order 12; otherwise the quotient is

<I7y72 ‘ ‘/’Ugﬂ y27 227 (y2)27 (yx)Qu IZI71Z>7
also of order 12. In case (d),
Zs 5 Zo=(z,y,2 | 2",y 2y, zwaaTt);

if y centralizes x then the group is a direct product
of <T> and <y>, otherwise if yzy~' = x the group
is the semidirect product (z,y | %, y*, yzy~'z~")
of order 12.

Now, to analyze a finite amalgam quotient G of
order 24, it follows from part (i) that there are 4 Sy-
low 3-subgroups and thus by conjugation we obtain
a homomorphism G — S;, with kernel K equal
to the intersection of the normalizers of the Sy-
low 3-subgroups. Since the normalizers Ny, Ny of
two different Sylow-subgroups have order six their
common intersection N; N N, has order at most 2.
Hence either K = {1} and G = S, or there is a
central subgroup K of order 2 with G/K = A,.

In the latter case the Sylow 2-subgroup is nor-
mal, since it covers the Sylow 2-subgroup of Ay,
and the group is not a direct product by (i); thus
the Sylow 2-subgroup has an automorphism of or-
der 3. This situation occurs only in case the Sylow
2-subgroup is Zj or g, the quaternions. In the
first case every element has order 2, while in the
second there is an element of order 4 whose square
is central.

In case (a), 2 = y* is central and thus 2? =
(22)? = 1; so there are no amalgams of order 24.

In case (b), if an amalgam has a normal Sylow
2-subgroup it must have only elements of order 2,
since the group contains contains a D,. The au-
tomorphism of order 3, a, conjugation by z, satis-
fies @ = @ + 1 and thus we have z(zzz ")z~ ' =
2(zza™") = (zx2)x™! ? = x, which is impos-
sible. Therefore the only amalgam is Sj.

In case (c), since S; has no elements of order
6, the amalgam has a central element of order 2,
with quotient A4; now x centralizes z and cannot
centralize y or else the amalgam is of order 12; thus
xyz~! is an element of order 2 commuting with y,
and <:c,y> has order 12 and is isomorphic to Ay.

= T

The amalgam is a direct product of <z> and <m, y>

In case (d), again the group is not S, because
of the elements of order 6. Since the Sylow 2-
subgroup is normal, the finite amalgam is a semidi-
rect product of (Jg with an element of order 3;
hence the nontrivial central extension of A,.

The quotients are then easily described because
of the given identifications with subgroups and quo-
tients of GL,(Z). O

Lemma 4.11. The vertex groups in I'(4,2:3) are de-
termined by

(i) T'(Z4, Zy:3) = {S4, Oy, certain Dy X 74 finite
amalgams}, i
(i) (D2, Z2:3)={certain Dyx D, finite amalgams}.

The finite amalgams arising from the free products
with amalgamation have order divisible by 12.

Proof. Suppose that A is a amalgam quotient of
Zy* Z, having x,y as the generators of the factors.



The possible relations of length 6 after changing y
to y~! if necessary are: (zy)?, (zy)?zy~!, (zy)*zy?,
zyzy txy?, xy(xy?)?, (zy?)®. The relations that
give finite quotients that are injective on the factors
are

Sy = <7"7y ‘ 3’12,

of order 24, or

y's (zy)*),

O = (,y | 2%, y*, wyzy~'ay?),

of order 20. The last relation yields the free prod-
uct with amalgamation

D3 Z>l<2 Z4 = <l’,y ‘ l’2, y47 ($y2)3>,

so we obtain finite amalgams of it.

For the second part, if A is a quotient of Z, x D,
having z,y, z as the generators of the factors. The
possible relations of length 6, after changing inde-
pendent generators of D, to y and z, are (zy)?,
(xy)?x2, zyrzeyz. The latter has order 4 and
hence does not give an amalgam. The second quo-
tient after replacing z by zyzyz, gives (zy)® = 1,
which cannot be an amalgam with m = 3 since its
order is too small. There remains only the finite
amalgams of PGL,(Z2),

, (y2)?, (xy)?).

By a calculation of the Euler characteristic of
these free amalgams, the free kernel has rank 1 +

75 and thus the order of the finite amalgams is

divisible by 12. U

- 2 9
Dy 5 Dy = (z,y,2 | 2%, y*, 2

Remark. It is interesting to note in connection with
Question 4.3 that the group obtained above from
the relation (xy)*zz is an amalgam of the sub-
groups specified, it is in fact isomorphic to Dg, but
there is the shorter relation (zzy)? of length 4.

Corollary 4.12. S, is the only group of order 24 in
I'(4,2:3), and it occurs in both I'(Zy,Z5:3) and
F(DQ, Z2 : 3)

Proof. From Lemma 4.11 it follows that the groups
order 24 are either S, or arise as finite amalgams of
D X Zy or Dy ) D,. By Proposition 4.10, the only
amafgam of or(fer 24 is isomorphic to S, occuring

Alperin: Platonic Triangles of Groups 201

as an amalgam of Dy X D,. In this latter case, we
2
have the presentation in I'(Dy, Z;3 : 2)

Si=(z,y,z| 2%, ¥, 2°, (y2)°, (xy)®, (v2)%). O

Lemma 4.13. The groups in 1'(4,2:2) are deter-

mined by
() T'(Z4,Zy:2) ={2D,,, 2'D,, with m even},
(ll) F(_D2, Z2 . 2) = {ng, ZQ X Dm with m Z 2}

Proof. In the first case suppose that A is a quo-
tient of Z, x Z, having z,y as the generators of
the factors. The possible relations of length 4 after
changing y to y~! if necessary are (zy)?, zyzy ',

(zy?)?. These relations give the groups

Dy = (z,y | 2%y, (xy)*),

the abelian group Z,xZ,, and amalgams of D2Z>x<2Z4.
This last group after factoring out by the central
element y? has as its amalgam quotients the dihe-
dral groups D,,. Using the relation yzy ™' =y 'zy
repeatedly, we may write the presentation as either

2D, = (z.y | 2, y*, (zy*)?, (zy)" (zy~')*),
or
(2y®), (xy)" (xy~")°y?),

for r + s = m. We can see that 2D, _1);(s41) =
2'D, ., by rewriting the relation in the form

21DT+S = <7;ay | .’132, y47

s, 2

(zy)" (xy ")y = (2y)" (2y ™) ey
= (zy)" (xy™ ")y

hence, (zy)"'(zy~')**' =1 if and only if

(zy) (zy ')y = 1.

Next observe that if we replace the term (zy—')*
by (zy~')*y* for appropriate , then (zy~')® equals
(zy)® or (zy)*y* depending on the parity of s. Thus
the presentations become

2D, = (z,y | 2%, ', (zy®)%, (2y)™),
2Dy = (2, | 2%y (2y®)? (2y)"y?).
Set u = xy, so that u=' =

(yuy)™ = y>m

= yuy and thus 4=™ =
yu™y, so that if m is odd we get
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u""y? = yu™y?y. For the presentations above this
gives y* = 1, so that it is not an amalgam. For
m even we can rewrite the presentation using = =
uy~ ', to get (uy)? = 1, (uy~')?; and thus for m
even

2D, = (u,y | ', (uy)®, (uy™')?, w™),
2D,y = (u,y |y, (uy)®, (uy™")?, u™y®).

This is a group of order 4m having a central ele-
ment of order 2 with quotient D,,.

In case (ii) we consider amalgam quotients of
DyxZ,. Let x generate the second factor. The pos-
sible length 4 relations are zyxz or (zy)?, where y
and z generate D,. For the first relation we obtain
a group of order 4 so it is not an amalgam. For the
second relation we obtain

D2 Z*2 D2 = <H’J,y,2 | 3’12, y27 22’ (yZ)Qﬂ (/I;y)2>a

which has center generated by y with quotient Z, x
Z,. The amalgam quotients are then either

Zyx D, = <.1:,y,z 22 y? 22 (y2)?, (zy)?, (:Cz)m>

or

(z,y,2 | 2°, 9%, 2%, (y2)?, (2y)?, (m2)"y~").

Since yz = (z2)"z = (z2)" 'z,2y = x(x2)™ =
2(zz)™" we can use the relations 2 = y*> = 2? = 1
to deduce (yz)? = (zy)? = 1; thus this presentation
simplifies to

Dy, = (z, 2 | 2%, 2%, (z2)*™).

Finally, the only groups of order not divisible by 8
inI'(4,2:2) are in I'(D,, Z, :2) and are either D,,,
or Z, x D,, for m odd. O

Corollary 4.14. (i) The order-8 groups in I'(Zy, Zy: 2)
are Dy and Z, x Z5.

(ii) The order-8 groups in I'(Dy, Zy:2) are Dy and
Zy X D,.

Proof. This follows easily from the previous Lemma.
If m = 2 the presentations given above simplify to

2I-l)m = <7"7y | ',L,Z’ y47 ('/I;yQ)Qﬂ (/I;y)zyz%

which is Z, x Z,, or

2-D2 = <7"7y | mZ’ y47 ('/I;yQ)Qﬂ (/I;y)2>a
which is Dy. O

Lemma 4.15. The vertex groups in I'(4,3:2) are de-
termined by

(i) T(Zy, Z5:2) = {S4, T, Zy5, certain Dj X Zy or
Zs x Z finite amalgams},

(i) T(Dy, Z5:2) = {Cuyy, certain D3;2D2 or Z67ik2D2
finite amalgams}.

Proof. Consider first the amalgam quotients of Z;

Z4 having x,y as the generators of the factors.

The possible relations of length 4, after changing

y to y~ ! if necessary, are (xy)?, zyzy ', zyzty,

zyzty~t (zy?)?, xytx'y?, zyzy? and zyzly?.

It is easy to see that the last two relations give the

trivial group. The first group is

84 = <7"7y ‘ m3’ y47 (’I,'y)2>
The next group is of order 12:
T = (a,y|2’ y' zyay™).

The next relation gives a group of order 6 so it not
an amalgam. From the next relation we get Zi,.
The next two relations give the free amalgams

D3 ékg Z4 = <.’L‘,y,Z ‘ mB’ y47 (my2)2>,
ZG 7j<2 Z4 = <I7y72 ‘ x37 y47 Iy2$71y2>'

In case (ii) the relations are (zy)?, zyx~'y, zyzz,
xyxr~ 'z, where y, z generate D,. The first relation
gives the group

D3 Z*2 D2 = <.’L‘,y,Z ‘ mBa y27 Z2ﬂ (yZ)2, (/I;y)2>a
so we get finite amalgams. The next relation gives
Zg 2“2 D, = <m,y,z | ‘/1;37 y21 227 (yZ)Qa '/I;ymily%

so we get central extensions of order 2 of Z; x Z,
amalgams. In the other cases we can eliminate z
to get

(zoy | 2%, 9% (zy2)?, (yryz)?),



which is Zg and so not an amalgam, since it has no
element of order 4. The last case with z = zyz !
gives

Cuyy = (z,y | 2®, 47, (yaya™")?). O

Corollary 4.16. The groups of order 24 inT'(Zy, Z3 : 2)
are Sy and SLy(Z3). The groups of order 24 in
F(DQ, Zg : 2) are CU24 and 84 = PGLQ(Zg)

Proof. From Proposition 4.10, the groups of or-
der 24 in I'(Zy, Z3:2) are either Sy or SLy(Z3).
From Lemma 4.15, that the groups of order 24 in
['(Dy, Z3:2) are either S, (as presented in Corol-
lary 4.12) or Cuy, respectively, or arise as finite
amalgams as in Proposition 4.10. We use the pre-
sentation

SLy(Z3) = (z,y | 2”, v, zy’z~ "y, (xy)?),
and also

Cuyy = <.’I/‘,y,Z ‘ mB’ y27 Z2a (yZ)2, Zﬂ’ly7151?71>. U

Coplanarity

Let G(A: E,F :m) denote the coset graph of the
vertex A € T'(E, F:m). Denote the complete bi-
partite graph on sets of size m and n as K(m,n).

Proposition 4.17. The coset graphs of the groups de-
scribed in Lemmas 4.5 4.9 and in Corollaries 4.12
and 4.14 are coplanar.

Proof. The graph G(D,, : Zy, Z»:m) is a single cir-
cuit having 2m vertices, so it is planar. The graphs
G(Dy : Zye, Zy :2) and G(Zay : Zyye, Zy : 2) are both
K(p",2), which can be viewed as an equator of p”
vertices connected to a N and S pole on S?; hence
they are planar.

The graph G(A,: Z3, Z3:2) can be viewed as the
8 vertices and 12 edges of a cube.

The graph G(Z3 x Z3:Z3,7Z5:2) = K(3,3) can
be imbedded in P? and hence it has a cover in
S?. The graph G(A,: Zs3, Z,:3) is the barycentric
subdivision of the 1-skeleton of the dual graph of
the faces and edges of a tetrahedron, so is planar.

The graph G(Cuyg: Z3, Z5 : 4) is the barycentric
subdivision of K(3,3), so it has a planar cover.
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The graph G(S, : Z3, Z, : 4) is the barycentric sub-
division of the 1-skeleton of the barycentric subdi-
vision of dual graph of the faces and edges of an
octahedron, so it forms the vertices and edges, with
barycenters, of a cube; it is planar.

The graph G(Cuyy: Z3, Z»:4) can be viewed as
barycentric subdivision of the edges of a cube.

For Lemma 4.9, the graph G(As:Zs, Z3:2) can
be viewed on the sphere with an upper and lower
hemispherical pentagon joined by 5 edges at the
midpoints of their sides. Inside each of the pen-
tagons is a 5-pointed star having ten sides, with
points at the midpoints of the surrounding pen-
tagon. Inside each of the stars is a single vertex
joined to the 5 non-star vertices. See Figure 1.

=
) a\ﬁ
\\/\\
A

FIGURE 1. G(60:5,3:2)

The graph G(Zi5:2Z5,Z5:2) = K(5,3) imbeds
in a Klein bottle.

The graph G(As: Zs, Z,:3) is the 1-skeleton of
the barycentric subdivision of the faces and edges
of a dodecahedron, so is the vertices and edges,
with barycenters, of an icosahedron; hence it is pla-
nar.

The graph G(As: Z3, Z,:5) is the 1-skeleton of
the barycentric subdivision of faces and edges of
an icosohedron, so it is the vertices and edges, with
barycenters, of a dodecahedron; hence it is planar.
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The graphs G(S4:Z4,7Z5:3) and G(Sy: Dy, Z,:3)
occurring in Corollary 4.12 are both obtained from
the 1-skeleton of the faces and edges of a cube, so
they are the vertices and edges, with barycenters,
of an octahedron; hence they are planar.

The graphs of Corollary 4.14 are K (4,2) and can
easily be viewed on the sphere as a north and south
poles and 4 vertices on the equator joined to the
poles. O

Proposition 4.18. The coset graphs G(Sy:Zy, Z3:2)
and G(Cuyy: Dy, Z3:2) in Corollary 4.16 are both
planar. The coset graphs of G(Sy: Dy, Z3:2) and
G(SLy(Z3) : Z4, Z3:2) are not spherical or toroidal;

hence these graphs are not cospherical or cotoroidal.

Proof. The first assertion is justified by Figure 2.

Q, 0O

O O

FIGURE 2. (G(24:4,3:2), planar

In Corollary 4.16, the graphs of G(S,: Dy, Z3: 2)
and G(SLy(Z3): Z4, Z3:2) are the same; they are
obtained by gluing two copies of the barycentric
subdivision of the 1-skeleton of a tetrahedron at
the barycenters. This graph has no imbedding in
P? and S? by the solutions to the imbedding prob-
lems for P? and S?. It also has no torus or Klein
bottle imbeddings by observing that a tetrahedron
is imbedded uniquely with two faces in an essen-
tally unique way up to the sizes of the polygons
and this can not be extended to the other tetrahe-
dron. This graph does have a genus 2 imbedding
so it follows from the Riemann Hurwitz inequality
then that any finite cover can not be spherical or
toroidal. g

Proposition 4.19. The coset graphs of the groups T,
Z1a, and Oy tmbed in P? and thus have a 2-fold
planar cover.
Proof. (See Figure 3.) The graphs G(T:Zy, Z5:2)
and G(Zy,: Zy, Z3:2) are both K(4,3), and so can
be imbedded in P? and have planar covers on S2.
The graph G(Oyq: Z4, Z5 : 3) can be imbedded in
a Mobius band with boundary (see Figure 4) and
hence in P?, so it has a planar cover. O

It
|

FIGURE 3. (G(12:4,3:2) on P?

-

FIGURE 4. (3(20:4,2:3)

5. NEGATIVELY CURVED GEOMETRIC PLATONIC
GROUPS

In this section we shall classify the data for the
class of geometric Platonic triangles of groups. We
are also interested in showing that these triangles
of finite groups are virtually torsion-free. Certainly,



this follows if the group has a faithful complex lin-
ear representation since it is residually finite and
any torsion is conjugate to a vertex stabilizer. An
alternate way to show that a triangle of groups I
is virtually torsion-free is to construct enough ho-
momorphisms to finite quotients so that the ver-
tex groups inject into one of the quotients. We
are also interested in determining the minimal in-
dex of a torsion-free subgroup of finite index. For
a triangle of groups there is an obvious surjective
homomorphism I' = A; obtained by factoring out
by the normal subgroup generated by the opposite
edge group G, where A; is the quotient of A ob-
tained. We call this a collapse. A more general
collapse would identify a conjugate of a subgroup
of G with a subgroup of A. There are also ho-
momorphisms obtained by a folding. A folding is
obtained by identification of a subgroup of a con-
jugate of a subgroup of E with a subgroup of F.

Theorem 5.1. (i) Any Platonic group of icosahedral
type s negatively curved. There are no geo-
metric negatively curved triangles of icosahedral
type.

(ii) A nonpositively curved geometric Platonic group
of octahedral type is toroidal and has angles =

2
T n

31 6
(iii) Any geometric negatively curved tetrahedral tri-

angle of groups is one of
Thy =T (A4, Ss, As: Zs, Z3, 7y : 2,4, 5),
Thy =T (A4, Cuyy, As: Z3, Zs, 7y :2,4,5),
Thy =T(Ay, As, A5 : Z3, Z3,75:2,5,5).
(iv) Any negatively curved dihedral triangle of spher-

scal groups is either an ordinary triangle group
or one of these families:

Dmé =T(D3, Ay, Dy, : Zo, Z3,Z2:2,3,m), m > 7,
Db, = T(Zg, Ay, Dy Zo, Z3, Z9:2,3,m), m>7,
Dm§ = (D3, Sy, Dy : Zo, Z3, Zo:2,4,m), m>5
Dmé =T(Zs,S4,Dm : Za, Z3,Z2:2,4,m), m>5
Dm§ =T'(D3, Cusg, Dy : Zo, Z3,Z2:2,4,m), m >5,
Dmi = U(Zs, Cuga, Dy : Za, Zs, Zo:2,4,m), >5
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Dmf = T(Ds3, A5, Dy, Zo, Z3, Zo: 2,5, m), m >4,
Dl =T(Zs, As, Dy : Zo, Z3, Z9:2,5,m), m >4
Dm} = ['(Aq, A47 m Lo, 2y, 29 :3,3,m), m > 4,
®m3 =T1(A4,84,Dp: Zo, Z5,Z5:3,4,m), m > 3,
Dmb =T (Ay,Cusa, Dy Zo, Z3, Zo:3,4,m), m >3,
Dk, = D(Ay, As, Dup : Zo, Z3, Z2:3,5,m), m >3,
D= T(S4, Sa, Do : Zo, Zy, Zo - 4,4,m), m >3,
Dm = T(Sy, Cuga, Dy : Zo, Z3, 25 :4,4,m), m > 3,
Dm§ = I'(Cuag,Cusa, Dy : Z9, Z3, Z2:4,4,m), m >3,
Din? = U(Su, As, D : Zo, Z3, Zs : 4,5,m), m >3,
Dind = T(Cusa, As, Do : Zo, Zs, Z5:4,5,m), m >3,
D = U(As, As, D : Zo, Z3, Za:5,5,m), m>2,
Dms = T(Da, Su, Dy : Zoy Zay Zo:2,3,m), m>7,
Dink = D(Zs X Zs, 84, Do : Zo, Za, Zo:2,3,m), m > T,
D& = T(Dy, Sa, Dy : Zo, D, Zo:2,3,m), m>7,
D = T(Ds X Za, 84, D : Za, Do, Zo:2,3,m), m > T,
Dm§ = T(S4, 84, Dy Zo, 74,75 :3,3,m), m >4,
Dinf = (84, S4, Do : Z3, D, Zo:3,3,m), m > 4,
Ding = T(Ds, As, Dy : Zo, Zs, Zo - 2,3,m), m>1,
Dk = [(Zio, As, D : Zo, Zs, Z2:2,3,m),  m >T,
Dm§ =T(As, A5, Dy, 1 Zo, Z5, Z5:3,3,m), m > 4.

Proof. In a cospherical Platonic triangle of groups
the vertex groups satisfy

1 1 1

-+ —-+—>1

e [ a
Hence a vertex group is of one of the following
types: T'(2,2:m) for 2 < m; I'(3,2:m) for 2 <
m <5 T'(4,2:m)for2<m <3;'(5,2:m) for2 <
m < 3; I'(n,2:m) for m =2and n > 6; I'(3,3:m)
for m = 2; I'(4,3:m) for m = 2; I'(5,3:m) for
m = 2.
Icosahedral type. Since + —I— —|— < 2 oL
group has order greater than 30 If the triangle is
flat, there are two possibilities: all angles are %
but then there is a vertex group in I'(3,2:3), and
its order is too small; or there is a vertex angle of

any vertex

™

Z and thus there is a vertex group in I'(5,2:2),
I'(3,2:2), or I'(5,3:2). In the first two cases the
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order is too small to satisfy the condition above.
Hence, the vertex group must be A5 and one of
the other vertex groups must be in I'(3,2:3) or
I'(5,2:3). In all of these cases it is imposssible to
satisfy Corollary 3.2. Thus also there is no flat
icosahedral triangle of finite groups.

Next, if a nonpositively curved Platonic group
is of icosahedral type with cospherical or cotoroi-
dal vertices, the angles in I'(5,3:m;), I'(5,2:my),
I'(3,2:mj3) are determined by the arguments above
or by the restrictions (4 1) on page 197. We have
- = 53 hence = = %; thus there are no solutions
for -+ according to the remarks above.
Octahedral type. If a nonpositively curved spherical
Platonic group is of octahedral type, then the an-
gles in I'(4,3:m,), I'(4,2:my), I'(3,2:my3) are by
the above restrictions: =5 hence =3 thus
there are no solutions for P that give a nonpos-
itively curved triangle. If the group is cotoroidal,

then = = Z.
m3 6

Tetrahedral type. If a negatively curved geometric
Platonic group is of tetrahedral type, the restric-
tions (4-1) imply that the angles in I'(3,3:m,),
'(3,2:my), I'(3,2:ms3) are either ;- = £, = = 1,
T =for;-=7% T~ =% 2 =2 By Corol
lary 3.2, this gives 1 + ¢ + 1=1L or L. How-
ever, a = 9 ora =12 and b = 18 or b = 24 by
Lemma 4.7, in case my = 4 or b = 60 by Lemma 4.9
in case ms = 5. The only solutions have a = 12,
b=24, ¢c=60o0or a =12, b = 60, ¢ = 60 and are
given by the families described above.

s s s s s s s

SHE] I

Dihedral type. If a negatively curved geometric Pla-
tonic group is of dihedral type, (4-1) implies that
the angles in I'(n,2:m,), I'(n,2:my), I'(2,2:ms3)

are = = = = I in case n > 6, so not negatively
mi mo 2
curved.

The equation from Corollary 3.2 now yields

SR I I
a b n 2m; 2m, 2 -

If n = 5, the possible values of the right-hand
side of this equation are 31—0 (for my; = 2 and my =

3) and & (for m; = my = 3); while by Lemmas 4.6

and 4.9, the values of the left-hand side are a = 10,
b =60 and a = b = 60, respectively. Both of these
give negatively curved groups in the Dmy family.

If n = 4 then the possible values of the right-
hand side are ¢ (for m; = 2 and m, = 3) and
(for my = my = 3); while by Corollary 4.4, the
values of the left-hand side are a > 8, b > 20 and
a,b > 20, respectively. Each of these possibilities
gives solutions using Corollaries 4.12 and 4.14 for
the Dmy, family. The solution a = 20, for example,
does not yield a value of b divisible by 12.

If n = 3, Lemmas 4.6, 4.7 and 4.9 and Corol-
lary 4.4 give the following facts: A € I'(3,2:2) has
order 6, B € T'(3,2;3) has order 12; A € I'(3,2:2)
has order 6, B € I'(3,2;4) has order 18 or 24;
A €T(3,2:2) has order 6, B € I'(3,2;5) has order
60; A € T'(3,2:3) has order 12, B € T'(3,2;3) has
order 12; A € T'(3,2:3) has order 12, B € I'(3,2;4)
has order 18 or 24; A € I'(3,2:3) has order 12,
B € 1(3,2;5) has order 60; A € T'(3,2:4) has or-
der 18 or 24, B € 1'(3,2;4) has order 18 or 24;
A €T(3,2:4) has order 18 or 24, B € I'(3,2;5) has
order 60; A € I'(3,2:5) has order 60, B € 1'(3,2;5)
has order 60. Meanwhile, the right-hand side of
(5-1)is &, &, 4. &+ % 15, 13+ To5» 35- Using the
previous corollaries we obtain all the group data of
the family Dms. O

It is straightforward to obtain presentations for
these groups. In all cases the groups are uniquely
determined from the data. Some of the groups can
be described as Coxeter groups or their rotation
subgroups. A Coxeter group with reflection gen-
erators Ry, Ry, R3, R, and products of orders m,;
has a subgroup of index two that is its rotation sub-
group. This subgroup is generated by a = R, R,
b= R4R,, c = R3R, having relations

miz bm14 — cm13 — (bafl)mm

= (ca™ ') = (bc )" = 1.

a

The following groups are rotation subgroups of
Coxeter groups or full Coxeter groups (the latter



are marked with t). Hence they are residually finite
and virtually torsion-free:

= (z,y,2 | 2°, %, 2%, (2y)*, (x2)*, (y2)°),
= (z,y,2 | 2°, 4%, 2%, (2y)*, (x2)°, (y2)°),
Dmg (zoy, 2 | 2?47, 2%, (xy)™, (22)°, (y2)°),
Dm§ = (,y,2 | 2%, y*, 2°, (xy)", (x2)% (y2)*),
Dmf§ = (z,y,2 | 2%, y*, 2°, (xy)", (x2)% (y2)°),
Dmy = (,y,2 | 2%, y*, 2°, (xy)", (x2)% (y2)°),
Dmj = (w,y, 2 | 2%, y*, 2%, (wy)", (22)%, (y2)*),
Dmy = (w,y,2 | 2%, v, 2% (wy)", (22)°, (y2)*),
Dmy' = (w,y,2 | 2%, v, 2% (xy)™", (x2)*, (y2)*),
Dmy = (z,y,2 | 2%, y°, 2°, (zy)™, (x2)*, (y2)°),
Dmy = (z,y,2 | 2%, y*, 2%, (xy)", (x2)° (y2)°),
Dmg = (z,y,2 | 2% v°, 2% (xy)™, (22)%, (y2)*)
TDmd = <:c y,z | 22, %, 2% w?, (2w)?,
(zy)™, (y2)?, (yw)?, (x2)?, (zw)*),
Dm§ = (w,y,2 | 2%, v, 2% (xy)", (22)°, (y2)?),

Tsz{ = <.’L’,y,Z ‘ ‘(I’?Qa y21 Z‘ ) w" (ZU))27
3

(zy)™, (yz)?, (yw)?, (x2)*, (zw)?),
Dm¢ = (z,y,z | 2%, ¥, 2°, (wy)™, (z2)?, (y2)°),
Dm§ = (w,y,z | 2%, y*, 2°, (

The rest are not rotation subgroups or Coxeter
groups:

x,y,2 | 23, y3, 2%,

x,y,2 | 12, y2, 23,

x,y,2 | 1%, y?, 23,

zy,z | 2% y?, 27,

r,y,2 | 2%, y?, 253,

)
(22)?, (yzyz1)?),

33972\93:?;1727

2 9
x,y,z | %, Y%, 2°,

x,y,2 | 12, y?, 23,

x,y,2 | 12, y?, 23,

( (zy)

( (zy)™, (
( (zy)™, (
( (zy)™, (
( (zy)™, (
<r y,z | 2%,y 23, (xy)™, (y2)°, w22
( (zy)™, (
( (zy)™, (
( (zy)™, (
( (zy)™, (
(  (zy)™, (

mb =
my =
mé
mg
6
ms
mi
m3
mh
mg
mk
mg
TL
mg
0
mg
md
mg
mb
my

x,y,2 | 22, y? 2
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‘szcl = <337y72 ‘ wQ, 927 227’11}2, (zw)Q, (xy)’m
(y2)*, (yw)?, (02)?, (zw)*271),

Dml =(z,y,z | %, y% 2° (zy)™, (yz)*, zzz~ 27 ").

The groups Dmd, Dm§, Dmg, Dm?, Dm have
a collapse onto D,, for z = 1. Furthermore, if m
is even we may replace m by 2 and consider the
folds or collapses for these groups to get injections
of the other two vertex stabilizers. The groups

(o)?, (o)t wma e,
D25 =(z,y,z|2% y% 2°, (2y)?, (22)* (yzyz~")?),
®2§ = <’n y,z| a2 g% 2*

D25 =(z,y,z|a°, y*, 2°

 (ey)?, (yzyz 1), wza 271

are of order 48 and the vertex stabilizers inject.
Folding x = y on

D2 =(z,y,2|2°, v%, 2%, (xy)®, (222", (y2yz")?)

gives an injection of the vertex stabilizers. The
group

D2y =(z,y, 2|2, y*, 2°, (2y)*, (w2)", (yzyz')?)

has a permutation representation

z — (34)(56),
y — (35)(46),
z — (123)(578)

with image of order 192 that gives an injection of
the two vertex stabilizers.

Thus the groups Dmg, Dms, Dmi, Dm2, Dmy
are virtually torsion-free for all m even.

The group Th, has a permutation representation

5 (234)(798).
(687)

— (235)(687
2 — (12)(36)(57)(8 10)

3

with image of order 960, which gives an injection
of each of the vertex stabilizers and hence it is vir-
tually torsion-free.
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6. FLAT PLATONIC GROUPS

Tetrahedral

Theorem 6.1. The tetrahedral flat Platonic groups
having an angle of 7 are

T = F(A47 547 Sy Zs, L3, Ly 2a474)7
KJ’Z = F(A4, Cu24, Cu24 : Zg, Zg, ZQ : 2,4, 4),
Ty =T'(A4, S4, Cugy : Zs, Z3, 75 :2,4,4).

These groups are uniquely determined by the tri-
angle of groups data. They are all spherical and
virtually torsion-free.

Proof. In the tetrahedral case the vertex angle 7
has edges of orders 3 and 3, since otherwise by
Lemma 4.6 the vertex order would be of order 6
contradicting Corollary 3.2. Hence by Lemma 4.7
the order there is 9 or 12. In the isosceles cases the
other vertices have order 18 or 24 by Lemma 4.7.
Now by Corollary 3.2 and Lemma 4.7, it follows
that the only possibilities are T;, 1 = 1,2, 3.

If the triangle is not isosceles, there is another
vertex group of order 12 by Lemma 4.7. Hence in
this case it is impossible to satisfy Corollary 3.2.
They are spherical by Proposition 4.17.

The presentations of the groups of Theorem 6.1

are

Ti=(z,y,z]2", ", 2° (xy)* (x2)", (y2)*),
To=(x,y, 22", v°, 2% (xy)® (zwza™)? (2y2y™')?),
Ta=(x,y, z|2%, ", 2% (xy)? (x2)", (zyzy~1)?).

In each of these cases, if we change the mapping
of an edge to a vertex group, say « to ', this gives
an equivalent presentation so the data determines
the groups. In general, we can use the following
equivalences to rewrite presentations: 1 = (xy)* if
and only if 1 = (yx)*, and also if z is of order 2
then 1 = (xy)* if and only if 1 = (y~'z)* if and
only if 1 = (zy~')*.

In the first case the group T, is in fact the ro-
tation subgroup of index 2 in the Coxeter group
with diagram 4I:I. The group T, is a discrete

4

group of isometries in hyperbolic space so it is vir-
tually torsion-free. By a fold of the edge groups of
order 3, x = zyz, we have a surjective homomor-
phism T, — Sy, which is injective on all the vertex
groups. Thus, the minimal torsion-free index is 24,
since there is a subgroup S;.

By a fold of the edge groups, 7' = zyz, we
have a homomorphism T, — Cuy, that is injective
on the vertex groups. Thus, T5 is virtually torsion-
free. Also, the minimal torsion-free index is 24,
since there is a subgroup Cug,

To see that T3 is virtually torsion is more com-
plicated. There is a homomorphism T3 — S; de-
fined by: = — (235)(476), y — (246)(375), z —
(12)(46). The image is the simple group of order
168. It is easy to see that this homomorphism is
injective on the vertex groups; hence the kernel of
this homomorphism is torsion-free. O

Equilateral

Theorem 6.2. A flat Platonic group with angles

15, 5. %] is of dihedral type and is one of
&y = U(D3, D3, D3; Zy, 7y, Z; 3,3, 3),
& :P(DSaA4aA4;Z2az27Z3;3a373)7
& U(D3, Sy, Sa; Zy, 7y 745 3,3, 3),

3
+=I(

Eve= (D3, S4,S4; Zs, Zy, Dy;3,3,3),
Es =T(Ds, A5, As; Zo, Zo, Z5; 3, 3, 3).

These groups are uniquely determined by the tri-
angle of groups data. They are all spherical and
virtually torsion-free.

Proof. Now in a triangle with all three angles equal
to 3, there is for dihedral type, a vertex group A €
I'(2,2:3) that has order 6, and for the other types
there is a vertex group A € I'(3,2:3) that has order
12. The latter is impossible in the octahedral type
since that order is too large. For the tetrahedral
type, we have also B € I'(3,2:3) of order 12, and
this gives a sum contradicting Corollary 3.2. Now,
for the dihedral type we have

1 1 1

6 b ¢ g



and hence g < 5. By Lemma 4.5, if ¢ = 2 then
B = C = D3, so we get €y; by Lemma 4.7, if
g =3 then B =C = Ay, so we obtain &3; if g =5
then B,C € I'(5,2:3), which by Lemma 4.9 is A;,
so we obtain 5. Now if g = 4 then vertex groups
B,C €T1'(4,2:3) and hence by Lemma 4.11 and its
Corollary 4.12 we obtain either €4 or €52 depending
on whether or not the edge group of order 4 is cyclic
or not. A group B of order 20 is impossible since
then ¢ = 30 and is not divisible by 12.
The presentations of these groups are

2

82 = <.’I,',y,Z | ‘T27 y21 (/I"y) ) ’ (I"Z)

(
(
822:<cc,y,z,w\a:2, y?, 2% w?, (zw)?,

(zy)®, (x2)°, (zw)?, (y2)°, (yw)?®),

&5 = <.’I},y,Z | {I,‘2, y2a ('/I;y)ga ZB, (mz)S’ (yz)3>

4

€3
&4

REFECI
w,y, 2 |2yt (2y)?, 27, (22), (y2)*),
m7y7z | {I;27 yzﬂ ('/I;y)37 z 3 (,’L’Z)S’

2

If we change any edge identifications, say z to
2~ ', this gives an equivalent presentation in cases
E;, for i = 3,4,5. In the case of €52 the subgroup
D, has the automorphism z — 2z, w — wz. We can
easily modify the presentation using a Tietze trans-
formation ¢ = wz to get the equivalent presenta-
tion &y = (z,y,z,w | 22, 2, 2%, w?, (2w)?, (zy)?,
(z2)%, (zw2)?, (y2)®, (ywz)?). Hence, the presen-
tations in all cases are uniquely determined from
the data.

The group &, is a triangle group, hence a Coxeter
group with diagram The groups &s, &4, Ex
are rotation subgroups of Coxeter groups with the
respective diagrams

ky‘, ’117 and ’117

The group Eq2 is, in fact, the Coxeter group with
the diagram Thus these are all virtually
torsion-free since they are complex linear groups.
We can fold zy = 1 to obtain homomorphisms
&3 — Ay, €52 — 84, and €5 — Ajs, and also fold
z = x to obtain

84—)D3 XS4,
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which give injections on some of the vertex stabi-
lizers.

In fact, €; is isomorphic to PSL,(Z [$(1++/=3)])
[Alperin 1980] and the minimal index torsion-free
normal subgroup has index 12. In the case &4, fac-
toring by the normal subgroup generated by (zyz)?
gives a quotient of order 72 injective on all vertex
stabilizers. O

Dihedral

Lemma 6.3. The groups of I'(2p,2:2), for odd primes
p, are

(i) D(Zsp, Z5:2) = {Ds,, Zy X Zs,, extensions of
a cyclic group of order p by a dihedral group,
central extensions of a cyclic group of order 2
by a dihedral group},

(ii) I'(D,, Zy:2)={D>,, extensions of a cyclic group
of order p by a dihedral group}.

Proof. In the first case we consider the possible
relations zyxy, vyxy ', zy’xy?, zyPry?, where x
generates the Z, factor and y generates the Z,,
factor. The first relation gives the dihedral group
D,,. The second relation gives Z, x Z,,. The next
relation gives amalgams of

DZD Z*,, Z2;D = <H’J,y,2 | (I,‘Q, y2p’ (/I;yz)2>:

after factoring out by the group generated by y? of
order p we get dihedral groups. The last relation
gives amalgams of

Dy 3 Zoy = (w,y,2 | 2%, 4, (2y")*);

after factoring out by the central group generated
by y? of order 2 we get dihedral groups.

In the second case, we consider the possible rela-
tions xyzz, xyzryz and ryzrzy where x generates
the Z, factor and y, z are elements of order 2 that
generate the D, factor. The groups that arise are

P

DQP = <Iuy72 ‘ 5(32, y27 227 (yZ) ’ 501/562>:

amalgams of

Dy 5 Dy =(z,y,2 2%, 9", 2%, (2)", (292)°),
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which are extensions of a cyclic group generated by
yz of order p by a dihedral group or amalgams of

Ly 5 D, = (z,y,z | 2%, 4, 22, (y2)?, wyzzzy),

which are extensions of a cyclic group generated by
yz of order p by a dihedral group. O

Proposition 6.4. A dihedral Platonic group with an-

gles [5, 5, 7] has order data given by one of

27 40
Ry, =T1(4,8,8;2,2,2;2,4,4),
Ry =T(4,24,24;2,2,3;2,4,4),
Ry =T(24,6,8;2,3,2;4,2,4),
Ry =T(72,36,Dy4;2,6,2; 4,2, 4),
RZ =T(120,30, Dy;2,6,2:4,2,4).

Proof. A vertex group A € I'(2,2:2) is of order 4,
and it follows from Corollary 3.2 that in the dihe-
dral case the other edge group has order f < 3. If
f = 2, this determines R,. If f = 3, then the ver-
tex groups are in I'(3,2:4) and this by Lemma 4.7
gives the family Rj.

Otherwise, there is a vertex group B € I'(f,2:2)
and a vertex group C € I'(2,2:4) of order 8; now
a, b are divisible by f,soa=a,f, a, > 2,b=0b,f,
b, > 2 so that

o=
af Wf 8 f
by Corollary 3.2. Therefore
1 1
P11
8 aq bl

so that 3 < f < 7. It follows from Lemma 4.6
now that f = 5,7 can not satisfy the equation of
Corollary 3.2. For f = 3 we obtain C = Dy, ei-
ther B = Z; or B = D5 and either A = S, or
A = Cuyy. These give the Ry family. If f = 4
then we have the equation % = al—l + % having solu-
tions in (ay,b;) € {(4,4), (3,6), (6,3)}. By Corol-
lary 4.4, A € T'(4,2:4) is of order at least 32 by
Corollary 4.4, and thus this case is impossible. If
f =6 we have A € T'(6,2:4) of order at least 72;

also, % = i + i, with ay > 12, by > 5, so the

solutions are (a,,b,) € {(20,5), (12,6)} giving the
potential family Rg. O

Theorem 6.5. A dihedral Platonic group with angles

(%, %, 5] that is of geometric type is spherical and

one of the following:

Ry = T(Dy, Dy, Dy; 7y, Zy, 703 2,4, 4),

Ry = U (Dy, Sq, Su; Zy, 7o, Z332,4,4),

R3 = T(D,, Cuyy, Cugy; Zo, Zo, Z332,4,4),
Ry = T(Dy, Sy, Cugg; Zyy Zo, Z332,4,4),
RY =T(Sy, D3, Dy; Zo, Zs, 73 4,2,4),
R2 = T'(Cuyy, Dy, Dy; Zy, Z3, Z5; 4,2, 4),
RS =T(S4, Zs, Dy; Zo, Zs, Zp; 4,2, 4),

R = ['(Cuyy, Zg, Dy; Zo, Zs, Z5; 4,2, 4).

These groups are uniquely determined by the trian-
gle of groups data. They are virtually torsion-free.

Proof. The group data follows immediately from the

previous proposition and the previous lemmas.
The group R, is the Coxeter group with diagram

e'e’e. The groups R} and R} are rotation sub-

groups of Coxeter groups with the diagrams

4 4
4 4
°4I°ando—o—o—o_

In fact, R} = PGLy(Z[i]).

The presentations for these groups are

3

2

 (y2)", (22)"),
xy, 2|27yt 25 (o) (yzyz )% (wzaz™ 1)2>,
zy)?, (y2)", (

L (y2)? (zy)'),

( (

=( (zy)
( (zy)
( %, (zy)
(z,y, 2|2y, 22 (w2)")
( (z2)
( (22)
( (22)

2 2
Ty, 2|27y, 2
2

zzaz")?),

X 972‘33271/2727
% (z2), (y2)?, (zyzy~')?),

X 972‘1’2793727
(zy)*),

Y (zyzy ).

2

2 3 4
ry, 2| x% Y, 2

xrz
4

4 s 2Y2Y
4 2 .3 .2
4 ’I‘y,Z‘fIJ,y,Z, ,zyzy

xrz

If we change any edge identifications, say z to 2z~

or y to y~', we get an equivalent presentation.



We collapse z = 1 and fold z
homomorphisms

Ry — Dy x Sy,
Ré —>D2 X Cu24.

= y to obtain

We first collapse z = 1, then collapse y = 1, then
collapse z = 1 to obtain a homomorphism

Rg — D2 X Cu24 ><S4.

These three homomorphisms give injections on the
vertex stabilizers for Ri for i = 1,2, 3.

Factoring R} by the normal subgroup generated
by (zzy)F for certain k gives a finite group for
which all vertex stabilizers inject: for i = 1, (zzy)*
gives a group of order 480; for i = 2, (zzy)? gives a
group of order 48; for i = 3, (zzy)* gives a group of
order 384; for i = 4, (zzy)® gives a group of order
720. O

Proposition 6.6. A dihedral Platonic group with an-

gles [%, z
B, = 1(12,4,6;2,2,2;6,2,3),
B, = 1(12,6,12;2,2,3:6,2,3),
B, =T(12,8,24;2,2,4;6,2,3),
B, = (12, 10,60;2,2,5: 6,2,3),

(
(12
(
By = I(12,32,96;2,2,8;6,2,3),
(
(

, 3] has order data given by one of

By = I(12,54,108;2,2,9;6,2,3),
Bro= (12,100, 10¢; 2,2, 10; 6,2, 3),

where
(b,c) € {(7,42), (8,24), (9,18), (10,15), (12,12)}.

Proof. For the dihedral type, if the vertex group at
angle 7 has edges of order 2, then n < 3 and so
we get either B, or there is a vertex B € I'(3,2:3)
of order 12 by Lemma 4.7, but this is impossible
by Corollary 3.2. Therefore we may assume either
that there is a vertex group A € I'(2,2:3) of order
6 or Ae€TI'(2,2:6) of order 12.

In the first case, A € I'(2,2:3) of order 6, we
have B € I'(g,2:2) and C € I'(g,2:6), 2 < g < 6.
Let b = gb, ¢ = gy sothatlf%fi:i. If

c1 6
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g € {3,5} then b, = 2 by Lemma 4.6. Now by
Corollary 3.2, these are impossible. If g = 4, then
¢, > 26 by Corollary 4.4 and hence this equation
has no solutions.

Now consider the case of A € I'(2,2:6) of order
12. We have B € I'(g,2:2) and C € I'(g,2:3),
with 2 < g < 12. Let b = gb;, ¢ = gc; so that

— o =% Ifg e {35711}, then b = 2
by Lemma 4.6. If ¢ € {7,11}, then the equation
above is not solvable. If ¢ = 3, then ¢ = 12; and
if g = 5, then ¢ = 60; this yields B}, B3, Bi, B:.
Now by Corollary 4.4, C' € T'(g,2:3) has order at
least g(g +1). If g = 4, then ¢; > 5 by Corol-
lary 4.4 and hence b; < 2 and therefore b, = 2
and ¢; = 6, which gives rise to the B, family us-
ing Corollary 4.12 for the group of order 24 and
Corollary 4.14 for the group of order 8.

If g =06, then%—l—cl—l:%,blZB, c; > 7, which
has no solutions.

If g =8, then ;- + - = 3, by >4, ¢; > 9, which
has the solution b, = 4, ¢; = 12. This gives the
family of groups Bs.

If g =9 then - + = = 1, by > 5, ¢ > 10,
which has the solutions b; = 5, ¢; = 20 and b, = 6,
¢; = 12, and this gives the family By. However the
vertex group B has even order so we have only the
case listed above.

If g = 10, then -+ = = &, by > 7, ¢; > 11,
which has solutions

(b, cr) € {(7,42), (8,24), (9,18), (10,15), (12,12)}.
This gives the family Bq. O

Theorem 6.7. A dihedral Platonic group with angles

(%, 5. %] that is of geometric type is spherical and

15 one of the following:

:F(DG,D2,D3;Z2,Z2,Z2§6a273)a
Bé =T1(D¢, D3, Ay; Zoy, Zy, Z3;6,2,3),
B2 =T(Dg, Zs, Ay; Zn, Zo, 733 6,2, 3),
B, =T(Dg, Dy, Sy; Zy, Zo, Z456,2,3),
Bi =T(Dg, Zy X Zo, Sa; Zin, 7y 745 6,2,3),
(

Bo=T(Ds, Dy X Zy,S4; Zs, Z5, D 6,2,3),
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‘332: F(D67D47‘S’4; Z27Z27D2;67273)7
Bé = F(D67D5aA5;Z2722725;6a273)7
B§ = F(D67Z10=A5; Z27Z27Z5§6=273)-

These triangles of groups are uniquely determined
by the group data. All of these triangles of groups
are virtually torsion-free.

Proof. The geometric type restriction (4-1) (see
page 197) implies that the families Bg, By, By do
not occur. The data for each of the families follows
easily from the previous proposition and proof. It
is easy to show that the groups are uniquely deter-
mined by the data.

The group B, is the Coxeter group with dia-
gram e—e—e. The groups Bl, B}, B! are rotation
subgroups of the Coxeter groups with respective
diagrams o—o—oio, oo o0 , e’e o’e. In
fact, we have B} = PGL,(Z[3(1 +v/=3)]). The
group Bl, is the Coxeter group with diagram

’—GI—‘ .

In the groups of the families B4, By2 we use the
presentation

Sy = (z,z,w | 2°, w*, 2%, (wz)?, (zw)?, (z2)*).
The presentations for these groups are
By =(z,y,2|2°, y*, 2°, (zy

2 __ 2 2
33—<l’,y,2{|l’ y Y, 2

)
(zy)

Bi=<w y.zla®, 7 2 (wy)’, (y2)?, (22)?),
= <’I‘ y, 2| 2%, 2, 2t (2y)°, (yz2)°, szzfl>,
=<l’ y=Z|$ y*, 2%, (2y)°, (y2)* (22)°),
BS =(z,y,212%, v, 2%, (wy)’, yey2', (22)°),

2 w27 (Zw) 7

 (y2)?, (yw)?),
Bgzz<.’1’},y,2,W|.’IJ2, Y, Z2a w2’ (ZU))2’
,

(zy)%, (22)", (2w)?, (y2)",w, (y2)*).

These groups are determined by the group data
since, for example, changing 2 to z~' leads to an

Bl,= <1: y,z,w|a: T
(zy)°, (z2

~—
w
—~
8
~—

2

equivalent presentation for B;, for ¢ = 3,4,5. In
the case of B3., other than the relation (yz)* =1
in D, we could have another element of order 2,
w = (yz)?, w = yzy or w = zyz but in the latter
two cases the angle is not correct.

Factoring B by the normal subgroup generated
by (zzy)¥ for certain k gives a finite group for
which all vertex stabilizers inject: for Bl, (zzy)*
gives a group of order 120; for B2, (zzy)* gives a
group of order 1008; for B}, (zzy)? gives a group
of order 48; for B2, (zzy)* gives a group of order
384; for Bl, (xzy)* gives a group of order 6840;
for B2, (zzy)* gives a group of order 14400. In
the case of Bl, we can also obtain a permutation
representation BL — Sio, © — (24)(35)(69)(710),

— (12)(36)(47)(59)(810), z — (135107)(24896),
which is injective on the vertex stabilizers. The
image is of order 120 so this gives a minimal in-
dex torsion-free subgoup, since A5 has no elements
of order 6. This is related to a question raised in
[Milnor 1994].

Factoring B}. by the normal subgroup generated
by (ywzz)* gives a group of order 192 for which all
vertex stabilizers inject. Factoring B3, by the nor-
mal subgroup generated by (zyz)° gives a group of
order 34560 for which all vertex stabilizers inject.
In this last case, we can also obtain a surjective per-
mutation representation B3, — Sg, z — (23)(56),

— (24), z — (12)(45), which is injective on the
vertex stabilizers. O

Octahedral

The finite groups in the family I'(3,2: 6) have been
considered by Burnside and Coxeter. There are
three subgroups of index 2 in the reflection group
of a triangle with angles 7, 7, &; the rotation sub-
group

(z,y| 2%, o, (wy)®);

the reflections in the doubled triangle, with angles

r r T
373737

2 3’ (ZT)3>,

(z,y,z | 2%, y%, 2°, (2y)°, (y2)



and the group generated by a rotation of order
three at the vertex of an isosceles triangle with an-
27

gle = and the reflection in the opposite side,

(z,y |2 y*, (zyzy )*).

The finite quotients are related to representations
of integers by the norm form

a’+ab+b° = (a+bw)(a+bw")

in the quadratic field Q(w), w? = w — 1. Note that
two solutions to a® + ab + b> = m in integers have
ratio in @Q(w) of norm 1 and hence the ratio is a
power of w. Multiplication by w takes the solution
a+bwto —b+ (a+b)w.

Lemma 6.8. The groups in T'(3,2:6) are of order 42,
48 or obtained from amalgam quotients of certain
2-dimensional crystallographic groups having order
6m, where m = a® + ab + b2, for integers a,b.

Proof. Consider the amalgam quotients of Z3 x Z,
having y,z as the generators of the factors. The
possible relations of length 6 after changing y to
y~ ' if necessary are (xy) (xy)’zy ="', (zy)*(zy )3
((zy)?2y™")% (2y)*(xy )" (2y)*(2y~ ") (zy) (xy ™),
(zy)*(wy~")(zy)(zy™')% (zyzy~')®. The groups
obtained from these relations have orders oo, 2,
6, 48, 48, 2, 42, co. Thus we get amalgams of the

virtually free abelian (rank 2) groups

Cu%2,3,6) = <7;ay ‘ '/I;Qa y31 ((Ey)6>

and

Cu?273,6) = <xay | xza y37 (Iyxy71)3>'

These amalgams have been classified by Burnside
[1911, p. 419] and Sinkov [1936, Theorem 7]. Ac-
cording to Burnside, the finite amalgams of the
2,3,6 triangle group Cué2’376) are the groups

Cuppy = (2. y | 2% ¢, (zy)° (yazy 'z)* (v 'zyz)")

of order 6m = 6(a” + ab + b*), and different solu-
tions to m = (a® + ab + b*) give the same group.
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According to Sinkov, the finite amalgams of Cufwﬁ)
are

Cu(b,c) = <xay | xzu y37 (Iyxyil)Sﬂ (yI)Zb(y*1I)26>

of order 6(b* + bc + ). We can see that we get
the same group for a different solution to the norm
equation as follows. First, it follows from the com-
mutator equation that (zy)? commutes with (yz)?
and hence also (zy)?(yzy)* = (yz)?. Repeatedly
applying this relation yields

(zy) > (yay)* "+ = (yz)* (yzy)™.

It follows by a conjugation by y~' that
(y2)”(y '2)* =1 &= (yx)*(yzy)” =1

or equivalently, by a conjugation, that (yz)* =
(yflm)2(b+c)_
The others obtained are

Cugp = (z,y | 2%, v, (2y)*(zy ") (zy)(zy~")?),

and two groups of order 48, distinguished by the
order of zy, either 8 or 12:

Cugs = (z,y | 2%, v°, ((xy)*zy™1)?),
CuZS = <$,y ‘ xzu y37 (xy)3(xy*1)3> D

Corollary 6.9. The groups of order 48, 54, 72 and 96
in T'(Zs, Z,:6) are Culg, Culg, Cusy, Cul,, Culy,
Culy, Culy with the presentations given below. In
the family, T'(Zs, Z,:6), there are no groups of or-
der divisible by 5 but not 25.

Proof. According to Lemma 6.8, the groups of order
48 in T'(3,2:6) are then Culg, Cujy. The groups of
order 54, 72, 96 are either Cu(.q), ¢+ d* + cd =
9,12,16 or Cuqpy, a® +b* +ab = 9,12,16. Ac-
cording to the arguments above the groups Cu. g
of order 6m are isomorphic for any solution to
2 + cd + d> = m; similar arguments apply for
Cuypy. It follows that the group of order 54 is
uniquely determined,

3

Cusy = (z,y | 2°, v°, (zy)°, (yzy 'z)*).



214 Experimental Mathematics, Vol. 7 (1998), No. 3

There are two groups of order 72, distinguished by
their derived series:

Cug, = (z,y | 2*, v°, (2y)°, (yzy '2)*(y 'zyz)?),

Cuy, = (z,y | 2°, v, (zywy ™), (ya)'(y~'2)").
There are two groups of order 96, distinguished by
their derived series:
Cugg = (z,y | 2%, y°, (2y)°, (zy~'zy)*),
Cuge = (z,y | 2°, v°, (zyzy ')?, (zy)%).
Note that, since a? + ab + b? mod 5 has no solu-
tions except a = b = 0 mod 5, none of these orders
are divisible by 5 but not 25. Further results for

powers of 2 or odd powers of 5 can also be easily
deduced. O

Proposition 6.10. The octahedral flat Platonic groups
having an angle of 7 have triangle and vertez data
as specified below:

oﬁn’l) = (84,471 121312744’2’4)
O = T(Cuzy, 4n, 121:3,2,4:4,2,4),

for (n,1) € {(7,14
(18,3)};

), (8,8), (9,6), (10,5), (12,4),

Ogm’k) = F(Cu187 4’/71, 12k : 37 27 4: 47 2’ 4)’
for (m, k) € (10,30, (12,12));

O = T(S4,4n,121:3,2,4:4,4,2),
O = T(Cuyg,4n,121:3,2,4:4,4,2),

for (n,1) € {(7,14
(18,3)};

), (8,8), (9,6), (10,5), (12,4),

O(()‘m’k) = F(Cul& 4m, 12k : 3a 27 4: 2’ 4’ 4)’

for (m,k) € {(10,30), (12,12), (18,6)};

[(Sy,6r,4s: 724, 73, 75:2,6,3),
[(S,,6r,4s: Dy, Z3, Z5:2,6,3),
I'(SLy(Z3),6r,4s: Zy, Z5, Z5:2,6,3),
['(Cuyy, 6r,4s: Dy, Zs, Z5:2,6,3),

for (r,s) € {(8,12), (12,9)}; or
(48,48,16:4,3,2:3,6,2),
(36,54,16:4,3,2:3,6,2),
(96,72,16:4,3,2:3,6,2)
014 — T(432,96,16:4,3,2:3,6,2),
Ors = [(144,72,24:4,3,2:3,6,2).

r
r
r

)

Proof. In the octahedral case the vertex of angle
7 has edges of orders 2 and 4 or 3 and 4, since
otherwise by Lemma 4.6 the vertex order would be
of order 6 contradicting Corollary 3.2. There are
two cases for the arrangement of angles depending
on which is the angle I according to the previous
remarks.

In case the triangle is isosceles, there is a vertex

in I'(3,2:4) of order 18 or 24. This gives rise to

equationsll—z_—+—+ﬁor =L+L+Ll.
Simplifying this gives the equatlons
6 2 9 3
1 = — — 1 = — —.
n * I’ m + k

An easy analysis yields the solutions to the first
equation:

(n,0) € {(7,14), (8,8), (9,6), (10,5), (12,4), (18,3)}.

The solutions to the second equation are (m, k) €
{(10,30), (12,12), (18,6)}. There are two cases for
the edge groups of order 4. Notice, however, that
I,k > 7 in case the vertex group is in I'(4,3:4) by
Corollary 4.4.

These calculations give the families O;, for i =
1,...,6.

If the triangle is not isoceles we obtain the more

general equation, % = — + -+ 121:’ rewritten as
2 3 1
l==4+>+-.
r s t

Thus ¢ > 2. Again, there are two cases for the
vertex angle Z. Also, since a group in I'(3,2:3)
has order 12 and a group in I'(3,2:2) has order 6,
it must be the case that the angle between edges of

orders 2 and 3 is Z. In this case the vertex group
in I'(3,2:6) has order 6r, r > 7.



Now a vertex group in I'(4,2:3) has order 4s,
s > 8, by Corollary 4.4. A vertex group in I'(4,3:2)
has order 12¢, t > 2. Since 2+ 241 < 1, for t > 3,
it follows that the only solutions are for ¢ = 2 and
these are easily determined as

(rys) € {(7,14), (8,12), (10,10), (12,9), (16,8)}.

But now, by Lemma 4.11, the groups of I'(4,2:3)
of order greater than 20 have order divisible by 12
and thus s is a multiple of 3. Thus the solutions
are (r,s) € {(8,12), (12,9)}. This gives the family
of groups O;, 1 = 7,...,10. The groups of order
48, r = 8, and of order 72, r = 12, in I'(3,2:6)
are described above. The groups of order 48, s =
12, and of order 36, s = 9, in I'(4,2:3) can be
determined by Lemma 4.11 and Proposition 4.10.

Next, by the remarks above, there is no ver-
tex group I'(3,2:3), so we must have a vertex in
['(3,2:6) of order 67, r > 7, by Corollary 4.4. Also,
there is a vertex group I'(4,3:3) of order 12¢, t > 3,
by Corollary 4.4 and a vertex group in I'(4,2:2) of
order 4s, s > 4 by Corollary 3.2.

Since 2+ 2 + & < 1, it follows that the solutions
occur for r > 7,4 < s < 7, ¢t > 3. Analyzing by
cases we find that for s =7, > 7, 241 = 2, then
t < 3 and hence no solutions; for s = 6, r > 7,
24+ 1 =1, then ¢ < 4 and hence solutions (r,t) €
{(12,3), (8,4)}; for s =5, 7> 7,2+ 1 =2 then
t <9 and hence solutions (r,t) € {(30,3), (10,5)};
for s = 4, r > 9, %—I—%:%,thentSBGand
hence solutions (r, ) € {(9, 36), (10, 20), (12,12),
(16, 8), (24,6), (40,5)}. By the remarks above on
the representations of integers by the form a* +
ab+b* we see that r = 10,24, 30,40 are impossible.
This gives the solutions (r,s,t) € {(8,6,4),(9,4,36),
(12,4,12), (12,6,3), (16,4,8)}. The groups of order
16 and 24 in I'(4,2:2) are then easily determined
from Lemma 4.11. O

Proposition 6.11. (i) The finite amalgam of D3 x D,
inT(4,2:3) of order 48 is the Cozeter reflection

group

Bus = (z,y,2 | a*, %, 22, (xy)?, (y2)%, (z2)").

Alperin: Platonic Triangles of Groups 215

(ii) There are no amalgams of order 48 of D3 x Z,
in T(4,2:3).

Proof. The abelianization of these two amalgams
are (i) D, or (ii) Z; respectively, and hence the
abelianization of any finite quotient is a 2-group
of order at most 4. By Proposition 4.10 the im-
age of the cyclic subgroup of order 3 is not normal,
hence there are either 4 or 16 3-Sylow subgroups.
If there are 16, then this leads to 32 elements of
order 3 and hence the 2-Sylow subgroup is nor-
mal, contradicting the abelianization result above.
Therefore we obtain a homomorphism of the amal-
gam G, G — S;. Now the normalizer of a 3-Sylow
subgroup has order 12 and any two can meet only
on a subgroup of order 2 or 4. Hence the kernel
K of this homomorphism is either of order 2 or 4.
If K is of order 4, then the image of the homo-
morphism is A,. In this case lifting the 2-Sylow
subgroup of A4 back to G gives a normal 2-Sylow
subgroup, contradicting the abelianization result.
Thus G is an extension of S; by a normal subroup
of order 2 (hence central). Now in the first case
i) we have by Proposition 4.10 that there are no
amalgam quotients of order 24. Now in the second
case the image of zz in S; has order 2, 3, or 4.
However the group

(w,y, 2 [ 2%, y%, 2% (2y)*, (y2)?, (22)%)
has order 12 and the group

(w,y, 2 [ 2%, y%, 2% (2y)*, (y2)?, (22)")
has order 24. Thus, since

(w,y, 2 [ 2%, %, 2% (2y)*, (y2)?, (z2)")

has order 48, this is the uniquely determined amal-
gam. O

Proposition 6.12. (i) Any finite amalgam of Ds x Dy
inI'(4,2:3) of order 36 is

2 2 2

F3a6 = <I7 Y,z ‘ I27 y27 Z27 (xy)Su (yz) ) (IyZ) (yIZ) >
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(ii) Any finite amalgam of Ds Fi Zy inT(4,2:3) of
order 36 1is

Fyo={z,y | 2% y*, (2y°)?, (zy)").

Proof. Since the abelianizations are 2-groups of or-
der less than 4, the 2-Sylow subgroups are not nor-
mal. If there are four Sylow 3-subgroups, then they
are abelian and equal to their normalizers so by the
normal p-complement theorem there is a normal 2-
complement. Thus the Sylow 3-subgroup is normal
and the group is a split extension. If there is an
element of order 9 then there is a unique element
of order 3. The group of order 4 acts via inversion,
so that the element of order 3 is fixed, thus giving
a normal subgroup of order 3 contradicting Propo-
sition 4.10. Thus the group is a split extension of
Z3 by D, or Z, depending on case (i) or (ii).

In the first case, if the D, acts trivially on one
of the Z; factors we get a Zs homomorphic image
contradiciting the abelianization. Thus the group
is isomorphic to S; x S3. Since D, = <y,z>, Ty
is of order 3 and so is zzyz, these two elements

/O\

\O /O

commute: xyzxryz = zaxyzxry. Addition of this re-
lation suffices to give the group of order 36,
(y2)*, (zy2)*(yz2)*).

(z.y,z | 2%, y?, 2°, (zy)°,

In the second case to avoid a Z; factor, the Z,
acts by interchanging the Z3 factors. The element
y conjugates xy* of order 3 to yxy, and these com-
mute to give the group

(z,y|2* y*, (zy®)°, (zy)*). O

Proposition 6.13. (i) The coset graphs G(48:3,2:6),
G(72:3,2:6) of Corollary 6.9 are toroidal.

(ii) The coset graph G(48:4,2:3) of Proposition
6.11 s planar.

(iii) The coset graphs G(36:4,2:3) of Proposition
6.12 are imbeddable in P?.

Proof. The graphs of the two groups of order 48
are isomorphic. Realizing the graph as having 24
(barycentrically marked) edges and 16 vertices of
degree 3, we imbed it in the torus as 8 hexagons.
See Figure 5.

1
Bs

O——O

o
(iog

FIGURE 5. Left: (G(48:3,2:6). Right: The same graph on the torus (hexagonal identifications).
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FIGURE 6. Left: G(72:3,2:6). Right: The same graph on the torus (octagonal identifications).

The graphs of the two groups of order 72 are iso-
morphic. Realizing the graph as having 36 (bary-
centrically marked) edges and 24 vertices of degree
3, we imbed it in the torus as 12 hexagons. See
Figure 6.

The graph of Proposition 6.11 is obtained from
two copies of an 8-gon attached to a 16-gon along
alternate and every fourth vertex, respectively. The
two copies are attached along the 16-gons at every
fourth vertex symmetrically centered between the
other fourths. See Figure 7.

The graphs of Proposition 6.12 of groups of order
36 are isomorphic and easily imbeddable in P?, but
not in the plane. See Figure 8. U

Theorem 6.14. The octahedral flat Platonic groups
having an angle of T that are of geometric type are
toroidal and have triangle and verter data

ogl - F(Cu24uBuB48 :D27Z37Z2:27673)7
092 - F(CUQ4,B,F3a6 :D27Z37Z2:2,6,3),
093 :F(S4aBaF;6:Z4723aZ2:2a673)7

for B € {Culy, Culg, Cul,, Cul,}.

FIGURE 7. (/(48:4,2:3).

The presentations of these groups are easily deter-
mined, and are shown at the top of the next page.

All these groups are virtually torsion-free. They
each have a subgroup of index less than or equal to
18 that yields a normal core which is torsion-free.
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Og8 (2,510 | 22, 4, 22, (wa)?, w?, (2, (o), yoy~w, ((zy)zy™)?)
Ogi {9, %, | 22, 4, 2, (wa)?, w?, (@2)°, (o), yoy~w, (zy) 2y~
Ogt (@20 |, 4, 22, (w2, w?, (@2)", (ww)', oy, (09", (yoy~ o)y~ ayo)?)
Ogt{a, 1 2y | 22, 3%, 2 (wa)l, w, (@2)°, (), yay~w, (oyoy™ P, (o) (v~ 2)*)
Og(z,y,2,w | 22, 4, 2%, (w2)?, w?, (22)*, (z2w)*(zaw)?, yoy~'w, ((zy)’zy~")?)
Ogi{z,y,z,w | 2%, y°, 2%, (wz2)?, w?, (22)°, (z2w)?(zzw)?, y2y~'w, (zy)®(zy")?)
Ogs(z,y, 2,w | 2%, 4°, 2%, (w2)?, w?, (22)%, (w2w)?(zzw)?, y2y~'w, (zy)°, (yoy~ ‘=)’ (y " zyz)?)
Ogs{z,y, z,w | 2%, 4*, 2%, (wz2)?, w?, (22)°, (z2w)’(22w)?, yzy~'w, (zyzy™)?, (y2)*(y~'2)*)
Ogi{z,y, 2 | 2%, 4°, 2%, (y2)*, (22°)°, (x2)", ((zy)*zy™")")
Ogi(z,y, 2 | 2%, 4, 2%, (y2)?, (22°)7, (z2)", (zy)*(zy~")%)
Ogi(w,y, 2 | 2%, y*, 2%, (y2)*, (22°)°, (x2)", (2y)°, (yay~'2)*(y " wyz)*)

Og5(z,y,2 | 2%, o, 2, (y2)*, (22°)°, (w2)", (wywy™")?, (y2)*(y~'2)*)

Presentations for the groups in Theorem 6.14.

FIGURE 8. (G(36:4,2:3) on P?.
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