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We consider families of analytic area-preserving maps depend-
ing on two parameters: the perturbation strength £ and the char-
acteristic exponent h of the origin. For € = 0, these maps are
integrable with a separatrix to the origin, whereas they asymp-
tote to flows with homoclinic connections as h — 0*. For fixed
€ # 0 and small h, we show that these connections break up.
The area of the lobes of the resultant turnstile is given asymptot-
ically by € exp(—m2/h)©¢(h), where ©%(h) is an even Gevrey-1
function such that ©¢(0) # 0 and the radius of convergence of
its Borel transform is 272. As € — 0, the function ©¢ tends
to an entire function ©°. This function ©° agrees with the one
provided by Melnikov theory, which cannot be applied directly,
due to the exponentially small size of the lobe area with respect
to h.

These results are supported by detailed numerical computations;
we use multiple-precision arithmetic and expand the local in-
variant curves up to very high order.

1. INTRODUCTION
The Problem

We will consider the family of planar standard-like
maps
F(z,y) = (y, —z +U'(y)),
U(y) = molog(l +y*) +eV (y),
where V(y) = >, ., Vay?" is an even entire function.
Provided that p19 + Vie > 1, the origin O = (0, 0)
is a hyperbolic fixed point with
Spec(dF (O)] = {exp(h)},
and its characteristic exponent h > 0 is given by
cosh h = pg + Vie.
Moreover, when e vanishes, F' becomes integrable
with a separatrix to the origin. Thus, the map F
can be considered as a perturbation of an integrable
map, € being the perturbation strength. These two

parameters, h > 0 and &, will be considered the
intrinsic parameters of the map F' under study.
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Our goal is to show that for € # 0 and for a general
perturbation, the separatrix splits and ezactly two
(transverse) primary homoclinic points, z* and 27,
appear in the quadrant {z,y > 0}. By primary
homoclinic orbits we mean that these orbits persist
for all € small enough.

The pieces of the perturbed invariant curves be-
tween 2T and 2z~ enclose a region called a lobe, shown
shaded in the figure on the preceding page. Our
measure of the splitting size will be the area A of
this lobe. This lobe area is a homoclinic symplectic
invariant, that is, it does not depend on the sym-
plectic coordinates used, and all the lobes have the
same area. Lobe areas also measure the flux along
the homoclinic tangle, which is related to the study
of transport [MacKay et al. 1984; 1987; Meiss 1992].

Both parameters, h > 0 and &, will be “small
enough”, but the exact interpretation of this sen-
tence is crucial for understanding the different kinds
of results to be presented. Specifically, we are going
to deal with the following situations:

1. The regular case: fixed h > 0, and € — 0.

2. The singular case: h — 0T. In its turn this case
subdivides into two subcases:

a. The nonperturbative case: ¢ fixed and h — 07,

b. The perturbative case: € = o(h*) and h — 0%,
for some p > 0.

Both analytical and numerical results for the split-
ting of separatrices are obtained. The analytical re-
sults are expressed in terms of the Melnikov potential
of the problem, which gives explicit formulae for our
map. This is the reason for our choice of the map
above as a model for this paper, instead of more cel-
ebrated maps like the Hénon map or the standard
map.

The name “singular” for the case h — 07 is due to
the fact that the lobe areas are exponentially small
in h. The measure of such small quantities requires
a very careful treatment, both from a numerical and
an analytical point of view.

Outline of Results
In the regular case, for
0 < |e] < e*(h) = o(exp(—7?/h)),

the discrete version of the usual Melnikov method
[Delshams and Ramirez-Ros 1996; 1997] ensures the

existence of two transverse, primary homoclinic or-
bits, and provides a first order approximation of the
lobe area in terms of the perturbation strength e:

A= €AM91 + 0(62)7
Ayia = €™ /(0°(h) + O(e™>" ")),

where ©°(h) = >~ ., ©%h*" is an even entire func-
tion. If V(y) is a polynomial, ©°(h) can be explicitly
computed in a finite number of steps. For instance,
©°h) = 8m*y*h~2 for V'(y) = y, and O°(h) =
Sm2y*h=2(1 + n*h~?) for V'(y) = y*. The nonpoly-
nomial case is harder, although some closed formu-
lae can be obtained. In particular, ©°(0) = ©f =
8wV (2m), where V(€) = 3, V,£2=Y(2n — 1)! is
the Borel transform of V (y).

In the singular case, the result above cannot be
applied, since it requires € to be exponentially small
in h. There are, however, a couple of analytical
results that hold.

In the nonperturbative case, under the assump-
tion

(Vi +2V3)e < 1,

there exist homoclinic orbits for A > 0 small enough,
and an upper bound exponentially small in A > 0 is
provided for the lobe area.

In the perturbative case € = o(h?), with p > 6,
under the assumption V(27) # 0, the existence of
two transverse, primary homoclinic orbits in the first
quadrant is proved, and an asymptotic expression
for the area lobe is given:

A=ce ™87V (271) + O(h?)) (b — OF).

Most of these analytical results are found in [Del-
shams and Ramirez-Ros 1996; 1997; 1998]. For the
convenience of the reader, we have collected here the
main ideas.

The heart of this paper is devoted to a numerical
study of the situations not covered by the analytical
results for the singular case. The numerical exper-
iments have been performed for the simplest even
perturbed potentials, that is, for the linear pertur-
bation eV’(y) = ey and the cubic one eV'(y) = ey®.

In the nonperturbative case, the following asymp-
totic expansion for the lobe area A is numerically
established

A~ge ™t Z O:h* (h — 0%, ¢ fixed).
n>0

The sign ~ means that the series ) ., ©%h*" is an
asymptote, that is, if one retains a finite number of
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leading terms, the error has the order of the first
discarded term:

N
A—ce ™My 05

n=0

— O(€h2N+2677r2/h)‘

The coefficients ©;, are real numbers such that
5, = (2n)! (27°) 7" (2n)* (5, + O(n 7))

as n — 400, for some nonzero constant =5 . In
particular, Y~ ©O%h* is divergent for all A # 0, but
its Borel transform ©¢(h) = >, 062 (2n — 1)!
is convergent for [£] < 27%. This implies that the
function ©°(h) ~ e lexp (w?/h) A is Gevrey-1 of
type p = 1/27%. Recall that a function f(z) ~
Y om0 fnx™ is said to be Gevrey-r of type p if there
are positive constants C,a > 0 such that |f,| <
CpTI'(rn + «), where I'(z) stands for the Gamma
function. (We follow the notations of [Ramis and
Schifke 1996].)

In the perturbative case, we study the behavior
of the objects ©°(h), O, =2, checking that all of
them tend to well-defined limits as e — 0. (That is,
for e = o(1). In the notation € = o(h?), this means
that p =0.)

First, the function ©°(h) tends to the Melnikov
prediction ©°(h) when the perturbation strength e
tends to zero; more precisely,

0°(h) = ©°(h) + O(e),

The coefficients O, of the Gevrey series for ©°(h)
also converge to the Taylor coefficients ©° of the en-
tire function ©°(h). (For example, OF = 87V (2) +
O(g).) Obviously, this convergence cannot be uni-
form in the index n, since

uniformly in h € (0, 1].

0 ife=0
lim |©;| = { ’
n—+oo 400 otherwise.
Finally, lim. 025, = 0, since =7 quantifies the

growth of the coefficients ©¢, and ©° = lim._,, OF,

n’

gives a decreasing sequence. In fact, one has

=z =2 +0(e?),

(o]

. 4
-0 _ 127
Ew=19 16

3

where

Relation to Other Work

By now, there is a well-developed literature on sin-
gular perturbations for maps. Results showing that
the splitting size is exponentially small in the char-
acteristic exponent h have been obtained by many

authors. For the sake of brevity, we review results
about analytic area-preserving maps, both from a
theoretical and a numerical point of view. For a
review of the results concerning flows, we refer to
[Delshams and Seara 1997; Delshams et al. 1999,
and the references therein.

The first relevant results are exponentially small
upper bounds of the splitting size for analytic area-
preserving maps having a weakly hyperbolic fixed
point and homoclinic points to it [Neishtadt 1984;
Fontich and Simé 1990; Fontich 1995; Fiedler and
Scheurle 1996; Gelfreich 1996]. Roughly speaking,
in these papers it is proved that the maps asymp-
tote to a Hamiltonian flow with a separatrix when
the characteristic exponent h tends to zero. Then
the splitting size is O (exp(—/(3/h)) for any positive
constant J smaller than 27d, where d is the analyt-
icity width of the separatrix of the limit flow. No
other general results are known. In order to com-
pare this result with the next ones, it is convenient
to formulate it as

splitting size = e #/"Q(h),

(1-1)
©(h) bounded when h — 0*.

The next step was the attainment of exponen-
tially small asymptotic formulae in some standard-
like maps, by V. Lazutkin and coworkers [Lazutkin
1984; Lazutkin et al. 1989; Gelfreich et al. 1991]; see
also [Hakim and Mallick 1993; Suris 1994; Treschev
1996]. For instance, regarding the standard map and
the Hénon map, in these works it is claimed that
the splitting has an asymptotic behavior of the form
woh” exp(—pF/h), for some constants wy # 0, § > 0,
and v, that is,

splitting size = h7e=?/"O(h),

(1-2)
©(h) continuous at h = 0 and ©(0) # 0.

The constant wy = ©(0) is defined by means of a
nonlinear parameterless problem which only can be
solved numerically, ~ is obtained by linearization
about the separatrix in the complex plane, and 8 =
27d, where d is again the analyticity width of the
unperturbed separatrix. A complete proof of these
asymptotic formulae has not been published yet, but
there is little doubt about its validity. It should
be noted that there exist examples where a formula
like (1-2) cannot hold, because the splitting behaves
asymptotically like woh? exp(—8/h)cos(a/h) with
a # 0; see [Gelfreich et al. 1991; Scheurle et al.
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1991]. The maps considered here do not fall into
this class.

The strongest analytical results on the regularity
of the function O(h) were published in [Gelfreich
et al. 1994; Chernov 1995; Nikitin 1995], where it is
stated (again without proofs) that

splitting size = h7e~#/"O(h),
©(h) smooth at h = 0 and O(0) # 0,

for the standard map [Gelfreich et al. 1994], the
Hénon map [Chernov 1995], and the twist map [Ni-
kitin 1995]. All these works contain formulae like

w[O] ~ hre P/t anhQ",

n>0

(1-3)

where w[0] stands for the Lazutkin’s homoclinic in-
variant introduced in [Gelfreich et al. 1991] for some
distinguished symmetric homoclinic orbit O. Only a
few coefficients w,, were explicitly computed in these
works: the first five coefficients in [Gelfreich et al.
1994], the first three in [Nikitin 1995] and just two
in [Chernov 1995]. Then a natural question arises:
What is the growth rate of the coefficients w,, when
n — +o00? Equivalently, is ©(h) somewhat stronger
than smooth?

A numerical answer involves the computation of
many such coefficients. Recent numerical experi-
ments by C. Simé suggest that the asymptotic se-
ries y. o, w,h*" are divergent, though their Borel
transforms are convergent, that is,

splitting size = h7e #/"O(h),
©(h) Gevrey-1 at h = 0 and ©(0) # 0.

Our numerical results fall just into this class, with
the area A as our measure of the splitting size, and
the coeflicients ©¢, playing the role of w,,. The com-
putation of w,, for relatively large values of n (say up
to n = 100), requires the use of expensive multiple-
precision arithmetic, so that these experiments are
on the edge of the current computer possibilities.
Therefore, further numerical results improving these
ones are unlikely to appear in the near future.

As for rigorous results, to the best of our knowl-
edge, the paper [Delshams and Ramirez-Ros 1998] is
the only place where a behavior like (1-2) has been
rigorously proved for some area-preserving maps.
This makes it evident that experimental studies are
much more advanced than analytical ones. How-
ever, numerical results of the form (1-4) open the
door to new techniques, like resurgence tools, that

(1-4)

have been already applied to the rapidly forced pen-
dulum [Sauzin 1995], and may be successful in filling
this gap between analytical and numerical results.

Outline of the Computations

The area of the lobes of the turnstile created when
the separatrices split is computed using the MacKay—
Meiss—Percival action principle [MacKay et al. 1984,
Easton 1991], in which the lobe area is interpreted
as a difference of actions. The numerical compu-
tation of such exponentially small lobe areas with
arbitrary precision forces us to

e use expensive multiple-precision arithmetic,

e expand the invariant curves up to an optimal or-
der, which is very large, and

e take the greatest advantage of symmetries and/or
reversors.

Clearly, the first item is unavoidable, due to the
strong cancellation produced when subtracting the
(exponentially close) actions, and also due to the re-
quirement of arbitrary precision in the final result.
The second item is intended to take the initial it-
erates far enough from the weakly hyperbolic point
so that the homoclinic points z* can be attained
in (relatively) few iterations: we are able to find the
(optimal) order which minimizes the computer time.
This optimal choice of order avoids an undesirable
accumulation of rounding errors due to the large
number of operations. Finally, the third item is cru-
cial to overcome certain stability problems. Those
algorithms for computing homoclinic points that do
not take into account symmetries and/or reversors
(if they exist, of course) have condition numbers in-
versely proportional to the splitting size, see for in-
stance [Beyn and Kleinkauf 1997, p. 1218]. There-
fore, they would be exponentially ill-conditioned for
our singular maps!

We have improved the methods used in [Lomeli
and Meiss 1996] to compute lobe areas. In that pa-
per a similar problem was studied, but the invariant
curves were developed only to first (linear) order and
standard double-precision arithmetic was used. Due
to this, the computations there only gave accurate
results for lobe areas A > 10!, that is, for char-
acteristic exponents h not smaller than % In the
present work we have been able to compute lobe
areas less than 107%*% (that is, we have reached
h = 0.001), with a relative error less than 1079,
The computation for such extreme cases takes two
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to three days, depending on the potential V (y), on
a Pentium 200 machine running Linux. More than
5200 decimal digits in the arithmetic and 1300 coeffi-
cients in the Taylor expansion of the invariant curves
were needed for these accurate computations.

So far, and to the best of our knowledge, the
most refined (published) experiments about singu-
lar splittings for maps were those of [Fontich and
Simé 1990], where splittings of order 1072°° were nu-
merically computed following the above-mentioned
items. Other experiments with multiple-precision
arithmetic are contained in [Fiedler and Scheurle
1996], but only order-one (that is, linear) expan-
sions of the invariant curves were used in that pa-
per. In [Benseny and Olivé 1993] quadruple preci-
sion and high-order expansions were used to study
the rapidly forced pendulum.

Outline of the Paper

The rest of the paper is devoted to explaining how
our results have been obtained. In the next sec-
tion, the model is introduced. In Section 3, the
regular case € — 0 and A fixed is discussed. We re-
view how to compute the O(e)-approximation of the
lobe area using the discrete version of the Melnikov
method. In particular, the entire function ©°(h)
is introduced. Section 4 is devoted to the singular
limit h — 0T. The asymptotic behavior of ©¢(h)
is studied and the connection with Melnikov theory
is drawn. The results in this section are the heart
of the paper. In Section 5, the algorithm used to
compute lobe areas with arbitrary accuracy is de-
scribed. This is the key tool in this work. The
numerical calculations are complicated by problems
of stability, precision and computer time, so we pro-
vide sufficient detail to show how these problems
can be overcome. Finally, further numerical exper-
iments related to singular separatrix splittings for
maps are proposed in Section 6. They will be the
subject of future research.

2. THE MODEL
The family of standard-like maps under study is
F(z,y) = (y, —z + U'(y)),
U(y) = polog(1 +y*) + eV (y),

where V(y) = 3, -, V,y*" is an even entire function.
For -

(2-1)

M1:M0+€V1>17

the origin O = (0, 0) is a hyperbolic fixed point with
Spec[dF(0)] = {e*"}, where the characteristic ez-
ponent h > 0 is determined by cosh h = p.

We will consider the characteristic exponent h and
the perturbation strength e as the intrinsic parame-
ters of our model. Accordingly, for every h > 0 and
every real €, we rewrite the map (2-1) in the form

F(z,y) = (y,—z+U'(y)),
U(y) = Uo(y) +eUi(y),
Up(y) = plog(1+y?),
Ui(y) = V(y) — Vilog(1+y?).

From now on, the subscript 0 will denote an unper-
turbed quantity, that is, ¢ = 0, and the following
notations will be used without further comment:

pw=coshh, ~=sinhh, X=e¢" (2-3)

The Unperturbed Model

Setting € = 0 in (2-2), we obtain the McMillan map
[McMillan 1971]

. 2py
Fo(z,y) = (y, —z + Ug(y)) = (y Tty +yz> ’

which is an integrable exact map, with a polynomial
first integral given by

Iy(z,y) = 2* — 2pxy + y* + 2°°.

The phase space associated to Fy is rather simple,
since it is foliated by the level curves of the first in-
tegral Iy, which are symmetric with respect to the
origin. As p > 1, the zero level of I is a lemnis-
cate, whose loops are separatrices to the origin (see
Figure 1). From now on, we will concentrate on the
separatrix A in the quadrant {z,y > 0}, which can
be parameterized by

20(t) = (w0(t),50(t)) = (&o(t — h/2),&o(t + h/2)),

& (t) = ysecht. (2-4)
This parameterization is called natural since

Fo(20(t)) = 2o(t + h),
a fact that can be checked simply by noting that
&o(t) is a homoclinic solution of the difference equa-
tion
ot +h) + &(t — h) = Up(&o(?))-

A natural parameterization is unique except for a
translation in the independent variable. To deter-
mine it, it is worth looking at the reversors of the
map.

(2-5)
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FIGURE 1. The unperturbed case; the solid curve is
the zero level of I for h = 2.

Indeed, the involution R*(x,y) := (y,z) is a re-
versor of the McMillan map Fy, that is, F;"' =
R* o Fy o R*. The separatrix A is R™-symmetric,
that is, R*A = A, and it intersects transversely the
fixed set C* := {z: R*2z = z} of RT in one point z; .
The parameterization (2—4) of A has been chosen to
satisfy 29(0) = 2 .

The involution R, := Fyo R" is another reversor
of Fy. The separatrix A is also R;-symmetric and
intersects transversely the fixed set C;; of R, in one
point z,, and it turns out that zq(h/2) = z,. The
associated orbits

Of == {2(nh) :n € Z},
Oy :={z0(h/2+nh) :n € Z},
are called symmetric homoclinic orbits, since

RTO§ =0, Ry0, =0,.

The Perturbed Model

For € # 0, the phase portrait of the exact map (2-2)
looks more intricate. The origin is a hyperbolic fixed
point with the same characteristic exponent h, since
the perturbation £U;(y) = O(y®) does not contain
linear terms at the origin. We denote by W"* its
unstable and stable invariant curves with respect
to F. Since the map (2-2) is odd, the invariant
curves are symimetric with respect to the origin, so
that we concentrate only on the positive quadrant

{z,y > 0}.

Wu 7/

, /
7 /
- 7 T =<7 /
- ~o -
N 7/
' 7
7
/i\
_3- P -
/
7/
7
7/
7
7/ | |
-3 0 3
FIGURE 2. After perturbation (eV'(y) =y3/40, h=2);
2T, z~ are homoclinic points, A the lobe area.

By the form of the perturbation, R* is also a re-
versor of F, as is the involution R~ := F o R*,
given by R (z,y) = (z,—y + U'(x)). Their fixed
sets C* = {2 : R*¥2 = 2} are important because
R*(W') = W=, Consequently, any point in the in-
tersection C* N'W" is a homoclinic point, and gives
rise to a symmetric homoclinic orbit. See Figure 2.

Since the separatrix A intersects transversely the
unperturbed curve Ci at the point zT, there exists
a point z* = zF + O(e) € C* N'W" and, therefore,
there exist at least two symmetric homoclinic orbits
in the quadrant {z,y > 0}, for |¢| small enough.
They are called primary since they exist for arbi-
trary small ||.

3. THE REGULAR CASE

Throughout this section, the characteristic exponent
h > 0 will be considered fized, and we will make ¢
approach 0. In particular, any sentence like “for
le| small enough” will mean “there exists e*(h) > 0
such that for |e| < e*(h)”. Typically, €*(h) will be
exponentially small in h.

3A. Melnikov Theory for Exact Planar Maps

We now recall some perturbative results to detect
the existence of transverse homoclinic orbits for ex-
act maps. For simplicity, we shall assume that all
the objects are smooth and restrict the discussion to
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maps on the plane with the usual symplectic struc-
ture: the area.
Given the symplectic form

w=drNdy = d(—ydr)

on the plane R? a map F : R> — R? is called ezact
if there exists some function S : R*> — R such that
F*(ydz) —ydx = dS. The function S is called the
generating function of F' and, except for an additive
constant, it is uniquely determined.

Let Fy : R®> — R” be an integrable exact dif-
feomorphism with a separatrix A to a hyperbolic
fixed point 25°. Next, consider a family of exact
diffeomorphisms F, = F, + ¢F; + O(e?), as a gen-
eral perturbation of the situation above, and let
S. = Sy +¢eS1 + O(e?) be the generating function of
E..

We introduce the Melnikov potential of the prob-
lem as the smooth real-valued function L : A — R
given by

L(z) = Zg\l(zn), z, = Fy"(2),

neZ

ze€A, (3-1)

where S, : R? - R is defined by
S, =S — ydz(Fy)[Fi).

(In components, writing Fy = (X,,Y) and F; =
(X1,Y1), the value of §1 is simply S; — ¥5X;.) In
order to get an absolutely convergent series (3-1),
S, is determined by imposing §1(z§°) =0.

The differential of L is a geometrical object which
gives the O(e)-distance between the perturbed in-
More precisely, let (¢,e) be
some cotangent coordinates adapted to A —that is,

variant curves W*.

in these coordinates the separatrix A is given lo-
cally by {e = 0} and the symplectic form w reads
as dt Ade—and let {e = E**(¢)} be a part of WS,
(Recall that cotangent coordinates can be defined in
neighborhoods of Lagrangian submanifolds [Wein-
stein 1973].) We showed in [Delshams and Ramirez-
Ros 1997] that

B (t) — BX(t) = eL'(t) + O(?),

and that the construction above does not depend on
the cotangent coordinates used.

The following result [Delshams and Ramirez-Ros
1997, Theorem 2.1] is a straightforward corollary of
this geometric construction.

Theorem 3.1. Under the notations and hypotheses
above, the nondegenerate critical points of L are as-
sociated to perturbed transverse homoclinic orbits.
Moreover, when all the critical points of L are non-
degenerate, all the primary homoclinic orbits arising
from A are found in this way. Finally, if z and 2’
are nondegenerate critical points of L, consecutive
in the internal order of the separatriz, their asso-
citated perturbed homoclinic orbits determine a lobe
with area

A =e(L(z) — L(z)) + O(?).

3B. The Regular Analytical Result

We are now ready to apply the theory above to our
model. It is worth noting that the knowledge of the
natural parameterization (2-4) of the unperturbed
separatrix A will be the crucial point to compute
explicitly the Melnikov potential (3—1).

The map F = F, + ¢F} + O(¢?) given in (2-2)
is exact with generating function S(z,y) = —zy +
Uo(y) + €Us(y). Writing its expression in compo-
nents Fy = (Xo, Yy), F1 = (X1,Y1), it turns out that
X, = 0, and consequently S,(z,y) = Si(z,y) =
U(y)-

The parameterization (2—4) allows us to write the
Melnikov potential (3-1) of our problem as

L(t) = L(zo(t)) = 3 U (gt + hn)

nez
= Z (f(t+ hn) —g(t + hn)),
nez
where

f(t) =V (&(t +1/2)),
g(t) :==Vilog (1 + &+ h/2)%) .

We are now confronted with the computation of
a series for L(t), which is a doubly-periodic func-
tion: L(t) = L(t + h) = L(t + mi). Consequently,
the explicit computation of L(t) can be performed
through the study of its singularities for complex
values of the discrete time ¢ [Delshams and Ramirez-
Ros 1996].

For example, Ly(t) :== > g(t+hn) is easily com-
puted simply by noting that L,(¢) has no singular-
ities and, therefore, it must be constant by Liou-
ville’s theorem. The exact value of the constant is
not important for our purposes, since the intrinsic
geometrical object associated to the problem is L'(t)
rather than L(t).
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The computation of Ls(t) := > f(t + hn) fol-
lows the same lines, but is more complicated. We
sketch here the main ideas, and refer to [Delshams
and Ramirez-Ros 1998] for the details.

First, we notice that the singularities of f(t) are
located only on the set —h/2 + 7i/2 + wiZ. Next,
we denote by >, v, (h)7*" the Laurent expansion
around 7 = 0 of the function 7 — f(—h/2 + mi/2 —
iht), and note that each v_,(h) is an even entire
function such that v_,(0) =V, for all n > 1. Fi-
nally, we introduce the even entire function

27T 2n—1
=8 v_n(h)
T; - ! (3-2)

= &V (2m) + O(h?),

where V(€) == 3, ., Va& Y (2n — 1)! is the so-
called Borel transform of V (y).

Then the following asymptotic formula holds for
the Melnikov potential L = L; — L, = L; (modulo
an additive constant):

L(t) = e ™" cos(2mt /h) (—O° (h) /2 + O(e 27 /™)).
(3-3)

If V(y) is a polynomial, ©°(h) can be explicitly
computed in a finite number of steps [Delshams and
Ramirez-Ros 1996]. For instance, for the perturba-

tions used in the numerical experiments,

0%(h) — 8m*y*h = for V'(y) = v,
Syt 2(1 4+ w2h~2) for V'(y) = y°.
(3-4)

From formula (3-2), it is clear that if V(27) # 0
and h is small enough, the set of critical points of
the Melnikov potential (3-3) is hZ/2. All of them
are nondegenerate, and parameterize the two unper-
turbed, symmetric, primary homoclinic orbits O(jf.
Now, the following result is a corollary of Theo-
rem 3.1.

Theorem 3.2. Assume that ‘7(27r) # 0. Then, for any
small enough (but fixed) characteristic exponent h >
0, there exists a positive constant €* = €*(h) such
that the map (2-2) has exactly two transverse, sym-
metric, primary homoclinic orbits OF in the quad-
rant {x,y > 0}, for 0 < |e| < e*. These orbits de-
termine a lobe with area A = € Ay + O(€?), where
the approximation Ame of first order in ¢ is given

by
Ama = L(h/2) — L(0)
= ™™ (O°(h) + O(e™"/M)).

Remark 3.3. We note that e Ay is the dominant term
for the Melnikov formula of the lobe area A only if
le] < e*(h) = o(exp(—n?/h)). Otherwise, in the
case ¢ = O(h?), Melnikov theory as described is not
useful, since it only gives the very coarse estimate
A = O(h*), and not the desired exponentially small
asymptotic behavior.

4. THE SINGULAR CASE

Along this section, h — 0", and we will study ana-
lytically and numerically two different situations for
the parameter ¢:

o The nonperturbative case: ¢ fixed and h — 07,
e The perturbative case: € = o(h?) and h — 07, for
some p > 0.

For the analytical results we only assume that the
perturbed potential V' (y) is an even entire function.
The numerical experiments have been performed for
the simplest even perturbed potentials, that is, for
the linear perturbation eV'(y) = ey and the cubic
one eV'(y) = ey®.

4A. Singular Analytical Results

The nonperturbative case. The limit A — 07 in (2-2)
is highly singular, since all the interesting dynam-
ics is contained in a O(h) neighborhood of the ori-
gin, which becomes a parabolic point of the map for
h = 0. To see clearly this behavior, we perform the
following linear change of variables:

)\1/2

)\—1/2 )

)\—1/2

)\1/2
with z = (z,y) and w = (u,v); that is, we diago-
nalize the linear part of (2-2) at the origin and we
scale by a factor h. Then

z = Cw, C:h<

(C_loFoC)w:w-l-hXO(w)‘i‘O(hZ); (4-1)
where
X°(u,v) = (u—n(u+v)*, —v+n(u+v)?),
n=1-(Vi+2V)e, (4-2)

is a Hamiltonian vector field, with associated Hamil-
tonian

H(u,v) = uv — n(u +v)*/4. (4-3)

Expression (4-1) shows clearly that F' is O(h)-

close to the identity, and that, after the change of

variables z = Cw, the map (2-2) asymptotes to the

Hamiltonian flow associated to the vector field (4-2)

when A — 0%. In such a situation, it is known



Delshams and Ramirez-Ros: Singular Separatrix Splitting and the Melnikov Method: An Experimental Study 37

[Fontich 1989] that the map (2-2) will have homo-
clinic points to the origin for any small enough h, if
and only if the limit Hamiltonian flow has a homo-
clinic orbit to the origin.

From the expression (4-3), we see that the zero
level {H"(u,v) = 0} contains homoclinic connec-
tions to the origin if and only if > 0, that is, if

(Vi +2V3)e < 1.
Assuming 1 > 0, the homoclinic orbit of the Ham-
iltonian (4-3) is given by
WO(t) = 712 (cosht —sinht cosht + sinht>
2cosh’ t 2cosh’t ’

which is analytic on the strip {¢t € C : |Imt| <
d := mw/2}. In this situation, it is also well-known
[Fontich and Simé 1990] that the splitting size is
O(exp(—p/h)), for all B < 2wd = w*. We summarize
these first analytical results.

(4-4)

Theorem 4.1. For any real € satisfying (4-4) and any
B € (0,7%), there exists N = N(g,8) > 0 such that
the area of the lobe between the invariant curves of
the map (2-2) satisfies

|A| < Ne™#'" (¢ fized, h — 07).

The perturbative case. The previous theorem gives only
an upper bound for the lobe area and not an asymp-
totic one (the constant N(g,3) can blow up when
B — m2). In particular, it does not exclude the case
A =0, that is, it cannot detect effective splitting of
separatrices. In the perturbative case ¢ = o(h?), for
p > 6, the following theorem gives an asymptotic
expression for the lobe area in terms of the Mel-
nikov potential, and establishes transversal split-
ting of separatrices. The version presented here is
slightly more general than the one in [Delshams and
Ramirez-Ros 1998], since we have dropped out the
hypothesis V'(0) = 2V; = 0 of that paper.

Theorem 4.2. Assume that ¢ = o(h?), p > 6. Then,
if 17(27r) # 0, there exists h* > 0 such that the
map (2-2) has ezxactly two transverse, symmetric,
primary homoclinic orbits in the first quadrant, for
all 0 < h < h*. Moreover, they enclose a lobe with
area

A=ce ™87V (27) + O(h?)) (h — 0%).
If V(27) = 0, there may exist more primary homo-
clinic orbits, but the area of any lobe is O(eh2e~™ /™).

Proof. For Vi = 0, the result above is just the Main
Theorem of [Delshams and Ramirez-Ros 1998]. For

Vi # 0, the perturbative potential U;(y) = V (y) —
Vi log(14%?) in (2-2) is no longer an entire function,
due to the term g(y) := V; log(1+y?), and that Main
Theorem cannot be applied directly.

However, Theorem 4.2 follows from these obser-
vations:

1. As seen in Section 3B, the Melnikov potential
L(t) is not affected by the contribution of L,(t).

2. One can easily bound ¢'(£°(t) +7) in such a way
that the estimates of Lemma 3.5 in [Delshams
and Ramirez-Ros 1998] do not change.

The rest of the arguments in that paper remain ap-
plicable, and the result follows. O

To the best of our knowledge, this and the theo-
rems in [Delshams and Ramirez-Ros 1998| are the
first analytical results about asymptotics for singu-
lar separatrix splitting with a complete and rigorous
proof.

4B. Singular Numerical Results

In the regular case, we have the formula (3-5) for
the lobe area A, in terms of an even analytic func-
tion ©°(h), with a fairly simple expression (3-4) for
V'(y) =y,y°.

These regular results suggest that in the singular
case, for every fixed e satisfying (4-4), the actual
formula for the lobe area may have the form

A=ce ™" (O (h)+0(e /")) (fixed &, h — 0F),

(4-5)
for a function ©°(h) given by an asymptotic series
of the form

©°(h) ~ Y _O;h*"  (fixed £,h — 07).

n>0
The sign ~ means that the series Y ., ©%h*" need
not be convergent, but only asymptotic; that is, if

one retains a finite number of leading terms, the
error has the order of the first missing term:

(4-6)

N
‘@E(h) =Y erh| = 0N ).
n=0

We are interested in computing a relevant number
of the coeflicients ©¢, for some significant perturba-
tions eV'(y), in such a way that we can measure
their asymptotic behavior, and describe the analyt-
ical properties of the function ©°¢(h).

To this end, once we have chosen a perturbation
eV'(y), we compute the lobe area A with a relative
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error less than p, for a net N of values of the char-
acteristic exponent h. We take a net equidistant in
h?, due to the fact that we expect that the asymp-
totic series (4-6) will contain only even powers of h.
That is, we take

N={h;:=4"6:5=1,...,1+1}

for some (relatively) small positive number ¢ and
some (relatively) large natural number .
We have chosen the values
p=107"" §=0.001, [=99. (4-7)
Other choices are also possible, but for our purposes
it is not worth taking values of p much smaller than
exp (—27%/hy41). We explain this remark.

We do not know how to compute directly the
function ©¢(h), but only how to approximate it by
e texp (m*/h) A. Once the approximate values of
©°(h) on the net N are obtained, they will be the
input of some algorithm which computes the first
I + 1 asymptotic coefficients ©F. This explains why
it is pointless to take p too small, p ~ exp (—27%/h)
being the greatest accuracy we can expect on ap-
proximating ©°¢(h) by e ™! exp (7%/h) A. Since all the
values in the net are computed with the same accu-
racy, we must take p not much smaller than

exp (—27*/hyy1) = max LOXD (—27%/h;) .

m
1<5<i+

An interpolation method based on Neville’s al-
gorithm has been used to compute the asymptotic
coefficients of ©¢(h) from the values on the net N.

0

Y
—04} ,
—.06 -
— 08}
_1 Le

.12

—.14 "

20 40 60 80

That is, we compute the polynomial
!
P(h) =) P
n=0

that interpolates ©°(h) on N, and we approximate
O: by P:, for n = 0,...,l. Although equidistant
interpolation using polynomials of high degree (in
our case, degree [ in h?) is in some cases an ill-
conditioned problem, we have checked that the coef-
ficients ©¢, so obtained are accurate enough for our
purposes. Concretely, with the choice (4-7), this
method gives at least 860 — 9n significant decimals
digits for ©5, n = 0,...,95. (The accuracy de-
creases as n increases, but this seems unavoidable.)
This has been checked simply by studying the de-
pendence of the coefficients O on the precision p
and the degree [.

The nonperturbative case. To avoid the empirically ob-
served factorial increase of the coefficients ©;, we
introduce other coefficients =¢, defined by

07, = (2n)! (27%)7*"(2n)" E],

expecting that the coefficients =; will tend to a cer-
tain constant Z5_, as n — oo. Figure 3 shows clearly
this behavior for the two different perturbations: the
linear case V'(y) = y and the cubic case V'(y) = y°.
The limit constants =% are found by applying an ex-
trapolation method to the coefficients =¢ (see also
Table 1 on page 40).

In particular, we have |0%] < Cp?"I'(2n + 5) for
some constant C' and p = 1/27%, that is, the func-
tion ©°¢(h) of (4-6) is Gevrey-1 of type p = 1/27*
with respect to the variable h.

0

-4

20 40 60 80

FIGURE 3. =:, versus n, for ¢ = 0.1. The dotted lines correspond to the limit value =%, found by extrapolation.

—n

Left: V/(y) = y and 25, = —9.7737740885. .. x 1073, Right: V'(y) = y® and 25, = —4.6302913918... x 102,
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FIGURE 4. Graphs of h — 0°(h) (left) and h — (©°(h) —

1 —1000 +
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0 0.2 0.4 0.6 0.8 1

—400 ¢

—600 ¢

—800 ¢

0 0.2 0.4 0.6 0.8 1

©°(h))/e (right), for V'(y) =y (top) and V'(y) = ¢

(bottom). The values of € for the curves in each graph are as follows, from top to bottom: Top and bottom left,
e =0,0.01,0.03,0.05,0.07; top right, e = 107°,10%, 1073, 10~2; bottom right, € = 0.04,0.02,0.01,0.001.

We now summarize these numerical results.

Numerical Result 4.3. For the linear and cubic pertur-
bations, the following asymptotic expansion for the

lobe area A holds
An~ee ™M "OI0 (e fived, h— 0%),

n>0
where the coefficients O, satisfy
©: = (2n)! (27r2)_2"(2n)4(52o + O(n_l)),

=e

as n — 400, for some constant =5, # 0. (25, < 0

fore>0.)

In other words, formula (4-5) for the lobe area holds
for an even ©°(h) such that its Borel transform
O:(h) = >, 058271/ (2n — 1)! is convergent for
€] < 272,

Of course, we believe that the numerical result
above holds for any even entire perturbative poten-
tial eV (y).

The perturbative case. We now check that all the pre-
vious objects ©°(h), ©%, tend to well-defined
limits as € — 0.

We begin by describing the results connecting the
Gevrey-1 function ©°(h) with the Melnikov predic-
tion ©%(h) given in (3-2). Applying formula (3-4),
we immediately get

=€

—0)

0°(h) = 87%72h~?
= 87%(1+ 3h° + 22h* + 0% + O(h%))

315

for the linear perturbation eV'(y) = ey, and
0%h) = Er*y*h 2 (1 + 7*h72)
™1+ (1+2r°) R+ (2 + 7% !

+ (3 +g7) 1° 4+ O(R%))

wloo Wl

for the cubic case eV'(y) = ey®.
Figure 4 shows numerical results comparing ©°(h)
with ©°(h), for ¢ — 0. The left-hand side graphs
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FIGURE 5. ©F versus ¢, for n = 0,1,2,3, from top to bottom. The marked points correspond to the values ©% —
that is, e = 0— obtained by the Melnikov approach. Left: V'(y) = y, where ©f = 872, ©) = 87%/3, ©9 = 1672/45,
and ©f = 872/315. Right: V'(y) = y3, where ©) = 87%/3, 09 = 872(3 + 272)/9, ©Y = 872(10 + 372)/45, and

09 = 872(189 + 3472) /2835.

show that ©¢(h) tends uniformly to ©°(h) as € — 0,
whereas on the right-hand side we see that

e (6°(h) — ©°(h))

tends uniformly to some continuous function. Thus,
we conclude that

©°(h) = ©°(h) + O(e), uniformly for h € (0, 1].

Next, we compare the coefficients © in the ex-
pression (4-6) of the function ©°(h) with the co-
efficients ©° in the Taylor expansion of ©°(h), as
e — 0.

The results about the convergence of some of the
coefficients are shown in Figure 5, where one can
see that ©¢ tends to ©2 as ¢ — 0. It is worth
noting that we cannot expect any kind of uniform
convergence in n > 0, since ©°(h) is a Gevrey-1
function (in particular, divergent), whereas ©°(h) is
an entire function.

Finally, we study the behavior of the limit con-
stant 2%, that appears in Numerical Result 4.3, for
e —=0.

We give in Table 1 the values of e 1=¢_ for several
values of the perturbation strength €. It is evident
from this table that e *=5, = E% + O(e), where
29 = —127* for the linear perturbation and =° =
—23 for the cubic one.

We now summarize the numerical results found
for the perturbative case.

=e

—ao

Numerical Result 4.4. For the linear and cubic per-
turbations, the objects ©°(h), ©%, 25, introduced in

n’ oo’

Numerical Result 4.3, tend to well-defined limits as
e = 0. More precisely:

1. ©%(h) = ©°%h) + O(e), uniformly in h € (0, 1].
2. 05 =0 + O(e), nonuniformly in n > 0.

3. B8, =B + O(e?), where

o~ —12nt i V() =,

R G~ if V'(y) =y

Again, we believe that these numerical results hold

for any even entire perturbative potential eV (y).
Concerning the value of Z% , we conjecture that

V(y) € Qy] = EL €Q[n].

[1]

5. THE COMPUTATIONS

In this section, we will express the lobe area as a
difference of homoclinic actions. We also explain
how to compute this exponentially small difference
with arbitrary accuracy as fast as possible.

—1=e
=

S £

Viy) =y V'y) =y*
101 | —0.09773774088... | —4.630291391S. ..
10-2 | —0.12084203100... | —5.2302522778...
1073 | —0.12295874638 ... | —5.3224971013. ..
107% | —0.12316850220... | —5.3322442111...
1075 | —0.12318945876... | —5.3332243659. ..
1076 | —0.12319155423... | —5.3333224360...
S0 | —0.12319178706... | —5.3333333333...

TABLE 1. Computed values of =5 for the linear and
cubic perturbations. The last row contains values of

=9 =lim. e =%, found by extrapolation.
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5A. The MacKay-Meiss—Percival Action Principle

Let F' be an exact map on the plane with the usual
symplectic structure w = dx A dy and let S be its
generating function: F*ydr — ydx = dS. Assume
that z. is a hyperbolic fixed point of F' and let
WH* be its associated unstable and stable invariant
curves. Given a homoclinic orbit O = (2,)nez of
F—that is, O € (W*NW*) \ {2} and F(z,) =
Zn+1—we define its homoclinic action as

W[O] = Z S(Zn)a

nez

(5-1)

where, in order to get an absolutely convergent se-
ries, the generating function S has been determined
by imposing S(z.) = 0. Given an integer N, we de-
note by n"*(N) the paths contained in the invariant
curves W™ from the hyperbolic point z,, to the ho-
moclinic one zy. Then the following formulae hold
[MacKay et al. 1984; Easton 1991; Delshams and
Ramirez-Ros 1997]

Z S(zn) = / ydz,
n*(N)

n<N

S 5(z) = /WS(N) yda.

n>N
(5-2)
These formulae are the key tool to get a com-
putable expression for the lobe area A. Let z* be
two homoclinic points such that the pieces of the
invariant curves between them do not contain other
points of their orbits. These pieces enclose a region
called a lobe. Let OF be the homoclinic orbits gen-
erated by z*, and set n = 7" —n°, where 5™ C W™*
are paths from 2% to z~. Thus, A = fn ydz is the
algebraic area of the lobe; the sign of A depends on
the way the perturbed curves cross: A > 0 if and
only if 7 is traveled clockwise, as in Figure 2. Fi-
nally, from equations (5-1) and (5-2), the lobe area
A can be expressed as a difference of homoclinic ac-
tions:

A=W[0"]-W[O01]. (5-3)

5B. Multiple-Precision Arithmetic

To motivate the multiple-precision arithmetic used
in the computations, we note that the lobe areas we
want compute are O (exp(—n?/h)), whereas the ho-
moclinic actions W[O%] are much larger since they
are of the same order as the region enclosed by
the unperturbed separatrix, which is O(h®). Thus,
equation (5-3) must be carefully used due to the
strong cancellation in the difference W[O~]-W[07].

Even for moderate values h, this causes an impor-
tant loss of significant digits, which can only be over-
come by computing the actions with more correct
digits than the lost ones. For instance, setting h =
0.1, numerical computations with eV’'(y) = y3/10
give
W[OT] ~ 7.02677 x 10~* ~ W[O ],
A ~3.01433 x 10~ 4%,

so that in order to get at least one correct (decimal)
digit for the lobe area A one must have approxi-
mately 40 correct digits for the actions W[O#]. This
exceeds the range of quadruple-precision arithmetic.

The number P of decimal digits used in the com-
putations is determined by the formula

P =Q + [7*h 'log,, €] + 20,

where @ is the number of significant decimal digits
required for the lobe area (usually @ = 100 or @ =
900), and [-] stands for integer part. The second
term is a good approximation for the decimal digits
lost by cancellation, and the last one is a security
term.

The multiple-precision routines were implemented
following the algorithms contained in [Knuth 1969].
We have avoided the use of external packages in or-
der to have total control over the program.

The use of expensive multiple-precision arithmetic
encourages us to study maps as “cheap” as possi-
ble. Accordingly, we have restricted the experiments
to the linear and cubic cases (V'(y) = y,y*). For
numerical purposes, representation (2-1) is the one
that involves fewest operations. Given € and h > 0,
one computes p = cosh h, pg = p — €Vy, and then,
in the linear case, each evaluation of (2-1) requires
one division, two products, and three sums. In the
cubic case, just one more product is needed.

5C. Invariant Curves

Local invariant curves associated to weakly hyper-
bolic fixed points must be developed up to high or-
der (see [Sim¢ 1990] for general comments). This
fact is crucial to get the lobe area with the required
accuracy as fast as possible: the initial iterates can
then be taken far enough from the hyperbolic fixed
point and the homoclinic points z* can be attained
in a few iterations. In this way, undesirable accu-
mulation of rounding errors due to the large amount
of operations is avoided and computing time is re-
duced.
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It is very well-known that there exist analytic pa-
rameterizations o%* : R — W"* of the invariant
curves such that F(o"(r)) = o*(\r) and F(o®(r)) =
o*(A7'r), where X is the characteristic multiplier of
the hyperbolic point. Such parameterizations conju-
gate the map F to r — A*r on the invariant curves,
and are determined except for a multiplicative con-
stant in the variable r. (A natural parameterization
is obtained via the change of variables r = expt.)

In order to accelerate the numerical computation
of these parameterizations we must take advantage
of the symmetries, reversors, and peculiarities of the
map (2-2).

First, o" and ¢® are odd, since so is F'. Second, the
reversors Rt and R~ = F o Rt allow us to obtain a
parameterization of the stable curve in terms of the
unstable one:

a*(r) :== R"(c"(r)) = R~ (a"(\r)).

Finally, the particular form of the map (2-2) implies
that o"(r) can be written as

o*(r) = (C(AY2r), C(AY?r)) (5-5)
for some analytic odd function ¢ : R — R such that

CAr) + (A7) = U (¢(r) - (5-6)
Therefore, to get the Taylor expansion of the in-
variant curves it is enough to solve equation (5-6).

Set C(r) = ;50 Gr***! and

r ) = ZQkTQIH_l:
k>0
where Q(y) := U'(y) — 2uy = O(y*). From (5-6),
we get (AT — 25 4+ A=) ¢ = g, forall k > 0.
Since Q(y) begins with cubic terms, go is zero and g
only depends on (o, ..., (y—1. Besides, 2u = A+ \71
(see equalities (2-3)) implies that \' — 2+ A=' =0
if and only if I = +1. Thus, the coefficient (j is the
free parameter that multiplies the variable r, and

Go= (A — 20 4 AR g for k> 1.

If all the coefficients are known up to the index k —
1, we can compute successively ¢, and (;, and this
recurrence allows us to compute the coefficients
up to any fixed index K.

To choose (, appropriately, we take into account
that in the unperturbed case € = 0 the parameteri-
zation (y(r) is given by (p(expt) = &o(t) (see (2-4)
and (2-5)), and it takes the form

Go(r) =27z =213 (-1

k>0

(5-4)

Yrp2htL, (5-7)

that is, (o(r) has only odd Taylor coefficients, given
by (—1)%27.

In the perturbed case, we choose (, = 27 to get
controlled growth for the coefficients (j:

G = (— )§0 (— )2’7

This stable behavior of the coefficients (;, is particu-
larly suitable for their numerical computation, and
makes the previous algorithm very robust in avoid-
ing cancellation problems.

(5-8)

5D. Homoclinic Points

In order to find numerically the symmetric homo-
clinic points z* € C*, we move along the unstable
curve W" to the first point that intersects C*. We
explain the process for z*; the computation of z~
follows the same lines.

First, given the number P of decimal digits used
in the arithmetic, and an order K for the invariant
curve expansions, we must choose a positive number
¢ such that

Ex(6) := [C(0) = Y Guo™ | = | 3 o
k<K k>K
<p:=10"",

and as large as possible, because the size of § deter-
mines the number N of iterates needed to reach the
homoclinic point. From equation (5-8), we get

EK((S) < 2’}/(52K+3 <

for h small and 6 € (0,1).
62K+ = p=10"", that is,
§ = 107F/K+3),

2K+3
0T,

Thus, a good choice is

Once we have determined J, we find the first nat-
ural N such that FY¥(¢"(§)) and FNT'(o%(d)) =
FN(0"(\d)) are separated by CT = {y = z}, so
that the function

g*(r) = mFY (0"(r)) — mF™ (0"(r)),

has a zero 7' in the interval [0, A0]. Here m(2)
and my(z) stand for the projections on the first and
second components of z, respectively.

Next we use Newton’s method to determine 7+
with the precision p we are dealing with. For the
sake of efficiency, we first work in double precision
and later refine the result by doubling the number
of digits in multiple-precision arithmetic after each
Newton iteration. (The convergence of Newton’s
method is quadratic.) In this way, a complete run

(5-9)
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of Newton’s method takes at most thrice the time
the last iteration takes.

Finally, 2 = FY(o%(7*)) = o%(r") is the ho-
moclinic point over C* we are looking for, where
rT = AV#t. In the unperturbed case r™ = 1, be-
cause (o(r) = (o(1/r); see (5-7). Therefore, for
moderate perturbation strengths ¢,

e V= AN x it e 5, M),

where § = 10~/%5+3) and we can express (approx-
imately) the number of iterates N in terms of the
characteristic exponent h, the precision P, and the

order K:

N ~ P (5-10)
(2K +3)hlog, e’

Numerical experiments show that this fit gives,
for h ranging in (0,0.1] and € in (—0.5,0.5), a maxi-
mum relative error below 4%, so that it can be used
to approximate the index K minimizing the com-
puter time. In order to do it, we move along the
index K, determine the number of iterations IV by
means of (5-10), and estimate a priori the computer
time counting the total number of products and di-
visions performed in the algorithm. We then choose
the index K that gave the smallest estimate. This
method is very accurate: experience shows that the
true optimal choice of K is at most ten per cent
faster than our estimate.

We explain how, for each value of K, the com-
puter time can be estimated a priori. The algo-
rithm to get the lobe area A has several parts: the
expansion of the local invariant curves, the New-
ton’s method to find the pair of homoclinic orbits,
the computation of the action of each homoclinic
orbit, and other negligible parts. For the sake of
brevity, we shall only discuss how to estimate the
time needed for Newton’s method. We can normal-
ize the time scale in such a way that one product
takes just one unit of time. Then numerical exper-
iments show that one division takes approximately
2.75 units of time, for large enough P.

Let #, and #. be respectively the number of
products and divisions required to evaluate the map
(2-1) together with its differential. (Of course, #
and #. depend on the perturbation; for instance,
in the linear case #. = 6 and #. = 1, whereas in
the cubic one #, = 7 and #. = 1.) Then the eval-
uation of the function g™ (r) given in (5-9) together
with its differential takes 4K + (#x« + 2.75#.)N
units of time. The term 4K comes from Horner’s

rule for evaluating the Taylor expansions of o"(r)
and do"(r). The second term, (#x + 2.75#.)N,
comes from the computation of FV(z) and its dif-
ferential. Therefore, the time spent on Newton’s
method is 6(4K + (#« + 2.75#+)N), since, as al-
ready said, a run of Newton’s method takes at most
thrice the time needed for the last iteration, and
there are two homoclinic orbits to compute (6 =
2 x3).

The other parts of the algorithm can be analyzed
in the same way, and so one gets a closed formula
T = T(K) for the estimated computed time T in
terms of the order K. Then we take as the (es-
timated) optimal order the point that realizes the
minimum of the function T(K). See Figure 6 for a
sample of this idea.

To conclude, we note that the reversibility of the
map allows us to reduce the computation of homo-
clinic points to a one-dimensional root-finding prob-
lem, instead of a two-dimensional one. This simpli-
fies the study, avoids stability problems and saves
computer time.

5E. Lobe Areas

The lobe area A is a difference of actions, according
to formula (5-3). Therefore, it is enough to com-
pute the actions W[O%], but this is not so simple as
applying directly formula (5-1). We describe briefly
the problem that this simple method has. For the
sake of brevity, we restrict our study to the homo-
clinic orbit O,
The problem is to compute the action

WOt =) S(=)),
nez
where z = F"(z%), and 2zt = o%(rt) € CT is
the homoclinic point previously computed. Obvi-
ously, the action must be computed to the precision
p =10"" < exp (—7n%h) we are dealing with. The
simplest way to get the infinite sum is to cut off the
terms with |n| > L, for some threshold L chosen in
such a way that ‘EIHDL S(zH)| < p.
The generating function of the map (2-1) is

S(x,y) = —zy + polog(1 + %) + £V (y).
From S(z) = O(z2?), 0%%(z) = O(hz), and rt =
O(1), we get

o [SE (A" =0(hPe M) n— —oo,
S(Zn)_{S(as()\_|"|r+)):O(h26_2”h),

(5-11)

n— —+oo.
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FIGURE 6. Estimated computer time T versus the order K, for ¢ = 0.1 and Q = 900. The dotted lines correspond
to V'(y) = y and the continuous ones to V’(y) = y*. The marked points correspond to the estimated optimal
order. Left: h = 0.01 and the time scale has been chosen in such a way that 10° products with P = 1353 decimal
digits take one unit of time; the estimated optimal orders are 194 (linear case) and 186 (cubic case). Right:
h = 0.001 and the time scale has been chosen in such a way that 107 products with P = 5211 decimal digits take
one unit of time; the estimated optimal orders are 677 (linear case) and 644 (cubic case).

Now, we note that the lowest natural number L such
that >, ., h?exp (=2|n|h) < p < exp(—n?/h) is
at least O(h™2). This cost of O(h™2) evaluations
of the function S(z) to compute the action W[OT]
becomes prohibitive for small A.

We now proceed to explain a better method, re-
quiring only O(h™!') evaluations of S(z). First, the
reversibility of the map allows us to reduce the com-
putational effort by half. Indeed, we can write the
action as a difference of path integrals, as in (5-2),

Wit = Y8 = [ ydo— [ yan
nez nt n®
where n", n° are the paths contained in the invariant
curves W*, W* from the saddle point z,, = (0,0) to
the homoclinic point z* = zj = (zt, 27) € C*.
Since n® = R™n", we get

W[ot] = / (y dr — xdy) = / (2y dw — d(xy))
= —(a")? +2)_S(z)),

n<0

where in the last equality we have again used (5-2).
To compute the last sum, we split it as follows:

ZS(’Z;) = El +22,

n<0
=Y Sz,
n<—N
-1
22 = Z S(Z::)a
n=—N

where N is the number of iterates that it takes to ar-
rive at 21 from the fundamental domain in which the
Taylor expansion of ¢"(r) holds with the required
precision p.

We write the infinite sum ¥; as a path integral
along the path 7 C W" from the saddle point z., to
the homoclinic point 2F 5 = o4(7), 7t € [5, M):

S S = / yda

n<—N

it
= )\_1/2/ CNY2R)C (A2 dr,
0

which can be computed with the required accuracy
using the Taylor expansion of ((r). The second sum
St v S(zh) is finite with only N = O(h ') terms,
so it can be computed easily in a relatively fast
way. A crucial factor in increasing the efficiency
of the program is the number of logarithmic evalua-
tions required to perform this finite sum, because of
the expensive multiple-precision arithmetic we are
working with. Although equation (5-11) contains a
logarithm, the sum

21:

-1
S(zy)

n=—N
requires just one logarithmic evaluation, since a sum
of logarithms can be rewritten as the logarithm of a
product.

Now we are ready to compare the two methods.
The first one required at least O(h~?) evaluations of

2000
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the generating function S(z), whereas the second re-
quires only O(h~!) evaluations plus the computation
of an integral by Taylor’s method, which takes less
time than the O(h™!') evaluations of S(z). There-
fore, the difference is at least one order of magnitude
in h.

To end this section, we show some values of P, K,
and N in Table 2. These results were obtained set-
ting € = 0.1 and requiring @) = 900 correct decimal
digits for the lobe area. We also display the true
computer time T in seconds. The choice € = 0.1 has
very little influence on the quantities P, K, N, and
T. In fact, P does not depend on the perturbation,
but only on @ and h. As expected, the computa-
tions in the linear case V'(y) = y are somewhat
faster than in the cubic case V'(y) = y*. This is for
two reasons:

1. The evaluation of the map F with a cubic per-
turbation requires one more product than with
the linear one.

2. The computation of the Taylor expansion of the
local invariant curve is more expensive in the cu-
bic case, because the recurrence formulae for the
Taylor coefficients require more products.

Vi(y) =y V'(y) =v*

h P K N T K N T
0.009 1401 | 204 876 1652 | 195 916 1879
0.008 1459 | 215 974 1935 | 206 1016 2205
0.007 1536 | 230 1096 2369 | 220 1145 2736
0.006 1637 | 248 1264 3038 | 237 1322 3379
0.005 1782 | 271 1511 4134 | 259 1581 4643
0.004 1994 | 305 1879 6195 | 291 1969 7091
0.003 2350 | 356 2532 11154 | 339 2658 12613
0.002 3068 | 447 3951 31614 | 426 4145 36389
0.001 5211 | 677 8869 207007 | 644 9321 240530

TABLE 2. Values of P (decimals digits in the mul-
tiple-precision arithmetic), K (local order), N (it-
erations), and T (computing time in seconds), for
) = 900 (decimal digits required for the lobe area)
and ¢ = 0.1. The runs were performed on a Pentium
200 machine under Linux.

6. FURTHER EXPERIMENTS

An interesting problem is to find an algorithm for
computing the coefficients % in equations (4-5),
(4-6), different from the one used in this paper,
which is based on the numerical continuation of lobe

areas for many values of h, jointly with an extrapo-
lation method. These coefficients are the unknown
component in the exponentially small asymptotic
formula for the splitting size. For some celebrated
standard-like maps, similar quantities (such as La-
zutkin’s constant wy = 1118.827706. .. for the stan-
dard map) have been defined by means of nonlinear
parameterless problems that only can be solved nu-
merically [Gelfreich et al. 1991; 1994; Hakim and
Mallick 1993; Suris 1994; Chernov 1995; Nikitin
1995; Treschev 1996]. It would be useful to find such
a problem for ©f, since the absence of parameters
makes easier its resolution.

To perform a similar study for (large or small)
perturbations of other integrable maps is the most
natural continuation of this work.

As a first example, of which the McMillan map is a
particular case, we mention the integrable standard-
like maps given by Suris [1989]. For instance, [Lomel{
and Meiss 1996] contains a exponentially small Mel-
nikov prediction in the characteristic exponent for
the lobe area in a perturbed trigonometric Suris
map, together with a numerical study in double-
precision of its validity. It would be interesting to
work out these computations in multiple-precision.

As a second example, we mention the twist maps
associated to the perturbations of elliptic billiards.
The papers [Levallois and Tabanov 1993; Tabanov
1994; Delshams and Ramirez-Ros 1996; Lomeli 1996;
Levallois 1997] contain exponentially small predic-
tions for the splitting size when the eccentricity is
small, that is, when the unperturbed ellipse is near
a circle. The numerical experiments can be espe-
cially helpful, since there is still a lack of analytical
results. However, it is worth noting that the numer-
ical study of billiards is somewhat harder than the
one performed here. This has to do with the fact
that the twist maps associated to billiards have no
explicit expressions, since they are defined implicitly
by means of their generating functions. Therefore,
the evaluation of the map is more expensive: one
needs to solve implicit equations with trigonometric
terms.

Volume-preserving maps form the third example
where a detailed numerical analysis would be inter-
esting. In [Amick et al. 1992; Rom-Kedar et al.
1993], one can find several families of volume-pre-
serving maps, depending on a small parameter h,
such that the splitting distance between certain in-
variant curves behaves with respect to h as in (1-2).
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The arguments in these papers are semi-analytical.
It would be interesting to study numerically the
asymptotic behavior of these distances. Maybe a
behavior like (1-3) or even (1-4) may be established
if multiple-precision arithmetic is used.

As a last application, we consider the symplectic
high-dimensional case. In [Delshams and Ramirez-
Ros 1997] we obtained exponentially small asymp-
totic predictions via Melnikov methods for some per-
turbations of the McLachlan map (a high-dimen-
sional generalization of the McMillan map studied
here). The computations in the high-dimensional
case must be performed very carefully. The main
difficulties associated with the increase in dimen-
sion are the computation of the invariant manifolds,
which takes much longer than in the planar case,
and the sensitive dependence of Newton’s method
on the initial approximation. Following [Tabacman
1995], we suggest a way to overcome these problems.
The first difficulty can be ameliorated using the La-
grangian property of the invariant manifolds of sym-
plectic maps, which can be written as graphs of gra-
dients of a scalar function called generating function
of the manifold. The idea is to compute the Taylor
expansion of such generating functions instead of
dealing with the invariant manifolds. To overcome
the sensitive dependence of Newton’s method on the
initial approximation, one can use first the method
developed in [Tabacman 1995] to find homoclinic
points, based on the computation of critical points
of a scalar function, usually a more robust prob-
lem. Then one can refine the homoclinic point using
the Newton’s method (or a quasi-Newton method),
which converges faster.

Finally, we want to mention an outstanding con-
jecture, due to C. Simd, on the asymptotic behavior
of the splitting size for some area-preserving maps
like the standard map, the Hénon map, the twist
map, and the perturbed McMillan map studied here.
Roughly speaking, this conjecture claims that

splitting size = Zh”’me_’”ﬁ/h@m(h),
m>1 (6-1)
©..(h) Gevrey-1 and 0,,(0) # 0;

that is, smaller exponentials must be added to (1-4)
in order to get a more exact formula. These expo-
nentials do not play any role for “small” values of h,
but they become significant for “larger” ones. There
are strong reasons for believing that (6-1) holds, but
nowadays there is a lack of analysis and computer

power to tackle this conjecture. We hope that this
will be a stimulating challenge for some readers.
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