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A latin square is an n. X n array of n symbols in which each
symbol appears exactly once in each row and column. Re-
garding each symbol as a variable and taking the determinant,
we get a degree-n polynomial in n variables. Can two latin
squares L, M have the same determinant, up to a renaming
of the variables, apart from the obvious cases when L is ob-
tained from M by a sequence of row interchanges, column
interchanges, renaming of variables, and transposition? The
answer was known to be no if n < 7; we show that it is yes for
n = 8. The latin squares for which this situation occurs have
interesting special characteristics.

1. INTRODUCTION

A latin square of order n is an n xn array of n sym-
bols, usually denoted by {1,...,n}, in which each
symbol appears exactly once in each row and in
each column. Standard references are [Dénes and
Keedwell 1974; 1991]. The unbordered multiplica-
tion table of any group forms a latin square. For
example, the cyclic group C} of order 4, with ele-
ments in the order a°, a', a®, a?, yields the square

>~ W N =
W = N
N =~ — W
N W

An arbitrary latin square is the unbordered multi-
plication table of a quasigroup (a set with a binary
operation with left and right cancellation).

The matriz X7 of a latin square L is obtained
by replacing each element ¢ in L by the variable
z;. The determinant of L is ©; = det X ; if L has
order n, its determinant is a homogeneous polyno-
mial of degree n in n variables.
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Two polynomials ¢, ¥ in {xy,...,z,} are similar
if there exists a permutation ¢ in S, such that
90(371; s 7xn) = :I:'l/}(xa(l)y v 7xa(n))'

Latin squares L and M are isotopic if M can be
obtained from L by a sequence of row interchanges,
column interchanges, and renaming of elements.
More precisely, squares L and M are isotopic if
there exist permutations 7, s, w3 such that

M(i,j) = (L(iﬂlyjﬂz))ﬂ'?)

for all 7, 5. It is clear that isotopic latin squares
have similar determinants, as do L and its trans-
pose L.

If G is a group, the group matriz Xg is the ma-
trix corresponding to the latin square whose (g, h)-
entry is gh~t. Thus, the group matrix for C} is

Ty T3 T2 Ty
Ty T1 Tg T3
T3 Ty T1 T2
Ty T2 T3 X1

The group matrix is interesting because X2 has
exactly the same pattern as Xg, with x; replaced
by >, ©jxg. In fact, X¢ has the same symmetry
for all n. This follows from the fact, proved by
Frobenius, that X¢Ye = Zg, where Yo = {y,n-1},
Zg ={zgn-1} and z, = Zgh:k x4y 1t follows that
if G is commutative then Xs and Y commute, a
result we apply below. The group determinant ©¢
of G is det(X¢g).

The investigation of ©g led Frobenius to the
character theory of nonabelian groups [Frobenius
1896; Hawkins 1971; 1974; Johnson 1991; 1993].
A latin square determinant ©; may be written as
det (3°1, mx;), where the m; are permutation ma-
trices.

Results in the theory of invariants of a finite set
of n x n matrices suggest that O, alone will not
characterise L up to isotopy and transposition; but
in the case of group latin squares, the determi-
nant ©g does determine G [Formanek and Sibley
1991]. More surprisingly, the sequence of coeffi-
cients of monomials in © of the form $;L_3$gl‘h$k

(or equivalently the “regular 3-character”) deter-
mines G [Hoehnke and Johnson 1992].

A character theory is available for quasigroups
or latin squares, developed by one of the authors
and J. D. H. Smith. As in the group case, the
theory can be developed from ©,, but as might
be expected the characters give less information
in the quasigroup case. We refer to [Johnson 1988;
1992] and the references given there for the details.
Before embarking on an investigation of “higher
characters” that arise from the determinant in an
analogous manner to the k-characters of groups
[Hoehnke and Johnson 1992], it appears appropri-
ate to determine the extent of the information on
L that is contained in Oy.

Let E be the equivalence relation on the set of
latin squares of order n in which L is related to M if
L is isotopic to M or M*. A basic question for latin
square determinants is this: Are there squares L,
M that are not E-equivalent but have similar de-
terminants? Note that squares arising from groups
are E-equivalent if and only if the groups are iso-
morphic.

Previously it has been shown that for n < 7 any
two latin squares with similar determinants are E-
equivalent. The cases n < 1,2,3,4 are easy. Cases
5 and 6 can be checked by direct calculation us-
ing symbolic manipulation packages, and the case
n = 7 is handled in [Ferguson 1989]. Here we de-
scribe calculations that settle the case n = 8. We
have found that of the 842227 E-classes all but 37
have dissimilar determinants. The 37 exceptional
E-classes merge into 12 classes of squares with sim-
ilar determinants, each containing between 2 and
7 distinct E-classes. Moreover, the exceptional
squares are all of a special type, in that they are
isotopic to squares of the form [g ?] , where @ and
T are latin squares on {1,2,3,4} and R and S are
latin squares on {5,6,7,8}. Since any latin square
of order 4 is isotopic to a square arising from a
group, the determinants may be described in terms
of the group matrices of the two groups of order
4. Using the properties of group matrices given
above it is reasonably easy to find the symbolic



determinants of the 37 exceptional squares by hand
and to write the results in a compact form. This
contrasts with a typical latin square determinant
of order 8, which cannot in practice be calculated
by hand, since it occupies several pages when ex-
pressed in monommials.

From the point of view of invariants of matrices,
our calculations show that a pair of latin squares
of order 8 have identical determinants if and only
if the coefficients of all monomials ;" " x..",
where n; +n; +ni +n,, = 8, coincide.

Section 2 describes the details of the computa-
tion. Section 3 contains a representative list of
exceptional squares with their determinants, and
examples of how hand calculation of the determi-
nants can be carried out. Other invariants of the
exceptional E-classes are listed. In Section 4 we in-
dicate how to use pairs of E-inequivalent squares
of order n with similar determinants to construct
squares of order kn that are FE-inequivalent but
have similar determinants. We conclude with some
remarks and questions.

2. OVERVIEW OF THE COMPUTATION

The computations were performed in Pascal and
Maple on a DIGITAL VAXstation 4000-90 in the
Computer Science Department at Concordia Uni-
versity. We started with representatives for the
283657 main classes of 8 x 8 latin squares, pro-
vided by Kolesova [Kolesova et al. 1990]. For each
main class representative, we computed row and
column conjugates, thus obtaining a set of 850971
squares that represent (with some redundancy) all
the E-classes.

1. For each representative L, we calculated O (v)
for the 56 distinct permutations v of

(1,1,1,0,0,0,0,0),

and computed n,,, n., and n,, the number of
choices of v for which ©(v) was negative, zero,
and positive, respectively. The set {n,,,n,} is
invariant for latin squares with similar determi-
nants. CPU time: 4h 40min.
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2. For each representative L, we calculated ©(v)
for the 168 distinct permutations v of

(1,1,2,0,0,0,0,0),

and computed s,,, s,, and s,, respectively the
sums of the negative values, positive values, and
squares of values of ©,(v). The sum s, and
the set {|s,,|, s,} are invariant for latin squares
with similar determinants. By sorting, we deter-
mined which triples ¢ = ({nm, 7, }, {|sml, sp}, 5q)
appeared only once. Discarding the correspond-
ing representatives, we eliminated all but 17596
of the representatives. CPU time: 15h 25min.

3. We tested representatives with same values of
the invariant triple ¢ for isotopy and transposed
isotopy, eliminating redundant E-class represen-
tatives. After this step, 529 representatives re-
mained. Incidentally, we confirmed at this point
that there are exactly 842227 E-classes, in agree-
ment with [Kolesova et al. 1990, Table IV]. CPU
time: 23h 43min.

4. For each surviving representative L, we com-
puted O (v) for the 1680 distinct permutations
v of (1,2,3,5,0,0,0,0). This sequence of val-
ues, when sorted and paired with its negative,
is invariant for latin squares with similar de-
terminants. For all but 37 representatives this
invariant was unique; altogether these 37 excep-
tional representatives had 12 distinct invariants.
CPU time: 28min.

5. For representatives with coincident (1,2,3,5)-
sequence values, we searched the isotopy classes
to produce representatives with same (1,1,1)-
sequence and (1,1, 2)-sequence determinant val-
ues. CPU time: 36min.

6. We computed the symbolic determinant for each
of the 37 representative squares, obtaining 12
distinct determinants, all dissimilar. CPU time:
10min.

3. EXPERIMENTAL RESULTS

Consider the equivalence classes induced on the set
of 8 x 8 latin squares by similarity of determinant.
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dy =2f2 - 2f2
1:1

A B B A (234)

1:2 A B (234) B (234 (234) A4 (243)

1:3 A B B (243) 4 (234)

1:4 A B (34)B(34) (30)A4 (29

1:5 A B (34)B(34) (23)4 (29

1:6 A B (243) B (243) (24)A (34)

1:7 A B (24)B(24) (234) A (243)
do = 2f2 +2f2 — 2(v? + w?)vavzwaws

2:1 A B (243) B(243) (23)A (243)

2:2 A B (23)B(23) (243)A (23)
ds = 2f,g0 + 2f2 — (v2 + v3)(v2v3W3 + WiW3 )04

3:1 A B B (24)D (243)

3:2 A B (23)B(23) (243)D(24)
dy = 2f,9, + 2fzzu - (7)2 + /03)(1)2102 + 1)3’1)5)102’[1)3

4:1 A B (243) B (243) (243)D(23)

4:2 A B (243) B (243) (23)D(243)

4:3 A B (23)B (23) (23)D (243

4:4 A (34)B(34) (243) B 243) (243)D(23)
ds = 2fvgv + 2f31 - (U2 + ’03)(’02’03 + ’LU%)’U4’LU3’U.)4

5:1 A B (34)B(34) (24)D (243)

5:2 A B (234) B (234) (243)D(24)

5:3 A B (234) B (234) (24)D(243)
ds = 2fugu + 2f2 — (v2 + v3)(v2w3w] + v3viwd)

6:1 A B B (23)D(243)

6:2 A B (34)B(34) (243)D(23)
dr = 2fog0 + 22 + (v2 + v3) (vowiw} + vgviw3)

7:1 A B B D (1423

7:2 A B (34)B(34) 30)D(13)(24)
ds = 2fugy + 2fwguw — (V2w2 + v3w3) (V2V3W3 + Wow] vy

8:1 A (34)B3a) (243)C (243) (243)D(24)

8:2 A 34) B34 (24)C (29 (24)D (243)

8:3 A @) B2sa)  (23)C213)  (213)D(29)

8:4 A (234) B (234) (24)0( 4) (24)D(243)
do = 2fugv + 2fwgw — (v2w2 + v3ws3) (V203 + Wrw3)Vs

9:1 A (23) B 23) (24)0(24) (24)D(243)

9:2 A B (24)C (24 (24)D (243
dio = 2fv90 + 2fwgw — (V2ws + V3ws)(V2VFWs + V3WsW])

10:1 A (234)3(2 4) (23)C (23) (23)D(234)

10:2 A (23)B 23 (23)C (23) (23)D(231)

10:3 A (234)B(234) (24)C (24) (20)D
diy = 2fogo + 2fwgw — (v2ws + vswz)(vzw3w4 + v3viws)

11:1 A (34)B(34) (23)C (23) (23)D(243)

11:2 A (34)B(34) (243)C (243) (243)D(23)

11:3 A B (243)C (243) (243) D (23)
12 = 2fugu + 2fuwgw + (v2w2 + vsws)(v2wsw] + v3Viw2)

12:1 A 0By (23)C (23) (23)D(142)

12:2 A (30)B(34) (243)C (243) (243)D (1342)

12:3 A B (23)C (23) (23)D(142)

TABLE 1. For each of the 12 determinant similarity classes comprising more than one E-class, we show one

representative [g T] of each component E-class in the form (class identifier, @, R, S, T'). See page 321.



All but twelve of these similarity classes coincide
with E-classes; the exceptional classes are unions
of two or more E-classes.

For each exceptional class, Table 1 shows repre-
sentatives of the distinct E-classes from which it is
composed. These representatives all have the same
determinant, which Table 1 shows in terms of the
polynomials

UV =21+ T2+ T3+ 2y, W =I5+ T+ 7+ T8,
Vo =21 + Ty — X3 — Xy, Wy =2T5+ T —T7—Ts,
V3 =21 — Ty + T3 — Ty, W3=2T5— Te+T7—Ts,

Uy =21 — T2 — T3+ Ty, Wy =2T5—Tg—T7+ T,

f’u = V2U3V4, fw = WaW3W4,
g0 = $(v3 +v3)vs, 9w = (w3 +wy)ws,

and with a common factor of £%(vi — w}) sup-
pressed. Also in the table, A, B, C', D stand for

1 2 3 4 5 6 7 8
2 1 4 3 6 5 8 7

A=l 4 1 210 B=|7 85 6|
4 03 2 1 8 7 6 5
5 7 6 8] 1 3 2 4]
6 5 8 7 2 1 4 3

C=lr 856" P73 41 2]
8 6 7 5 4 2 3 1

and the notation ,S, indicates that permutation p
is applied to the rows of S and permutation o is
applied to the columns of S; thus

(234)A(243) =

ISUIN NCRNTSQ
— s N W
[CRNSURITE
NG S

Each of the 8 x 8 latin squares in Table 1 is of the
form [g ?], with the 4 x 4 latin squares Q, R, S, T
shown sequentially.

As a sample, we offer on page 322 the calculation
of the determinants of the squares in classes 1:1 and

8:1. We use the following well-known result.
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Proposition. If QQ, R, S, T are n X n matrices and
det @ # 0 then

det (CS‘? ?) =detQ - det(T — SQ™'R).

In particular, if Q commutes with R then

det (652 ?) =det(TQ — SR),

and if Q@ commutes with S then

det (652 ?) = det(QT — SR).

Proof.

(D65 -

S T) \S I 0 T—-SQ'R)’

Mapping groups and automorphism groups
The left mapping group M, (L) is the group gener-
ated by the permutations given by the rows of L;
the right mapping group M,(L) is generated by the
permutations given by the columns. For example,
the row 41352687 represents the permutation
(1452)(78). The full mapping group M (L) is the
group generated by M, (L) and M,(L). If L arises
from the Cayley table of a group G, then M,(L)
and M, (L) are isomorphic to G and correspond to
the left and right regular representations of GG, and
M(L) is isomorphic to Inn(G) x G where Inn(G)
denotes the group of inner automorphisms of G.
If Ly, Ly are in reduced form and L, is isotopic
to Ly then M,(L,), M,(L;), M(L;) are respec-
tively isomorphic to My(Ly), M,(L2), M(L,) [Al-
bert 1943]. It is obvious that M,(L) = M,(L") and
M(L) ~ M(L"). Hence M and the set {M,, M,}
are invariants of an E-class.

The automorphism group Aut(L) of L is the
group of triples of permutations (7, w2, 73) which
fix L in the sense that

(L(iwhjﬂ'Z)) T3 = L(Z7J)

Aut(L) is an invariant of the E-class of L.

for all 7, 5.
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Sample determinant calculations. For simplicity we write A, B, C and D for X 4, X5, X¢ and Xp. Setting

V5 =T1 — T4 = (’U2 +’03)

1 1 1 1 1
2 2 2 2 1000 z
pP= i 373 = 0100 and Ve =2y — 3 = 5 (U3 —V3),
I Y T B B “l1o0010) — e — 1
) ) b} ) Wy =T5 —Tg = 2(102 +IU3),
1.1 _1 1 0001 1
2 "2 2 2 w6=$6—$7—§(w2—w3)7
we have
vi 0 0 O wp 0 0 0 wp 0 0 O vi1 0 0 O
_ 0 V2 0 0 _ 0 w2 0 0 _ 0 W5 We 0 _ 0 Vs Vg 0
FAPS 0 0 VU3 0|’ PBP = 0 0 w3 0 ’ L= O—wg Ws 0 ’ PDB = 0—’06 Vs 0
0 0 0 v 0 0 0 wy 0 0 0 ws 0 0 0 w4

moreover P~! = P and PI, = I, P for any permutation o of {2,3,4}. The following sample derivations use
these equalities and the proposition on page 321.

Class 1:1
A B
_ — _ 2 — 2 . _ 2
‘B A =| Athsey— B* | = | P (Alye = B?) P| =| PA*Piass) - PB*P
v2 0 0 0][1000 w? 0 0 0 vi—wi 00 0
llowo ofjoorol [0 wo of_| 0O —wi w3 0O
“1lo 0w2ollo0o01 00 w2olfl[~]| o 0 —w? o2
0002|0100 0 0 0 w? 0 20 —uw?
= (Uz ) (U v3vs w%w%wz) .
Class 8:1
A (34)B(34)

(243)C(243)  (243)D(24)
= | (243)D(24) A= (243)C(243) (30)B(31) | = | P((243)D(24) A — (243)C243) (32 B(34)) P |
= | (243)PD P24y PAP — (343)PCPi243) (34) PBP34) |

1000|{vy O O O 1000 1000|{ws O O O 1000
{10010 0 vs vg O 0001 {0010 0 ws ws O 0001
=llooo1||0o-vs vs 0[l0010|F4P Jo001||0-ws w, 0[]0100]|E0FBe0

10100 0 0 0 wvgf|0O1O00O0 0100 0 0 0 wge||{O0OO010O0

vy O 0 0 vp 0 0 O w; 0 0 O wp; 0 0 O
_ 0 0 Vs —7Vsg 0 () 0 0 0 Ws 0 —Weg 0 w2 0 0
110w O 0 0 0 v O 0 0 wg O 0 0 wg O

L 0 0 Vs Vs 0 0 O V4 0 We 0 Ws 0 0 0 w3

w2 0 0 0 w? 0 0 0 vi—wi 0 0 0
_ 0 0 V3V5 —V4Vg . 0 W W5 0 —W3We _ 0 —W2Ws5 V3V5 —U4Ug + W3We
] 0 vovy 0 0 0 0 w? O a 0 vavg  —w3 0

L 0 0 V3Vg V4 V5 0 WorWe 0 W3 Ws 0 —Wowg U3Vg VU5 — W3Ws

=— (v} —w}) (vovsv}(VE +08) + wowsw} (Wi + wj) — va(vav3W3 +wWowi ) (vsws + vewg)) -
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E-cl My M, M a E-cl M, M, M a| E-cd M\, M, M a | E-cd My M, M a
1:1 96 32 288 96 | 3:1 1152 1152 1152 4 | 6:1 1152 128 1152 8 | 10:1 64 1152 1152 8
1:2 32 32 96192 | 3:2 1152 1152 1152 4 | 6:2 1152 128 1152 8 | 10:2 576 128 1152 4
1:3 96 96 288 48 4:1 1152 128 1152 4 7:1 1152 128 1152 8 10:3 576" 1152 1152 8
I:4 96 32 192 64 | 4.2 1152 1152 1152 4 72 1152 128 1152 8 75 64’ 1152 1152 16
I:5 96 96 576 64 | 4.3 1152 128 1152 4 ::; ;32 ﬂ;; ﬁ;; i 11:2 192 1152 1152 16
1:6 64 64 576 16 . : . '
; L o 44 1152 1152 1162 4 | o0 o0 oo ey, | 113 576 128 1152 8
06464 5760 32 1 5 199 1152 1152 4 | 84 576 1152 1152 4 | 121 64’ 1152 1152 16
2:1 96 64 1152 32 | 52 1152 1152 1152 4 | 9:1 192 128 1152 8 | 12:2 192 1152 1152 16
2:2 32 64 1152 32 | 53 128 128 1152 4 | 9:2 576’ 128 1152 8 | 12:3 576 128 1152 8

TABLE 2.

Mapping groups of representatives of the 37 exceptional E-classes, and size a of the automorphism

group of the classes. Key for the groups, in GAP notation: 32=E(8):E,=[22]D(4), 64=1[2*]dD(4)=E(4)*: D12,

2

64’ = E(8):Ds = [2°]D(4), 96 = E(8):A4 = [ A(4)*]2 = E(4):6, 96' = §[E(4)%:53]2 = E(4)*:Ds, 128 = [2*]D(4),
192 = E(8):S4 = [E(4)%:53]2, 288 = [A(4)%]2, 576 = [1.5(4)?]2, 576’ = £[S(4)%]2, 1152 = [S(4)?]2.

Table 2 lists My, M,, and M for a representative
of each of the 37 exceptional E-classes (in reduced
form), and gives the size a of the automorphism
group of the class. The mapping groups are iden-
tified by their orders, and the corresponding nota-
tion from GAP [Schonert et al. 1994] is shown.

4. CONCLUSION

It is intriguing that of the large number of E-classes
of squares of order 8 so few lie in the exceptional
classes, and that the squares in these classes all
have the regular form described above. This form
may be described algebraically as follows. A latin
square L in reduced form defines a loop @ with
binary operation . by

i.j = L(i, )
(see [Johnson 1992], for example). All the loops Q

arising from squares in the exceptional E-classes
are (non-associative) extensions of the form

1— 0Oy, xCy— Q — Cy, — 1.

The squares of order 8 arising from loops ) that
are extensions of the form

1—Cy, —Q —Cyx(Cy, — 1

were investigated in [Johnson 1988; 1992], and it
was found that distinct E-classes had dissimilar
determinants. Our expectation was that if distinct
FE-classes had similar determinants, this would be
most likely to occur among squares which had little
regularity.

Once we have squares L;, L, of order n in dis-
tinct E-classes with similar determinants, we can
produce squares of higher orders with similar de-
terminants as follows. Let L() be the square ob-
tained from L by replacing the element k by k+nj,

j=1,...,r, and let rL be defined as
L L= ()
L2 3 L) LM
L L=2) (=1

It is readily seen using [Muir and Matzler 1960,
p. 487] that ©, is given by

(_1)(r—1)(r—2)/2
r—1

X H det (XL(I) +p]XL(2) +p2]XL(3) +-- '+p(r_1)]XL('r-) ),
=0
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where p = ¢*™/". Hence O, is obtained from O,

by replacing x; with
Ty, 4 p T+ + p(r_l)hxk+(rfl)n-

It follows that ©,7, and ©,, are similar.

We remark that if L has left and right mapping
groups M, and M, then the corresponding groups
for rL are

rMy=M1C, and rM,=M,1C,

where ! indicates the wreath product. Thus, if the
squares L; and L, are chosen so that the sets

{IML(Lo)], |M,(L)|} - and - {[ My (L)), [M, (Ls)[}

are distinct (for example, if L; = 1:1 and L, = 1:2
in Table 1), it follows from considerations of orders
that the sets {M,(rLy), M,(rL,)} and {M,(rL,),
M, (rL,)} are also distinct, so that rL; and rL, are
E-inequivalent, using the result in [Albert 1943]
mentioned above. Thus we have F-inequivalent
squares with similar determinants for all orders of
the form 8k, for k =1,2,....

Questions. 1. For which other orders are there E-
inequivalent squares with similar determinants?

2. Are there FE-inequivalent squares with trivial
automorphism group with similar determinants?

3. Are there F-inequivalent squares with full map-
ping group S, with similar determinants?
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