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We present a method to construct irreducible rational matrix

representations of finite groups, based on an efficient construc-

tion of fixed points of finite groups acting on complex vector

spaces.

1. INTRODUCTIONFor �nite �elds there are satisfactory methods toconstruct the irreducible representations of a �nitegroup [Parker 1984; Holt and Rees 1994]. When itcomes to computing representations over the com-plex numbers, one can use the ideas in [Dixon 1970]to come up with approximate solutions. For alge-braic applications, however, one would prefer pre-cise descriptions. This paper outlines a �rst ap-proach to the problem of how irreducible ratio-nal representations can be constructed by comput-ing and analysing endomorphisms and homomor-phisms of modules.With the complex group algebra CG of a �nitegroup G, the rational group algebra QG still sharesthe property of being semisimple. With the groupalgebra F qG over a �nite �eld it shares the prac-tical property that computations can be done ina precise rather than an approximate (numerical)way. The main point of this paper is to show thatthe precise calculations can be performed in a prac-tical way when it comes to modules of dimensionsaround 200. However, unlike CG and FqG, the ra-tional group algebra QG might have simple mod-ules whose endomorphism rings are not commuta-tive, so that Schur indices are involved. Decidingwhether a homogeneous QG-module, i.e., a mod-ule isomorphic to a multiple of a simple module,
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is simple or not, will in general call for a p-adicanalysis of its endomorphism ring. In Section 5we outline some methods for avoiding this in mostrelevant cases.The paper is centred around Theorem 2.1, whichmight have other applications as well, as in thecomputation of polynomial invariants of �nite ma-trix groups. The theorem was known in some spe-cial situations [Dixon 1970], in which we also applyit. However, since we are dealing with the rationalnumbers, we can use the approximative process ofTheorem 2.1 to compute precise rather than ap-proximative solutions; see also Section 4.There are other techniques available to constructrational representations, for instance by reducingpermutation or monomial representations, whereit is easy to compute the endomorphism ring, orfor special classes of �nite groups, such as solublegroups, or under special assumptions for the char-acters as in [Dixon 1993]. These topics will not bediscussed in this paper.
2. APPROXIMATING THE AVERAGING OPERATOR

Theorem 2.1. Let G be a �nite group, V a �nite-dimensional CG-Module, E � G a generating setof G with 1 2 E. De�ne� : V ! V : v 7! 1jGjXg2G gvto be the CG-projection of V onto the stabilizerFixG(V ) of the G-action on V , and�E : V ! V : v 7! 1jEjXg2E gv:Then inside EndC (V ) one has limn!1 �nE = �.
Remark. We have EndC (V ) �= C l�l if l = dimC V ,which clari�es the notation of convergence. ClearlyC can be replaced by any of its sub�elds in theabove theorem.
Proof. Since V is an epimorphic image of a �nitelygenerated free CG-module (CGCG)n , one may as-sume that V is the regular CG-Module CGCG. De-

note the matrix representation of V with respectto the canonical basis G by �. Then clearly X :=�(�E) is a doubly stochastic matrix.Claim: X is irreducible (in the sense that there isno permutation matrix P of degree jGj such thatPXP�1 is triangular). To prove this, note thateach element of G can be written as a word oflength n in the elements of E, since 1 2 E, pro-vided n is big enough. But this means that Xnhas no entries 0, hence Xn and therefore X is irre-ducible. By the Theorem of Perron{Frobenius onnonnegative matrices, [Huppert 1990, p. 398], Xhas exactly one eigenvalue 1 with multiplicity one,and all its other eigenvalues of norm less than 1.Hence Xn converges, and therefore also �nE. Obvi-ously the limit is �. �Some comments on the proof are appropriate. Theresult is closely connected with [Dixon 1970, The-orem 1] and [Schlosser 1978, Satz 2]. Though themain applications will be in the same context as in[Dixon 1970], we shall use it to perform precise cal-culations (see Section 4), rather than approximateones as in that paper. Our proof is di�erent andrelates the result to the ideas in [Thompson 1981].It allows the following extensions of the result:Let RG1;�0 be the set of formal convex combi-nations of elements of G, that is, the subset of RGconsisting of elements of the formXg2G�gG with Xg2G�g = 1 and �g � 0 for all g 2G:
For e =Pg2G �gg 2 RG1;�0 , de�ne �e : V ! V by

�e(v) =Xg2G�ggv = ev:
Then �ne converges to � if e 2 RGgen1;�0 , where RGgen1;�0is the set of e 2 RG1;�0 such that en has no nonzerocoe�cient in its expansion in the elements of G, forsu�ciently big n. Note that RG1;�0 is multiplica-tively closed and convex.
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3. THE RATE OF CONVERGENCEFor each e 2 RG1;�0 and each character � of G,de�ne Spec�(e) to be the set of all eigenvalues of�(e), where � is a complex representation ofG withcharacter �, and setr�(e) = max�jaj : a 2 Spec�(e)	 :
Remark 3.1. Let � =Pki=1mi�i = m11 + �0 be thecharacter of the CG-module V decomposed intocomplex irreducible characters �1 = 1, �2, : : :, �h.For e 2 RG1;�0 one has:
(i) r�0(e) = maxfr�i(e) : i = 2; : : : ; h; mi 6= 0g.
(ii) �ne ! � for n!1 i� r�0(e) < 1.
(iii) In case r�0(e) < 1, one hask�� �ne k � (r�0(e) + ")nfor any " > 0 and n bigger than some constantdepending on ", where k � k is any algebra normon EndC (V ).
Proof. Parts (i) and (ii) are clear, and (iii) followsfrom the proof of [Huppert 1990, Satz II.2.10], ifone notes �� �ne = (�� �e)n. �So one has linear convergence and wants r�0(e) tobe as small as possible. Here are some ideas thatare tested in examples to get a good e 2 RGgen1;�0 .Replacing e = jEj�1Pg2E g by e = Pg2E �gg,with 0 < �g < 1 and Pg2E �g = 1, leads onlyto small improvements. Replacing E by a di�erentset E0 of generators with elements of bigger orderoften works better. Finally, usinge = Yg2E0; g 6=1( 12(1� g))
usually leads to drastic improvements. Oftene = Yg2E; g 6=1 1jgj(1 + g + g2 : : :+ gjgj�1)
yields a smaller r�0(e), but one step of the itera-tions becomes much more expensive. In this con-text it should be noted that for applications inSection 5 these factorised versions of elements ofRG1;�0 turn out to be time-saving, since one can

compute factor by factor; however, for an elementof the formPg2E �gg one is forced to compute thegv �rst and then form the Pg2E �g(gv). The ex-ample in Section 7 below demonstrates how goodcandidates for e can be found.Finally, in an actual computation with a givene 2 RGgen1;�0 and v 2 V , one needs a reasonableestimate for k�(v)��ne (v)k for some suitable normk � k on V . Let vn = �ne (v). Then vn+1 � vn has noFixG(V )-component. In case kvn+1 � vnk 6= 0 forone n it will be nonzero for all n > 0, and�n := kvn+1 � vnkkvn � vn�1kconverges to some � (see also [Huppert 1990, SatzIV.1.15]), which is equal to the biggest absolutevalue of the biggest eigenvalues 6= 1 of �e on thespace spanned by the vi. Usually this � will beequal to r�0(e), hence the geometric series yields�n=(1��) as a realistic estimate for k�(v)��ne (v)k.
4. EXACT SOLUTIONS AND INTEGRALITYIn this section we assume that V is a QG-modulerather than a CG-module and that V is given bya full ZG-lattice L in V . In terms of the matrixrepresentation � with respect to a lattice basis ofL one gets integral matrices, and for any v 2 Lone has already a divisor d of jGj with d�(v) 2 L.Therefore one will proceed as follows: In the courseof the iteration v = v1; v2; : : : ; vn = �ne (v); : : : onewill test whether the coordinates of vn with respectto a lattice basis of L are very close to a rationalnumber with a promising denominator, e.g., by us-ing a continued fraction expansion of the coordi-nates. Having found a reasonable denominator done replaces vn by v = d�1�vn with �vn the vector inL closest to vn. If v 2 FixG(V ) one is done; other-wise one continues the iteration. By the remarksat the end of Section 3 one has good control overthe error. This procedure works well, even if theorder of G is not known (and therefore yields divi-sors of jGj in this situation). We have successfullyused it for modules of dimension around 40; 000.
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5. APPLICATION TO THE CONSTRUCTION OF RA-
TIONAL REPRESENTATIONSIn this section we demonstrate how the ideas de-veloped so far can be used to �nd the irreducibleconstituents of a rational representation of G.Assume that a QG-module M is given by a fullZG-lattice L � M . Then the following are ZG-lattices that span QG-modules to which one canapply Theorem 2.1.

(i) ZG, the image of ZG in EndQ (M) under therepresentation : QG ! EndQ (M). We haveZG � QG. Here G acts by conjugation: g :' 7! �g'�g�1 for g 2 G and ' 2 ZG.
(ii) EndZ(L) � EndQ (M). Here G acts by conju-gation as in (i); indeed ZG is a Z-sublattice ofEndQ (M).
(iii) BilZ(L), the space of Z-bilinear maps � : L �L! Z, and a subspace of BilQ (L). Here g 2 Gmaps � 2 BilZ(L) to the map g� de�ned byg�(m1;m2) = �(g�1m1; g�1m2) for all m1 andm2 in L.
(iv) If M 0 is a further QG-representation modulespanned by a ZG-lattice L0 �M 0, one has a fur-ther ZG-lattice HomZ(L;L0) � HomQ (M;M 0),where G acts as in (ii).The machinery developed in Sections 2{4 allows tocompute, as �xed point sets of the modules above,elements or even a basis of each of the following:
(i) Z(QG) = Z(EndQG(M)), where Z denotes thecentre.
(ii) EndQG(M).
(iii) BilQG(M), the space of � 2 BilQ (M) such thatg� = � for all g 2 G.
(iv) HomQG(M;M 0).We comment on each case separately.
5(i). Z(EndQG(M)): Splitting M into its Homogeneous

Components

Lemma 5.1. Let V = QG and � as in Theorem 2.1.Denote the image of g 2 G in QG � EndQ (M)by �g. Then the eigenvalues of �(�g) are given by�(g)=�(1) with multiplicity m��(1), where � is a

complex irreducible character of G occurring withmultiplicity m� in the character a�orded by M .
Proof. It su�ces to assume that M is an irre-ducible CG-module with character �. Then �(�g)=jGj�1Ph2G �h�1�g�h=� idM by Schur's Lemma. Theresult follows by comparing traces. �Hence, if the splitting of the character of M intoirreducibles is known and one has access to repre-sentatives of the conjugacy classes, one can easilyproduce elements xi 2 EndQG(M) such that thekernels (or the images) of the xi are the homo-geneous components of M . If one does not knowthe irreducible characters one still can produce el-ements of Z(EndQG(M)), but then one has to fac-torise the minimum polynomials of the elementscomputed to get a splitting of M . If this fails, onecomputes a basis for Z(EndQG(M)) and decom-poses Z(EndQG(M)) into its minimal ideals, againby factorising minimum polynomials.
5(ii). EndQG(M)Usually one will approach this problem only if Mis already homogeneous, that is, (i) is performedand Z(EndQG(M)) is already computed. Againthe characters tell us the dimension of EndQG(M),which is a simple Q -algebra. Hence one will com-pute two elements of EndQG(M), say �(x1) and�(x2), for x1; x2 2 EndQ (M), and see whether theygenerate EndQG(M) as an algebra, and computemore �(xi) if necessary. One ends up with a ba-sis of EndQG(M) and the regular representation ofEndQG(M). If one has not found singular elementsin the course of the computation, one has to anal-yse EndQG(M), some ideas for this will be sketchedin Section 6. There is one more situation where it isworthwhile to work with EndQ (M), namely if onewants to compute Z(EndQG(M)) for irreducibleM ,when the Schur index of M is 1, i.e., EndQG(M)is commutative: This is because in (i) one mighthave di�culties �nding a suitable g 2 G to startwith if there are only few classes with irrationalcharacter values.
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5(iii). BilQG(M): Invariant Bilinear FormsThere are various situations when bilinear forms,both symmetric and antisymmetric, are relevant.First of all, one is well advised to keep with eachmatrix representation an invariant positive de�nitescalar product, because this allows one to manipu-late the basis by various reduction routines to keepsmall coe�cients for the matrix entries in the rep-resentation. For dimensions below forty the algo-rithm of [Seysen 1993] is often very e�cient forthis purpose. If one does not have an invariantsymmetric positive de�nite bilinear form, one getsone by applying the averaging operator � to anysymmetric positive de�nite � 2 BilZ(L). In prac-tice one will start with some � 2 BilZ(L), whosesymmetric part is only positive semide�nite 6= 0and whose antisymmetric part is nonzero. Then�(�) = �s+�a, where the symmetric and antisym-metric parts �s;�a 2 BilQG(M) can easily be ex-tracted from �(�). (Note that switching the argu-ments in � commutes with �.) �s will be nonzeropositive semide�nite. If it is not positive de�nite,its radical will be a QG-submodule of M , whichis always a welcome reduction. If �s is positivede�nite, it turns EndQG(M) into an algebra withinvolution. This becomes immediately clear if oneidenti�es BilQG(M) with HomQG(M;M#), whereM# = HomQ (M; Q ) is the contragredient moduleof M . Of course one can do this on the level ofZG-lattices as well.
Remark 5.2. Let � 2 BilQG(M) � HomQG(M;M#)be nondegenerate, and symmetric or antisymmet-ric. Then � turns EndQG(M) into a Q -algebra withinvolution � by� : EndQG(M)! EndQG(M) : � 7! ��tr��1;where �tr :M# !M# is the transpose of �.In the above situation, if �a or �s is nondegener-ate, that is, represents a QG-isomorphism M !M#, then �a��1s and �s��1a lie in EndQG(M). Soone gets an element of EndQG(M) and via the in-volution a new element for each further elementone computes in EndQG(M). Of course, there are

also theoretical reasons why one should be inter-ested in EndQG(M) as an algebra with involution.For instance, the Brauer{Speiser Theorem, whichsays that a Schur index of an irreducible represen-tation can be at most two if Z(EndQG(M)) is areal number �eld, is due to the fact that an al-gebra with involution �xing the centre is split ora matrix ring over a quaternion algebra. Here isone more reason why antisymmetric bilinear formsmight be relevant.
Lemma 5.3. Assume that the character � ofM con-tains a C -irreducible real-valued character  withodd multiplicity m > 1. Then BilQG(M) containsnonzero antisymmetric forms and each such formis degenerate.
Proof. Tensoring with R and splitting into homo-geneous components reduces the problem to RG-modules of the formLmi=1M0, whereM0 is an irre-ducible RG-module with character  . By Schur'slemma M0 allows up to scalar multiples only oneG-invariant bilinear form �0. Moreover �0 is sym-metric and can be chosen to be positive de�nite.By choosing an �0-orthonormal basis of M0, oneobtains a matrix representation �0 for G on M0and a representation+mi=1�0 onLmi=1M0. The an-tisymmetricG-invariant bilinear forms onLmi=1M0have Gram matrices A
In, where A 2 Rm�m is an-tisymmetric and In is the n�n-unit matrix. Sincem is odd, detA = 0 and the result follows. �Note that, if M in Lemma 5.3 is homogeneous, soare Rad(�) and M=Rad(�). Either one of these isa simple QG-module, or the hypothesis of Lemma5.3 applies again to one of them.Finally we mention that real Schur indices of realvalued C -irreducible characters can be determinedby the distribution of invariant bilinear forms intosymmetric and antisymmetric ones.
5(iv). HomQG(M;M0)This becomes relevant when dimQ M is so big thatone hesitates to compute EndQG(M), and some
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irreducible QG-modules M 0 are already known. Inthis case one can compute a nonzero element' 2 HomQG(M;M 0)and continue with the kernel of ' as new M (ofcourse, one will always work with lattices).There are more situations where the possibilityof computing HomQG(M;M 0) might be relevant.We mention only one:
Remark 5.4. Assume M and M 0 are isomorphic tomultiples Lm1 M0 and Lm2 M0 of a simple QG-moduleM0. Then one can construct a QG-moduleM 00 �=Lm3 M0 where m3 = gcd(m1;m2).
6. SOME REMARKS ON HOMOGENEOUS MODULESThe essential problem that might be left is to ex-tract the irreducible constituent from a homoge-neous QG-module M . Hence E := EndQG(M) is asimple Q -algebra, and one has two problems:
(i) Decide whether E is a division algebra.
(ii) If not, �nd a singular element in E.Obviously, (i) can in principle be decided by us-ing p-adic methods, which we do not want to gointo here. However, there does not seem to be afeasible procedure for (ii). Here, we just give a feweasy solutions for (i) and (ii) in the most frequentlyoccurring situations.Clearly E �= Dn�n for some Q -division algebra Dand n 2 N . Let Z := Z(E) = Z(D), k := dimQ Zand dimZ D = s2. Hence dimQ E = k(ns)2.Task (i) means determining n, or equivalentlythe Schur index s. We treat the cases ns � 3 andassume that Z is known and E is given, for ex-ample, in its regular representation over Z, whichwill be of degree (ns)2. We note that there are ef-�cient procedures available to solve relative normequations in algebraic number �elds [Pohst 1989;Fieker et al. 1996].
Lemma 6.1. Assume ns = 2. Then problem (i) canbe reduced to deciding whether a certain normequation for some quadratic extension of Z can

be solved, and problem (ii) to �nding a solutionif there is one.
Proof. Pick x 2 E � Z of regular trace 0. Lett2 � d 2 Z[t] be the minimal polynomial of x. Ift2� d splits over Z, we are done. If not, �nd y 2 Ewith y 6= 0 and yx = �xy, so that y induces thenontrivial Galois automorphism of Z[x] �= Z[pd].Then E �= Z2�2 if and only if there exists r 2 Z[x]with NZ[x]=Z(r) = y�2, i.e., if E is a split crossedproduct of Z[x] by C2 = Gal(Z[x]=Z). If r existsthen (ry)2 = 1, hence ry�1 is nonzero singular. �It should be remarked that there are other pos-sibilities to deal with the case ns = 2, namelyto �nd or prove nonexistence of an u 2 E withtrace(u) = 0 and trace(u2) = 0, which amountsto �nding a trace zero element representing 0 inthe trace bilinear form. For Z = Q constructiveprocedures of �nding isotropic vectors for ternaryquadratic forms are known [Mordell 1969]. How-ever, the crossed product approach of Lemma 6.1still works for ns = 3, although less e�ciently. Butthe case ns = 3 is only relevant in case Z is nota real number �eld because of the Brauer{Speisertheorem.
Lemma 6.2. Assume ns = 3. Then problem (i) re-duces to deciding whether a certain norm equationNL=K(x) = b is solvable with K = Z or a certainquadratic extension of Z, b 2 K, and L=K a cer-tain cubic cyclic extension of K. If it is solvable,(ii) reduces to �nding a solution.
Proof. Choose a 2 E � Z. If the minimum poly-nomial p(t) 2 Z[t] of a over Z is reducible we aredone. Assume it is irreducible and de�ne L0 =Z[a] �= Z[t]=(p(t)). Then L0 is a cubic extensionof Z contained in E. If (L0=Z) is a Galois exten-sion, let L := L0; otherwise let L be the normalclosure of L0. In the second case Gal(L=Z) �= S3.Set K = Z in the �rst case; in the second, de�neK as the sub�eld of L �xed by an element � oforder three in Gal(L0=Z). Since [K : Z] is rela-tively prime to ns = 3, E splits over Z if and onlyif K 
Z E splits over K. Identify a 2 E with 1
 a.
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Represent K 
Z E as a crossed product of K[a] byGal(L=K) �= C3 by solving ya = a�y for y 2 K
E.Let b := y�3. Then b commutes with a and lies inK[a] = L. The crossed productK
ZE splits if andonly if the norm equation NL=K(x) = b(= y�3) issolvable. If x is a solution, then (xy)3 = 1. Clearly
V := fv 2 K 
z E : (xy � 1)v = 0g

is an irreducible K 
Z E-module (note that K 
ZE �= K3�3 in this stage). Restricting the actionof K 
Z E to E on V turns V into a reducibleE-module of composition length 2. The compo-sition length of the regular E-module is 3 sinceE �= Z3�3. Hence one can construct an irreducibleE-module, i.e. an isomorphism E! Z3�3 (see alsoRemark 5.4). This clearly exhibits a singular ele-ment of E. �
7. AN EXAMPLEFrom [Conway et al. 1985], for example, we getthis list of irreducible rational characters for G =Sp4(3):
1 (trivial),5ab; 6; 10ab; 15; 150; 20; 24; 30; 30ab; 40ab; 45ab;60; 64; 81 (factoring over SU4(2));4ab; 200; 20ab; 200ab; 36ab; 600; 60ab; 640; 80 (faithful):
(The notation is based on the characters' degreesand their splitting into complex irreducible char-acters.) From [Holt and Plesken 1989, p. 338], forexample, we are given the rational representationwith character 4ab, and want to construct all thefaithful irreducible rational representations.
Step 1: We carry out some character calculations inGAP [Sch�onert et al. 1994] to �nd a good order forthe construction of the irreducible representations.Each time we �nd a new character needed later

on, we underline it. Each time we get a faithfulcharacter we are looking for, we underline it twice.4ab � 4ab = 2 � 1 + 2 � 6 + 2 � 15 + 10ab10ab � 4ab = 4ab+ 36ab+ 20ab+ 200ab6 � 6 = 1 + 15 + 2020 � 4ab = 200ab+ 2 � 6006 � 20 = 6 + 20 + 30 + 646 � 30 = 150 + 20 + 64 + 81150 � 4ab = 60ab6 � 20ab = 2 � 200 + 36ab+ 2 � 6406 � 200 = 20ab+ 80
Step 2 (choosing a suitable e 2 RGgen1;�0): We �rstcompute EndQG(M) where M has character 4ab[Holt and Plesken 1989, p. 338]. For each generat-ing set fx; yg that we tested for rate of convergence,three tests were performed:e= 13(1+x+y); (7.1)e= 12(1+x) 12(1+y); (7.2)e= (1+x+ � � �+xjxj�1)(1+y+ � � �+yjyj�1)jxj jyj (7.3)

They require 2, 2, and jxj + jyj � 2 conjugationsin each step, respectively. Analogously, we triedgenerating sets fx; y; zg with three generators. SeeTables 1 and 2.So e = 12(1+ ab) 12(1+ ab3ab) 12(1+ (abab3ab)2) isthe element we work with.
Step 3 (Computing the representations): 4ab � 4abyields the modules with characters 2 �6, 2 �15, 10abwhich one gets by computing �(a) 2 Z(EndQG(4ab�4ab)) in one go. To split up 2 � 6 and 2 � 15 one hasto compute EndQG for these two modules, whichare easily recognised as Q 2�2 . For 10ab � 4ab onecomputes �(a) 2 Z(EndQG(10ab�4ab)) and gets thedesired splitting as indicated in step 1. One pro-ceeds in the order suggested in step 1. For exam-ple, 20 � 4ab yields (via �((ab)3)) the module 2 � 600,whose endomorphism ring is a positive de�nite ra-tional quaternion algebra. Similarly 200 and 640can not be realised over Q but only 2 � 200 and
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(7.1) (7.2) (7.3)x y z #conj ��1 #conj ��1 #conj ��1a b � 300 � 2 1:036 150 � 2 1:075 90 � 6 1:129(ab)3 ab3ab � 470 � 2 1:024 180 � 2 1:067 150 � 6 1:079ab ab3ab � 60 � 2 1:229 50 � 2 1:316 10 � 12 3:158ab ba � 110 � 2 1:103 100 � 2 1:111 20 � 16 1:939ab3ab b2abab � 190 � 2 1:062 130 � 2 1:094 80 � 8 1:316ab ab3ab (abab3ab)2 50 � 3 1:279 50 � 3 1:278 10 � 14 3:871
TABLE 1. Experiments with generators acting on the module M with character 4ab. The �rst three columnsexpress x; y; z in terms of the generators a; b given in [Holt and Plesken 1989]. (Note that a2 is central, jbj = 4,jabj = 9, jab3abj = 5, j(ab)(ab3ab)j = 6.) The remaining columns refer to the choices of e given in (7.1){(7.3),and they show the number of conjugations needed (number of steps times conjugations per step) and ��1,where � is as in the end of Section 3. (7.1) (7.2) (7.3)x y z #conj ��1 time #conj ��1 time #conj ��1 timeab ab3ab � 260 � 2 1:062 99:5 s 170 � 2 1:099 65:7 s 60 � 12 1:304 133:2 sab ab3ab (abab3ab)2 170 � 3 1:099 97:4 s 70 � 3 1:267 41:9 s 40 � 14 1:600 104:5 s
TABLE 2. For the two best generating sets of Table 1, we tested the performance on the 64-dimensional moduleM 
M . We show the time needed to compute one endomorphism, on an HP9000/730.2 � 640. These two modules are obtained from split-ting the 240-dimensional module 6 � 20ab, where ittakes about 70 minutes to compute one endomor-phism. The irreducibility of 2 � 200 of course meansthat the representation in the last row (6�200 = � � �)has to be replaced by 6 � (2 � 200) which is of degree240 rather than 120. Also 2 � 80 belongs to an irre-ducible QG-module.If the reader tries to continue the exercise to�nd also the irreducible non-faithful representa-tions of Sp4(3), i.e., the ones factoring over U4(2),he will �nd that 5ab is the most di�cult one toget, for instance via the symmetrised tensor square10ab[2] = 1 + 5ab + 15 + 2 � 20 + 24 + 30ab + 60,which means to decompose a module of dimension210, and it takes about 40 minutes to �nd one en-domorphism. Here of course (as well as in some ofthe cases above) one can pro�t from the fact thathomomorphisms rather than endomorphisms canbe computed as well.

Remark. As an afterthought, one might ask whatsort of information one might want to store about

the representations constructed. At �rst glance,one will think of the generators a; b, possibly theinvariant scalar product and generators for the en-domorphism ring. But sometimes it might be moreadvantageous to store the way the representationswere constructed, i.e., the matrices of the kernels ofthe various module homomorphisms etc., in such away that one is able to �rst compute a (long) wordw(a; b) in a and b in the �rst representation (hereof degree 8) and then go quickly through the var-ious constructions of intermediate representationsfor w(a; b) to get �(w(a; b)) for the desired rep-resentation �. If w(a; b) is a long word and � ofbig degree, this might be considerable cheaper thancomputing w(�(a);�(b)) naively.
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