# Bell's Primeness Criterion for $W(2 n+1)$ 

Mark C. Wilson, Geoffrey Pritchard, and David H. Wood

## CONTENTS

1. Introduction
2. Definitions
3. Experimental Data
4. Proofs
5. Comments and Future Work

Electronic Availability
Acknowledgements
References

AMS Subject Classification. Primary: 17B35. Secondary: 17-04, 16W55, 17A70.

On the basis of experimental work involving matrix computations, we conjecture and prove that a criterion due to Bell for primeness of the universal enveloping algebra of a Lie superalgebra applies to the Cartan type Lie superalgebras $W(n)$ for $\mathrm{n}=3$ but does not apply for odd $\mathrm{n} \geq 5$.

## 1. INTRODUCTION

A Lie superalgebra is a $\mathbb{Z}_{2}$-graded vector space $L=L_{0} \dot{+} L_{1}$ with a graded bilinear product mapping [, ] : $L \times L \rightarrow L$ that satisfies certain identities. A good general reference is [Scheunert 1979]. In particular the restriction to $L_{1}$ of the product map yields a symmetric bilinear map. A result of Bell [1990] shows that if the product matrix representing this map is nonsingular the universal enveloping algebra $U(L)$ is a prime ring.

The finite-dimensional simple Lie superalgebras over an algebraically closed field of characteristic zero have been classified by V. Kac [1977]. There is an important structural division of such algebras into those of classical type and those of Cartan type. It is known [Bell 1990; Kirkman and Kuzmanovich 1996] that Bell's criterion holds for all but one family of the classical simple algebras. Wilson [1996; $\geq$ 1997] has attempted to determine whether Bell's criterion applies to the simple Lie superalgebras of Cartan type, and has shown that the algebras in the families of $W(2 n)$ and $H(n)$ also satisfy the criterion, and that $S(2 n+1)$ does not. The proofs in these cases, though not trivial, were of a more straightforward character than in the present paper.

Here we dispose of one of the remaining cases by showing that $W(n)$ does not satisfy Bell's criterion if $n$ is odd and $n \geq 5$. While this has no obvious
ring-theoretic ramifications, the greater complexity of this case leads to an interesting interplay between experimental and rigorous mathematics, and suggests further work. In fact the algebras $W(2 n+1)$ provide the first "naturally occurring" case where Bell's criterion fails for a nontrivial reason.

In section 2 we introduce the basic notation and background. The first subsection can be safely omitted at a first reading, but the others are essential for the rest of the paper. Section 3 presents our experimental results and section 4 our theorems and proofs.

## 2. DEFINITIONS

## The Algebra W(n)

A good reference for this subsection is [Scheunert 1979].

Let $K$ be a field of characteristic zero and let $\Lambda=\Lambda(V)$ be the exterior (Grassmann) algebra of the vector space $V=K^{n}$. Then $\Lambda$ is an associative superalgebra of dimension $2^{n}$ where the $\mathbb{Z}_{2}$-grading is induced by the usual $\mathbb{Z}$-grading given by degree.

Let $W=W(n)=D(\Lambda)$, the Lie superalgebra of superderivations of $\Lambda$. Then

$$
W=\bigoplus_{r} W_{r}
$$

is naturally $\mathbb{Z}$-graded and this grading is consistent with the $\mathbb{Z}_{2}$-grading. Here the graded component $W_{r}$ consists of all superderivations that map $V$ into $\Lambda_{r+1}$, so the highest degree actually occurring is $n-1$ and the lowest is -1 .

For homogeneous $\partial \in W$ and $x, y \in \Lambda$, we have

$$
\partial(x y)=\partial(x) y \pm x \partial(y)
$$

where the - occurs if and only if both $x$ and $\partial$ are odd. Every element of $W$ restricts to a linear map $V \rightarrow \Lambda$. Conversely every element of $W$ arises in this way and we have the isomorphism of vector spaces $W \cong \Lambda \otimes_{K} V^{*}$, where $V^{*}$ denotes the linear dual of $V$. We shall use this identification in the rest of the paper. Under this isomorphism the
element $a \otimes f$ is identified with the superderivation taking $v \in V$ to $a f(v) \in \Lambda$. One obtains the multiplication formula for odd elements

$$
[a \otimes f, b \otimes g]=a f(b) \otimes g+b g(a) \otimes f
$$

## Computations in $\wedge \otimes \mathrm{V}^{*}$

In this subsection we interpret the preceding concepts in terms of a specific basis for $\Lambda \otimes V^{*}$. We shall use the formulas obtained here throughout the remainder of the paper.

The exterior algebra $\Lambda(V)$ is the free anticommutative algebra on $V$. In other words it is generated by $V$ and all relations are consequences of the basic identity $v w=-w v$ for all $v, w \in V$. Of course this implies that $v^{2}=0$ for all $v \in V$.

In this paper ordered sets will always be written as lists $\left\langle i_{1}, \ldots, i_{r}\right\rangle$. A subset of a set will not automatically inherit any ordering that its superset may happen to have.

Fix an ordered basis $\left\langle v_{1}, \ldots, v_{n}\right\rangle$ for $V$. For each subset $I$ of $N=\langle 1, \ldots, n\rangle$, choose an order $i_{1}<$ $i_{2}<\cdots<i_{r}$ of $I$ and define $v_{I}=v_{i_{1}} v_{i_{2}} \cdots v_{i_{r}}$. The set of all such $v_{I}$ (where we define $v_{\varnothing}=1$ ) forms a basis for $\Lambda$. Here the choice of ordering of $I$ is completely arbitrary; changing the order of $I$ only changes the corresponding $v_{I}$ by a factor of $\pm 1$. For definiteness, unless otherwise stated we shall assume $I$ to be ordered in natural (increasing) order as a subset of $N$.

We shall need the following easily established formula, valid for any ordering of $I$.

$$
\begin{align*}
v_{I} & =(-1)^{|I|-p(I, i)} v_{d(I, i)} v_{i} \\
& =(-1)^{1+p(I, i)} v_{i} v_{d(I, i)} \tag{2.1}
\end{align*}
$$

if $i \in I$. Here by $d(I, i)$ we mean the ordered set $I$ with the element $i$ (if it appears) deleted. This set is considered to inherit its order from $I$.

Let $\left\langle\partial_{1}, \ldots, \partial_{n}\right\rangle$ be the dual basis to $\left\langle v_{1}, \ldots, v_{n}\right\rangle$, so that $\partial_{i}\left(v_{j}\right)=\delta_{i j}$. For any choice of orderings of the $I$, the set of all $v_{I} \otimes \partial_{i}$ is a basis of $\Lambda \otimes V^{*}$. For our later computations we shall always use use the following choice. If $i \notin I$ then we order $I$ naturally as a subset of $N$. However if $i \in I$ we order
$I$ naturally, except that we insist that $i$ be the last element of $I$. Thus if $I^{\prime}$ is the complement $I \backslash\{i\}$ we have $v_{I} \otimes \partial_{i}=v_{I^{\prime}} v_{i} \otimes \partial_{i}$, where $I^{\prime}$ is in natural (increasing) order. Note that the ordering of $I$ depends on $i$ here, so that in basis elements $v_{I} \otimes \partial_{i}$ and $v_{I} \otimes \partial_{j}$ the set $I$ may be ordered differently.

Given an ordered set $I$ and an integer $i$, let $p(I, i)$ denote the position of $i$ in $I$ if it occurs and zero otherwise. Explicitly,

$$
p(I, i)= \begin{cases}s & \text { if } I=\left\langle i_{1}, \ldots, i_{r}\right\rangle \text { and } i=i_{s} \\ 0 & \text { if } i \notin I\end{cases}
$$

The degree of a basis element $v_{I} \otimes \partial_{i}$ is $|I|-1$, and such an element is called odd or even according as its degree is either odd or even. Note that the maximum degree occurring is $n-1$ and the minimum is -1 . It follows from all our definitions and identifications that the multiplication formula for odd elements becomes

$$
\begin{align*}
& {\left[v_{I} \otimes \partial_{i}, v_{J} \otimes \partial_{j}\right]} \\
& \quad=(-1)^{1+p(J, i)} \chi_{J}(i) v_{I} v_{d(J, i)} \otimes \partial_{j} \\
& \quad+(-1)^{1+p(I, j)} \chi_{I}(j) v_{J} v_{d(I, j)} \otimes \partial_{i} \tag{2.2}
\end{align*}
$$

Here $\chi_{J}$ denotes the characteristic function of the set $J$. Note that it is immediate from (2.2) and anticommutativity that the product is zero if $I \cap J$ has two or more elements.

$$
\left[\begin{array}{cccccccccccc}
0 & 0 & 0 & -y_{21} & y_{22} & y_{23} & -y_{31} & y_{32} & y_{33} & 0 & 0 & 0 \\
0 & 0 & 0 & y_{11} & -y_{12} & -y_{13} & 0 & 0 & 0 & y_{31} & -y_{32} & y_{33} \\
0 & 0 & 0 & 0 & 0 & 0 & y_{11} & -y_{12} & -y_{13} & -y_{21} & y_{22} & -y_{23} \\
-y_{21} & y_{11} & 0 & 0 & 0 & 0 & 0 & z_{2} & -z_{3} & 0 & -z_{1} & 0 \\
y_{22} & -y_{12} & 0 & 0 & 0 & 0 & -z_{2} & 0 & 0 & z_{1} & 0 & z_{3} \\
y_{23} & -y_{13} & 0 & 0 & 0 & 0 & z_{3} & 0 & 0 & 0 & z_{3} & 0 \\
-y_{31} & 0 & y_{11} & 0 & -z_{2} & z_{3} & 0 & 0 & 0 & 0 & 0 & z_{1} \\
y_{32} & 0 & -y_{12} & z_{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & z_{2} \\
y_{33} & 0 & -y_{13} & -z_{3} & 0 & 0 & 0 & 0 & 0 & z_{1} & z_{2} & 0 \\
0 & y_{31} & -y_{21} & 0 & z_{1} & 0 & 0 & 0 & z_{1} & 0 & 0 & 0 \\
0 & -y_{32} & y_{22} & -z_{1} & 0 & z_{3} & 0 & 0 & z_{2} & 0 & 0 & 0 \\
0 & y_{33} & -y_{23} & 0 & z_{3} & 0 & z_{1} & z_{2} & 0 & 0 & 0 & 0
\end{array}\right]
$$

One can compute, using a computer algebra system such as Maple, that this matrix is in fact nonsingular, so that $W(3)$ satisfies Bell's criterion. It was shown in [Wilson 1996] that the even Witt algebras $W(2 n)$ satisfy Bell's criterion. Proving such a result relies on finding a generally applicable specialization. However, though one can find many specializations that work for $W(3)$, it is unclear how to generalize any of them even from $n=3$ to $n=5$.

## 3. EXPERIMENTAL DATA

## Probabilistic Methods

The first author has written Maple code, used for all computations in this subsection, that generates the product matrices for all Cartan type simple Lie superalgebras. See the section on Electronic Distribution before the bibliography.

The rather straightforward methods used in previous papers yield nothing, so we resort to experiment. Maple shows easily that the $12 \times 12$ product matrix of $W(3)$ is nonsingular. We turn our attention to the product matrix $\boldsymbol{W}(5)$ of $W(5)$. Experimentally, we must first decide if we think $\boldsymbol{W}(5)$ is likely to be singular or not; then hunt for a possible proof. A computer algebra program such as Macsyma or Maple might attempt to determine the singularity of $\boldsymbol{W}(5)$ by direct elementary methods. However, $\boldsymbol{W}(5)$ is too large for this to be successful; it is an $80 \times 80$ matrix whose entries involve 80 variables. One way to simplify the computation is by specialization; give each variable an (integer) value, and study the resulting numerical matrix. It is clear that the rank of the specialized matrix cannot exceed that of $\boldsymbol{W}(5)$ itself. Thus, if we find a nonsingular specialized matrix, we may conclude that $\boldsymbol{W}(5)$ is nonsingular. But it is unclear how to choose values for the variables so that the rank of the specialized matrix will be large; most regularlooking choices have too much symmetry to give a large rank.

In the absence of any cleverer ideas, a reasonable thing to do is to choose values at random in some
way. This gives not just one specialization, but many-a different one each time we try it.

Early on, then, we attempted to calculate the ranks of randomly specialized versions of $\boldsymbol{W}(5)$. The variables were given independent random values sampled from a probability distribution $\mu$; distributions $\mu$ we used included:
(i) The values 0 and 1, each taken with probability $\frac{1}{2}$. This has the advantage of simplifying computation.
(ii) The values $-1,0$, and 1 , each taken with probability $\frac{1}{3}$.
(iii) The values $-80, \ldots, 80$, taken with equal probability.

We performed 100 specializations for each distribution, and computed the rank of the resulting matrices. The results were as follows:

| Method | Rank $<75$ | Rank $=75$ |
| :---: | :---: | :---: |
| (i) | 14 | 86 |
| (ii) | 2 | 98 |
| (iii) | 0 | 100 |

In no case did the rank of a specialization exceed 75. We are thus provided with no firm conclusion; if we are to take anything from this exercise, it is a belief that $\boldsymbol{W}(5)$ may well be singular. However, it is not clear a priori how much faith one should place in these results. For a sufficiently generic matrix they would appear compelling, but the structure of the matrix in question may have a large effect on the data. It is conceivable that specializations exist that give the matrix full rank, but that they are generated only with low (or zero) probability by our random methods. In (i), for example, each specialization will give the value 0 to about half the variables and the value 1 to the rest. Might not achieving full rank require the 1's to be in a strong majority?

Fortunately there is an argument that can lay most of our fears to rest. We are really attempting to determine whether the determinant of $\boldsymbol{W}(5)$, a polynomial in our 80 variables, is the 0 polynomial.

We can make use of the following known result (see [Schwartz 1980], for example):
Proposition 3.1. Let $Q$ be a nonzero polynomial in $n$ variables. Let I be a finite subset of the coefficient field of $Q$, with $|I| \geq c \operatorname{deg} Q$. Then the number of elements of $I^{n}$ that are zeros of $Q$ is at most $c^{-1}|I|^{n}$.
In our case $\operatorname{deg}(Q) \leq 80$, and if we take $I=$ $\{-80, \ldots, 80\}$ as in case (iii) above, the inequality in this result is satisfied with $c=2$. So if $\boldsymbol{W}(5)$ is nonsingular, each random specialization of the sort in (iii) has probability at least $1 / 2$ of detecting this fact; that we failed to detect it in 100 tries means that we have witnessed a very rare event (one with probability smaller than $2^{-100} \approx 10^{-30}$ ). It thus appears that $\boldsymbol{W}(5)$ is very probably singular.

Similar support can be given for the assertion that the rank of $\boldsymbol{W}(5)$ is exactly 75 ; we omit the details here. While this kind of probabilistic argument does not constitute proof, it is quite sound enough for further experimental investigations to be based on its conclusion. For more on arguments of this type, see [Chaitin and Schwartz 1978].

## The Nullspace

Additional exact rank computations were made to supplement the lower bounds found in the previous section. We used Macsyma for all the computations discussed in this section. Proving the singularity of a $80 \times 80$ matrix with 80 variables is a daunting task. Even the fact that half the matrix entries are zero may not help very much. Examples of expanded determinants like ours can have $2^{79}$ terms.

There is one special situation that could be efficiently exploited, however. In all other nontrivial cases where Bell's criterion does not hold, this is caused purely by the zero-pattern of the product matrix-its expanded determinant has no nonzero terms. Now this fact can be demonstrated by a $O\left(n^{5 / 2}\right)$ algorithm [Hopcroft and Karp 1973] applied to a $0-1$ matrix with the same zero pattern as the matrix of interest. Hoping to exploit this
fact, we formed a general $80 \times 80$ matrix having the same zero pattern as our candidate. When the variables in this matrix were randomly specialized, the calculated determinants were not zero. Thus, there was no hope that the zero pattern alone could make our candidate singular. Hence if indeed $\operatorname{det} \boldsymbol{W}(5)=0$, this is caused by some interesting cancellation in the expanded determinant.

One must avoid having too many variables in a symbolic computation. Intermediate computations involving many variables may very well exhaust computer memory even if the final answer would be quite compact. To avoid this situation, we randomly specialized the variables and performed all arithmetic over the ring $\mathbb{Z}_{9973}$. The prime 9973 was chosen for the convenience of having displayed integers having at most four digits.
When we asked for not merely the rank of our specialized matrices, but for their nullvectors, we were fortunate to find the 80 -tuples representing the nullvectors all began with at least 55 zeros. We therefore undertook to prove, if we could, that the last 25 columns of the unspecialized matrix has rank of only 20 , implying a rank deficiency of at least 5 for the entire matrix.
In the partitioning of $\boldsymbol{W}(5)$ introduced in the next section, the last 25 columns consist of the block $\boldsymbol{W}_{-1,3}$ with 5 rows involving 50 variables, the block $\boldsymbol{W}_{1,3}$ with 50 rows involving only 5 variables, and additional rows of zeros, which we disregarded.

Naturally, the first block, $\boldsymbol{W}_{-1,3}$, was avoided as long as possible because it involves 50 variables. We wanted to show the remaining nonzero rows, which form $\boldsymbol{W}_{1,3}$, were of rank 15 , because it would then follow that the rank of all of the rows in the last 25 columns could not exceed 20 .

Concentrating, then, on $W_{1,3}$, which has only 5 variables, we further reduced the task to finding a (right) nullvector using only some of its rows because the random specialization indicated these sufficed to obtain rank 15 . The resulting nullvector was then demonstrated to nullify all of $\boldsymbol{W}_{1,3}$. Since the nullvector was found to depend on 10 free
parameters, we had proved the rank of $\boldsymbol{W}_{1,3}$ to be 15 , as we had expected.

Summarizing, we showed that the rank of all of the rows in the last 25 columns could not exceed 20. Hence, neither could the column rank exceed 20. As a result the entire matrix can not have rank exceeding 75. But in the previous section, we saw that the rank was at least 75 .

With hindsight, we see that we erred on the side of caution. In less than 4 seconds of computing time on our workstation, Macsyma finds the rank of $\boldsymbol{W}_{1,3}$ to be 15 . In addition, one can find an explicit row dependence, but its form, with 55 original variables and 5 free parameters, makes it difficult to interpret and generalize.

At this stage we have proved that $\boldsymbol{W}(5)$ does not satisfy Bell's criterion. It remains to see whether the argument above will generalize to $\boldsymbol{W}(\boldsymbol{n})$, for odd $n>5$. To do this we have to exhibit the row dependencies explicitly. This is carried out in the next section.

## 4. PROOFS

In the light of the above it is easy to conjecture that the product matrices for odd $n \geq 5$ are singular. This is proved below, by finding an upper bound for the rank of the submatrix $\boldsymbol{W}_{,, n-2}$, as suggested by our experimental work.

A rather detailed analysis of the structure of the product matrix is required, and the particular basis we use plays a crucial role. Of course, this basis was not the one first used, but was discovered in the course of the analysis. The fact that we use the same basis elements for the rows and columns means that the product matrix is symmetric.

## Detailed Structure of the Product Matrix

From now on assume that $n \geq 3$ is odd. Then the highest odd degree occurring in $W$ is $n-2$ and the highest even one $n-1$. Grouping the basis elements by increasing degree we obtain a block structure to the product matrix. We let $\boldsymbol{W}_{r, s}$ denote the product submatrix formed by all products of $\boldsymbol{W}_{r}$ with
$\boldsymbol{W}_{s}$, let $\boldsymbol{W}_{r, \text {, denote the horizontal concatenation }}$ of all $\boldsymbol{W}_{r, s}$, and let $\boldsymbol{W}_{\cdot, s}$ denote the vertical concatenation of all $\boldsymbol{W}_{r, s}$. Then the product matrix $\boldsymbol{W}(\boldsymbol{n})$ has the structure

$$
\left(\begin{array}{cccccc}
0 & \boldsymbol{W}_{-1,1} & \boldsymbol{W}_{-1,3} & \ldots & \boldsymbol{W}_{-1, n-4} & \boldsymbol{W}_{-1, n-2} \\
\boldsymbol{W}_{1,-1} & \boldsymbol{W}_{1,1} & \ldots & \ldots & \boldsymbol{W}_{1, n-4} & \boldsymbol{W}_{1, n-2} \\
\boldsymbol{W}_{3,-1} & \ldots & \ldots & \ldots & \boldsymbol{W}_{3, n-4} & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
\boldsymbol{W}_{n-2,-1} & \boldsymbol{W}_{n-2,1} & 0 & \ldots & 0 & 0
\end{array}\right) .
$$

We will find an upper bound for the rank of each block $\boldsymbol{W}_{r, n-1-r}$.

Fix an odd $r$ with $1 \leq r \leq n-2$. The component $W_{n-1}$ has basis consisting of all $z_{k}=v_{N} \otimes \partial_{k}$ with $k \in N$, so every nonzero entry in $\boldsymbol{W}_{r, n-1-r}$ is a linear combination of the $z_{k}$.

Let $I, J \subseteq N$ with $|I|=r+1,|J|=n-r$. We now obtain conditions on $(I, i)$ and $(J, j)$ in order that the entry of $\boldsymbol{W}_{r, n-1-r}$ in the row indexed by $(I, i)$ and the column indexed by $(J, j)$ be nonzero. This entry is of course equal to $\left[v_{I} \otimes \partial_{i}, v_{J} \otimes \partial_{j}\right]$. We say that $(I, i)$ and $(J, j)$ are linked in this situation. We shall not pursue the obvious graph-theoretical interpretation of this term.

It follows from the multiplication formula (2.2) that a necessary condition for linking is that $I \cap J=$ $\{i\}$ or $I \cap J=\{j\}$. These two possibilities are in fact mutually exclusive, since

$$
\begin{equation*}
\left[v_{I} \otimes \partial_{i}, v_{J} \otimes \partial_{i}\right]=0 \tag{4.1}
\end{equation*}
$$

if $|I|$ and $|J|$ are even and $I \cap J=\{i\}$. To see this, we compute:

$$
\begin{aligned}
{\left[v_{I} \otimes \partial_{i}, v_{J}\right.} & \left.\otimes \partial_{i}\right] \\
& =-v_{I} v_{d(J, i)} \otimes \partial_{i}-v_{J} v_{d(I, i)} \otimes \partial_{i} \\
& =\left(-v_{d(I, i)} v_{i} v_{d(J, i)}-v_{d(J, i)} v_{i} v_{d(I, i)}\right) \otimes \partial_{i} \\
& =\left(v_{d(I, i)} v_{d(J, i)} v_{i}-v_{d(I, i)} v_{d(J, i)} v_{i}\right) \otimes \partial_{i} \\
& =0 .
\end{aligned}
$$

In summary, $(I, i)$ and $(J, j)$ are linked if and only if $i \neq j$ and $I \cap J=\{i\}$ or $I \cap J=\{j\}$. The
corresponding entry in $\boldsymbol{W}(\boldsymbol{n})$ equals $\pm z_{k}$ for some $k \in N$, and is given exactly by

$$
\left[v_{I} \otimes \partial_{i}, v_{J} \otimes \partial_{j}\right]= \begin{cases}v_{I \backslash\{i\}} v_{J} \otimes \partial_{j} & \text { if } I \cap J=\{i\}, \\ v_{J \backslash\{j\}} v_{I} \otimes \partial_{i} & \text { if } I \cap J=\{j\} .\end{cases}
$$

The cases where $i \in I$ and $i \notin I$ behave rather differently, and we examine each separately in more detail.

Case $i \notin I$. Here we must have $I \cap J=\{j\}$. For each $j \in I$ there is exactly one such $J$ and in fact we have $v_{J} \otimes \partial_{j}=v_{N \backslash I} v_{j} \otimes \partial_{j}$ by our basis convention. Thus the corresponding entry in the product matrix is

$$
v_{N \backslash I} v_{I} \otimes \partial_{i} .
$$

Note that this is independent of $J$ and $j$ and so a row indexed by such a pair $(I, i)$ has precisely $|I|$ nonzero entries all of which are the same. Furthermore, for a fixed $I$ the nonzero entries occur in the same columns for all $i$.

Case $i \in I$. There are three subcases.
$I \cap J=\{j\}$. We have $v_{J} \otimes \partial_{j}=v_{N \backslash I} v_{j} \otimes \partial_{j}$ and $v_{I} \otimes \partial_{i}=v_{d(I, i)} v_{i} \otimes \partial_{i}$, so the entry in the product matrix is

$$
v_{N \backslash I} v_{d(I, i)} v_{i} \otimes \partial_{i} .
$$

$I \cap J=\{i\}, j \in J$. Here $v_{I} \otimes \partial_{i}=v_{N \backslash J} v_{i} \otimes \partial_{i}$ and the corresponding entry is

$$
v_{N \backslash J} v_{d(J, j)} v_{j} \otimes \partial_{j} .
$$

$I \cap J=\{i\}, j \notin J$. Here the corresponding entry is

$$
v_{N \backslash J} v_{J} \otimes \partial_{j}
$$

## Estimating Ranks

After these preliminaries we can now prove a key lemma.
Lemma 4.1. The rank of $\boldsymbol{W}_{r, n-1-r}$ is at most $\binom{n+1}{r+1}$.
Proof. Fix $A \subseteq N$ with $|A|=r$. For each $k \in$ $B=N \backslash A$, consider the submatrix $S_{k}$ of $\boldsymbol{W}_{r, n-1-r}$ formed by all rows indexed by pairs $(A \cup\{k\}, i)$ as $i$ ranges over $B$. By the analysis above, the
columns that correspond to nonzero entries in $S_{k}$ are indexed by pairs of the four types $(B, j), j \in A$; $(B, k) ;(B, j), j \in B \backslash\{k\} ;(B \backslash\{k\} \cup\{j\}, j), j \in A$.

Let $F$ be the function field $K\left(z_{1}, \ldots, z_{n}\right)$. The rows where $i \neq k$ span a 1 -dimensional $F$-subspace since we are in the case $i \notin I$ above. Thus using suitable row operations over $F$ we may assume that such rows contain only ones and zeroes. Furthermore the ones occur precisely in the columns of the second and fourth types above.

We now compute the remaining entries of $S_{k}$, namely those in the row with $i=k$. For the columns of the first type we are in the $I \cap J=\{i\}$, $j \notin J$ above and the entry is $v_{A} v_{B} \otimes \partial_{j}$. This is equal to $\varepsilon(A) z_{j}$ where $\varepsilon(A)= \pm 1$. For the column of the second type the entry is of course zero by (4.1).

For the columns of the third type we are in the case $I \cap J=\{i\}, j \in J$ above, and the entry is $v_{A} v_{d(B, j)} v_{j} \otimes \partial_{j}$. This can be rewritten using (2.1) as $(-1)^{|B|-p(B, j)} v_{A} v_{B} \otimes \partial_{j}$, which equals

$$
(-1)^{p(B, j)} v_{A} v_{B} \otimes \partial_{j}
$$

since $|B|=n-1-r$ is even. We can write this as $\varepsilon(A, j) z_{j}$ where $\varepsilon(A, j)= \pm 1$.

Finally, for columns of the fourth type we are in the case $i \in I, I \cap J=\{j\}$. The corresponding entry is $v_{d(B, k)} v_{A} v_{k} \otimes \partial_{k}$. This simplifies to $v_{A} v_{k} v_{d(B, k)} \otimes \partial_{k}$ by anticommutativity and then to $(-1)^{1+p(B, k)} v_{A} v_{B} \otimes \partial_{k}$ by (2.1). In terms of the notation of the previous case this is equal to $-\varepsilon(A, k) z_{k}$.

Thus $S_{k}$ may be represented as in Table 1, top. By adding $\varepsilon(A, k) z_{k}$ times any of the rows with $i \neq k$ to the row with $i=k$ we convert $S_{k}$ to a matrix that may be represented as in Table 1, bottom. In particular, note that if we keep $A$ fixed and perform the above procedure for each $k \in B$ in turn, all the rows with $i=k$ are now identical, so form a rank-1 submatrix.

Now allow $A$ to vary. Each row of $\boldsymbol{W}_{r, n-1-r}$ that is indexed by some $(I, i)$ with $i \in I$ appears precisely once in the above construction. Thus the

|  | $(B, j), j \in A$ | $(B, k)$ | $(B, j), j \in B \backslash\{k\}$ | $((B \backslash\{k\}) \cup\{j\}, j), j \in A$ |
| :---: | :---: | :---: | :---: | :---: |
| $i=k:$ | $\varepsilon(A) z_{j}$ | 0 | $\varepsilon(A, j) z_{j}$ | $-\varepsilon(A, k) z_{k}$ |
| $i \neq k:$ | 0 | 1 | 0 | 1 |
|  |  | $(B, j), j \in A$ | $(B, j), j \in B$ | $((B \backslash\{k\}) \cup\{j\}, j), j \in A$ |
| $i=k:$ | $\varepsilon(A) z_{j}$ | $\varepsilon(A, j) z_{j}$ | 0 |  |
| $i \neq k:$ | 0 | $\delta_{k j}$ | 1 |  |

TABLE 1. Entries of $S_{k}$. The row $i=k$ of the table represents one row of $S_{k}$, whereas the row $i \neq k$ represents $n-r-1$ rows. Each column of the table may represent many columns of $S_{k}$. Top: original matrix. Bottom: after row operations.
total contribution to the rank of $\boldsymbol{W}_{r, n-1-r}$ by such rows is at most equal to the number of $A$, namely $\binom{n}{r}$. As noted above, for a given $I$ then the rows indexed by $(I, i)$ with $i \notin I$ are the same for all $i$. Thus the total contribution to the rank by rows with $i \notin I$ is at most equal to the number of $I$, namely $\binom{n}{r+1}$. Hence $\boldsymbol{W}_{r, n-1-r}$ has rank at most $\binom{n}{r}+\binom{n}{r+1}=\binom{n+1}{r+1}$.

We illustrate the above proof in our example $n=3$. Take $A=\{1\}$. Then the submatrix $S_{2}$ when represented as above yields

|  | $x_{231}$ | $x_{322}$ | $x_{233}$ | $x_{311}$ |
| :---: | :---: | :---: | :---: | :---: |
| $x_{122}$ | $z_{1}$ | 0 | $z_{3}$ | $-z_{2}$ |
| $x_{123}$ | 0 | $z_{3}$ | 0 | $z_{3}$ |

while $S_{3}$ is represented as

|  | $x_{231}$ | $x_{233}$ | $x_{322}$ | $x_{211}$ |
| :---: | :---: | :---: | :---: | ---: |
| $x_{132}$ | 0 | $z_{2}$ | 0 | $z_{2}$ |
| $x_{133}$ | $z_{1}$ | 0 | $z_{2}$ | $-z_{3}$ |

The main result follows directly:
Theorem 4.2. If $n$ is odd, $W(n)$ satisfies Bell's criterion only for $n=3$.

Proof. The case $n=1$ is trivial and the associated $1 \times 1$ product matrix is 0 . Now assume that $n \geq 3$. The submatrix $\boldsymbol{W}_{\text {., } n-2}$ (the rightmost "column" of the product matrix) consists of two nonzero blocks and has dimensions $\left(n 2^{n-1}\right) \times n^{2}$. Since the rank of $\boldsymbol{W}_{-1, n-2}$ is at most $n$, it follows from Lemma 4.1 that the rank of $\boldsymbol{W}_{\cdot, n-2}$ is at most $n+\binom{n+1}{2}=$ $n(n+3) / 2$. Thus the rank of $\boldsymbol{W}(\boldsymbol{n})$ is at most $n 2^{n-1}-n^{2}+n(n+3) / 2=n 2^{n-1}-n(n-3) / 2$. For
$n \geq 5$ this is strictly less than $n 2^{n-1}$. We know the criterion holds for $n=3$.

Note that for $n=5$ the bound in the proof yields the correct answer 75 . For $n=3$ the bound also gives the right answer 12. One can show using Lemma 4.1 that the bound is not sharp for $n \geq 7$. We do not have a conjecture for the exact value of the rank when $n \geq 7$.

## 5. COMMENTS AND FUTURE WORK

The converse of Bell's criterion is not yet known to be either true or false, though false seems (intuitively) most likely. In light of this, it would be of interest to know whether $U(W(n))$ is prime for odd $n \geq 5$. We have made no progress on this question.

The first two authors have recently shown that if $n$ is even, the Cartan type algebras $S(n)$ and $\tilde{S}(n)$ satisfy Bell's criterion. Details will appear J. Pure Appl. Algebra (Proceedings of International Ring Theory Conference, Miskolc, Hungary, July 1996). Thus all the Cartan type Lie superalgebras have been accounted for.

## ELECTRONIC AVAILABILITY

The Maple code by Mark Wilson used for the computations of Section 3 can be accessed from the Web page http://www.math.auckland.ac.nz/ $\sim$ wilson/Research/bellcrit/bellcrit.html. The same page also contains the latest details on the verification of Bell's criterion.

## ACKNOWLEDGEMENTS

The authors thank Dave Saunders for his assistance with their collaboration, and the referees for their helpful comments.

## REFERENCES

[Bell 1990] A. D. Bell, "A criterion for primeness of enveloping algebras of Lie superalgebras", J. Pure Appl. Algebra 69 (1990), 111-120.
[Chaitin and Schwartz 1978] G. J. Chaitin and J. T. Schwartz, "A note on Monte Carlo primality tests and algorithmic information theory", Comm. Pure Appl. Math. 31:4 (1978), 521-527.
[Hopcroft and Karp 1973] J. E. Hopcroft and R. M. Karp, "An $n^{5 / 2}$ algorithm for maximum matchings in bipartite graphs", SIAM J. Comput. 2:4 (1973), 225-231.
[Kac 1977] V. G. Kac, "Lie superalgebras", Adv. in Math. 26 (1977), 8-96.
[Kirkman and Kuzmanovich 1996] E. Kirkman and J. Kuzmanovich, "Minimal prime ideals in enveloping algebras of Lie superalgebras", Proc. Amer. Math. Soc. 124 (1996), 1693-1702.
[Scheunert 1979] M. Scheunert, The theory of Lie superalgebras, Lecture Notes in Math. 716, Springer, 1979.
[Schwartz 1980] J. T. Schwartz, "Fast probabilistic algorithms for verification of polynomial identities", J. Assoc. Comput. Mach. 27 (1980), 701-717.
[Wilson 1996] M. C. Wilson, "Primeness of the enveloping algebra of a Cartan type Lie superalgebra", Proc. Amer. Math. Soc. 124 (1996), 383-387.
[Wilson $\geq 1997$ ] M. C. Wilson, "Primeness of the enveloping algebra of Hamiltonian superalgebras". To appear in Bull. Austral. Math. Soc.

Mark C. Wilson, Department of Mathematics, University of Auckland, Private Bag 92019, Auckland, New Zealand (wilson@math.auckland.ac.nz)
Geoffrey Pritchard, Department of Statistics, University of Auckland, Private Bag 92019, Auckland, New Zealand
David H. Wood, Department of Computer and Information Science, University of Delaware, Newark, DE 19716, USA (wood@cis.udel.edu)

Received March 18, 1996; accepted in revised form September 5, 1996

