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A generalization of Kneser’s neighboring method allows us to
classify two interesting genera at the same time. The new
method is used to determine the genus of Hermitian unimod-
ular lattices of rank 8 over the Hurwitz order 9t and the genus
of those M-lattices corresponding to unimodular Z-lattices.

1. INTRODUCTION

Kneser’s neighboring method [Kneser 1957] has ex-
tensively been used to construct all lattices in a
given genus. KEssentially one starts with one lat-
tice in the genus and computes its neighbors as
overlattices of certain maximal sublattices. So one
really classifies two genera of lattices, being only
interested in one. In this paper we generalize this
method, replacing the maximal sublattices by sub-
lattices of larger index in a more interesting genus.
The resulting graph in each genus, which factors
over a bipartite graph connecting the two genera
(compare Proposition 2.6), contains the original
neighborhood graph and hence is connected. We
apply this method to determine the genus of uni-
modular lattices of rank 8 over the Hurwitz or-
der 9, as well as the one consisting of P-modular
IM-lattices (compare Definition 2.1). The latter
classification was proposed in [Quebbemann 1984],
where a mass formula for this genus is developed.
There are only 11 such lattices, 8 of which are inde-
composable. Four of these lattices are extremal in
the sense that they do not contain vectors of length
2, and give rise to 3 non-isometric extremal even
unimodular Z-lattices of dimension 32. There are
24 M-unimodular lattices of rank 8, 15 of which
are indecomposable. All 24 M-unimodular lattices
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contain Hermitian roots, so no extremal 2-modular
Z-lattice in the sense of [Quebbemann 1995] of di-
mension 32 has a structure as an 9M-unimodular
lattice, which answers a question raised in [Bachoc
1995].

The paper is organized as follows. Section 2
presents the main ideas. They also allow to com-
pute the mass of one genus, once the one of the
other genus is known. The notation concerning
the lattices is fixed in Section 3. Section 4 is dedi-
cated to the application of the new method to 91-
lattices of rank at most 7, and Section 4 presents
the results for rank 8. Gram matrices and gen-
erators for the Hermitian automorphism groups of
the indecomposable lattices are available at http://
www.research.att.com/~njas/lattices.

2. THE MASS FORMULAS

Let Q be the quaternion algebra with center Q,
ramified at 2 and co. Let 9T a maximal order in Q
and let P = (14 i) the two-sided maximal ideal
of M containing 290.

Definition 2.1. Let V be a left Q-vector space, h :
V xV — Q a positive definite Hermitian form with

respect to the canonical involution of £, and L an
M-lattice in V.

(i) L is called even if h(z,x) is even for all x € L.
(ii) The Hermitian dual lattice L* of L is defined as

L :={x eV :h(z,])cMforalll e L}

(i) L is called unimodular if L* = L.

(iv) L is called P-modular if PL* = L.

(v) L is called almost P-modular if L C PL*, and
PL*/L = M/P.

(vi) The Hermitian automorphism group of L is the
subgroup U(L) of GL(V') consisting of g such
that Lg = L and h(zg,yg) = h(z,y) for all
z,y €V.

If L is an 9M-lattice such that L C PL*, then the
values of the Hermitian form on L lie in 3, that
is, h(z,y) € P for all z,y € L. Especially h(z,z)
lies in PNQ = 2Z for all x € L. Therefore L

becomes an even integral lattice with respect to
the symmetric bilinear form (z,y) := 1 Tr(h(z,y)),
where Tr is the reduced trace of Q.

In particular, if L is a P-modular 9M-lattice of
rank n, this construction yields an even Z-unimod-
ular lattice of dimension 4n. So ‘PB-modular lat-
tices do not exist if n is odd. The same construc-
tion applied to an almost PB-modular lattice yields
a Z-lattice of determinant 22. Since 9 itself is
an M-unimodular lattice, there are 91-unimodular
lattices of arbitrary rank mn. Since the different 3
of 91 is a principal ideal, these lattices give rise to
2-modular integral lattices of dimension 4n with
respect to (z,y) = Tr(h(x,y)).

Proposition 2.2. Let L be an M-lattice with respect
to the Hermitian form h.

(i) If L is M-unimodular, then h induces a nonde-
generate Hermitian form

h:L/BL x L/BL — M/P = F,

defined by h(z,y) = h(z,y) for all z,y € L.

(i) If 2L* C L CPL*, then L/2L* is a nondegen-
erate symplectic vector space over IM/P = F,
with respect to the form

¢ :L/2L" x LJ2L* — M/P = F,

given by ©(Z,7) = th(z,y)(1+1i) for all z,y €
L.

Proof. (i) The form h clearly inherits the property
to be Hermitian from the form h. To see the non-
degeneracy choose € L with h(z,y) € P for all
y € L. Then 5z € L* and therefore € PL,
because L is M-unimodular.

(ii) For z,y € L, one has h(z,y) € B, so
sh(z,y)(1 +1i) € M.

Therefore ¢ is well defined. Since h(z,z) € 290,
all vectors are isotropic.

To see the nondegeneracy of ¢ let x € L with
th(z,y)(1 +i) € P for all y € L. Then h(z,y) €
290t and therefore z € 2L*.
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The form ¢ is clearly linear in the first variable.
To prove the linearity in the second argument let
p : Q — 9 denote the canonical involution and
choose z,y € L*, b € 9. Since both, the canonical
involution p and conjugation by (1 + 7) induce the
Frobenius automorphism on 91/, one gets

p(@,by) = 3h(z,y)p(d)(1 +1) = Sh(z,y) (L +i)b

Hence ¢ is bilinear. g

The main idea of the method to classify both, the
M-unimodular and the (almost) P-modular lat-
tices of a given rank is the following observation.

Proposition 2.3. (i) Let M be an M-unimodular lat-
tice of rank n. If n is even, the P-modular lat-
tices contained in M are the full preimages of
the mazximal isotropic subspaces of the Hermi-
tian F, wvector space M/BM. If n is odd, the
almost PB-modular lattices contained in M are
the full preimages of the mazimal isotropic sub-
spaces of the Hermitian F, vector space M [BM.

(ii) Let L be an M-lattice of rank n. If n is even,
assume that L is P-modular and if n is odd,
assume that L is almost B-modular. The M-
unimodular lattices containing L are of the form
SB=LN, where N is the full preimage of a maxi-
mal isotropic subspace of the symplectic Fy vec-
tor space L/2L* of dimension dimyg,(L/2L*) =

Proof. (i) Let L be a 9-lattice corresponding to

a maximal isotropic subspace of M/PBM. Then

h(L,L) C P shows that L C PL*. The index

can be seen from the dimension of this subspace.

Conversely let L be a (almost) PB-modular lattice

contained in M. Then L C L+ ‘BM C PL*.

Now either L = ‘BL* and clearly ‘M C L or

PL*/L = M/P and one has equality in one of the

two inclusions above. Equality in the first inclusion

directly implies ‘BM C L. Equality in the second
inclusion yields PL* C M = M* C P 'L. Clearly
the image of L in M/BM is maximal isotropic.

Part (ii) is analogous. O

To prove the completeness of the lists of isometry
classes of M-unimodular and (almost) JP-modular
lattices we use the following mass formula, devel-
oped in [Hashimoto 1980]:

Let M,,..., M}, be the Hermitian isometry classes
of unimodular 9M-lattices of rank n. Then

L1 & @+ (-))B;
; U(M;)] 11 4i ’

i=1

where B; is the ¢-th Bernoulli number.

Using this formula, a mass formula for the genus
of (almost) P-modular lattices can be easily de-
rived by a counting argument, which the second
author learned from B. B. Venkov:

Proposition 2.4. Let M, ..., M} be representatives
of the isometry classes of unimodular 9M-lattices
of rank n. Let Ly, ..., L, be representatives of the
isometry classes of P-modular (if n is even) or al-
most P-modular (if n is odd) M-lattices. Let ¢,
denote the number of mazimal isotropic subspaces
of the Hermitian F, vector space of dimension n
and ¢y denote the number of maximal isotropic sub-
spaces of the symplectic F, wvector space of dimen-
sion 2-[3]. Then

Nl a1
L) = o 2 UOAT
Proof. For 1 <1< hand 1 <j <s let
a;j := |[{L < M; : L is isometric to L, }|
and
bji == |{PM < L; : M is isometric to M,}|.

By Proposition 2.3 one has > a;; = ¢ and

Yy bi = .

Let ¢ be a unitary mapping with ¢(L;) < M,.
Then PM,; < ¢(L;) and hence Py '(M;) < L;.
So the number of unitary embeddings of L; into
M; equals the number of unitary embeddings of
‘BM; into L;. Moreover, if ¢ is a further unitary



154 Experimental Mathematics, Vol. 6 (1997), No. 2

embedding of L; into M;, with ¢(L;) = ¢'(L;),
then ¢'¢~" € U(L,;). Therefore one has

aij |U(L;)| = b [U(M;)]. (2.1)

Hence

h 1 s h 1
@ L UOn)] ~ 2 2 )

j=1 i=1

s h 1
= 2 2 b

j=1 i=1
S D T
* LU

Note that an analogous proof may be applied to
any two genera of lattices in the same vector space
to calculate the mass of one genus knowing the
mass of the other. Formulas for the numbers of
maximal isotropic subspaces in a symplectic or uni-
tary space over a finite field IF, may be found in
[Taylor 1992, exercises (8.1), (10.4)].

The values for F, = [F, and dimensions < 8 are:

dim 1 2 3 4 5 6 7 8
a1 3 9 27 297 891 38313 114939
c — 5 — 8 — 5525 — 1419925

In the spirit of this proof we define a bipartite
graph:

Definition 2.5. Let n, h, s, a;;, b, M; (1 < i < h),
and L; (1 < j <s) be as in Proposition 2.4. Then
[iso(n) is the labelled bipartite graph with vertices
M; and L; and edges

{(M;,L;) : a;; > 0} U{(L;, M;) : b;; > 0}

labelled with the corresponding number a;; or b;;,
respectively.

Proposition 2.6. (i) ['is, (1) is connected.

(ii) The valence of each of the vertices M; is ¢, and
the valence of each of the vertices L; is ¢y, where
c1 and ¢y are defined as in Proposition 2.4.

(iii) Every subgraph of Ty, (n) satisfying (ii) is the
full graph Ty (n).

Proof. (i) Let M and M' be two 9-unimodular
lattices. By [Bachoc 1995] there is a sequence of
M-unimodular lattices M := M{,..., M, = M’
with M/ /(M;NM/, ) =ZM/P (1 <i<k). Forl <
i <klet K; := (M;NM,;,). Then the orthogonal
complement with respect to the Hermitian form h
of Proposition 2.2 of K; + PM/ is K;- + PM] =
PB(M;, ,, M) +BM, and contained in K; + PM;.
Therefore K; + M, contains a maximal isotropic
subspace of M!/PBM/. For 1 < i < k let L} be a
full preimage of a maximal isotropic subspace of
M;/*BM] contained in M/ ,. Then Li,...,L}_, is
a chain of (almost) PB-modular lattices joining M
and M' in [ (n).

(ii) follows from Proposition 2.4 and (iii) is an easy
consequence of (i). O

3. SOME NOTATION

In this section we give constructions for the occur-
ing root lattices and notation for the classified lat-
tices. The 9M-lattices of rank n are understood to
lie in the £ vector space Q" endowed with the Her-
mitian form h(z,y) = Y1, 2;5;- When considered
as Z-lattices, the corresponding scalar product is
as defined in Section 2.

Rational Root Lattices
Let n > 1. The standard lattice Z" is the Z-span
of an orthonormal basis of an n-dimensional Eu-
clidean vector space.

Let n > 1. The root lattice A,, is defined as the
n-dimensional sublattice

A, = {(zg,...,x,) €EZ": sz =0}
i=0

of the standard lattice Z"*!. The discriminant
group A¥ /A, is cyclic of order n + 1 and gener-
ated by p(ey), where

(n,—1,...,—1) € A*

is the projection of the first basis vector (1,0, ... ,0)
of Z"*! into QA,,.

10(60) = n——l—l
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For n > 4 the root lattice D, is defined as the
even sublattice of Z",

D, = {(z1,...,2,) €Z": Y z; € 2L}.
i=1

If n = 8, the standard lattice Z® has an even
neighbor Eg containing Dy:

& = <D87 %(17 ]-7 ]-7 ]-7 ]-7 ]-7 ]-7 ]-))Z

Complex Root Lattices

There is one infinite series of quaternionic lattices,
which can be uniformly described as sublattices of
IM™ [Martinet 1996]. Let J be a left ideal of 9.
For n > 1 define

D, (3) :={(z1,...,z,) € M": Z:v € J}.

These quaternionic lattices are in fact scalar exten-
sions of complex lattices, since they may be defined
over any subfield of £ containing generators of the
left M-ideal 7.

The B-modular M-lattice Dy((1 +i)) is as a Z-
lattice isometric to the root lattice Eg and there-
fore denoted by Fs.

We additionally need one lattice defined over
Z|w] where w := £(—1 + /=3) is a third root of
unity. This root lattice is described in [Feit 1978]
as an extension of A;:

%w(l,w,wZ, 1,w,w2))z[w] C Qw] ® 7.

The 9-unimodular lattice Ry, as defined in [Ba-
choc 1995] can be constructed as MRz, Us, where
the root lattice Us is defined in [Feit 1978].

Hermitian Root Lattices

For the Hermitian root lattices, we refer to the no-
tations of the root systems in [Cohen 1980].
The root lattice

BWys:= Dy((1+14)) + B 1(1,1,1,1)

is an 9M-unimodular lattice spanned by the root
system S3;. It is denoted by BWi4, because the

corresponding Z-lattice is the well known Barnes—
Wall lattice BW;¢ of dimension 16.
We set

Sy :={y € BWy; : h(z,y) € B},

where x € BW ¢ is any vector in BW ¢ satisfying
h(z,z) = 3. The sublattice of index BW4/S; =
M /P in BW ¢ is spanned by the root system Sj.
The lattice Ry of [Bachoc 1995] is the 9t-uni-
modular lattice spanned by the root system U.

Remark 3.1. Let A be an (almost) P-modular 91-
lattice of rank n. If the corresponding Z-lattice L
has vectors of length 2, the 9Mi-lattice generated by
these vectors is of the form E* 1 PB°, where B is
an orthogonal summand of A [Quebbemann 1984].
If n < 8 the vectors of length 2 in L turn out to
determine A up to isometry.

In view of this remark let L,(3*) denote the (al-
most) P-modular M-lattice of rank n such that the
corresponding Z-lattice has root lattice Ij.

In particular L, (B") is the (almost) PB-modular
lattice constructed using the indecomposable code
en, described in [MacWilliams et al. 1978], which
corresponds to a maximal isotropic subspace of
(/)" = .

The lattice L7(J3%) is a suitable lattice contain-
ing BW15 L 3? of index (M/P)>.

L;(P) contains P L Lo, with index M /P, where
Ly, is a maximal common 91-sublattice of A,, and
Lo(B).

A4, denotes (almost) PB-modular lattices such
that the corresponding Z-lattices have no vectors
of length 2. For n = 6 one gets the 9M-structure of
the Leech lattice as described in [Tits 1980]. The
uniqueness of this structure is proved in [Quebbe-
mann 1984]. In [Quebbemann 1995] an integral
Z-lattice of dimension 28, determinant 4 and min-
imum 4 is described. As can be seen from the con-
struction, this lattice has a structure over 91 and
hence is isometric to Ag. Compare [Nebe 1996],
where the corresponding Z-lattice is denoted by
(2.5 *6) SL5(3)]2s, and [Bacher and Venkov 1996].
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The labels a;; and b;; of the edges in the pictures
of I'iso(n) for n < 6 are omitted. For n < 4 these
labels may easily be calculated from the table given
just before Definition 2.5. For n > 4, the graphs
[iso(n) are represented by tables. The columns of
these tables correspond to the isomorphism classes
of (almost) P-modular lattices Ly, ..., Ly, the rows
to those of M-unimodular lattices M, ..., M},. For
each lattice K, a name and the order of its Her-
mitian automorphism group U(K) is given. The
entry (7,7) of the table itself consists of the num-
bers a;; and b;; in the notation of Proposition 2.4,
where 1 <¢ < hand 1< 5 <s.

n=1 NMe———P
n=2 N2 Ey
n=3: M B L Eg
n=4:

BWig Eg
4. RESULTS FOR RANK1TO 7 >E§ 215.32.52
4
Tables 1 and 2 present the graphs I, (n) forn < 7. ot (28 ?;1 (4n ;;
The occuring MM-unimodular lattices have already B : T
been determined in [Bachoc 1995], from which we 913, 3}1(’: 5 60
also borrow some notation.
n=>5: Ls(P°) | P L E2
m5 217‘32_5 218‘33_52
L; (5135) Mo 162 135
3.3)5.(51
ML BWie (23-3)%-(5!) 1 25
, M L BWy, 270 27
P L Eg 216.35.5 20 60
R20 R20 297
211.3%.5.11 64
n==6: E3 | Le(R°) Aoy
oo o (27.3-5)3.6 | 221.33.5 | 213.33.52.7.13
Mo 405 486
23.3)5.(6! 12 1
M2 L BWig (23) (61 >
M> L BWig 81 810
220.36.5 900 60
M L Ryo Le(B°) M L Ry 891
214.36.5.11 384
R Ry, 567 324
> 29.37.5.7 4096 4160
g, 15 492 384
T, Asy 216.3.(61) 4500 984 1365

TABLE 1. The graph I'jso(n) and information about its edges, for n =1,...,6.
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E§ LB | Le(P®) L P Aoy LB | Ls(F°) L Es | Lo(P7) | Leo(P°) | La(P) Ass
225.35.53 224.34.5 | 216.34.52.7.13 224.33.52 | 224.32.7 | 217.34| 216.32.5 | 28.33.52.7
m’ 2835 3402 10206 21870
(23 -3)7-(7!) 125 1 ) 1
M2 L BWig 243 2430 2430 7290 25920
223.38.5 900 60 100 28 1
M2 L Rog 1782 891 35640
218.37.5.11 384 320 12
I L Roy 567 324 17010 20412
212.38.5.7 4096 4160 192 64
m L Js, 15 492 384 90 1620 11520 24192
219.32.(6!) 4500 984 1365 300 504 36 21
Rog 135 1890 12096 24192
212.35.5.7 4096 576 1024 840
Rig 27 54 3672 6912 27648
218.35 4800 896 612 320 525
Rl 2835 10206 25272
2-35.(71) 4096 4096 4160

TABLE 2. Information about the edges of 'z (7).

5. THE LATTICES OF RANK 8

In this section we present the main result, the clas-
sification of the 9-unimodular and the B-modular
lattices of rank 8. For the matrix groups, the no-
tation is borrowed from [Nebe and Plesken 1995;
Nebe > 1997]. In particular we call a matrix group
absolutely irreducible if the Q-algebra generated by
the matrices in the group is the full matrix algebra.

Theorem 5.1. There are 11 isometry classes of -
modular lattices of rank 8. Seven of them yield
unimodular Z-lattices that contain roots; they may
be distinguished by their root lattices, which are Dy,
D3, D, DY, Eg, Eg L DS, and EY. The other four
lattices can be distinguished by means of their Her-
mitian automorphism groups (which have been in-
vestigated using MAGMA.)

(i) U(BWs3,) = (Qs®Ds®Ds®Dyg).Og (2) is an ab-
solutely irreducible mazimal finite subgroup of
GLs(Q). The automorphism group of the corre-
sponding unimodular Z-lattice is Aut(BWsjs) =
(Ds®Dg®Ds®@Ds®Dyg).0f,(2) and an absolutely
irreducible mazimal finite subgroup of GL3»(Q).

(i) U(AL,) = 2575.05 (2) A 257°0; (2) is the sub-
direct product of two groups 2'7%.05(2) =
(Qs®Ds® Ds).05 (2) = U(BWys) amalgamated
of the common factor group Og (2). This group
is a reducible subgroup of GLg(Q). The cor-
responding unimodular Z-lattice is isometric to
BWs;s.

(i) U(As2) = (C4®Ds®Ds®Dys).(Us(3).2) is an ab-
solutely irreducible subgroup of U(BWsy). The
automorphism group of the corresponding uni-
modular Z-lattice is Aut(Asy) = (C4,®Dg@Dg®
Dyg).(S3 x U3(3).2) and an absolutely irreducible
subgroup of Aut(BWs,).

(iv) U(A},) = (SL2(5) o SL2(5) ?g SLy(5)) : S5 is an
absolutely irreducible mam’m(il finite subgroup of
GL4(Q ® Q[V5]). The automorphism group of

the corresponding unimodular Z-lattice is

Aut(Ag,) =
((SL2(5) o SLy(5) \(}/3% SLy(5) 0 SLy(5)).2) : S,

and an absolutely irreducible mazimal finite sub-
group of GL35(Q).



158 Experimental Mathematics, Vol. 6 (1997), No. 2

root lattice R construction of M [M: R) |Ry4|
Dg(1+1) Hi(1,1,1,1,1,1,1,1) 22 | 24-232
Dg(1-w) 41, 1+a,1, 14,1, 1+a,1, 1+a), for a =i(l-w) 32| 24-84
Dy (1+41i)? 1-4(1,1,1,1,0,0,0, (1+i)) 24 | 24-104
1-4(0,0,0, (144),1,1,1,1)
S? (z, —x) 24| 24-72
%(w, x)
M Dg 1(1,1,1,1,1,1, 1, 344) 24 | 24-56
D3(1+z')J_9ﬁZ<§[%] Us | (3£(1,1,1), (1-w)p(eo)) 24| 24.72
Dy(1+i) L M Dg ((1,0), $(w-w?1,1,1,1,1)) 26| 24-40
(1(1,1), (0, 1+4,0,0,0,0))
Dy(1—w)? ((1,1,1,1), (52 44)(1,1,1, 1)) 34| 24-36
((ZF2+i)(1,1,1,1),(1,1,1,1))
M Ag (—2+43i —4w)p(eo) 92 | 24-36
Dy (1+4)* 154(1,1,1,1,0,0,0, (1+i)) 28 | 24-40
14(0,0,1,1,1, 1+ (144w, 0, (14+4)w)
1=4((1+4),0,0,0,1,1,1,1)
(0,1,0,1,0,1,0,1,0,1)
M DI £(2i,0,0,0,1+2i,1,1,1) 28 | 24.24
1(1+424,1,1,1,24,0,0,0)
D3(1-w) L M®As | ((1,0,0), 54(1,w,w?, 1, w,w?)) 31.22 | 24.24
(1+Z)(z+2y w)(lg“’(l,l,l), (€0))
M A (1+2i)(p(eo), p(eo)) 5% | 24-20
(1+2i)w(p(eo), —p(c0))
D (1+i)8 1=4(1,1,1,1,144,0,0,0) 216 | 24.8
1-4(144,0,0,0,1,1,1,1)
40,1, w,,0,1,w,®)
(0,0,1,1,0,0,1,1)
(0,0,0,0,0,1,@,w)

TABLE 3. Information about rank-8 lattices. The first column contains the root lattice R as described in
Section 3. The 9M-unimodular lattice M is generated by R and the vectors given in the second column. The
last column displays the number of roots in M. The graph ['is(8) is encoded in Table 4. The indecomposable
M-unimodular lattices are denoted by their Hermitian root systems. We follow the notations of Section 3. Note
that the last lattice in the table is the lattice J§ of [Bachoc 1995].
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Aszz Ay AL, BWs, Ls ()
214.33.7 28.31.53 220.3%.5 221.34.5.7-17 211.3%.52.7
M (29-3)5-(3)
ML L BWg 228.3%.5
BWE  2%7.38.52 51840 1| 25920 119
M3 LRy 2%20-39-5-11
M2 LRy 2%€.3%-5-7
m21Jy, 2%7.3%.5
ML Ry 215.35.5.7 72576 840
M LRy, 22138 82944 525
MRy, 28.3%.5.7 75816 4160
MeEs 216.36.52.7 48384 15 | 18900 960 270 3264
Dg(1+i) 229.33.5.7 93760 45 | 3840 765
Dg(1—w) 28.39.5.7 65610 1152 40824 2240
Dy(1+4)% 2%7.33 73728 63 10368 1215 976 16065
Sz 219.37 20736 596 | 55296 125 | 7344 2720 216 19040
Meby 216.32.5-7 30720 4608 | 48384 6075 | 2100 43200 30 146880 | 21504 10080
Dg(l-l-i)J_fmZ([XL] Us 2%°.3%.5 77760 2016 25920 2100
Dy(1+i) LMD 2'€.33.5 40320 14112 | 49152 14400 960 46080 17280 18900
Dy(1-w)? 28.38 38394 70784 | 51840 80000 648 163840 17496 100800
MeAs 283157 41850 178560 | 48384 172800 19224 256320
Do (1+i4)* 2%4.32.5 30720 126 | 65536 225 | 3712 2088 256 34272
Mebi  215.33 42624 149184 | 54528 159750 420 201600 6 685440 | 13824 151200
D3(1-w)LMxA; 28-3%5 45360 150528 | 51840 144000 14904 154560
MeA] 28.33.5° 45450 814464 | 54144 812160 360 884736 12600 705600
Di(1+i)8 219.32 02224 34272 | 55296 30375 816 73440 24 514080 | 6144 12600

TABLE 4. Information about the graph I'is,(8). The organization is as in Tables 1 and 2, except that the numbers
a;; and b;; in each cell are given side by side. The table is continued on the next page.

Remark 5.2. Up to isometry there are three extremal
even unimodular Z-lattices having a structure over
M. The Z-lattices corresponding to A%, and BWj,
are both isometric to the Barnes—Wall lattice of di-
mension 32. In [Koch and Venkov 1989] an invari-
ant called the “Nachbardefekt” of an even unimod-
ular lattice without roots is defined as the minimal
corank of the root systems of its neighbor lattices.

The 15 extremal even unimodular lattices of Nach-
bardefekt < 8 are classified in [Koch and Venkov
1989; [1991]; Koch and Nebe 1993; Nebe 1990].
The Z-lattice BW3, is isometric to one of the 5
lattices of Nachbardefekt 0. A comparison of the
orders of the automorphism groups shows that the
other two lattices A3» and A}, are not isometric to
one of these 15 lattices.



160 Experimental Mathematics, Vol. 6 (1997), No. 2
Lgs(P?) Ls(P*) Ls(P®) Eg 1Ay Es L L(P°) Eg
920,325 922,34 230,32 7 220.34.53.7.13 928,34 .52 231.35.54
”ms 65610 1 40824 5 | 8505 625
ML L BWe 77760 1121870 o6 14580 300 729 9000
BWZ 36450 112 729 10800
M3 L Rao 106920 16 8019 1920
M2 L Ryy || 61236 64| 51030 384 972 20800 | 1701 20480
M2 LIS, || 72576 21| 34560 72| 4860 2016 | 1152 6825 | 1746 5820 45 90000
M L Rag || 36288 2048 5670 2304 405 32768
ML R || 20736 640 | 11016 2448 162 7168 81 28800
ML RY, || 30618 8192 8505 16384
MREg || 45360 256 2025 16384
Dg(1+1) || 43008 4 13890 1852 336 360 | 105 67500
Ds(1-w) 8505 16384
Dy(1+4i)? || 18432 240 | 10368 972 | 1170 21840 288 43200 9 810000
SZ | 31104 1280 243 14336
MDDy || 10416 23808 1680 27648 105 344064
D3(1+i)_l_§mZ%]U5 3888 1536 7290 20736 81 368640
Dy(1+i) LMz Dy 5460 29120 1710 65664 30 229376 12 1310400 15 921600
Dy(1—w)? || 5832 163840 729 147456
M As | 4536 294912 945 442368
Dy (1+4)* || 12480 780 1920 864 210 18816 64 81900 40 28800 1 432000
MeD? | 3312 176640 216 82944 9 688128
Ds(1-w) LM A; 2430 122880 405 147456
M AZ 2160 589824 225 442368
Di(1+i)8 384 3840 48 3456 3 43008

TABLE 4 (continued). Information about the graph I'js,(8).

Theorem 5.3. There are 24 isometry classes of M-
unimodular lattices of rank 8, fifteen of which con-
sist of indecomposable lattices. These fifteen lat-
tices may be distinguished via their Hermitian root
system which is in all cases of full rank. In partic-
ular, there is no extremal 2-modular integral lat-
tice of dimension 32 having a structure as an M-
unimodular lattice.

A description of the 9t-unimodular lattices of di-
mension 32 may be obtained using their Hermitian
root systems as given in Section 3, and is encoded
in Tables 3 and 4.

The method used to find representatives for the
isometry classes of the lattices in the two genera
of M-unimodular and ‘P-modular lattices can be
described as follows:
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(1) Starting with decomposable 9)I-unimodular lat-
tices M, we calculate the orbits of U(M) on
the 114939 maximal isotropic subspaces of the
Hermitian F, vector space M /PM and the cor-
responding PB-modular lattices L as full preim-
ages of representatives of the orbits.

(2) For the lattices L found in (1) we check whether
L is already known. If not, we determine U (L)
with a computer program described in [Plesken
and Souvignier > 1997].

(3) For the lattices L found in (1) we compute the
number of sublattices M’ < L*, which are iso-
metric to M using Equation (2.1) on page 154.

(4) When all known 9t-unimodular lattices M are
processed in this way, we look for new 97-uni-
modular lattices as full preimages of maximal
isotropic subspaces of L*/L, where L is one of
the known ‘B-modular lattices.

Remark 5.4. For the computation of U(L) in (2)
it is helpful to know a subgroup of U(L) which is
obtained computing some elements of U (M) stabi-
lizing the maximal isotropic subspace L/PM. An
analogous remark applies to (4).

Remark 5.5. To check whether L is already known,
it suffices in most cases to compute the number of
roots in L. To prove the completeness of the list of
PB-modular and M-unimodular lattices we use the
mass formula. An analogous remark applies to (4).

Remark 5.6. Since one knows a priori the number
of maximal isotropic subspaces of L*/L yielding
known 9-unimodular lattices by step (3), one can
choose L such that one has a good chance to find
new M-unimodular lattices.

REFERENCES

[Bacher and Venkov 1996] R. Bacher and B. B.
Venkov, “Réseaux entiers unimodulaires sans racine
en dimension 27 et 28”, preprint, Institut Fourier,
Grenoble, 1996.

[Bachoc 1995] C. Bachoc, “Voisinage au sens de Kneser
pour les réseaux quaternioniens”, Comment. Math.
Helv. 70:3 (1995), 350-374.

[Cohen 1980] A. M. Cohen, “Finite quaternionic
reflection groups”, J. Algebra 64:2 (1980), 293-324.

[Feit 1978] W. Feit, “Some lattices over Q(v/—3)”, J.
Algebra 52:1 (1978), 248-263.

[Hashimoto 1980] K.-i. Hashimoto, “On Brandt matri-
ces associated with the positive definite quaternion
Hermitian forms”, J. Fac. Sci. Univ. Tokyo Sect. IA
Math. 27:1 (1980), 227-245.

[Kneser 1957] M. Kneser, “Klassenzahlen definiter
quadratischer Formen”, Arch. Math. 8 (1957), 241—
250.

[Koch and Nebe 1993] H. Koch and G. Nebe, “Extremal
even unimodular lattices of rank 32 and related
codes”, Math. Nachr. 161 (1993), 309-319.

[Koch and Venkov 1989] H. Koch and B. B. Venkov,
“Uber ganzzahlige unimodulare euklidische Gitter”,
J. Reine Angew. Math. 398 (1989), 144-168.

[Koch and Venkov 1991] H. Koch and B. B. Venkov,
“Uber gerade unimodulare Gitter der Dimension 32,
II1”, Math. Nachr. 152 (1991), 191-213.

[MacWilliams et al. 1978] F. J. MacWilliams, A. M.
Odlyzko, N. J. A. Sloane, and H. N. Ward, “Self-
dual codes over GF(4)”, J. Combin. Theory Ser. A
25:3 (1978), 288-318.

[Martinet 1996] J. Martinet, Les réseauz parfaits des
espaces euclidiens, Mathématiques, Masson, Paris,
1996.

[Nebe 1990] G. Nebe, Wiedererkennung von Gittern,
Diplomarbeit, Lehrstuhl B fiir Mathematik, RWTH
Aachen, 1990.

[Nebe 1996] G. Nebe, “Finite subgroups of GL,,(Q) for
25 < n < 317, Comm. Algebra 24:7 (1996), 2341-
2397.

[Nebe > 1997] G. Nebe, “Finite quaternionic ma-
trix groups”. See http://samuel.math.rwth-aachen.
de/~-LBFM/gabi. Submitted.

[Nebe and Plesken 1995] G. Nebe and W. Plesken,
“Finite rational matrix groups”, Mem. Amer. Math.
Soc. 116:556 (1995), viii+144.

[Plesken and Souvignier > 1997] W. Plesken and B.
Souvignier, “Computing isometries of lattices”. To
appear in J. Symbolic Comput.



162 Experimental Mathematics, Vol. 6 (1997), No. 2

[Quebbemann 1984] H.-G. Quebbemann, “An appli-
cation of Siegel’s formula over quaternion orders”,
Mathematika 31:1 (1984), 12-16.

[Quebbemann 1995] H.-G. Quebbemann, “Modular
lattices in Euclidean spaces”, J. Number Theory 54:2
(1995), 190-202.

[Taylor 1992] D. E. Taylor, The geometry of the
classical groups, Sigma Series in Pure Mathematics,
Heldermann Verlag, Berlin, 1992.

[Tits 1980] J. Tits, “Four presentations of Leech’s
lattice”, pp. 303-307 in Finite simple groups, II
(Durham, 1978), edited by M. J. Collins, Academic
Press, London and New York, 1980.

Christine Bachoc, A2X Bordeaux, Université de Bordeaux I, 351 cours de la Libération, 33405 Talence, France

(bachoc@math.u-bordeaux.fr)

Gabriele Nebe, Lehrstuhl B fiir Mathematik, RWTH Aachen, Templergraben 64, 52062 Aachen, Germany

(gabi@willi.math.rwth-aachen.de)



