A Methodology for the Numerical Computation of
Normal Forms, Centre Manifolds and First Integrals

of Hamiltonian Systems
Angel Jorba

CONTENTS

. Introduction

. Basic Tools

. Handling Homogeneous Polynomials
. Examples

. Efficiency Considerations

. Error Control

N O UG & W N =

. Extensions

Acknowledgements

Appendix A: Basic Hamiltonian Mechanics

Appendix B: Linear Normal Form for the Equilibrium Points of
the RTBP

Electronic Availability

References

Keywords: normal forms, centre manifolds, first integrals,
algebraic manipulators, invariant tori.

This research received financial support from Spanish grant
DGICYT PB94-0215, EC grant ERBCHRXCT940460, and
Catalan grant CIRIT 1996SGR~-00105. It was also supported in
part by the Institute for Mathematics and its Applications (IMA),
with funds provided by the National Science Foundation.

This paper deals with the effective computation of normal forms,
centre manifolds and first integrals in Hamiltonian mechanics.
These calculations are very useful since they allow us, among
other things, to give explicit estimates on the diffusion time and
to compute invariant tori. The approach presented here is based
on the algebraic manipulation of formal series with numerical
coefficients for them. This, together with a very efficient soft-
ware implementation, allows big savings in memory and execu-
tion time in comparison with the use of commercial algebraic
manipulators. The algorithms are discussed together with their
C/C++ implementations, and they are applied to some concrete
examples from celestial mechanics.

1. INTRODUCTION

The importance of invariant objects in understand-
ing the phase space of a dynamical system has been
well-known since Poincaré. Invariant objects are in-
teresting not only in themselves but also because
they organize the nearby flow. Despite their im-
portance, there are not many numerical methods
to compute such objects. The aim of this paper is
to explain some techniques that can help perform
some of these computations, in the particular case
in which the system is Hamiltonian. As we will
see, many topics can be extended to general (an-
alytic) systems and also to discrete dynamical sys-
tems. Among the several possible approaches, we
have chosen methods based on the computation of
(truncated) normal forms and (approximate) first
integrals. Truncated normal forms are very useful
since they can provide, under suitable hypotheses,
integrable approximations to the dynamics. Inte-
grability allows one to give explicitly all the invari-
ant objects (for example, tori) in phase space. If

(© A K Peters, Ltd.

1058-6458/1999 $0.50 per page
Experimental Mathematics 8:2, page 155

156 Experimental Mathematics, Vol. 8 (1999), No. 2

the normal form approximates the true dynamics,
the invariant objects of the initial system are also
approximated accordingly; for examples see [Simé
et al. 1995; Jorba and Villanueva 1998; 1999]. Ap-
proximate first integrals are quantities that are al-
most preserved by the flow of the system. This
means that their surface levels are almost invariant
by the flow. This property can be used to obtain in-
formation about some aspects of the dynamics. For
instance, if one is able to estimate the corresponding
remainders, it is not difficult to bound the diffusion
velocity around elliptic fixed points. For a numerical
example, see [Celletti and Giorgilli 1991].

One of the main problems faced when consider-
ing such computations is how to store the object
in the computer. The easiest case is the computa-
tion of a single trajectory, which can be stored as
a sequence of points in phase space. When the in-
variant object has higher dimension, it can be very
difficult or impossible to store it by simply stor-
ing a net of points. The approach taken here is
to use some kind of series expansion (such as power
or Fourier expansions, or a combination of both)
to represent the object. The advantage is that in
many cases only “a few” terms of these series are
needed to get a good accuracy and that they can
be handled very easily. As disadvantages we note
that sometimes the series have convergence prob-
lems, making it impossible to represent the object
in this way. Due to the particularities of the prob-
lems considered here we will only focus on the use
of power expansions. You can find examples with
trigonometric expansions in [Jorba and Masdemont
1998; Gémez et al. 1997]. For a general discussion,
see [Simé 1990].

Sometimes, when only a qualitative description
of the dynamics is needed, it is enough to use a
low-order computation (this is the typical situation
encountered, for instance, in the analysis of a bifur-
cation). This is not the case considered here. The
methodology presented in this paper is geared to-
ward high-order computations, with a high degree
of accuracy, ready for use in many practical appli-
cations. This necessity usually comes from the ap-
plications of the dynamical systems theory to real
problems, like the design and analysis of trajecto-
ries for some spacecrafts; see [Gomez et al. 1985;
1987; Diez et al. 1991; Gémez et al. 1991a, 1991c;

1991b; 1993a; 1993b; 1993c; Simé 1998]. Even in
more academic problems, one many need to per-
form very accurate computations. See, for example,
[Simé 1994], where the computation (by means of
formal expansions) of exponentially small quantities
is counsidered.

Hence, the first point addressed is how to build an
efficient algebraic manipulator (in an efficient lan-
guage such as C or C++) in order to manipulate
these expansions fast, using as little memory as pos-
sible. Then, as an application, we use these routines
to study some aspects of the restricted three body
problem (RTBP). More concretely, we show how to
use these techniques to describe the dynamics near
the five equilibrium points of the RTBP. We also
discuss related topics such as error analysis (includ-
ing the use of interval arithmetic), efficiency (from
the points of view of memory and speed) and some
possible extensions to these routines, such as more
variables, time dependence, etc.

In the work described here we have made exten-
sive use of the particularities of Hamiltonian sys-
tems, so that many of the algorithms cannot be used
outside of this environment. However, our method-
ology for building algebraic manipulators is very
general and can be applied in a lot of different con-
texts.

In order to simplify the exposition, we restrict
ourselves to analytic and autonomous Hamiltonian
systems with three degrees of freedom, having a
fixed point at the origin. In Section 7 we will dis-
cuss possible extensions to more general contexts.
The discussion assumes some knowledge of Hamil-
tonian mechanics, but for self-containedness we have
included in Appendix A a summary of the main con-
cepts and properties of Hamiltonian systems.

1.1. Examples

In this section we summarize a few problems where
classical numerical methods, such as numerical in-
tegration of single trajectories, are not enough to
give a good answer. They will be used as exam-
ples throughout the paper, and they were a primary
motivation for our work. However, there are many
other applications of our tools (both practical and
theoretical) beyond the ones presented here. We
have selected a few simple ones in order to have
concrete problems to work with and be able to give

Jorba: Numerical Computation of Normal Forms, Centre Manifolds and First Integrals of Hamiltonian Systems 157

concrete results. We hope that the interested reader
will be able to apply these ideas to similar problems
in other fields.

1.1.1. Dynamics near an elliptic equilibrium point. As-
sume that we are interested in the dynamics near
an elliptic equilibrium point (which, for simplicity,
we will locate at the origin) of a Hamiltonian sys-
tem with three degrees of freedom. Since the phase
space has dimension six, it is very difficult to get a
picture of the dynamics using numerical integration
of single trajectories.

Assume we are able to rewrite the initial Hamil-
tonian H as

H = Hy + H,, (1-1)

where H, is an integrable Hamiltonian (so, in this
case, the phase space is completely foliated by in-
variant tori) and H, is a nonintegrable one. Then,
if H, is small enough near the point, the trajectories
corresponding to Hy are close to the trajectories of
H, at least for moderate time spans. Hence, from
the integrable character of Hj it is not difficult to
obtain approximations for the invariant tori of H.
The effect that H; has on the solutions of H, is
discussed in Appendix A. Essentially, near the ori-
gin, most of the tori of Hy are not destroyed by H,
but only slightly deformed. However, we cannot ex-
clude the possibility that an orbit originating in any
vicinity of the origin may escape, thus making the
origin unstable. This phenomenon has been named
Arnol’d diffusion, because a mechanism for it was
proposed by Arnol’d [1964].

Assume that we are also interested in estimates
of the diffusion time near the origin. The computa-
tional effort needed to do this by single numerical
integration is too big for it to be a feasible option:
the large number of trajectories one has to consider
plus the huge interval of integration for each one
(which also introduces the problem of accumulation
of rounding errors) makes this calculation impossi-
ble for present computers. An alternative procedure
is the following: Suppose we are able to rewrite the
initial Hamiltonian H as in (1-1). Since H, is inte-
grable, the diffusion present in H must come from
H,. Hence, one can easily derive bounds for the dif-
fusion time in terms of the size of H;. Of course, in
order to produce realistic diffusion times one needs
to have H; as small as possible. A standard way

of producing the splitting (1-1) is by means of a
normal form calculation: Hj is the normal form and
H; the corresponding remainder. See [Giorgilli et al.
1989; Simé 1989; Jorba and Simé 1994].

There are alternative ways of estimating the dif-
fusion time near elliptic equilibrium points. For in-
stance, one can construct approximate first integrals
near the point and estimate the “drift” of these in-
tegrals. Of course, although one can use as many
first integrals as degrees of freedom, it is enough to
use a single positive-definite integral (near the point,
its level surfaces split the phase space into two con-
nected components so they act as a barrier to the
diffusion).

Although from the theoretical point of view both
approaches are equivalent—the first integrals we
compute are in fact the action variables of the nor-
mal form— from the computational point of view
they behave differently. We will see this in detail
later.

1.1.2. Dynamics in a centre manifold. Consider a Ham-
iltonian system with three degrees of freedom with
an equilibrium point at the origin, and assume that
the linear flow around this point is of the type cen-
tre x centre x saddle.

We are interested in finding a description of the
dynamics in a neighbourhood (as big as possible) of
the origin. One possibility is called reduction to the
centre manifold; it consists in performing changes
of variables in order to uncouple (up to some fi-
nite order) the hyperbolic behaviour from the centre
manifold behavior. (One can regard this as a partial
normal form.) The restriction of the Hamiltonian to
this approximate centre manifold will be a Hamil-
tonian system with two degrees of freedom. So, se-
lecting an energy level H = h and taking a suitable
Poincaré section we can produce a collection of two-
dimensional plots that can give a good description
of the dynamics. As far as we know, this was first
done in [Gémez et al. 1991c]; see also [Jorba and
Masdemont 1999].

1.2. Methodology

Here we will present the methodology we use to deal
with those computations, based on the use of al-
gebraic manipulators. There are several possible
schemes, depending on the kind of calculation we

158 Experimental Mathematics, Vol. 8 (1999), No. 2

are interested in. For instance, if the procedure only
needs to substitute trigonometric series in the non-
linear terms of the equations— as in the Lindstedt—
Poincaré method: see [Gémez et al. 1991c; Gémez
et al. 1997; Jorba and Masdemont 1999] — one of
the best choices is to look for a recurrent expression
of those nonlinear terms; the substitution is done
simply by inserting the series into the recurrence.
In this paper, we will apply schemes that work with
the power expansion of the Hamiltonian. (When
the system is not Hamiltonian, one must work with
the differential equations— or with the equations of
the map if the system is discrete —but, of course,
this increases the computational effort.) So a gen-
eral scheme for the problems considered here is the
following:

1. Power expansion of the Hamiltonian around the
origin.

2. Complexification of the Hamiltonian. This is not
a necessary step but, as we will see, it allows one
to simplify further computations.

3. Changes of variables (usually by means of Pois-
son brackets), up to some finite order.

4. Realification of the final Hamiltonian. Again,
this is not a necessary step. It is done only to
reduce the size of the resulting series.

5. Computation of the change of variables that goes
from the initial Hamiltonian to the final one.

So, one needs computer routines for all these steps.
A natural way of handling the power expansions is
as a sequence of homogeneous polynomials:

H =) Hy,

E>2

where Hj, is an homogeneous polynomial of degree
k. So one of the most important problems will be to
deal with homogeneous polynomials of several vari-
ables. As we will see, the bottleneck (with respect to
speed) of the methods exposed here is the handling
of homogeneous polynomials.

1.3. Earlier Software

There are several computer packages that, in prin-
ciple, are able to deal with the computations men-
tioned here. Among the commercial software the
best-known packages are perhaps Maple and Math-
ematica. Although they have the advantage of be-

ing very general packages, dealing with much more
problems than the ones discussed here, they are not
very efficient in terms of either time and memory,
and in any case one needs to write the high-level op-
erations such as Poisson bracket. (In this direction,
[Rand and Armbruster 1987] discusses the solution
of typical problems in dynamical systems by using
Macsyma, and [Raines and Uzer 1992] contains com-
putations of normal forms using Mathematica.) So
if one is interested in low-order computations (some-
times this is enough in academic problems) they can
be considered as a valid option. But if one wants to
reach high orders, general-purpose packages are not
competitive at all. In this case one has to go to
software tailored to the particularities of the prob-
lem. This is the line we have followed in this work.
In fact, it is possible to write even faster routines
(see Section 5) than we did, but then the code is, in
our opinion, more obscure. In some cases, especially
taking into account the development and debugging
time, the gain in speed is not enough to justify the
loss of clarity. Anyway, we hope the reader inter-
ested in this point will not have problems in modi-
fying the software.

There are some other packages similar to this one
in the literature. In fact, there is a long tradition of
building algebraic manipulators in celestial mechan-
ics. We cite [Giorgilli 1979; Broucke and Garthwaite
1969; Broucke 1989; Ricklefs et al. 1983; Meyer and
Schmidt 1986; Brumberg et al. 1989; Laskar 1990];
see also references therein. These works are directed
toward concrete problems of celestial mechanics and
are very efficient when dealing with them. We also
refer to [Henrard 1989] for a survey of those earlier
works.

1.4. Programming Considerations

Our programming language is ANSI C, except when
we have to deal with complex numbers, in which
case we use C++ due to its ability of overloading
arithmetic operators, that is, assigning different be-
haviors to the operator depending of the type of
the operands. This technique also allows one to use
more sophisticated types as coefficients, such as mul-
tiple precision, intervals, Fourier series, etc.

It is not necessary to know C or C++ to read this
paper, but in order to understand the details of the
implementation of the algorithms it is necessary to

Jorba: Numerical Computation of Normal Forms, Centre Manifolds and First Integrals of Hamiltonian Systems 159

look at the source code. Information about C can be
found in [Kernighan and Ritchie 1988], and about
C++ in [Stroustrup 1992].

If one does not wish to use C++, it is straightfor-
ward, though tedious, to rewrite these operations in
ANSI C. Another interesting possibility is to use the
SCC precompiler [Schelter 1991]. This is a prepro-
cessor that allows one to define new operations, and
overload with them the standard arithmetic opera-
tors as well as the corresponding input and output
functions (in a similar way as C++ does). SCC
translates this code into C, to be processed by a
standard C compiler.

It is not difficult to use these algorithms in other
languages. In fact, the first version of these routines
was written in Fortran 77. The main advantage of
C for these problems, in our opinion, is the dynamic
allocation of memory and the use of structures. In
Fortran 77 one has to set some parameters before
compiling in order to declare big enough arrays, to
have room for the expansions as well as working
space.

This paper is structured as follows. Sections 2
and 3 give the details on the algebraic manipula-
tors. Section 4 is devoted to some applications of
this software to concrete problems. Section 5 dis-
cuss the efficiency of these methods as well as some
improvements to them. Section 6 contains some re-
marks about the propagation of the rounding er-
rors. Finally, Section 7 points out some extensions
to these methods to be used in more complex prob-
lems (for instance, when the Hamiltonian depends
on time in a periodic or quasiperiodic way). We
have added two Appendices in order to make the
paper self-contained: Appendix A contains a short
description of the properties of Hamiltonian systems
used here and Appendix B contains a basic descrip-
tion of the restricted three body problem, as well
as some properties that are used in the applica-
tions. We have included these appendices because
we are not aware of similar summaries in the liter-
ature.

2. BASIC TOOLS

In this section we describe the basic algorithms and
routines used to handle homogeneous polynomials.
This is the most important part of the package.

To simplify the notation, we make the convention
that the set N of natural numbers contains 0.

2.1. Storing and Retrieving Monomials

Assume that we want to store an homogeneous poly-

nomial P, of degree n, with 6 variables x, ..., xs:
Z k
Pn = Prx,
kENS®
|k|=n

where we use the notation z*

=2 ...z and |k| =
ko + --- + k5. For the moment we assume that all
the coeflicients p; are different from zero. Define
Ye(n) = #{k € N°such that |k| = n} (that is,
1s(n) denotes the number of monomials of P,).

To store the polynomial we use an array of 1s(n)
components, each appropriate for the storage of one
coefficient of the polynomial. We use the position
(index) of a coefficient inside the array to know the
monomial it corresponds to. To this end we con-
struct a function, called 11ex6, which, given a posi-
tion in the array (that is, an integer between 0 and
1g(n) — 1), returns the multiindex that corresponds
to this coefficient. Of course we need the inverse
function, called ex116, to know where to store a
given monomial.

Before going into the details of these functions,
we stress that, from the point of view of efficiency,
they are of crucial importance: if they are efficient,
the package will be efficient. This will be discussed
in Section 5.2.

In order to have a fast implementation, we use
an integer array (we assume here that every integer
is four bytes long) to store some information to be
used by function 11ex6. This array has ¢g(n) com-
ponents and each one contains in encoded form the
multiindex of the corresponding coefficient. We use
this array in the obvious way: each time we need
to know the exponent of the monomial whose co-
efficient is stored in position j of the homogeneous
polynomial, we get it from the component j of this
array.

The way of encoding the multiindex k is the fol-
lowing: since we know the degree we are working
with, one of the exponents (say ko) is redundant,
so we only need to store ki, ..., k5. This has to be
stored inside a 32-bit number, so we can use 6 bits
for each index, leaving 2 unused. This introduces

160 Experimental Mathematics, Vol. 8 (1999), No. 2

the restriction k; < 64. Since we want to handle
homogeneous polynomials, the maximum degree al-
lowed is 63, more than enough for the applications
considered here.

2.2. The Routines

Here we discuss in some detail the basic routines
of the manipulator, since these routines are of first
importance from the viewpoint of efficiency. Their
source code is stored in the file mp6.c. (See the sec-
tion on Electronic Availability at the end of the pa-
per for information on how to obtain the software.)
The number 6 in the file name and the routine names
refers to the fact that we are working with six vari-
ables in our running example of a Hamiltonian sys-
tem with three degrees of freedom.

For portability reasons, in the heading of several
files we redefine the standard type int as integer.
This is because the first version of these routines was
developed on an old 286 machine, where ints were
2 bytes long, and it was run on a HP workstation,
where ints were 4 bytes long. We can allow for
different kinds of integers, simply by redefinig the
type integer. Of course, this is not relevant for
computers at present (1997).

Headings of the file mp6.c. Here we have placed the
declarations of three variables that must be accessi-
ble by all the routines in this file. They are named
nor, clmo and psi, and are initialized by routine
imp6. Their meaning is explained in the next sec-
tions.

The routine imp6. This routine has to be called be-
fore using any other routine in the package, because
it allocates and initializes some internal arrays to
store the encoded multiindices. The only parame-
ter to this routine is an integer, nr, which contains
the maximum degree we want to use. This value is
stored in the variable nor.
Before continuing, we define a function

Yi(n) = #{k € N* such that |k| = n},

which can be easily evaluated by means of the re-
currence

Pi(n) = é%—l(i) = <n j—_ZI 1)-

(2-1)

The routine imp6 starts by checking that it is
being called with a suitable degree and that the
integer type of the machine (or compiler) is long
enough.

The first step is to allocate space to store the val-
ues of the function ;(j). At this moment we only
need to know g, but we also compute s, ..., Y5,
since they will be needed later. To this end we al-
locate a rectangular matrix psi with the first index
ranging from 2 to 6 and the second one from 0 to
nor. Then, the values 9;(j) are computed (using
the recurrence given in (2-1)) and stored in posi-
tion (7, 7) of the matrix psi.

The next step is to allocate space for the table
clmo. The first dimension of this table ranges from
0 to nor, and it refers to the degree of the homoge-
neous polynomials. If the first index is ¢, the second
index ranges from 0 to (i) — 1 = psi[6] [i] — 1.
The position (i,7) of this array is the encoded ver-
sion of the multiindex of the monomial number j
of a polynomial of degree i. Once this table has
been allocated, we fill it with information about the
multiindices, as we now explain.

We define an order inside the set of multiindices
of a given degree: Let k be a multiindex of degree n
and define k as the integer expressed as kskikskak1kqg
in base n + 1. The order is given by

D < k? —) < k@),

This is usually called reverse lexicographic order.
Now, for a given degree i, we compute all the mul-
tiindices according to this order and we store them
in the table clmo: the first multiindex for degree i
is (1,0,0,0,0,0), and all the others are generated
by routine prxké (see below). We store the compo-
nents of each multiindex in the corresponding place
of clmo, using 6 bits for each component: this means
that the coded version of the multiindex is

k:1+k2 X 26+k’3 X 212+k'4 X 218+k5 X 224. (2-2)

(We don’t need to code ky because, since we know
the degree, it is redundant.) This is the value we will
store in clmo[i] [j], where j stands for the position
of the multiindex (and the monomial) in this order.

Finally, the routine returns the amount of mem-
ory (in kbytes) used by these tables. It is up to the
calling routine whether to use this value.

Jorba: Numerical Computation of Normal Forms, Centre Manifolds and First Integrals of Hamiltonian Systems 161

The routine amp6. This routine frees the memory al-
located by imp6. Of course, once it has been called
the manipulator cannot be used until a new call to
imp6 has been made.

The routine 11ex6. Given a location in the array of co-
efficients, 1loc, and a degree, no, 11lex6 computes
the corresponding multiindex. The way it works is
very straightforward because the multiindex is con-
tained (encoded) in clmo[no] [1loc], and to decode
it we only need to invert (2-2) using the modulus
function. An improvement to this routine consists
in directly extracting the corresponding bits from
clmo [no] [1loc].

The routine ex116. Given a multiindex k of degree no
(this is redundant information but it is very useful
to prevent calls to these routines with wrong argu-
ments), ex116 returns the corresponding place. So,
this is the inverse of 11ex6. The implementation of
this routine can be done in many ways; here is how
we have done it. Denote by k& = (kg,...,ks) the
multiindex and let n be kg + - - - + ks. Define k(®
as (ko,...,ks) and let ny = n — ks be the degree of
k). Then, if we are able to compute

1. the number of multiindices (lo,...,I5) of 6 vari-
ables with degree n such that 0 < I5 < ks,

2. the place it corresponds to k(® among the multi-
indices of 5 variables of degree ns,

the sum of these two quantitites is the place we are
looking for. The first of these numbers is 15(ns +
1)+4---+15(n), and can be easily obtained from the
table psi. The second one is the same problem we
want to solve, but with one dimension less, so we
can apply again the same procedure until we reach
dimension 2 (this corresponds to polynomials in two
variables), where the solution becomes obvious. An
improvement to this routine is to use auxiliar tables
to reduce these integer computations.

The routine ntph6. This routine returns the number
of monomials of a given degree (this information is
contained in the array psi).

The routine prxk6. It is used to produce all the mul-
tiindices of a given order, according to the order we
are using. For more details, we refer the reader to
the source code.

2.3. Taking Advantage of Symmetries

It is quite common in physical examples to have
some kind of symmetry in the Hamiltonian. For in-
stance, in the examples used in this paper we have a
symmetry with respect to the variable z (see (4-1)
and Appendix B). This implies that not all the
possible monomials of the power expansion of the
Hamiltonian are really present. In the examples
used here, if ¢ is the exponent of z and j the expo-
nent of p., the only monomials that appear in the
expansion are the ones in which ¢4 is even. Hence,
taking this into account it is possible to reduce the
amount of memory used and the computing time by
a factor of approximately two.

In order to exploit the symmetry we have devel-
opped special versions of the routines of Section 2.2.
The source code is stored in the files mp6s.c and
mp6p.c.

File mp6s.c contains counterparts to the routines
in mp6.c (with an “s” at the end of the name, to
allow their use in the same program if necessary);
they assume that the only monomials present are
those for which k4 4+ ks is even. Since they work in
a very similar way as the routines in mp6. c, we only
mention the main differences:

imp6s. The function 1s(n) is no longer valid for com-
puting the number of monomials, because of the
symmetry. The number of monomials for a given
degree n is now given by

ln/2]

> (2 + Dpa(n — 2j),

j=0

where |n/2| denotes the integer part of n/2.

ex116s. To have a simple formula for the position
corresponding to a given index, we have changed
the order used for the monomials: we first use re-
verse lexicografic order for the exponents (k4, k5)
and, in second place, reverse lexicographic order
for the exponents (ko, k1, k2, k3). This is usually
called product reverse lexicographic order. It al-
lows one to easily derive a closed formula for the
position (see the source code).

prxk6s. This routine is changed in order to pro-
duce the exponents in the product reverse lex-
icographic order defined above.

162 Experimental Mathematics, Vol. 8 (1999), No. 2

File mp6p.c contains the same routines as mp6s.c,
but with a different symmetry: here it is assumed
that all the monomials that are present satisfy that
ks4+ks is odd (this kind of symmetry appears in some
computations; see Section 4.4). The implementation
is almost identical to that of mp6s.c, so we do not
add further remarks.

In fact, since the examples considered in this pa-
per have these symmetries, we do not make use of
the routines in mp6.c. We have included them for
the sake of completeness, and because they are the
most natural ones to start describing how routines
of this kind work.

Finally, note that if the symmetries are “too com-
plex” to derive closed formulas for the routines ex11,
one can always perform a binary search on the array
clmo. In this case, it is very convenient to use an
order such that the integer values stored in clmo are
sorted as integers. Although this is not as efficient
as a closed formula, it can be easily applied in all
the cases.

2.4. Different Number of Variables

Since the examples in this paper involve Hamilto-
nian systems with three degrees of freedom, the ba-
sic routines explained here handle polynomials with
six variables. If one is interested in a different num-
ber of variables, it is not difficult to build the cor-
responding basic routines. For instance, in Sec-
tion 4.1.3 we need to handle the normal form of a
Hamiltonian system with three degrees of freedom,
which involves only 3 variables. It is very easy to
write the corresponding routines, using the same al-
gorithms as for six variables. We have put those
routines in file mp3.c, which is essentially a minor
modification of file mp6.c. In a similar way we have
derived the routines of mp4s.c and mp4p.c, needed
during the reduction to the centre manifold (see Sec-
tion 4.3).

3. HANDLING HOMOGENEOUS POLYNOMIALS

The routines of this section are contained in the
files basop6s.cc and basop6sp.cc. There are sev-
eral versions of some of them, in order to deal with
polynomials with different symmetries. As before,
we recommend that the reader look at the source
code.

Let p1 and p2 be homogeneous polynomials of
degrees gl and g2 —that is, arrays containing the
coefficients of the polynomials, as explained above.

3.1. Sums

Assume first we want to add two both polynomials
of the same degree (the only case that arises), stor-
ing the result in an array called p3. If we call nm the
number of monomials of each polynomial —a num-
ber that can be determined by the routine ntph6,
for example — the sum is easily computed:

for (i=0; i<nm; i++)
p3[il=p1[il+p2[il;

Here we assume that we have defined the operation
+ for the type of the coefficients of the polynomial:
if they are double variables one does not need to
do anything special since they are already defined
in any C compiler. If they are of complex type—
by which we mean a structure with two members
of type double —we assume that we are working
in C4++ or that we are using a C extension able to
overload the arithmetic operators with the complex
operations. If the coefficients are more sophisticated
types, we assume that we have the corresponding
arithmetic, as well as a way to overload arithmetic
operators.

Similarly, it is very easy to implement the product
of a complex number by a polynomial, so we make
no comments on that.

3.2. Products

Now consider the product of homogeneous polyno-
mials pl and p2, not necessarily of the same de-
gree. The algorithm is very simple and uses the
routines explained in Section 2. To account for the
contribution of the product of monomial ¢ of p1 with
monomial j of p2 we just have to compute the corre-
sponding multiindices k) and k), ask for the posi-
tion where the coefficient of the monomial k) 4 k)
must be stored, and add the product of the coeffi-
cients to the value found in this position. Doing this
for all the possible values of ¢ and j we obtain the
desired product of polynomials. See the source code
for more details.

Jorba: Numerical Computation of Normal Forms, Centre Manifolds and First Integrals of Hamiltonian Systems 163

3.3. Poisson Bracket

The Poisson bracket of two homogeneous polynomi-
als can be implemented using the same ideas as the
product. The algorithm we have used is based on
the identity

{ > oy, Y qk/,u:c’“'y”}
kL

k'l

3 $k+k’yl+l’
= Z pk,le’,l’(Z(kjl;‘ - kﬂj)i);

a’/’ . .
kol kU j=1 iYi

where, of course, k, [, k' and I’ belong to N*. Thus,
for any term of this sum, we proceed as in the prod-
uct of homogeneous polynomials: we look first for
the exponents of the monomials involved, then we
compute the exponents of the resulting monomi-
als and, finally we add the resulting coefficients to
the position corresponding to those monomials. For
more details, see the source code.

3.4. Input and Output

We have coded several routines in order to read and
write power expansions and homogeneous polyno-
mials, in both ASCII and binary format. We do not
provide a complete set of routines to handle all the
possible situations, but simply give the ones needed
in the examples. As mentioned before, our inten-
tion is to show that they can be written very easily
and we hope that the interested reader will have no
problem in coding a similar routine.

There are a lot of different routines, each one for
a different purpose. Although it is not difficult to
write a common front-end for all of them we have
not done so. The main reason is that the aim of
this paper is not to give an easy-to-use library of
functions but to show how to build such a library.
Hence, we have avoided any construction that hides
the inner working of the routines.

3.4.1. ASCII files. There are several routines to read
and write homogeneous polynomials and series. The
format is very easy: for each coefficient, we compute
the corresponding exponents and write the expo-
nents followed by the value of the coefficient. We
use a single line for each coefficient.

There are several sets of routines for the different
kind of series (mp6s, mp6p, real or complex coeffi-
cients, etc.). Some of the routines use a threshold

to decide if a monomial has to be written or not (if
the absolute value of the coefficient is smaller than
the threshold, the monomial is not written).

The advantage of ASCII files is that they can be
printed and read by an ordinary text editor. The
main disadvantages are that they are big and that
input and output are slow. Hence, ASCII files are
only used to write the final results and to store in-
termediate values during the development and de-
bugging.

3.4.2. Binary files. This format is used to store inter-
mediate calculations or series that are only used as
input for other programs (such as change of variable
routines).

The routines that write homogeneous polynomi-
als simply write (sequentially) all the coefficients in
the file, without storing the exponents of the corre-
sponding monomials. The reading routine will read
all the coefficients in a row, without any checking
(except, of course, the end of file), and they will be
stored sequentially in the corresponding array. Each
coefficient is then identified by its position inside the
file. This is done to minimize the size of the file and
to maximize processing speed.

The routines that write series simply write se-
quentially the homogeneous polynomials, adding a
little bit of information to the file according to the
kind of series stored. This extra information is put
at the beginning and consists of four integer values,
with the following meaning:

1. The first integer contains the number of variables
of the expansion.

2. The second integer contains the kind of symme-
try of the expansion. This value can be:

0: No symmetry. All the monomials are present
in the file.

1: Only present are monomials such that the sum
of the exponents of the last two variables is
even.

2: Only present are monomials such that the sum

of the exponents of the last two variables is
odd.

3. The third integer is the initial degree of the ex-
pansion, usually 1 or 2.

4. The fourth integer is the final degree of the ex-
pansion.

164 Experimental Mathematics, Vol. 8 (1999), No. 2

The reading routine checks this information and
gives error messages when necessary. Observe that
there is nothing indicating the kind of coefficients of
the series being stored. It is up to the user to take
this into account.

Of course, writing in this way assumes that the
reading routine will use the same algebraic manipu-
lator as the writing routine, since the exponent of a
monomial is known from the position of the mono-
mial inside the series. You have to take this into
account if you modify these routines.

4. EXAMPLES

In this section we apply these routines to some prac-
tical computations on a concrete model. For this
purpose we have selected the well-known restricted
three body problem (RTBP), near one of the five
equilibrium points L; 5 of the system. For a de-
scription of this problem, including the notation, see
Appendix B.

4.1. Example I: Normal Form

The Hamiltonian H of the RTBP, in suitable dimen-
sionless units and with the origin at L4 or Ly, takes
the form

H =30l +p}+p2) +yp. —ap, + (3 — p)w

V3 o l-p
- Y- -, (4-1)
2 rps rpJy
where
rps = (x —xs)* + (y —ys)* + 27,
rhy = (@ —x5)? 4+ (y—ys)* + 2%,
Ts = %7 Ys = :F\/7§, Ty = —% and y; = :F§- The

“—” sign is for Ly while “+” is for Ls. The mass

ratio p is taken below the Routh critical value, so
the origin is linearly stable.

4.1.1. Complexification and power expansion. The first
step is to produce a power expansion of (4-1) up to
a finite order N,

where H,, denotes a homogeneous polynomial of de-
gree n in six variables. To describe how to produce
such an expansion, we focus first on the term 1/rpg

of (4-1). Naming ¢ the angle between (zg,ys,0)
and (z,y, z), and letting p? = 22 + y* + 22, one has

1 1

— = = " P,(cos),
rps /1 —2pcost) + p? Zp (cos)

n=0

where P, is the Legendre polynomial of degree n.
Define A,, as p"P,(cos); note that A, is an ho-
mogeneous polynomial of degree n. Then, from the
well-known recurrence of the Legendre polynomials,
one obtains

2n+1 n
Apii=—— A, ——— (22 + >+ 2D A,
1= (xzs+yys) n+1<$ +y +27) 1
(4-2)

starting with Ag = 1 and A; = xxgs + yys. This re-
currence can easily be implemented using a routine
that multiplies homogeneous polynomials. Since it
is numerically stable and not too computation-inten-
sive, this recurrence is very suitable for practical
computations. Of course, the expansion of 1/rp;
can be done in the same way, and the remaining
terms of (4-1) can be added directly to the sum of
these two expansions.

Before continuing, we make a very important re-
mark. Since the first step is to put H, in normal
form (see Section B.1), and this is done by a lin-
ear change of variables, we can insert this change of
variables directly into the recurrence (4-2), in order
to produce the expansion with this first change al-
ready done. This is much better than to compose
the change with the final expansion. The real nor-
mal form of H, is

Hy = jwi(2® +p2) 4 w2 (v 4+ p)) + 5(2° + p2),

where we have kept the same notation for the vari-
ables and we have used the fact that the frequency
in the vertical direction is always 1 (for all p). In
order to facilitate the computation of the generating
function, it is very convenient to diagonalize H, (see
Section A.4 for more details). This can be done by
a complexifying change of variables, of the form

x:q1+\/—1p1 p:\/—lq1+p1
V2o V2

(similarly for the other variables). So, we compose
this change with the first one to obtain a complex

(4-3)

Jorba: Numerical Computation of Normal Forms, Centre Manifolds and First Integrals of Hamiltonian Systems 165

and symplectic linear change of variables that brings
the initial Hs into the normal form

Hy; = V=1wigip1 + V=1w2qop2 + V=1 q3p3. (4-4)

This is, in fact, the change inserted into the recur-
rence (4-2) to produce the expansion in these vari-
ables.

The routines that perform this expansion are con-
tained in the file exp-15.cc. We give a short de-
scription of them.

ccvlb computes the linear change of variables that
puts the initial H, into the final normal form
(4-4). This change is derived in Section B.1.

exp_15 is the main routine for the expansion of the
Hamiltonian. It calls exrec and reste.

exrec performs one of the recurrences (4-2). It is
called twice by exp_15 (first to expand 1/rpg and
then 1/T'pJ).

reste computes the terms in (4-1) that are neither
1/rps nor 1/rp,.

4.1.2. The normal form. The next step is the compu-
tation of the normal form. We use Lie series, since
they are very suitable to perform explicit computa-
tions. More details on this method are contained in
Sections A.3 and A.4; here we will only focus on the
implementation. The main properties of the Poisson
bracket used here are that it is bilinear and that, if
P, and @, are homogeneous polynomials of degrees
r and s respectively, then {P.,Q} is an homoge-
neous polynomial of degree r + s — 2.

The computation is done in several steps, one for
each degree. We explain the first of these steps.
We want to compute a generating function G5 (an
homogeneous polynomial of degree 3) such that the
transformed Hamiltonian

Hl - H+ {H,Gg} + %{{H,Gg},Gg}
+%{{{H7 G3}7G3}7G3}+ o (4-5)
has no terms of degree 3. Using the notation H =

H, + H; + H, + --- one obtains that the terms of
degree 3 of the transformed Hamiltonian H' are

H:l,’ == H3 + {Hg, G3}

Hence, we demand that H; = 0. This equation is
easily solved, because H; is of the form (4-4): De-
note by k7 the three indices of k that correspond to

the variable ¢ and by k” the ones corresponding to
p. The expressions of H3 and G3 can be written as
Hy =Y hig"p", Gs=_ ghigd"p".
k=3 k] =3
Hence, assuming that the frequencies w = (w1, ws, 1)

of H, are rationally independent, it is not difficult
to obtain the coefficients g5 of Gj:
- —hj
I8 = VT (kv — kt,0)

Since in this case | k| is odd, the denominator is never
zero. When |k| is even one must consider the case
kP = k7 (note that, since the components of w are
rationally independent, this is the only possibility
of getting a zero divisor). This implies that this
monomial cannot be eliminated and then we select
the corresponding g% equal to zero. Of course, if
one wants to perform the normal form up to degree
N, it is enough to demand that (k,w) # 0 when
0 < |k|] < N. If this condition is not satisfied we
can still perform a resonant normal form, that is,
we can eliminate all the monomials except the ones
for which (k,w) = 0 (usually called resonant mono-
mials). Even when the frequencies are rationally in-
dependent, some of the denominators (k,w) can be
very small, reducing drastically the domain where
these transformations are valid. In this case it is
also possible to leave those monomials in the nor-
mal form, in order to keep a reasonable size for the
domain of convergence (note that then the normal
form will not be integrable; see [Simé 1989] for a
discussion of this technique).

Once the generating function has been computed,
we can use (4-5) to compute the transformed Hamil-
tonian. We look at the implementation we have used
for this formula. Assume we are working with an ex-
pansion of H up to degree N:

H=Hy+Hs+ -+ Hy_y + Hy,

and, for instance, we want to transform it using as
a generating function an homogeneous polynomial
G5 of degree 3. To save memory, the result will
be stored in the same space used for H. To give
the idea, we write explicitly the firsts steps of the
method:

Step1.1. HN(—HN+{HN_1,Gg}
Step 2.1. HN—I — HN—I + {HN_Q,G:J,}

166 Experimental Mathematics, Vol. 8 (1999), No. 2

Step2.2. Hy + Hy + %{{HN—z, Gs},Gs}
Step3.1. Hy o Hy o+ {Hyx 3,G3}

Step 3.2. Hy_1 < Hy_14+ 5{{Hn-3,G5},G3}
Step 3.3. Hy < Hy + %{{{HN—?M Gs},Gs},Gs}

The Poisson bracket done in step 2.1 can be reused
to compute step 2.2, the one in 3.1 can be used in 3.2
and this last one in 3.3, and so on. In this way, we
are minimizing the number of arithmetic operations
(each Poisson bracket is done only once), we can
work on the initial Hamiltonian (the parts of it that
are overwritten are not needed in further steps) and
the need of working space is not very big: we need
working space for two homogeneous polynomial of
degree N in the worst case (one is used to store the
Poisson bracket done in ¢.7—1 to be used in .75, the
other one is to compute the next Poisson bracket).
This has been implemented in routine traham (see
below).

The routines for these algorithms are contained in
file nf6s.cc. We give a short description of them:

nf6s is the main routine for the computation of the
normal form. It assumes that the initial Hamil-
tonian H, is in diagonal form. It gets the fre-
quencies w from the corresponding positions in
H, and, for each degree, it computes the gen-
erating function of the change of variables (see
cage below) and transforms the Hamiltonian (see
traham below). The generating function is writ-
ten to a binary file, degree by degree. Since this is
not considered a series but a sequence of different
generating functions, no heading is added to the
file (this heading was explained in Section 3.4.2).

cage computes the generating function correspond-
ing to a given degree. One of the parameters is
a pointer to a function that, given the exponents
of the monomial, returns 1 if the monomial has
to be removed from the normal form, and 0 oth-
erwise. This is done in this way in order to make
it easy to change the “killing criterion”.

traham transforms the Hamiltonian according to the
algorithm mentioned above, using the generating
function computed in cage. After the transfor-
mation, the routine places zeroes in the places
that corresponds to killed monomials. This line

of code can be commented out if the user does
not this behavior; in this case, those values will
not be exactly zero because of rounding errors
(see Section 6 for a more detailed discussion).

Moreover, in the file kill-nf.c there is a function
that decides if a given monomial has to be killed or
not (see remarks on routine cage above).

4.1.3. Back to real coordinates. The final step is to re-
alify the transformed Hamiltonian. The case of non-
integrable normal forms can be done using the con-
siderations in Section 4.4; see also Section 4.3.

We start by using the inverse of the complexifying
change (4-3),

_ i —V-ly, _ —V-lzity,
Qj_Ta pj_Tv

where 7 = 1,2,3 and q1, ¢2, q3, P1, P2, P3 are new
names for x, y, 2, ps, py, P-, respectively. In order
to put the Hamiltonian in the easiest possible form,
we compose this change with

x; =/2Ijcosp;, y; =—+/21;singp;,

for 7 = 1,2,3. This is equivalent to

q; = "% exp(v/—1 ©;),
p; = —V—1T"?exp(—v/~1 ;).

Hence, since the monomials that appear in the nor-
mal form have the same exponent both for positions
and momenta (k? = k” in the notation above), the
change (4-7) makes them to depend only on the ac-
tions I;:

(4-6)

(4-7)

hquqpkp = hk(\/ —1)lkq‘]—kq.

The routines in the file rnf6s.cc, which we now
describe briefly, apply the change (4-7) to the nor-
mal form. (Since we have to deal with polynomials
in three variables, we need the routines in mp3.c.)

rnf6s applies the change (4-7) to the normal form.
Assumes that the manipulator contained in mp3.c
has been initialized by the calling routine.

check_rlf checks if a given multiindex corresponds
to the normal form. It is used by rnf6s to know
which terms to realify; all others are assumed to
be zero.

Jorba: Numerical Computation of Normal Forms, Centre Manifolds and First Integrals of Hamiltonian Systems

4.1.4. Main program and results. The file main_nf.cc
contains a main program that uses these routines.
It is very short and computes the normal form, up to
a given order, around the equilibrium point Ly of the
RTBP. The output of the program is contained in
several files: the normal form is stored in the ASCII
file nf .res, the generating function is stored in the
binary file nf . gen and the linear change of variables
used to diagonalize the linearized vector field around
Ly is put in the ASCII file nf.cvl. The degree and
the mass parameter used in the actual run are stored
in the ASCII file nf.ctl.

In Table 1 we include the first terms of the normal
form for the Earth—Moon case. The last column in
that table corresponds to the imaginary part of the
coefficients and it should be zero. It is not zero due
to the rounding errors in this process. This column
is not taken into account for subsequent computa-
tions with the normal form, but we have included
it to give an heuristic estimate about how round-
off errors behave in this case. See also remarks in
Section 6.2.

4.2. Example lI: First Integrals

Assume we are interested in computing (approxi-
mate) first integrals of a given Hamiltonian system
H, in a neigbourhood of an equilibrium point. Of
course, if H is not integrable, the first integrals will
not be convergent but, close enough to the equilib-
rium point, they will be quantities that are almost
preserved by the flow. This can be used for dif-
ferent purposes, for instance to bound the diffusion
time around an elliptic equilibrium point. See Sec-
tion A.7 for more details.

We summarize the procedure to compute those
integrals. Let H = .., H; the power expansion
of H around the equilibrium point (which, for sim-
plicity, we assume is the origin), where each H; is
an homogeneous polynomial of degree j. Denote
by FF =) j>o Fj the expansion for the first inte-
gral we are looking for. Then, since F' must satisfy
{H, F} = 0, one has the recursive equation

n

{Hs, B} = = {H;, Fu_jia}, (4-8)
=3
which yields F,, in terms of F,_;, ..., F» and H.

To simplify the discussion, assume H, is in complex

167

1 0 9.5450087346985146e—01 0.0000000000000000e+-00
0 1 0 —2.9820811951603865e—01 0.0000000000000000e+-00
0 1 1.0000000000000000e+00 0.0000000000000000 e+00
0 1.1568661352624510e—01 1.9950987004677088e—15
0 —1.7127952377596927e+00 1.6464553654140052e—14
0 3.3855424993051031e—01 —1.6132819906367057e—14
1 8.9130919974620498e—02 7.6519569570206439e—16
1 2.2531870698905809e—01 —1.8153505446248392e—15
2 —2.2354591332438556e—03 —9.4980345474466460e—17

—2.9478784724938123e—01

8.1656946590496773 e4-00
—5.4586887250177915e+4-02
—5.1021278394561250e+4-01
—4.3799694571855952e—01

1.4116984215354037 e401

2.0187058976961225 e+00
—5.5905039470536266 e—02
—1.7898209821803412e—01
—5.1325740689130392e—05

—8.8195876408494016e—14
—2.4411186045905709e—11
—1.5117692624804247e—10
—4.4683867166008548 e—11

1.4016167918231831e—13
—9.8915697135260128 e—12
—1.7373839789087187e—12
—1.9157633989231475e—14

1.0442695912981926 e—14
—1.8243944685427148 e—15

OO R OFNOFNWORFNWK OO R OFNORFNW O O O N

O ONF O WNRFOKR WNFO O ONF~OWN~= O O = O N~ O o = O

W WNNNNRFE =R O0OO0OOOo WNNRFE~RFROOOO

1.2775512804655591 e4-00
—3.5068853734061122e+01
—5.4875008796056733 e4-04

3.2223469268329442 e+04

3.5185007412806153 e403

2.1759346547114546 e+00

2.0101335538551211e+401

1.3647631576893851 e+04

1.4507386615262367 e403

2.1938211094638973 e+00
—4.9540209943972513e+01
—1.0178742459873320e+01

3.5475354854384022e—02

7.1211245121958200e—02
5.2188851777046352e—04

—6.7431830234291555e—10
—5.4267568786972957 e—10
4.6093383107028067 e—08
1.5779814576740623e—07
—7.6035412461354353e—09
—4.0412062928307053 e—10
—1.8846523533034277e—09
1.2205347940204729e—08
—1.4038343557712580e—09
—6.7723532456943524e—11
6.1719014476874278e—10
3.9061093991945888e—11
8.1934049924464103e—13
1.7453335694916767e—11
3.2941657400195349e—13

TABLE 1. Coefficients of the normal form for the
Earth-Moon case (1 = 1.2150581623433623 x 1072).
The first three columns contain the exponents of the
actions; the fourth and fifth columns are the real and
imaginary part of the coefficients. Imaginary parts
must be zero, but they are not due to the rounding
errors. See more comments in the text.

diagonal form, that is, H, = 3, v/~1w;q;p;. Since
{g;pj, ¢'p'} = 0, we conclude that

1. the coefficients of the monomials ¢'p' of F,, can-
not be determined;

2. if the coefficient of the monomial ¢'p’ in the right-
hand side of (4-8) is not zero, this equation can-
not be solved.

There are conditions under which the right-hand
side of (4-8) does not contain monomials of the form
¢'p'. For instance, when the frequencies are nonreso-
nant ((k,w) = 0 if and only if £ = 0) and the initial
Hamiltonian is reversible (an even function of the
momenta).

168 Experimental Mathematics, Vol. 8 (1999), No. 2

The example we are going to use is again the
RTBP near L4 5 for the Sun—Jupiter case, for which
the frequencies are nonresonant. (As in the normal
form case, we only need the nonresonance condition
up to a finite order. Hence, this is a condition that
can be checked in practical examples.) Since in this
case the Hamiltonian is not reversible, we need an-
other kind of argument to justify the solvability of
(4-8). We will use without proof the fact that this
equation can be solved for the RTBP case, and that
it is enough to take as zero the terms of F), that we
cannot determine (¢'p'). See [Celletti and Giorgilli
1991] for a discussion of these properties.

Another point worth mentioning is that F5 is not
determined by the method, but it should be selected
by the user. In [Celletti and Giorgilli 1991], since the
authors want to have three first integrals FV), F(2)
F® | they use F\") = vV—1g;p;, for j = 1,2,3. We
note that, if one only wants to bound the diffusion
around the point, it is enough to compute a single
definite-positive first integral. This can be achieved
using, for instance, Fy = Zj V=1g¢;p;. Of course,
one can put different “weights” in front of each g¢;p,
to try to optimize the size of the region of effective
stability (we recall that this region is, in general, not
spherical).

4.2.1. Implementation. Most of the routines needed for
this case have already been developed for the normal
form computation. In fact, we only need to imple-
ment the recursion (4-8) and the realification of the
(approximate) first integral.

An overview of the program is the following. First
we expand the Hamiltonian around the equilibrium
point using the same rutines as in the normal form
case (the ones in the file exp-15.cc). In this way
we obtain a complexified expansion such that the
second degree terms are in diagonal form. Then,
we solve recurrently equation (4-8), where the ini-
tial value F, is provided by the user (this is done
by the routines in the file fi.cc). Once the first
integral has been computed up to the desired order,
it is realified (the routines for this are in the files
irex.cc and re6s.cc, and the realification process
will be explained in Section 4.5) and written to the
ASCII file £fi.res. This is the only file produced by
this program. The main program that controls this
process is in main-fi.cc.

4.3. Example I1I: Centre Manifolds

We now consider the dynamics near one of the col-
linear points L, 5 3 of the RTBP. We recall that the
linearization of the vector field at these points is of
the type centre x centre x saddle. In order to give
an accurate description of the dynamics in a neigh-
bourhood of L; 5 3 one can perform the so-called re-
duction to the centre manifold. This process is ex-
plained with more detail in Section A.6 and the idea
is the following: assume that the diagonal form of
H, is

Hy; = Aqipy + V—1waq2p2 + V—1wsqsps,

for A, wq,ws € R. Hence, the hyperbolic direction is
given (to first order) by the variables (q1,p;1). We
perform canonical transformations on the Hamilto-
nian (in the same way it has been done in Sec-
tion 4.1.2) but now, instead of cancelling all the
nonresonant monomials, we only cancel monomials
such that the exponent of ¢; is different from the
exponent of p; (for a different scheme that cancels
fewer monomials, see [Simé 1996]). Then, after a
finite number of transformations, the Hamiltonian
takes the form

H = H(O)(th 42,02, 43, P3) + R(q1, p1, 42, D2, G35, P3),

where H® is the part of the Hamiltonian that we
have arranged and R denotes the remainder. Since
H© depends on the product ¢;p; we can perform
the change I, = gyp; to produce

H= H(O)(Ilaq27p27QS7p3) + R(Ila ¥1,92, P2, q37p3)7

where ¢ is the conjugate variable of ;. If we drop
the remainder R (it is very small near the origin)
then I; is a first integral of the system and putting
I; = 0 we are skipping the hyperbolic part of the
Hamiltonian H(®. The resulting two degrees of free-
dom Hamiltonian represents the flow inside the (ap-
proximation to the) centre manifold. So, near the
origin, the phase space of the original Hamiltonian
must be the phase space of H® (0, qy,p2,qs,p3) times
an hyperbolic direction. To visualize the phase space
of H® one can fix the value of the Hamiltonian and
then use a Poincaré section. Varying the value of
the Hamiltonian we will obtain a collection of two-
dimensional plots representing the dynamics in the
phase space. This has already been done in [Gémez
et al. 1991c; Jorba and Masdemont 1998; 1999].

Jorba: Numerical Computation of Normal Forms, Centre Manifolds and First Integrals of Hamiltonian Systems 169

4.3.1. Implementation. The implementation is similar
to the one of the normal form, with the only dif-
ference that now we want to kill fewer monomials.
Hence, for the computation of the complex normal
form we have used exactly the same routines as be-
fore (the ones contained in the file nf6s.cc), only
changing the function used to decide which mono-
mials are killed (this function is stored in the file
kill-nf.c for the normal form case and now is the
one in the file kill-cm.c).

The main difference appears when we need to re-
alify the transformed Hamiltonian. In the normal
form case, realification is done by taking advantage
ot the particularities of a complete normal form.
Here it is a little bit more difficult. We summa-
rize the process. First, to save memory, the (still
complex) partial normal form is written in a binary
file and then it is read monomial by monomial. For
each monomial corresponding to the centre manifold
(namely those for which the exponent of ¢, equals
that of p;) we compute the result of applying the re-
alifying change (4-6) to this monomial; other mono-
mials are discarded. The process is the same one
used in Section 4.5 (see there for more details), but
for four variables monomials. The realified monomi-
als are added to the realified series (different com-
plex monomials can contribute to the same reali-
fied monomial) until all the complex monomials are
transformed. The routines that perform the real-
ifying process are stored in the files irex.cc and
rcmbs.cc. Finally, the centre manifold is written to
an ASCII file. The main program for this computa-
tion is stored in the file main-cm.cc.

The output files are: cm.res contains (in ASCII
format) the Hamiltonian reduced to its centre man-
ifold, cm.gen is a binary file with the generating
function used, cm.cvl is an ASCII file with the lin-
ear change used to put H, in diagonal form and
cm.ctl contains the parameters used in the actual
run.

4.4. Changes of Variables

An important part of the computations is to produce
the changes of variables going from the final coordi-
nates (normal form or centre manifold) to the initial
ones. This can be used for several purposes, ranging
from estimates on the diffusion time to the practi-
cal computation of invariant tori (of any dimension).

We refer to [Jorba and Villanueva 1998] for exam-
ples of this.

The global change is split in two different sub-
changes. The first one is the linear change that puts
H, in diagonal form (we will refer to these coordi-
nates as “diagonal” coordinates) plus the translation
of the origin from the libration point to the centre of
masses of the RT'BP. The second sub-change consists
of the nonlinear change that goes from the normal
form (or centre manifold) coordinates to the diag-
onal ones. Here we will focus on this last change
since the first one is explicitly given in Appendix B.

Here is the process for obtaining the nonlinear
change. We start by considering the first change of
variables done on the Hamiltonian by means of a
generating function G3. The corresponding change
for this transformation can be obtained by applying
the transformation (4-5) to a single coordinate g¢; or
p;, where 1 <14 < 3:

qz-(g) = ¢ +{q;,Gs} + %{{Qi, Gs}, G} + -+, (4-9)

P = pi+ {pi,Gs} + P, G5}, Gat + - (4-10)

where qi(?’) and pg?’) denote the series obtained in this

transformation. This is done using the algorithm
explained in Section 4.1.2. Expressions (4-9) and
(4-10) are changes of coordinates: they relate the
coordinates of the transformed Hamiltonian under
G3, namely ¢; and p;, with the initial (diagonal) co-
ordinates q§3) and pg?’). This idea can be used to pro-
duce the changes to higher orders. For instance,

0 = {0, G} + 3 {H{a”, Ga}, Ga} + -,
P =+ {0, Gl + 5 {0 G} G+

is the transformation that goes from the normal
form coordinates of degree 4 to the initial diago-
nal coordinates. Of course, this transformation is
done on the expressions (4-9) and (4-10) as if they
were Hamiltonians, by means of the algorithm ex-
plained in Section 4.1.2. In this way, we obtain the
explicit transformation that puts the Hamiltonian in
normal form up to the desired order. When doing
these transformations, it is only necessary to trans-
form up to the same degree as in the normal form.

Note that the series obtained are still in complex
coordinates. They are realified using the methods
that will be explained in Section 4.5.

170 Experimental Mathematics, Vol. 8 (1999), No. 2

The change corresponding to the centre manifold
has some differences with the change for the normal
form case. Since the centre manifold is of dimension
four (the first two variables have been set to zero),
the final change is given by six real expansions, each
one depending on four variables (the first four ex-
pansions are of the type mp4s and the last two are
of the type mp4p).

4.4.1. The inverse change. As before, we are going to
focus on the nonlinear part of the change, since the
linear part is easily inverted. We only provide rou-
tines for the normal form case (the inverse change
for the centre manifold can be produced similarly).

This computation is based on the following fact:
the change induced by the generating function G is
the inverse of the change induced by the generating
function —@G. This is because the change is the time
one flow of the Hamiltonian G, and to reverse the
time in this flow one has to change the sign of the
vector field, i.e., of the Hamiltonian G. Hence, one
can use the same scheme as before but using as gen-
erating functions —G,,, —G,_1, ..., =G4, —G3, in
this order. We refer to the previous section for more
comments.

As before, the obtained series are still in complex
coordinates. Section 4.5 deals with the algorithms
used to realify them.

4.5. Realification of Power Expansions

A common operation at the end of these compu-
tations is the realification of the complex power ex-
pansions obtained, because we are usually interested
in the dynamics corresponding to real coordinates.
Hence, realified expansions are much smaller (the
memory needed to store them is halved) and this
implies that all the computations involving them are
also faster. We stress that it is not compulsory to
perform such realification, because all the compu-
tations with these expansions can be done with the
complexified version. The realification is only used
for efficiency reasons.

We now explain the algorithm used. To simplify
the discussion, assume we have to realify a 6 vari-
ables expansion, in which all the variables have been
previously complexified. (It is possible to have a
complex expression in which not all the variables
have been complexified; see the expansion of the

Hamiltonian in Section 4.3, for instance.) To start,
we focus on the realification of a single monomial,

k‘l k?z k3 k4 ks kﬁ
Crkd1 P1742" P2 43 D3 -

In order to apply the realifying change (4-6), we
make some remarks:

(4-11)

1. If we know the realification of the product ¢%*pt?,

for any k; and k,, we know the realification of all
the products ¢5*pk*, q§5p§6 (the only difference is
in the subindices of the variables).

2. If we know the realifications of the three pairs
qf”*lpfzj (=1,2,3), the product of these reali-
fied expansions (note that each one of them is an
homogeneous polynomial with two variables) is
not difficult to compute, since we are multiplying
polynomials that depend on different variables.

Hence, we will apply the following scheme: first
we will compute the realifications of all the pow-
ers ¢¥'pt?, where the exponent (ki,k,) is such that
0 < ki + ks < n, and n denotes the degree up
to which we plan to realify. The result of each
realification will be stored in a table (see below).
Then, for each monomial like (4-11), we will ob-
tain from the table the realifications of the three
pairs ¢¥'p¥, ¢h*pht and ¢5°pe (they will be three
homogeneous polynomials of degrees k; + ko, k3 + k4
and ks + kg, respectively). Finally, we will form the
product (4-11), taking advantage of the fact that
the three homogeneous polynomials depend only on
two variables, and that these variables are different.
We explain this in more detail.

4.5.1. The realifying table. Now we consider the prob-
lem of computing and storing expressions like ¢‘p’,
1 € N, j € N, where

oz — V-1y _ —V-lz+ty

i=— 5 o P= N

We start with the storing procedure. Fix ¢ and j,
and define m = ¢ + j. Then, the substitution of
(4-12) into ¢'p’ produces an homogeneous polyno-
mial of degree m, in the variables and y. A nat-
ural way of naming the different coefficients of this
polynomial is to use a single integer to denote the
monomial we refer to: monomial number 0 will be
z™y°, monomial number 1 will be 2™ y!, and so
on. Generically, the monomial number k£ will be
™ *y* 0 < k < m. We need three indices (i, J, k)

(4-12)

Jorba: Numerical Computation of Normal Forms, Centre Manifolds and First Integrals of Hamiltonian Systems 171

to identify one of these coefficients (i, j refer to the
monomial ¢‘p’, and k refers to the position of the
coefficient inside the realification of ¢’p’). Hence,
we can look at all these realifications as polynomi-
als with three variables: the coefficient number k
of the realification of ¢'p’ is the coefficient of the
monomial (¢,7, k) of a (real but not homogeneous)
polynomial of degree 2m. This implies that, to store
all these realifications, it is enough to allocate space
for a three variables power expansion up to degree
2n, where n denotes the maximum degree we plan
to realify. Not all the monomials of this expansion
are going to be used, but

1. the amount of memory used by the whole table
is not very big (see examples below),

2. in this way the access to the elements of the ta-
ble is very easy (we can use the manipulator mp3
explained before) and very fast.

It would be possible to only allocate the elements
we really need, but this would decrease the speed
of the program and, as has been said, the amount
of memory saved is not enough (in our opinion) to
justify the increase in complexity of the program.

To simplify and speed up the computation of the
realifying table we also initialize a couple of auxil-
iar tables, one with the negative powers of v/2 and
another one with the binomial coefficients. With
these auxiliar tables, it is not difficult to compute
the different powers ¢‘p’ and to store them in the
corresponding place of the table.

The routines that initialize the realifying process
have been stored inside the file irex.cc. They are:

ini_real allocates space for the table that will con-
tain the realifications of the different monomials
q'p’. Tt also computes and stores that table. This
rutine calls routine imp3 (file mp3.c) to initial-
ize the tables needed to handle power expansions
with three variables.

end_real frees the space allocated by ini_real, in-
cluding a call to amp3 to free the space allocated
by imp3.

coef computes the coefficient of ¥ 797 in ¢* or p*.

4.5.2. The main algorithm. Now it is not very difficult
to realify a power series. In order to minimize the
amount of RAM used, the series to be realified is
first written in a (binary) file. Then, this file is

read sequentially and each monomial is realified and
added to the (proper place of the) resulting series.
So, the only point that needs to be discussed is
the realification of a single monomial. The process
is as follows. We use the same notation as in (4-11).
Each couple qf I pf"“ becomes, once realified, an ho-
mogeneous polynomial of degree k; + k;i; in two
variables, z; and y;. The coefficients of this polyno-
mial are stored in the suitable places of the realifying
table (see Section 4.5.1). Therefore, in order to mul-
tiply these three realified polynomials, we will use
three (nested) loops to “run” over the coefficients of
them (these coefficients are directly obtained from
the realifying table). In this way we will obtain the
coefficients of the realification of (4-11) as the prod-
uct of these three coefficients with the coefficent ¢;,.
The exponent that corresponds to this final product
is easily obtained and this allows one to add the co-
efficient to the suitable place of the resulting series.

4.5.3. The final output. Before continuing with the de-
scription of the algorithm we explain, up to now,
what we have obtained. As before, to simplify the
discussion we will focus on a position-momentum
pair, which we denote as g1, p;. We denote the ini-
tial change of variables that we want to realify as

¢, = q + 02(q,p),
pll =P + O2(q7p)7

where the primed variables are the initial ones and
the unprimed variables the final ones. Of course,
by O2(q,p) we denote the higher-order terms of the
change, which we do not write explicitly. After the
realification process we have just described, we ob-
tain something like

=Vl m—V-ln
V2o V2
—v=lzy+y; —v-lzi+uy
V2 B V2
The next (and final) step is to isolate =} = 2/ (z,y)
and y; = vi(z,y). For instance, x| can be iso-
lated from the first equation by taking real parts
and multiplying by v/2, and Yy, can be obtained
by the first equation by taking the imaginary parts
times —v/2. A similar process can be applied to
the second equation to obtain the same expressions.

+ 02($7y)7

+ 02(I7y)

172 Experimental Mathematics, Vol. 8 (1999), No. 2

Maybe the most important conclusion we can get
from this fact is that it is enough to compute only
one of the expressions for the change of variables:
for instance, to obtain the changes of variables for
the normal form of Section 4.1 (a Hamiltonian with
three degrees of freedom) we only need to compute
the changes for the three positions. The changes for
the three corresponding momenta are obtained from
them when realifying (note that we are using that
we have complexified with respect to all the vari-
ables). Of course, we have taken advantage of this
property in the software.

4.5.4. A few remarks. In some cases, it is necessary to
realify not all the variables, but only some of them.
A typical example appears when we have been deal-
ing with an expansion of the kind centre x saddle.
The saddle variables does not need to be complex-
ified, since they already appear in “diagonal form”
(see Section 4.1.1). Hence, once the computation
is finished, they are still in real form. Of course,
the realifying change have to be only applied to the
pairs q;, p; that have been complexified. The main
difference appears in the change that corresponds to
variables that have not been complexified. Denote
by q1, p1 one of these pairs. After the realification
(of the complexified variables), the change for ¢y, p;
looks like

xll :$1+O2($7y)7 yll :y1+02($7y)

We have changed ¢y, p; by z1, y; to denote that the
realification has been done. The realifying changes
have been applied to variables g;, p;, j # 1 (they
only affect to Oz(x,y)). Hence, we have directly the
change of variables (in particular, all the imaginary
parts of the coefficients of this change must vanish),
without need of taking real or imaginary parts. The
bad news are that now we need to compute both
changes (for 2} and y}), since we cannot derive easily
one from another.

4.6. The Linear Part of the Change

We have seen how to produce the nonlinear change
for variables used to achieve the normal form but,
to reach the initial coordinates we still need to ap-
ply the linear change used at the beginning to put
H, in normal form. This change has been computed
in order to diagonalize the second degree terms of

the Hamiltonian, and it has been stored in a file. In
principle, this transformation goes from the “diag-
onal” coordinates of Hs to the usual coordiantes of
the RTBP centred at the equilibrium point. If one
is interested in the inverse change, it is not difficult
to see that the inverse of any symplectic matrix M
can be obtained as M~' = —JM?"J, that is very
suitable for numerical purposes.

4.7. Tests of the Software

We have done some checks on the software, to be
sure that there are no bugs present. The tests we
have done are very similar for the three examples
so we will mainly focus on the tests for the normal
form computation.

To this end, we have written the program ninf,
that produces a numerical integration of the normal
form obtained. In fact, since the normal form is in-
tegrable, this program computes the gradient of the
normal form for the given actions to obtain the fre-
quencies and then it simply tabulates the solution.
Then, this table is sent through the changes of vari-
ables into the synodical coordinates of the RTBP.
Finally, program rtbp tests this table in the follow-
ing way: for each point of the table, it integrates
(numerically) the point to obtain a prediction for
the following point of the table. Then, the pro-
gram writes the differences between the two points
(the one obtained from the changes of variables and
the one obtained using numerical integration). Ide-
ally, if the normal form, the changes of variables and
the numerical integration were all exact (zero error),
these differences must be zero. Of course, they are
not zero due to the several sources of error.

We illustrate this. We have taken the initial con-
ditions I; = I, = I3 =)y, with initial phases ¢; =
wa = @3 = 0, for t = 0 (call ug this initial condi-
tion). We have tabulated the corresponding solu-
tion at t = 0.1 (call u; this value), and we have sent
both points to synodical coordinates, to obtain two
points vy and v;. Then, we have computed (numer-
ically) the trajectory of the RTBP that starts at v,
till £ = 0.1 (call this point v;), with a local error
of the order of the roundoff of the arithmetic. The
difference HU1 — vy H2 is given in Table 2.

The parameter \g is, essentially, the distance from
the initial condition to the origin. If the software is
working properly, the error Hvl — v H2 is due to the

Jorba: Numerical Computation of Normal Forms, Centre Manifolds and First Integrals of Hamiltonian Systems 173

Ao o1 = v
0.00001 2.4828078245222093e—16
0.00002 5.1198523403369423e—15
0.00004 1.3192410121093586e—12
0.00008 3.4023375555581652e—10
0.00016 8.8211434435268124e—08
0.00032 2.3101212284736493e—05

TABLE 2. Differences between a normal form pre-
diction and a numerical integration near L5 in the
RTBP. The local error of the numerical integration
is of the order of 1071 and the normal form (and
the corresponding changes of variables) have been
computed up to degree 16.

truncation of the power series (to degree 16, in the
case corresponding to Table 2). Hence, the error
should behave like cAy, where n is the last order in
the normal form that we have taken into account
(see below). Then, one has that the order of the
error can be approximated by

N log(e1/ez)
log(A§Y/A67)

Applying this to the results in Table 2 we obtain
Table 3. The first value in this table is not very ac-
curate because the estimation of the error is not real-
istic for A" = 0.00001 (it is smaller than 1076 and
this is not detected since we are working with dou-
ble precision arithmetic). The other values are more
accurate and produce an exponent for Ay very close
to 8. Note that if the order of the normal form in the
(g, p) variables is 16, it is 8 in the Poincaré variables;
see (4-7). Moreover, the numerical integrations are
done on the differential equations (that involve the
derivatives of the Hamiltonian). Thus the error for
this case is not of the order of the neglected terms of
the Hamiltonian but of the neglected terms of the
corresponding differential equations. Hence, as Ag
“moves” in the space of the Poincaré coordinates,

A AR n
0.00001 0.00002 1.366
0.00002 0.00004 8.009
0.00004 0.00008 8.011
0.00008 0.00016 8.018
0.00016 0.00032 8.033

TABLE 3. Estimation of the order of the error.

we expect an estimated exponent of the same order
as the biggest degree present in the normal form
expressed in Poincaré variables.

The same procedure can be applied for the centre
manifold computation and for the first integrals, to
estimate the order of the error. The concrete calcu-
lations for these cases are left to the reader.

4.8. Invariant Tori

Here we note that, using the tools we have devel-
oped, it is very easy to compute invariant tori close
to any of the libration points of the RTBP. For in-
stance, let’s focus on the neighbourhood of the Lj
point of the Earth—-Moon RTBP.

Figure 1 is a two-dimensional torus obtained by
taking, in the normal form, the actions I, = I, =
0.0001, and I3 = 0. This corresponds to an elliptic
(planar) Lyapunov torus obtained from two of the
(three) linear oscillations at Ls [Jorba and Villa-
nueva 1997al. Figure 2 corresponds to a two-dimen-
sional elliptic torus obtained taking I; = I3 = 0.0001
and I, = 0. This torus can also be seen as coming
from the linear oscillations around the periodic Lya-
punov family associated to the vertical oscillation at
L5 [Jorba and Villanueva 1998]. In both cases, we
have plotted a dot every 0.1 units of time.

It is not difficult to compute Poincaré sections
of these trajectories, to see that they are invariant
curves. We left this for the interested reader, as well
as the computation of more invariant tori. Finally,
note that it is also possible to ask for a torus with
prefixed frequencies: one has to solve a system of
three nonlinear equations to find the corresponding
actions. Of course, this is only possible for suitable
frequencies.

5. EFFICIENCY CONSIDERATIONS

When one considers the optimality of a given calcu-
lation, there are two main things to be taken into
account: the algorithm used and its implementa-
tion. Here we are not going to discuss the efficiency
of the algorithm selected (although there are other
possibilities, for example to use quadratic schemes
instead of linear ones; see [Llave et al. 1986], for
instance), and we are going to focus on their imple-
mentation.

0.88 1

0.87 1

0.86

0.85

174 Experimental Mathematics, Vol. 8 (1999), No. 2

0.90 -

0.88 -

0.86 -

0.84

0.82

~056 —054 —052 —050

048 046 —0.44 —042

FIGURE 1. Projection on the (z,y) plane (synodical coordinates) of an elliptic two-dimensional invariant torus
near Ls. The intrinsic frequencies are wy = 0.954347344380 and we = —0.298324062073. The normal frequency
is w, = 1.00003161731. Ten thousand points are shown.

We now make a few remarks on the optimality
of these routines. The implementation we have se-
lected here (to use integer functions— sometimes
called “hash functions” —to know the position cor-
responding to a given exponent and viceversa) al-
lows for very easy implementations, but adds an
overhead to the program (the time taken by these

051 050 049 —0.48 —047 —0.46

functions and the memory used by the integer ta-
bles). In some cases, it is possible to use specific
orders for the polynomials such that the main oper-
ations can be performed directly, without the help
of such functions: for instance, when dealing with
polynomials of one variable, we can store the coeffi-
cient of the monomial 7 into the position number j

0.015
0.010 ¢ ‘
0.005 ¢
0.000 ¢
—0.005 ¢

—0.010 ¢

—0.015

051 050 —049 048 20.46

FIGURE 2. Projections on the (z,y) plane (left) and on the (z, z) plane (right) of a two-dimensional invariant torus
near Ls. The intrinsic frequencies are w; = 0.954532905738 and wy, = 1.00000846050. The normal frequency is
w, = —0.298356646196. Ten thousand points are shown.

Jorba: Numerical Computation of Normal Forms, Centre Manifolds and First Integrals of Hamiltonian Systems 175

of the corresponding array, so all the operations can
be performed trivially (for instance, the product of
two polynomials is p[il*q[j] —r[i+j]1). This is
still possible in two variables but it becomes more
tricky in several variables. Moreover, if the coeffi-
cients of the polynomials are of sophisticated types
(such as trigonometric polynomials), the time taken
by the hash functions is unnoticeable compared to
the time taken by the operation involving the coeffi-
cient. So, in our opinion, the gain obtained by using
tricks of this kind is not big enough to compensate
for the increased complexity of the code.

In what follows, the measures of the time needed
for the programs to execute have been taken from
runs done on a Pentium Pro 200 MHz PC run-
ning Linux, with the GNU compiler gcc/g++ ver-
sion 2.7.2.1. The amount of needed memory has
been estimated directly from the size of the expan-
sions.

5.1. Storage

We start by considering the efficiency from the point
of view of the amount of memory used by the pro-
grams. Since the memory is allocated and freed dy-
namically, we will focus on the “worst moment” of
the program, that is, when the maximum amount of
memory is needed.

Table 4 displays the number of monomials for
some of the expansions used here. From this table,
and knowing the number of series we use in each
program, it is not difficult to have an idea of the
order of the amount of memory needed.

5.1.1. Normal forms. In a normal form computation as
the one performed here, we use the following expan-
sions (we denote by n the maximum degree wanted):

1. A power expansion up to degree n of the type
mp6s (for the Hamiltonian).

2. An auxiliar power expansion (to be used only
during the computation of the power expansion
of the Hamiltonian) of the same degree as the
Hamiltonian.

3. Three polynomials of degree n, of the type mp6s,
to be used as a working space during the normal
form computations.

The expansion in item 2 and the three polynomi-
als in item 3 are needed in different places of the

n mp4s mp6s mp6p

0 1 1 1 1 0 0
1 2 3 4 5 2 2
2 6 9 13 18 8 10
3 10 19 32 50 24 34
4 19 38 70 120 96 90
5 28 66 136 256 116 206
6 44 110 246 502 216 422
7 60 170 416 918 376 798
8 85 255 671 1589 616 1414
9| 110 365 1036 2625 966 2380
10 | 146 511 1547 4172 1456 3836
11 182 693 2240 6412 2128 5964
12| 231 924 3164 9576 3024 8988
13| 280 1204 4368 13944 4200 13188
14 | 344 1548 5916 19860 5712 18900
15| 408 1956 7872 27732 7632 26532
16 | 489 2445 | 10317 38049 | 10032 36564
171 570 3015 | 13332 51381 13002 49566
18 | 670 3685 | 17017 68398 | 16632 66198
19 | 770 4455 | 21472 89870 | 21032 87230
20 | 891 5346 | 26818 116688 | 26312 113542
21 | 1012 6358 | 33176 149864 | 32604 146146
22 | 1156 7514 | 40690 190554 | 40040 186186
23 | 1300 8814 | 49504 240058 | 48776 234962
24 | 1469 10283 | 59787 299845 | 58968 293930
25 | 1638 11921 | 71708 371553 | 70798 364728
26 | 1834 13755 | 85463 457016 | 84448 449176
27 | 2030 15785 | 101248 558264 | 100128 549304
28 | 2255 18040 | 119288 677552 | 118048 667352
29 | 2480 20520 | 139808 817360 | 138448 805800
30 | 2736 23256 | 163064 980424 | 161568 967368
31 | 2992 26248 | 189312 1169736 | 187680 1155048
32 | 3281 29529 | 218841 1388577 | 217056 1372104

TABLE 4. Number of monomials for expansions of
the kind mp4s, mp6s and mp6p. Here n denotes the
degree. In each of the remaining three sections, the
first column shows the number ®(n) of monomials
in a polynomial of degree n, and the second shows
theInnnberE:?:Odﬂj)ofInononﬁabinjiexpanﬁon
up to degree n.

program, so we only need to take the maximum of
them.

In fact we need a little bit of memory (like the in-
ner tables of the manipulators or the three-variables
expansion for the normal form), but the series men-
tioned above are the most important ones.

As for the amount of hard disk memory used, we
need:

176 Experimental Mathematics, Vol. 8 (1999), No. 2

1. A binary file to store the generating function.
This is about the size of a power expansion of
degree n, of the type mp6s.

2. A few extra ASCII files (to store the normal form,
the control parameters, etc.) that, as they are
very small, we skip them.

Of course, one can modify the program in order to
write more information (you can ask for intermedi-
ate series) of less (you can skip the writing of the
generating function if you are not interested in the
change of variables). In such a case, you should re-
estimate the amount of memory needed.

Table 5 summarizes our estimates for the amount
of memory needed. We have assumed that each co-
efficient is a double precision complex number, that
is, each one needs 16 bytes to be stored.

degree time nf time cm RAM HD
8 0.40 0.46 0.058 0.025
12 8.01 9.51 0.306 0.153
16 82.25 95.77 1.218 0.609
24 3002.14 3505.71 9.595 4.798
32 48422.61 55769.46 44.435 22.217

TABLE 5. Time (in seconds) and memory (in Mbytes)
needed for the normal form (nf) and centre manifold
(cm) computation. The latter computation requires
as temporary disk storage about the same space as
the results. Thus the actual amount of free disk
space needed to run the program is about twice the
HD column.

5.1.2. Centre manifolds. The only difference between
a normal form and a centre manifold computation
(concerning the amount of memory used) appears
when realifying the Hamiltonian restricted to the
centre manifold. From the program, it is seen that
this only affects to the amount of hard disk needed.
In Table 5 we have summarized those values. As in
the normal form case, we have skipped the size of
the ASCII file with the final Hamiltonian, since it is
not very big. We note that this file is written after
erasing the temporal file, so if it was room for this
file, there is enough room for the results. However,
if one wants precise estimations of the final amount
of used disk, one must take into account the size of
that ASCII file. The concrete runs displayed there
have been done for the L; case of the Earth-Sun
system.

5.1.3. First integrals. The calculation of a first integral
is a little bit simpler than a normal form one. In
fact, the program needs RAM space for the Hamil-
tonian and the first integral, and disk space for the
results as well as a temporary (binary) file used to
realify the first integral. In the actual version of
the program, the output file is an ASCII file, to be
able to look directly at the results using an stan-
dard text editor (like vi or emacs). In Table 6 we
have included the time and memory used for several
runs of the program. Note that we have been using
a lower degree for the calculations. This is because
the huge amount of disk space needed to store the
output in ASCII format. If one is interested in run-
ning to higher orders it should be better to change
the program in order to store the first integral in
a binary file (this is, in fact, very easy using the
routines provided here). Then, the amount of disk
space is similar to the one used by the centre mani-
fold program (see Table 5).

degree time RAM HD tmp. HD final
8 0.38 0.05 0.02 0.11
12 5.36 0.30 0.15 0.67
16 4998 1.16 0.58 2.66
20 337.09 3.56 1.78 8.17
24 1800.57 9.15 4.58 20.99

TABLE 6. Time (in seconds) and memory (in Mbytes)
needed for the calculation of a first integral. The col-
umn “HD tmp.” only refers to the temporary (bi-
nary) files, while the column “HD final” only refers
to the final (ASCII) file.

5.1.4. Changes of variables. We now discuss the cal-
culations needed to obtain the expansions for the
changes of variables corresponding to the normal
form case. We will only focus on the direct changes,
since the inverse ones need approximately the same
amount of memory and time.

As before, n will denote the degree of the expan-
sion of the transformation. During the computation
of the direct change, we use one expansion up to
degree n and three homogeneous polynomials of de-
gree n. In fact, we need polynomials of the type
mp6s for the transformation corresponding to the
four first variables, and of the type mp6p for the last
two. Since the polynomials of the type mp6s contain
more monomials than the corresponding ones of the

Jorba: Numerical Computation of Normal Forms, Centre Manifolds and First Integrals of Hamiltonian Systems 177

type mp6p, we have done the memory estimations
for the type mp6s. They are summarized in Table 7.

A special case is the computation of the changes of
variables corresponding to the reduction to the cen-
tre manifold. In this case, we obtain six series, each
one depending on four variables (see Section 4.4),
so the final amount of disk space is smaller than in
the normal form case. To estimate the maximum
amount of disk space needed during the execution,
we note that this occurs during the realification of
the last couple of variables. At this moment, we
have four real series (of the type mp4s) written in
the disk, and we write a temporal file with a com-
plex series (of the type mp6p) corresponding to the
last couple of variables. From these observations, it
is not difficult to derive the figures shown in Table 7.

degree time cvnf time cvem RAM HD cvnf HD cvem

8 1.11 1.32 0.06 0.07 0.03
12 24.24 29.36 0.29 0.43 0.17
16 272.46 330.22 1.05 1.72 0.63
20 194221 234047 3.01 5.30 1.90
24 10395.05 12644.89 7.31 13.64 4.80

TABLE 7. Time (in seconds) and memory (in Mbytes)
needed to compute the changes of variables for the
normal form (cvnf) and the centre manifold (cvem).

5.2. Speed

Finally we discuss the optimality, according to the
speed, of these routines. To start the discussion,
we focus on the routine that multiplies homoge-
neous polynomials (see Section 3): for each couple
of monomials that we are multiplying we need to
know the exponents of them and the position to
store the result. Since every product is an unavoid-
able operation (we recall that we are discussing the
optimality of the implementation, not of the algo-
rithm), all the overhead of this implementation is
due to the routines that look for exponents and po-
sitions. In fact, if these routines use zero time, the
product would be optimal, since all the time spend
by the product would correspond to the unavoidable
operations. This is also true for the other routines
(Poisson brackets, power expansions, etc.). For this
reason we say that the optimality of the package is
basically given by the optimality of the routines of
the files mp6s.c, mp6p.c, etc. In order to quantify

this, we have done a run of the program nf using the
profiling facilities of the compiler. The results are
shown in Table 8. We must eliminate from this table
the time used by routine mcount, which was intro-
duced by the profiler itself. Then the time taken by
routines ex116s and llex6s is a little bit less than

% time time/call (ms)
time (s) calls self total name
40.15 51.96 269 193.16 347.79 papubs
26.48 34.27 mcount
26.46 34.24 84136095 0.00 0.00 ex1l6s
6.02 7.79 55490539 0.00 0.00 1llex6s
0.58 0.75 14 53.57 6737.27 traham
0.24 0.31 66 4.70 11.02 pph6s
0.04 0.05 14 3.57 3.95 cage
0.01 0.01 14 0.71 1.10 putO
0.01 0.01 1 10.00 74748 exp_15
0.01 0.01 1 10.00 54.09 reste
0.01 0.01 1 10.00 15.34 rnfé6s
0.00 0.00 76062 0.00 0.00 kill_nf
0.00 0.00 38044 0.00 0.00 check_rlf
0.00 0.00 38032 0.00 0.00 prxkés
0.00 0.00 1474 0.00 0.00 ntph6s
0.00 0.00 164 0.00 0.00 ex113
0.00 0.00 164 0.00 0.00 11lex3
0.00 0.00 156 0.00 0.00 prxk3
0.00 0.00 26 0.00 0.00 ntph3
0.00 0.00 14 0.00 0.00 wpb6s
0.00 0.00 5 0.00 0.00 uneix
0.00 0.00 2 0.00 341.69 exrec
0.00 0.00 1 0.00 0.00 amp3
0.00 0.00 1 0.00 0.00 amp6s
0.00 0.00 1 0.00 0.00 ccvlb
0.00 0.00 1 0.00 0.00 imp3
0.00 0.00 1 0.00 0.00 imp6s
0.00 0.00 1 0.00 95140.00 main
0.00 0.00 1 0.00 94377.18 nf6s
0.00 0.00 1 0.00 0.00 wctlb
0.00 0.00 1 0.00 0.00 wcvl
0.00 0.00 1 0.00 0.00 wea3

TABLE 8. Output of the profiler for a run (up to
degree 16) of the program nf. The first two columns
show the time spent by the program in this function;
the next column contains the number of times the
function is called. The next two columns show the
average time per call (“self” refers to the function
itself and “total” is based on a recursive total of the
time taken by the function and everything it calls.)
The routine mcount does not belong to our program
but to the profiler.

178 Experimental Mathematics, Vol. 8 (1999), No. 2

half the total time taken by the program. This im-
plies that if we were able to optimize these routines
in order to reduce the time they take to almost zero,
the factor in the total gain in speed would be close to
2 (but no better!). Moreover, Table 8 gives precise
information about the routines one must optimize
to make the program run faster.

Tables 5, 6 and 7 contain the time for several runs
of the software. We stress that those are approxi-
mate values: time has been taken from a single run
of the program, and the amount of RAM memory
needed has been estimated form the size of the sev-
eral expansions used (should increase these figures
a little to obtain the real amount of memory used).

6. ERROR CONTROL

A very important point is to know the numerical
errors introduced in the coefficients when this huge
amount of computations is performed. A first, heu-
ristic, indication is given by the size of the imaginary
parts of the real normal forms, centre manifolds or
first integrals that are not zero due to the roundoff
errors. It is very natural to take these values as zero
because they must vanish in an exact computation.

The testing methods discussed in Section 4.7 pro-
vide a rough idea of the global amount of error we
have accumulated in the computations. This should
be enough if we are only interested in numerical re-
sults, since this is typically the kind of output ob-
tained from classical numerical methods (think of
the solution of an ode, pde or simply the solution of
a linear system). In fact, we are in a better position
compared with other numerical procedures, since we
have a good checking procedure.

However, if one is interested in these methods to
be used in a computer assisted proof, we need a
much better mechanism to control the error. This
is the reason to introduce the interval arithmetic. In
what follows, we will focus on a normal form com-
putation, although the same ideas can be extended
to the other examples considered here.

6.1. Interval Arithmetic

In order to carry exact bounds on the error, assume
that, instead of a floating point number, we have an
interval such that it contains the number. To add
two intervals, we simply add the lower bounds of the

interval using rounding toward —oo, and we add the
upper bounds wusing rounding toward +oo. In this
way we ensure that the result of the addition is con-
tained in the final interval. The same ideas can be
used to easily derive the operations of subtraction,
multiplication and division.

The next step is to code efficiently those routines.
Fortunately, most of the actual processors allow to
the user to alter the rounding mode, to set a round-
ing toward oo or to the nearest (this is the de-
fault). To do this, many compilers and/or operat-
ing systems have suitable functions in their libraries.
Here we have used the corresponding routines of
the Linux operating system (with the compiler gcc
from Gnu), running on an Intel processor. The main
disadvantages of this are that the memory require-
ments are doubled and the execution time is much
bigger. This last inconvenient is due to the archi-
tecture of the processors, since when the rounding
mode of the processor is changed, the pipeline of the
processor is re-started with the corresponding loss of
performance.

Since the code is in C++4, it is very easy to use
the overloading the arithmetic operators to replace
standard complex arithmetic by our interval arith-
metic (you can also use [Schelter 1991] if you want
to avoid using C++). Then, it is not difficult to ob-
tain the normal form but, instead of the coefficients,
we will obtain intervals containing the exact values.
This is what allows one to derive computer assisted
proofs. See [Celletti and Chierchia 1988] and [Llave
and Rana 1990] to see concrete applications of these
ideas.

6.2. An Example with Interval Arithmetic

Here we have included the computation of the nor-
mal form around Ljs for the RTBP using interval
artihmetic. The idea is to give a feeling about how
these computations are.

Table 9 shows the normal form, using double pre-
cision interval arithmetic, around the Ls point of the
RTBP, for the mass parameter corresponding to the
Earth—Moon system. We have skipped the imagi-
nary parts because they can be assumed to be zero
(this is one advantage of interval computations). It
is interesting to compare these results with the ones
presented in Table 1.

Jorba: Numerical Computation of Normal Forms, Centre Manifolds and First Integrals of Hamiltonian Systems 179

lower bound upper bound

o

9.5450087346978552e—01 9.5450087346991741e—01
—2.9820811951634596e—01 —2.9820811951573489e—01
1.0000000000000000e+00 1.0000000000000000 e~+00

= O

real part imaginary part
0 0.9545008734698507e+00 0.0000000000000000e+-00
0 —0.2982081195160388e400 0.0000000000000000 e+4-00

—

0.1000000000000000e+01 0.0000000000000000 e+00

1.1568661303889360e—01 1.1568661401345537e—01
—1.7127952451731403e400 —1.7127952303486182e+00
3.3855424323176919e—01 3.3855425662676453e—01
8.9130919836368838e—02 8.9130920112820977 e—02
2.2531870640182916e—01 2.2531870757604811e—01
—2.2354591590257877e—03 —2.2354591074729147e—03

0.1156866135262217e+00 —0.1927100002836750e—32
—0.1712795237759768 e+01 —0.8974646880952045 e—32
0.3385542499303071e+00 —0.4812484744069060e—32
0.8913091997461692e—01 —0.4814824860968090e—33
0.2253187069890425e+00 —0.1155557966632342e—32
—0.2235459133244455e—02 0.0000000000000000 e+00

—2.9479121860441637e—01 —2.9478447589701773e—01
8.1656201621290165e+00 8.1657691558011720e+00
—5.4586913901624575e402 —5.4586860598896601 e+02
—5.1021371160130911e+01 —5.1021185629532283 e+01
—4.3799836956028315e—01 —4.3799552187429924e—01
1.4116969490546651e+01 1.4116998940124972e+01
2.0186927381142823e4+00 2.0187190572228246 e+00
—5.5905224456048508 e—02 —5.5904854484518651 e—02
—1.7898271680742539e—01 —1.7898147963031263e—01
—5.1334316020434586e—05 —5.1317165340935330e—05

—0.2947878472529007e+00 —0.1521362462732897 e—29
0.8165694658984183e+01 0.1185016987263866 e—28
—0.5458688725020474e403 —0.1174332188770398 e—28
—0.5102127839458834e+02 —0.1863024703269571 e—28
—0.4379969457189379e+00 —0.1484998366081301e—30
0.1411698421534677e+02 0.3358157455523530e—29
0.2018705897693666 e+01 —0.3811527650397076 e—30
—0.5590503947042638e—01 0.1150165425481089e—30
—0.1789820982175625e+00 —0.5503192785483820e—31
—0.5132574067108261e—04 —0.1954016422742883e—32

1.2677680341002997e400 1.2873345241823699 e4-00
—3.5434024811722338e+01 —3.4703682770952582e+01
—5.4877274309542030e+04 —5.4872743283411488e+04
3.2220252371445298e404 3.2226686164319515e+04
3.5177942440398037e+03 3.5192072384618223 e+03
2.1707021092443028e4+00 2.1811671985342400e+00
1.9986363951466046e+01 2.0216307091992348 e+01
1.3647290105217136e+04 1.3647973048501415 e+04
1.4506020027436316e4+03 1.4508753202967346 e4-03
2.1927585054381780e400 2.1948837131021719e+00
—4.9551211330863225e+01 —4.9529208559599283 e+01
—1.0188391081203008 401 —1.0169093839605921 e+01
3.5386579632358917e—02 3.5564130055718124e—02
7.0933774363425073e—02 7.1488715816371950e—02
5.1925348264703075e—04 5.2452355219756441e—04

OO OF NOFNWOFNWHR| OCOF OFNOFNW OO = O =N S O =
O ONFOWNRFOKR WNRFRO O~ ONFOWNFO O = O N = O o = O
W W NNNNRFE =200 OOOo WNNNFR==OOOoO N = =0 OO0

0.6516229084136752e—27
0.1930958293998747 e—25

0.1277551279966923 e+01
—0.3506885376119049 e4-02
—0.5487500879622420e+05 0.1108578486500471e—24

0.3222346926821930e+05 0.1264834400557989 e—24

0.3518500741321633e+04 —0.2977673781142404e—25

0.2175934654360213e4+01 0.1498922726564656 e—27

0.2010133553242287e+02 0.4112326735122740e—26

0.1364763157688629e+05 0.4301991684680189 e—26

0.1450738661531158e+04 0.6827018990166253 e—27

0.2193821109377304e+01 0.2410685221214210e—28
—0.4954020994411146e+02 0.1635601948530436 e—27
—0.1017874245948335e4+02 0.1985868172512715e—27

0.3547535485371232e—01 —0.4504667333242595e—30

0.7121124512960337e—01 0.9633349924466193 e—29

0.5218885184995916e—03 0.1527174289047186 e—30

O ONFOWNRFOKR WNFRO O~ ONFOWNRFO O = O N = O o = O

OO OF NOFNWOFRFNWR| OQCOF OFNORFNW OO~ O N S O =
W WNONNRFE ===, O0OO0OCOOo WNN === OOOoOo N = =0 OO0

TABLE 9. Coefficients of the normal form obtained
for the Earth—-Moon case using interval arithmetic.
Only the real parts are presented.

Note the big size of the intervals, especially for
the highest degrees displayed. We have not opti-
mized the algorithm to minimize the growing of the
intervals, so a different implementation might lead
to narrower intervals. Of course, the size of the in-
tervals does not prove that the coefficients in Ta-
ble 1 contain big numerical errors, but it suggests
that we should check this more carefully. In order
to do that, we can use higher-precision arithmetic.
In this case, we have taken the standard quadru-
ple precision arithmetic that it is contained in the
libraries of many compilers (this concrete compu-
tation has been done on a Sun workstation). The
results are displayed in Table 10. It is interest-
ing to compare this last table with Table 1: if we
take the coefficients in Table 10 as exact, we note

TABLE 10. Coefficients of the normal form obtained
for the Earth—-Moon case using quadruple precision.
The imaginary parts (last column) should be 0.

that the error in the ones of Table 1 is of the order
of the imaginary part. This suggests an heuristic
criterion to estimate the accuracy of this computa-
tion.

Now, it is clear the amplification of errors that we
have in this process. There are two (standard) ways
of overcoming this:

1. Interval arithmetic. Although the intervals grow
very fast, they are still providing exact bounds
for the coefficients, that can be useful in order
to derive computer assisted proofs (they are go-
ing to be a much sharper bound than any other
estimation obtained by analytical methods).

2. Multiple precision arithmetic. This is the “brute
force” solution, but it is valid in several cases.

180 Experimental Mathematics, Vol. 8 (1999), No. 2

The advantages are obvious, but one should note
that, when dealing with real-life problems, it is
not always appropriate: for instance, the mass
parameter corresponding to the Earth—Moon case
is only known up to 10 or 11 digits, so there is
no gain in using multiple precision.

Of course, in academic problems it is always possible
to use a combination of both, to derive very accurate
coefficients and/or very sharp estimates for them.

Concerning the normal form around Ls of the
RTBP, we add that the amplification of errors is
bigger when the mass ratio p is smaller.

Finally, note that the routines for interval arith-
metic and the extension for quadruple precision are
not included in the software.

6.3. On Computer Assisted Proofs

The methods explained here allow, among others,
the computation of manifolds (such as tori, first in-
tegrals, etc.) that are nearly invariant for the dy-
namics of the system. We will refer to these mani-
folds as approximately invariant objects. A natural
question is whether an approximately invariant ob-
ject is an approximation of a true invariant object or
not. From a generic point of view, we already know
that the answer is going to be positive in some cases
(such as nonresonant invariant tori) and negative in
some others (such as first integrals of nonintegrable
systems).

To simplify the discussion, we focus on the proofs
of existence of maximal-dimensional invariant tori.
The standard results show that, under generic con-
ditions of nondegeneracy and nonresonance, invari-
ant tori are not destroyed by small perturbations but
only slightly deformed; see Appendix A.5.2. (In fact,
the essential condition is nondegeneracy because it
allows one to obtain nonresonant conditions by sim-
ply changing a little bit the value of the actions.)
We assume that we have rewritten (numerically) the
original Hamiltonian as an integrable part (the nor-
mal form) plus a small perturbation (the remain-
der). To know whether a nonresonant torus of the
normal form persists under the effect of the remain-
der we need a quantitative KAM theorem (giving
concrete bounds on the size of the allowed pertur-
bation) plus rigorous estimates on the size of the
perturbation (remainder), in order to know if we

are in the domain of applicability of the theorem.
The estimates on the size of the perturbation for
each concrete application are usually obtained by
means of interval arithmetic; see [Llave and Rana
1990; Celletti and Chierchia 1988].

It is important to note that the only rigorous es-
timate needed is the size of the remainder. That
is, it is possible to compute an approximately in-
variant torus by using standard floating point arith-
metic, and then to estimate “how invariant” (i.e.,
the size of the remainder) is this torus by using inter-
val arithmetic. This is usually much more efficient
than to perform all the calculations using intervals;
see [Llave and Rana 1990].

7. EXTENSIONS

In this package we have only considered the case
of autonomous Hamiltonians with three degrees of
freedom. It is not difficult to extend the ideas and
the routines presented here to more degrees of free-
dom. For instance, to work with a four degrees of
freedom Hamiltonian system (without any symme-
try) one only needs to write the basic routines of
the corresponding file mp8.c, and to introduce mi-
nor modifications in the other routines.

If one is interested in the computation of normal
forms around another objects, in [Jorba and Villa-
nueva 1998] it is explained (from a numerical point
of view) the computation of the normal form around
a periodic orbit of the spatial RTBP. The routines
used there are based in the methodology explained
here.

The case in which the Hamiltonian depends on
time can also be considered. For instance, consider
the Hamiltonian of the RTBP with a perturbation
that depends periodically on time. In this case, one
can still use the routines here but one has to change
the basic arithmetic: now, the coefficients of the
monomials are going to be Fourier series. We can
store Fourier series in complex form as polynomials
of one variable, using an array to put the coeficients
and using the place inside the array to know the cor-
responding exponent (in this case one should say fre-
quency instead of exponent). Since the relation be-
tween positions and frequencies is very easy one does
not need to write any special function for this. (The
case is altered drastically when one has to deal with

Jorba: Numerical Computation of Normal Forms, Centre Manifolds and First Integrals of Hamiltonian Systems 181

quasiperiodic time-dependent functions, because the
mapping between postions and frequencies is more
complex. The main problem comes from the fact
that these series are usually a little bit “sparse” and
it is very convenient to store only the meaningful
coefficients, to save memory. This is used and dis-
cussed in [Gémez et al. 1991c; 1993al.)

Then, one needs to write the arithmetic routines
(sums and products) for these Fourier series and to
use them instead of the complex arithmetic for the
coefficients. This can be easily done if one uses a C
extension allowing for overload of arithmetic opera-
tors, such as C++ or SCC [Schelter 1991]. Finally,
you have to modify the input/output routines ac-
cordingly. This is what we have done in [Jorba and
Simé 1994; Simo et al. 1995] for the case of a peri-
odically perturbed Hamiltonian system.

APPENDIX A. BASIC HAMILTONIAN MECHANICS

In this appendix we give the basic definitions and
properties related to Hamiltonian systems. The in-
formation presented here is biased towards the items
needed in this paper. For a more complete and rig-
orous presentation see [Arnol’d 1978] or [Meyer and
Hall 1992], for instance, or [Abraham and Marsden
1978] for a more formal approach.

To simplify the discussion, from now on we will
assume (without explicit mention) that all the func-
tions that will appear here are analytic.

A.1. Basic Definitions

A Hamiltonian system is a (continuous) dynamical
system whose flow satisfies an ordinary differential
equation of the type

. O0H | 0H
q = -, p = (A—1)
dp

a0
The variable p € R’ is called the momentum and
g € R' is called the position. The function H =
H(p,q,t) is called the Hamiltonian of the system
(A-1), and equations (A-1) are known as the Hamil-
ton equations. Moreover, [is known as the number
of degrees of freedom of the Hamiltonian H.

Define
0 I
=7 0):

where I is the identity matrix [x [. Then we can
write equations (A-1) as

z2=JVH(z), z=I(q,p).

Since J satisfies JI = —J, it defines a symplec-
tic form (that is, a nondegenerate bilinear skew-
symmetric form) w® on R*:

W’ (u,v) = ufJv, forwu,v e R*.

A matrix M is said to be symplectic if it satisfies
M"YJM = J.

A function f: R' x R' = R, f: (p,q) — f(p,q), is
said to be a first integral of the Hamiltonian H if its
surface levels are invariant by the flow (A-1), this
is, if f takes a constant value on each orbit of the
system. It is immediate to check that the function
H is always a first integral of the Hamiltonian H.
The Poisson bracket of two functions f(p,q) and
g(p, q) is defined as
R Rt
It is not difficult to show that, if f is a first integral of
the Hamiltonian H, then it must satisfy {H, f} = 0.
Two functions f(p, q) and g(p, q) are said to be in
involution if their Poisson bracket is zero:

{figt=0.

The functions { f;}1<;<, are said to be independent
on some open domain D if the vectors {V f;}1<j<n,
defined on the domain D, are linearly independent
on each point of the domain.

In the next sections we will use the following prop-
erty of the Poisson bracket: if P. and @, are homo-
geneous polynomials of degree r and s respectively,
then {P,,Q,} is an homogeneous plynomial of de-
gree 1 + s — 2.

In what follows, we will assume that all the Hamil-
tonians that will appear here are autonomous (they
do not depend on time) and with [degrees of free-
dom.

A.2. Basic Properties

We assume that a Hamiltonian system H has [first
independent integrals, {f;}1<;<;, that are in involu-
tion. We define M, as

Mo ={(p,q): f;(p.q) = 1" for j=1,...,1}.

182 Experimental Mathematics, Vol. 8 (1999), No. 2

The well-known Liouville-Arnol’d theorem [Arnol’d
1978; Arnol’d et al. 1988] says that

1. the manifold M, is invariant by the flow, and
2. if My is a compact connected manifold, it is dif-
feomorphic to the [-dimensional torus

T = {(¢1,.--

In this latter case it is possible to introduce, by
means of a change of variables (p,q) = F(I,p) (I €
R’ is the new momentum and ¢ € T' is the new

,o1)mod 27}

position) the so-called action-angle variables (I are
the actions and ¢ are the angles). In these vari-
ables the Hamiltonian does not depend on the an-
gles, H = H(I), so the equations of motion are of
the form

These equations can be easily integrated:

I(t) = Lo, ¢(t) = w(lo)t + 0.

If the values w(ly) = wp are linearly independent
over the rationals, each solution is a dense quasiperi-
odic trajectory on a torus of dimension [. It is very
common to use the frequency vector to identify a
concrete torus of the system. If the map

OH
T
is a diffeomorphism (between suitable domains), it
is also possible to identify a torus by the value of
the action variable.

If (k,wp) = 0 for some k € Z', then the orbits
on this torus are not dense: if there are [; inde-
pendent frequencies, the torus I = I, contains a
(I — I;)-parametric family of /;-dimensional tori, be-
ing each one densely filled by any trajectory start-
ing on it. These tori of dimension /; are known as
lower-dimensional tori, while the tori of dimension [

I Z5(1) = w(l)

are called maximal-dimensional ones.

A.3. Canonical Transformations

We now consider the effect that the changes of vari-
ables have on Hamiltonian systems. Let H(g,p) be
a Hamiltonian function, and consider a change of
variables (¢,p) = ¥(x,y). The Hamilton equations
obtained from the Hamiltonian H o ¥ can be differ-
ent from the equations obtained applying the trans-
formation ¥ to the Hamilton equations related to

H. When these differential equations coincide, it is
said that the transformation W preserves the Hamil-
tonian form.

A change of variables is called canonical when it
preserves the Hamiltonian form (for any Hamilto-
nian function). It is not hard to show that a trans-
formation is canonical if and only if the differential
of the change (on any point) is a symplectic matrix.

Canonical transformations are very useful both
from the theoretical and the practical points of view,
since they allow to work on a single function (the
Hamiltonian) instead of a system of 2/ differential
equations.

To produce canonical changes of variables is not
an easy problem, since it is very difficult to impose
that the differential be a symplectic matrix. For-
tunately, there exists several techniques to produce
such transformations. The one that we will use here
is based on the following properties of the Hamilto-
nian flows:

1. Let ®;(x,y) be the time t flow of a Hamiltonian
system. Then, (¢,p) = ®;(x,y) is a canonical
transformation.

2. Let G(q,p) a Hamiltonian system with [degrees
of freedom, and let (go(t),po(t)) be a solution of
G. Then,

S H@0(0),m0(0) = (£, GHan) mo(t)), A2

for any smooth function f.

It is not difficult to see that to transform a Hamilto-
nian H by means of the time 1 flow of a Hamiltonian
G, we can apply the formula

H=H+{HG}+ L{{H,G},G}
+ %{{{Ha G}v G}v G} 4+, (A-3)

where H denotes the transformed Hamiltonian. This
formula is deduced applying the Taylor formula for
the transformation and using (A-2) for the deriva-
tives involved. The Hamiltonian G is usually called
the generating function of the change of variables.
Formula (A-3) is very suitable for effective com-
putations, since it can be easily implemented on
a computer. All the operations involved are very
simple if we are working with some kind of expan-
sion, such as power expansions or Fourier expan-
sions. One can argue that the problem for this kind

Jorba: Numerical Computation of Normal Forms, Centre Manifolds and First Integrals of Hamiltonian Systems 183

of transformation (for a practical point of view) is
that it is defined by an infinite series. This is not a
problem since we usually work with a finite trunca-
tion of these series. This will produce a high-order
approximation to the results wanted that, in many
cases, are good enough for pratical purposes. On
the other hand, it is possible to derive rigorous esti-
mates on the size of this remainder so one can obtain
bounds on the error of the results obtained with the
truncated series (see [Simé 1989], [Jorba and Simé
1994] or [Jorba and Villanueva 1998] for numerical
examples of this).

A.4. Normal Forms

We are going to restrict ourselves to the normal
form around a fixed point of a Hamiltonian system.
For normal forms around more complex objects (like
periodic orbits or invariant tori), see [Bruno 1989;
Jorba and Villanueva 1997a; 1997b].

Let H be a real analytic Hamiltonian of [degrees
of freedom having an elliptic equilibrium point that,
without loss of generality, we can assume that it is
located at the origin. The case in which the equi-
librium is of the type “some centres” times “some
saddles” will be discussed later.

We start by expanding H in power series around
the origin,

H(q,p) = Ha(q,p) + Hs(q,p) + Hu(q,p) +- -+, (A-4)

where H;(q,p) is an homogeneous polynomial of de-
gree j in the variables (g, p). Our purpose is to per-
form (canonical) transformations in order to sim-
plify as much as possible this expansion. Ideally,
one would like to remove completely all the H; with
j > 3 but we will see that this is, generically, impos-
sible. What we will show here is that, under some
hypotheses, it is possible to remove the necessary
terms to produce integrable approximations to the
dynamics.

In order to simplify the subsequent steps, it is
very convenient to simplify Hy(q,p). Let A be the
linearization of the Hamiltonian flow of H around
the origin (i.e., A = JVH,(0,0)). Since A is an

elliptic matrix, we can reduce it to A = C~1AC,
being C' a real matrix and A of the form

A
A=
4

where the elements outside the /lj are zero and

T 0 wj
Aj_<—wj 0>’

with w; € R for j = 1,...,[. It is not difficult to
check that this change can be selected canonical. If
we call (z,y) to the new variables (z is the position
and y the momentum), we want to note that the
order (“permutation”) of these variables to achieve
this form for A is (z1,Y1,%2, Y2, ..., 2, y;). In these

coordinates, H, takes the form
!

Z% :U —i—y]

(A=5)

In order to simplify the computations in the normal
form process (basically, the computations of gen-
erating functions), we will perform the (linear and
symplectic) transformation

g+ V-1p; ~ V-lg;+p;
i Y

where we call (again) (g, p) to the new variables. In
these variables, H, takes the form

(A-6)

l
=Y V-lwgp;.

j=1

HZ(qap)

In what follows, we will denote w = (wy,...,w;), and
we will assume that the values w;, 1 < j < [, are
linearly independent over the rationals.

Assume that the initial expansion (A—4) has been
rewritten in these variables, and we want to apply a
sequence of canonical transformations (based on the
scheme (A-3)). We start by trying to remove Hj,
by means of a generating function G3 that is also a
homogeneous polynomial of degree 3. From (A-3)
it is immediate to see that the monomials of degree
3 of the transformed Hamiltonian H obtained using
a generating function G3 are given by

ﬁg - H3 + {Hg, Gg}

184 Experimental Mathematics, Vol. 8 (1999), No. 2

We try to select a G5 such that ﬁg is zero. To this
end, we introduce some notation: if z = (21,..., 2,)

and k = (klv‘ . 7kn) S Nn, we define
Zk:zfl..-zsn, Wlth|k|:k1++kn

Then, we write H; and G5 as

Hiy(q,p)= Y

lkq|+[kp|=3

Gs(a.p)=

|kq|+‘k1)‘:3

k(I kl’
hkq,kpq p,

kg, ok
kg kpd ‘D"

The next step is to solve the equation H; = 0. Note
that Ly, (-) = {Ha,-} is a linear operator in diago-
nal form, because
Lu, (q"p™) = {Ha,¢"p"}
= V-1 (k, — kg, w) g p.
This diagonal form is due to the complex coordi-

nates introduced in (A-6). Now it is very easy to
find a G such that {H,,G3} = —Hj:

G3(q7 p) =

Z _hkqvkp qk‘qpkp
e gi=s VL Ry = Koy)
Of course, we need that the denominators (k,w) do
not vanish for any k € Z"\ {0}. Since |k,|+|k,| = 3,
this condition is automatically satisfied if the com-
ponents of the frequency vector w = (wy,...,w;) are
linearly independent over the rationals.

We rename the transformed Hamiltonian as H,
that now takes the form

H(q,p) = Ha(q,p) + Halq,p) + Hs(q,p) + -+~

The next step is to look for a generating transfor-
mation G4 (a homogeneous polynomial of degree 4),
to remove the monomials of degree 4 from H. This
is not possible in general, since Ly, has some zero
eigenvalues:

L, (¢"p*) = {Ha,¢"p"} = 0.
Note that this never happens for monomials of odd
degree. The monomials of the type ¢*p* are usu-
ally called resonant monomials or unavoidable res-
onances. Hence, when we try to solve the equation
Ly,(G4) = —Hy we only can solve for the monomi-
als of H, of the form ¢*ap*», with k, # k,:

_hkq,kp

Gilg,p)= > q*p*.
el gi=a VL (R = ko)

q p

With this change, H takes the form (we call again
H to the transformed Hamiltonian)

H(q,p) = Ha(q,p) +Ha(q,p) + Hs(q,p) +-- -, (A7)
where B B
Hy= Z heq*p*.
k=2
Fortunately, the monomials present in H, do not ob-
struct integrability: let’s skip the terms in (A-7) of
order bigger than 4 (this is what we call the normal

form of the initial Hamiltonian (A—4) up to degree
4). Apply the canonical transformation

T; = Ijl/2 exp(vV—1¢;),
y; = —v-1 Ijl/2 exp(—v—1y;) ,

where j = 1,...,[, so that the truncated Hamilto-
nian takes the form

H=H(I) = (w,I) + Hy(I),

(A-8)

with
Hy(I) =Y _ hI® and I=(I,...,I).
k] =2
This is now an integrable Hamiltonian, that gives

an approximate description of the dynamics around
the equilibrium point. The equations of motion are

. 0H(I)
I = p = ———~= = I -
0, ¢=—7—=0()
The solutions are I = I, (which corresponds to
invariant tori) and ¢ = @(ly)t + @y, which is a

quasiperiodic flow on the torus.

Of course, the process of reduction to normal form
can be done up to any finite order. Omitting the
remainder and using (A-8) we obtain a Hamiltonian
like

A.4.1. On the convergence. Generically, normal form
reduction is a divergent process. The divergence is
mainly due to the effect of the divisors (k,w) that
appear in the generating functions (in fact, it is pos-
sible to have divergence even in the absence of small
divisors; see [Jorba and Llave > 1999]). In order to
control the size of these denominators, it is usual to
ask for a Diophantine condition such as

|(k,w)| > (A-9)

(&
|k

Jorba: Numerical Computation of Normal Forms, Centre Manifolds and First Integrals of Hamiltonian Systems 185

with £ € Z \ {0} and v > [— 1. This allows one
to derive estimates on the size of the remainder ob-
tained when we stop the normal form to some order
N. The set of w such that condition (A-9) is not
satisfied has Lebesgue measure O(c).

In fact, one may look at a normal form as a power
expansion of a nonanalytic C* function at the ori-
gin. The power series is divergent but, if we stop
the expansion to some order N, the remainder be-
haves like O(RN*!), where R denotes the distance
to the origin. This last property is what makes these
expansions useful.

A.5. Stability

Here we will explain some of the applications of the
normal forms. Let us consider the neighourhood of
an elliptic equilibrium point (that we locate at the
origin) of a [> 1 degrees of freedom autonomous
Hamiltonian system H(g,p). Consider an initial
condition close to the origin. We are interested in
knowing if the corresponding trajectory will be close
to the origin for all times (stability in the sense of
Lyapounov), or if it is going to escape to a distance
O(1) from the equilibrium point.

A.5.1. The Dirichlet theorem. This is a particular case
in which the stability problem can be easily solved.
Call M the Hessian matrix of the Hamiltonian at
the origin (we recall that M is symmetric and that
VipH(0,0) = 0). Assume that M is a positive
definite matrix. Then, the Dirichlet theorem says
that origin is Lyapounov stable.

The proof is based on the fact that, close to the
point, the level surfaces of the Hamiltonian are “like
ellipsoids” having the origin inside (those manifolds
are of codimension 1 so they split the phase space).
Then, since they are invariant for the dynamics,
they act as a barrier that the trajectories starting
near the point cannot cross. The same argument
holds if there exists a first integral, defined on a
neighbourhood of the origin, that is positive defi-
nite at (0,0).

Unfortunately, there are many interesting cases
where the matrix M is not positive definite and,
hence, we need a different kind of results to study
the stability.

A.5.2. KAM and Nekhoroshev theory. In the last section
we have seen that, using a finite number of steps of

a normal form scheme, we can put the Hamiltonian
into the form
2N

H(z,y) = Hy(z,y) + Zﬂj(:c, y) + Ron(z,9).

=3

Now, using condition (A-9) it is possible to derive
estimates on the size of the remainder R,y that are
of the kind ¢; exp(—cy(1/R)>0*Y) (¢; > 0, ¢, > 0).
Here R denotes the radius of the ball centred at the
origin on which we take the norm of Ry, and it
is assumed to be sufficiently small. This has been
obtained optimizing the size of the remainder with
respect to the degree up to which the normal form
is obtained, for each value of R.

From this bound on the remainder, it is not dif-
fcult to obtain lower bounds on the diffusion time
(i.e., the time to move away) around the point. For
instance, if we call T'(R) to the time to go out from
a ball of radius 2R starting in a ball of radius R, we

have
1\2/(v+1)
T(R) > c3exp <c4 (E)))

c3 and ¢4 being positive constants (to obtain this
estimate, analyticity plays an essential role). Of
course, this is not a proof of stability but a “bound
on the unstability”. This kind of estimates are what
is usually called Nekhoroshev estimates.

A second approach is to try to remove completely
the remainder. This cannot be done using the nor-
mal form scheme we have explained in the previ-
ous sections, but it can be done through a Newton
method. This is a quadratically convergent iterative
scheme, that only converges on a Cantor set of the
phase space. On this Cantor set, the trajectories
take place on invariant tori and, hence, they never
go away from a vicinity of the point. The Lebesgue
measure of the complementary of this Cantor set
can be bounded by c5 exp(—cg(1/R)%0+D), ¢5 > 0,
ce > 0. This kind of results belong to the so-called
KAM theory. To decide about the stability we must
take into account the motion outside the Cantor set
of invariant tori. For instance, consider first the
case [= 2. The phase space is four-dimensional
and, fixing the energy level H = h we restrict to
a three-dimensional space. The invariant tori are
of dimension 2 so they split the phase space and,
hence, this allows one to conclude the Lyapounov

186 Experimental Mathematics, Vol. 8 (1999), No. 2

stability of the elliptic point. The case [= 3 (or
bigger) is much more difficult. The reason is this:
fixing the energy level produces a five-dimensional
invariant manifold and the invariant tori are three-
dimensional so they do not split phase space and
we cannot conclude stability. In fact, the stability
of Hamiltonian systems with three or more degrees
of freedom is today an open question. The more
accepted conjecture says that they are, generically,
unstable [Arnol’d 1964]. The unstability mechanism
is usually known as Arnol’d diffusion.

It is outside the scope of this paper to give de-
tailed explanations of these results. We refer the
reader to [Arnol’d and Avez 1968] or [Arnol’d et al.
1988] for a general explanation, and to [Jorba and
Villanueva 1997a] for more concrete results about
invariant objects such as elliptic points, periodic or-
bits, and invariant tori.

A.6. Centre Manifolds

Now consider a Hamiltonian with three degrees of
freedom, in a neighbourhood of an equilibrium point
of the type centre x centre x saddle, that we will
assume to be the origin. Of course, this is an unsta-
ble equilibrium point but we are interested in the
existence of trajectories that remain close to the
point for all times. If we consider the lineariza-
tion of the vector field at this point, and we skip
the hyperbolic part, we obtain a couple of harmonic
oscillators. Hence, for the linearized vector field,
we have a couple of families of periodic orbits near
the point, plus the quasiperiodic solutions obtained
as product of the two families of periodic orbits.
These quasiperiodic solutions are sometimes called
Lissajous orbits. Consider now the effect of the non-
linear terms of the vector field on these bounded so-
lutions. Under generical conditions the well-known
Lyapounov centre theorem says that, for each linear
(periodic) oscillation, there exists a one-parametric
family of periodic orbits of the complete Hamilto-
nian system that emanates from the point in a tan-
gent way to the linear family of oscillations. The
limit frequency of these periodic orbits at the fixed
point is the frequency of the linear oscillations (for
a proof see [Siegel and Moser 1971], for instance). A
similar result holds for the Lissajous orbits. Under
general hypotheses, it can be shown that these linear
oscillations can be extended to the complete system

as a Cantorian family of invariant tori. Moreover,
the measure of the gaps between tori is exponen-
tially small with the distance to the origin (for the
proofs, see [Jorba and Villanueva 1997a]).

To give a more accurate description of the dy-
namics around the point, we apply a normal form
technique, as has been done in previous sections.
We start expanding the Hamiltonian in power se-
ries around the point, as in (A—4). Next, we write
the second degree terms H, in real coordinates such
that
w3
2
for (\,ws,ws) € R®. The coordinates z;, y; are al-
ready in diagonal form, so we only need to complex-
ify the pairs (z2,y2) and (x3,y3). Using the change
(A—6) for these two pairs we obtain

H(q,p) = Aap1 + V—1waqops + V—1wsqsps.

Now we can start a normal form process as the one
described in Section A.4 but, instead of killing all
the possible monomials, we will only kill the mono-
mials such that the exponent of g; is different from
the exponent of p; (for a different killing criterion,
see [Simé 1996]). That is, the generating function
used to remove monomials of degree n will be of the
form

w
Hy(w,y) = Mays + (25 +43) + 57 (25 +13),

hqup
Z (kpl_kQI))\+V -1 (kpz_qu)w2+ V-1 (k'pa_kqs)WS .

k‘ll #kl’l

Since k,, # k,,, the denominators of the generating
function are bounded from below. This is why the
normal form process diverges very slowly (like an
harmonic series; see [Jorba and Llave > 1999]).

If we stop this scheme after a finite number of
steps, we obtain a Hamiltonian of the form

H(q,p) = Hn(q1p1, G2, q3, 02, p3) + R(q, p).

Neglecting the remainder R, which is very small near
the origin, we can define I; = ¢;p; (this is a canon-
ical change if we define properly the corresponding
angle variable) to obtain a Hamiltonian

HN(117QZ7Q37p27p3)-

The equation corresponding to the variable I; is
I, = 0, so this is a first integral of the system. Se-
lecting the value I; = 0 we are restricting the Hamil-
tonian Hy to an invariant manifold that is tangent

Jorba: Numerical Computation of Normal Forms, Centre Manifolds and First Integrals of Hamiltonian Systems 187

at the origin with the linear central part of the sys-
tem. This is the so called reduction to the centre
manifold.

Once I; has been replaced by 0, we have obtained
a two degrees of freedom Hamiltonian system H, =
Hx(0,q2,q3,p2,p3), where the origin is an elliptic
equilibrium point. It is not difficult to produce a
qualitative description of the dynamics of H.: the
phase space is four-dimensional, so fix a energy level
H. = h. to reduce to a three-dimensional phase
space. Now, Poincaré sections are two-dimensional
and can be plotted easily. Doing several plots for
several values of h. one gets a description of the
trajectories that remain close to the origin. The dy-
namics of the initial Hamiltonian near the origin can
be obtained adding the hyperbolic part that we have
skipped when reducing to the centre manifold. See
[Jorba and Masdemont 1999] or [Jorba and Masde-
mont 1998] for examples of this.

Although this reduction is divergent in general,
we can apply KAM techniques to show, under suit-
able hypotheses, the existence of a Cantorian centre
manifold, completely filled up by invariant tori. (A
Cantorian manifold is parametrized by two param-
eters, each of which moves in a Cantor set.) The
complementary of the measure of this manifold (in
the parameters space) decreases exponentially with
the distance to the origin. See [Jorba and Villanueva
1997a] for more details. For a general discussion of
the main features of centre manifolds, see [Sijbrand
1985] or [Vanderbauwhede 1989].

A.7. First Integrals

Again, consider the dynamics near an equilibrium
point of a Hamiltonian system. Now we are inter-
ested in producing first integrals of the motion. Of
course, if the Hamiltonian is not integrable (this is,
in fact, the general case) these integrals are not go-
ing to exist but, as we will see, it is still possible
to produce approximate first integrals that can be
useful for some applications.

To simplify the discussion, we will assume that
the equilibrium point is at the origin and that it is
of elliptic type. The case in which some directions
are hyperbolic can be done in a very similar way.

As in the previous cases, assume that the Hamil-
tonian is expanded in power series as in (A-4), with
H, in diagonal form as in (A-5). Denote by F' the

desired first integral, which we will expand in power
series around the origin as F' = .., I}, where
F; denotes a homogeneous polynomial of degree j.
From the condition {H, F'} = 0 it is immediate to
obtain the recurrence

{Hy, F,} == {H;,F,_j.2}. (A-10)

j=3

Hence, due to the diagonal form of H,, it is very easy
to solve F,, in terms of Fy,..., F, ;, assuming the
standard nonresonant conditions on the frequencies
of the point.! Then, given a F,, we can compute the
following terms F3, F; and so on.

As usual, the series F' =)., F; is divergent.
However, from its asymptotic character we can de-
rive quasi-integrals of motion by simply truncating
the series to finite order. This means that, if f,, de-
notes a quasi-integral and (q(t),p(t)) is an orbit of
the Hamiltonian system H then,

Fula(t),p(t)) = {H, f.}(a(t),p(t))

Bounding the Poisson bracket of this formula in a
neighbourhood of the elliptic point one can derive
estimates on the diffusion time near the point. For
an application of these techniques, see [Celletti and
Giorgilli 1991]. See also [Marchal 1980] for an early
construction of quasi-integrals.

APPENDIX B. LINEAR NORMAL FORM FOR THE
EQUILIBRIUM POINTS OF THE RTBP

We start with a brief description of the so-called re-
stricted three body problem (RTBP). More details
can be obtained in [Szebehely 1967] or other text-
books on celestial mechanics.

Consider two point masses (usually called prima-
ries) that attract each other according to the gravi-
tational Newton’s law. Assume that they are mov-
ing in circular orbits around their common centre of
masses, and consider the motion of an infinitesimal
particle (here, infinitesimal means that its mass is
so small that we neglect the effect it has on the mo-
tion of the primaries and we only take into account
the effect of the primaries on the particle) under the

! As already mentioned, the operator L, (-) = {H2,-} is not bi-
jective. Then it is possible that, if the right hand side of (A-10) con-
tains resonant monomials, this equation cannot be solved. There
are several cases when it can be proved that such monomials never
appear. See [Celletti and Giorgilli 1991] for a discussion of this.

188 Experimental Mathematics, Vol. 8 (1999), No. 2

attraction of the two primaries. The study of the
motion of the infinitesimal particle is what is known
as RTBP.

To simplify the equations of motion, take units of
mass, length and time such that the sum of masses
of the primaries, the gravitational constant and the
period of the motion of the primaries is 1, 1 and 27
respectively. With these units the distance between
the primaries is also equal to 1. We denote as p
the mass of the smallest primary (the mass of the
biggest is then 1 — p), p € (0, 3].

The system of reference is defined as follows: the
origin is taken at the centre of masses of the prima-
ries, the X-axis points to the biggest primary (with
this orientation), the Z-axis points to the direction
of the vector of angular motion of the primaries with
respect to their common centre of mass (it is per-
pendicular to the plane of motion) and the Y-axis is
defined such that we obtain an orthogonal, positive-
oriented system of reference. Note that we have de-
fined a rotating system of reference, that is usually
called synodic. In this system, the primary of mass
p is at the point (1 — 1,0,0) and the one of mass
1 —pisat (,0,0).

Defining momenta as Py = X — Y, Py = Y +
X and P; = Z, the equations of motion can be
written in Hamiltonian form. The corresponding
Hamiltonian function is
1—p g

1 To ’
(B-T)

H=YP2+P:+P)+YPx—XPy—

with
=X -p)+Y'+ 27
ra= (X —p+1)>+Y?+ 2%

It is well-known that the system defined by (B-1)
has five equilibrium points. Two of them can be
found as the third vertex of the two equilateral tri-
angles that can be formed using the two primaries as
vertices (usually called Lys or Lagrangian points).
The other three lie on the X-axis and are usually
called L, » 3 or Eulerian points; see Figure 3.

In the next sections we will study the linear be-
haviour around these equilibrium points. We will
obtain the linear normal form around them as well
as the corresponding (symplectic) changes of vari-
ables. These calculations, summarized in [Giorgilli

1. : : , ,
0.8} XL5 |
0.4r -
020 4 Ly

O o

Ay
N\

~0.2}]
—0.41]
0.6}]
—0.8} ‘

_1 |

Y La
15 —1. —05 0 0.5 1 L

FIGURE 3. The five equilibrium points of the RTBP.
The graphic corresponds to the Earth—-Moon case,
with p ~ 0.01215.

et al. 1989; Gdémez et al. 1991c|, are given here in
detail, for completeness.

B.1. The Equilateral Points

The equilibrium points L, and Ls are located at
(n— 3, :F§,), where the upper (“—”) sign is for
L, while the lower (“4”) one is for Ls. These points
are known to be linearly stable when the mass pa-
rameter p is less than the Routh critical value ur =
1(1—+/2) ~ 0.03852. In what follows we will as-
sume that our mass parameter is less than g (the
interested reader should not have any problem to
complete the opposite case).

The first step is to translate the origin of coordi-
nates to the equilibrium point. This is done apply-
ing the (symplectic) change

X=$+,LL—%, PX:pziga
Y=y¥L, Po=p+p-3

=z, Py =z,

to the Hamiltonian (B—1). As before, the upper sign
is for the L, case and the lower one for the Ly case
(this rule for the signs will be used along this sec-
tion). To simplify the notation, we call again H to
the Hamiltonian obtained,

H =3 +pl+p2) +ype —apy + (3 — p)x
]__
V3, 1T H B
+ 2 Y Tps TPJ’

Jorba: Numerical Computation of Normal Forms, Centre Manifolds and First Integrals of Hamiltonian Systems 189

where
Tfas = (v — 335)2 + (v
+ (

95)2 + 227
= (@ =)+ (y—ys)’ +

yJ) Zza

Ts = %; Ys = :Fg, Ty = —% and y; = 4:@- (The
subscripts stand for “Sun” and “Jupiter”, and cor-
respond to a classical example for the RTBP, where
the small particle can be an asteroid.) Note that
(xs,ys,0) are the coordinates of the big primary in
the new coordinates and that (z;,ys,0) is the posi-
tion of the small one.

The next step is to expand H around the ori-
gin. Since the origin is an equilibrium point, the
first-order terms must vanish (we simply don’t care
about the constant value H (0), since it is irrelevant
to the dynamics). The first nontrivial terms are of
second order and they are responsible for the linear
dynamics around the point. They are

Hy = (03403 402)+ype—apy+3a0° —2y° —axy+32°,

where a = :I:ST‘/g(l — 2u). The behaviour in the
(z,p.) directions is uncoupled from the behaviour
in the (z,y,p,,p,) directions. Moreover, the motion
on the z-axis corresponds to an harmonic oscillator
with frequency 1 (for all), that it is already in
(real) normal form. Hence, we restrict ourselves to

the (z,y, p, py)-plane:
H, = (p5+p)) +yp.—ap,+22°—3y* —azy. (B-2)
Define the 4 x 4 matrix J as

(0 I
1= (1 6,

where I, denote the 2 x 2 identity matrix. The equa-
tions of motion of (B-2) are given by the linear sys-
tem

T T
Y| = JVH, = J Hess(H,) (B-3)
py py

An easy computation shows that the matrix M =
J Hess(Hs) is given by

|
Q wIm = O
S D =

Bl O
O = = O
7
=

The characteristic polynomial is p(A) = A* + \? +

f—g — a?. From this expression it is easy to conclude

that system (B-3) is stable if y < pp = 2(1—/2)
(this is the so-called Routh mass) and unstable if
r < b < % Since we are studying the case u < ug,
we assume that the solutions of p(A) = 0 are all
purely imaginary, that is, \; = Fw;v/~1 forj = 1,2.
The real values w; are the frequencies of the linear
oscillations at the equilibrium points L, 5, and it is
trivial to show that they always differ when 0 < p <
pr. Call wy the one that satisfies w? > % and w, the
one such that wj < 1. For the moment we do not
specify the sign we take for each frequency. These
signs will be determined below.

Now we want to obtain a real (and symplectic)
change of variables such that the Hamiltonian (B-2)
is reduced to its (real) normal form. The first step
will be to look for the eigenvectors of the matrix
M given by (B—4). To simplify the computation, we
wil take advantage of the special form of this matrix.
We denote by M, the matrix M — \I4, and we define

a splitting
(AN L
w= (5 %)

into 2 x 2 blocks

(N (-
w=(3) 2= (),

where A\ denotes one of the eigenvalues of the matrix
M. The kernel of M, is now easy to find: to solve

A,\ 12 w1 o 0

B A)\ Wa - 0 ’
we can start by solving (B — A%)w; = 0 and then
wy = —Aw,; (note that the kernel of B— A? is trivial

to find since it is a 2 x 2 matrix). In this way, we
find the eigenvector

sl Q

A +a, =2 X +ard+ 2 X+ 30 +a)".

Since the eigenvalues of M satisfy A = v/—1lw, w €
R, we conclude that the frequencies w are deter-
mined by the equation

4

w'—w?+ 2 —g?=0. (B-5)

We also apply A = v/—1w to the expression of the
eigenvector. Separating real and imaginary parts,

190 Experimental Mathematics, Vol. 8 (1999), No. 2

we conclude that it can be expressed as u + v/—1 v,
where

T
u(w) = (a, —w? — 8, —w? + %,a) ,

v(w) = (2w,0,aw, —w® + gw)T.

We start considering the change of variables given
by the matrix C = (uy,uz, v1,vs), where u; and v;
denote the values of u and v given by (B—6) corre-
sponding to the frequencies w;, j = 1,2. For the
moment we do not specify which sign is taken for
each frequency. In order to know whether C' is sim-
plectic or not, we check the property CT.JC = J: a
tedious but not difficult computation produces

- (5 0). o-("5 L)

where d(w) = w(2w* 4+ 1w® — 2). Of course, to de-
rive this expression you need to use the properties
(B-5) and wiwj = 22 — a®. Note that the zeros ob-
tained in CTJC and D were expected, due to the
way we have constructed C. The only question was
to know whether d were 1 or not. Since it is not,
we need to perform some scaling to the columns of
C: define s; = y/d(wj), for j = 1,2, and redefine
C as (u1/S1,us/S2,v1/81,v2/82). This matrix is now
symplectic, but we also want C to be real, that is,
we want the values d(w;) to be positive. This will
determine the signs we must choose for the frequen-
cies w;. Since wi < 1, if one wants d(w;) > 0 is
necessary to take w; > 0 and, conversely, as w2 < %
implies that we must take ws < 0 in order to have
d(wz) > 0. Hence, the change we have obtained is
real, symplectic and it brings the Hamiltonian (B—2)
into the real normal form

w1

2

%

H, 5

(@ +p2)+ =W +p), (B

where we recall that w; > 0 and w, < 0.

In the paper we have used a complex normal form
for H,, because it allows one to solve the homologi-
cal equation that determines the generating function
(see Section A.4) in a very easy way. Now it is not
difficult to derive the change that brings (B-7) into

complex normal form. We compose the complexify-
ing change

szl‘i‘v—lpl » :v—1Q1+p1
\/5 Y T \/i Y
y:q2+\/—1p2 » _Vletp
vz V2o
with the above-defined matrix C to produce the fi-
nal change used in the paper. If we define r; =
Vw; (4w! +w? — 2) for j = 1,2, the matrix of this
change is

a 2wi 2wy a
—4—v-1 —+—v-1
1 1 1 T1
2 3 2 3
Wi “Yi1Ta
1 1
—wi+ aw awy —wi+d ’
1 g Uy A T
™ ™ ™ 1
3,5
a Wi+ zw1 —witgwr a
— V-1 —=—+4+—4/-1
™ ™ ™ 1

where the columns indicated by dots are obtained
from the first two by replacing the subscript 1 by 2
everywhere. Here the order is (z,y,ps,p,) for the
initial variables and (g1, g2, p1,p2) for the final vari-
ables. (In the implementation of the software the
order is different.)

B.2. The Collinear Points

For j = 1,2, define ; as the distance from the small-
est primary (the one of mass p) to the point L.
(Note: the literature disagrees on the convention
for the subscripts 1 and 2; typically, books on astro-
dynamics define L; and L, as in our Figure 3, but
books on celestial mechanics, including the already-
cited reference [Szebehely 1967], tend to interchange
them.) Let 3 be the distance from the biggest pri-
mary to Ls. It is well-known —see [Szebehely 1967],
for example—that «; is the only positive solution
of the Euler quintic equation, which takes the form

V5 F B = + B =27 — i £ 20y —p =0

for j = 1,2 (where the upper sign is for j = 1 and
the lower one for j = 2), and

W+ B=v)vf+ B =20 — vy — 2wy —v =0

for j = 3, with v = 1 — u. These equations can be
solved numerically by Newton’s method, using the

Jorba: Numerical Computation of Normal Forms, Centre Manifolds and First Integrals of Hamiltonian Systems

starting point (4)'/* for j = 1,2 and 1 — Sp for
j=3.

Next step would be to translate the origin to the
selected point L;, as has been done for the trian-
gular points. In this case, however, to have good
numerical properties for the coefficients of the final
expansions it is better to perform some scaling; see
[Richardson 1980; Gémez et al. 1991c; 1997]. Since
the scalings are not symplectic transformations, con-
sider the following process: first we write the differ-
ential equations related to (B-1) and then, on these
equations, we perform the substitution

X:q:7j$+ﬂ+aj7

Y = Fv,y,

Z = Vi,
where the upper sign corresponds to 7 = 1,2 and
the lower to j = 3, and we have set a3 = —1 + 71,
ay = —1 — v and az = 3. The unit of distance

is now the distance from the equilibrium point to
the closest primary. Finally, it is not difficult to
check that the differential equations obtained can be
rewritten in Hamiltonian form, with Hamiltonian

Hy,
xr
WL+l +) +ype —apy, — Y ca(p)p" P (;>,

n>2

where p? = 22+ y? + 2%, P, is the Legendre polyno-
mial of degree n and the coefficients ¢, (1) are given
by

— n+l1
(s o G2 5m)

for j = 1,2 (where as before the upper sign is for
j = 1 and the lower for j = 2), and

(—1)"(py)
Cn 1—p+
R
for j = 3.

The linearization around the equilibrium point is
given by the second order terms (linear terms must
vanish) of the Hamiltonian, which, after some rear-
ranging, takes the form

1
Cn (N’))
J

Hy = §(p3+p)) +yp. —ap,

—eox’ 5y’ + 552" (B-8)
It is not difficult to derive intervals for the values of
co when p € [0, 3] (see Figure 4). Since ¢; > 0 (for

NW s~ OO N

191

the three collinear points), the vertical direction is
an harmonic oscillator with frequency ws = /c,. In
what follows, we will focus on the planar directions,
ie.,

1
H2:§

where, for simplicity, we keep the name H, for the
Hamiltonian.

C
(02 + 1) + ypo — ap, — 20° + ;zf, (B-9)

0.1 0.2 0.3 0.4
FIGURE 4. Values of co(p), with p € [0, 3].
We now proceed as in Section B.1. Define
0 1 10
-1 0 0 1
M = JHess(H,) = 9%, 0 0 1
0 —c -1 0
(B-10)

The characteristic polynomial of M is p(\) = A* +
(2 —co)N*+ (14 ¢ — 2¢3). Setting n = A2, the roots
of p(A\) =0 are

Cy — 2 —/9¢2 — 8¢y
2)
C2—2+\/9C§—802
5)

Since p > 0, we obtain ¢y > 1, which forces n; < 0
and 72 > 0. This shows that the equilibrium point
is a centre x centre x saddle. Thus, define w; as
v/—=m and A\; as /n;. For the moment, we do not
specify the sign taken for each value (this will be
discussed later on).

Now, as we did in the previous section, we want to
find a symplectic linear change of variables casting
(B-9) into its real normal form and, hence, we will
look for the eigenvectors of matrix (B—10). As usual,

Ui

M2

192 Experimental Mathematics, Vol. 8 (1999), No. 2

we will take advantage of the special form of this
matrix: if we denote by M), the matrix M — Ay,

then
(AN I
w= (3 4)
with

(=x 1 (2 0
w=(25) o= ()

The kernel of M, can be found using the same tricks
as in the previous section: denoting as (w!,wl)T
the elements of the kernel, we start by solving

(B — A2)w1 =0
and then wy, = —Aw,;. Thus, the eigenvectors of M
are
(2X, A*=2co—1, X2 +2¢5+1, A*+(1—2c5))",

where)\ denotes the eigenvalues.
We first consider the eigenvectors related to w;.
From p(A) = 0, we conclude that w; satisfies

wi — (2= c)wi + (1 +cy —2¢3) = 0.

We also apply A = v/—1w; to the expression of the
eigenvector and, separating real and imaginary parts
as u,, ++v—1v,,, we obtain

Uy, = (0, —w?—2co—1, —w?+2c,+1, 0)F,
Vo, = (2w1, 0, 0, —wi+(1—2c2)w1)”.
Now consider the eigenvalues related to +Aq,

wpn, = (20, AP =2c—1, A2 42c0+1, AP +(1—2c2))"

2\
— 0 0
S1
A2 —2¢—1 —wi—2c,—1 7
S1 S2
0 0 L
C — vV W2
A2420+1 —wit2c,+1 i
S1 S22
A4+ (1—2¢) N
AT (1=2¢;)A 0 0
S1
0 0 0

and

voa, = (=2X, A>=2c,—1, N> +2¢,+1,
A3 —(1—=2¢)M)7.

We consider, initially, the change of variables C' =
(Ugnys Uiy, U2y, Uy,). To know whether this matrix
is symplectic or not, we check CTJC = J. A tedious
computation shows that

crao=(5 D). b= (b 0.

This implies that we need to apply some scaling
on the columns of C' in order to have a symplectic
change. The scaling is given by the factors

da, =21 ((4 + 3c2) AT + 4 + 5z — 6¢3),
duo, = wi((4+ 3c2)wi — 4 — bey + 6¢3).

Thus, we define s; = \/K and sy = \/d_w1 Since
we want the change to be real, we have to demand
that dy, > 0 and d,, > 0. It is not difficult to check
that this condition is satisfied for 0 < p < 1 in all
the points Lj 53, if Ay > 0 and w; > 0.

To obtain the final change, we have to take into
account the vertical direction (z,p,): to put it into
real normal form we use the substitution

Pz VW2 Pz

1
Z = —=2z,

N

This implies that the final change is given by the
symplectic matrix C' given below.

—2A E 0
S1 52
A2 —2¢,—1
ATl 0 0
S1
0 0 0
A242 1
o el 0 0
S1
A —(1-2c)\ —wi+(1—2c)wy .
S1 S2
0 0 Vws

Matrix for the final change of coordinates. The order of the variables is (z,y, 2, pz, Py, p=). (In the software the

order is (x, py, Y, Py, 7, D) instead.)

Jorba: Numerical Computation of Normal Forms, Centre Manifolds and First Integrals of Hamiltonian Systems 193

Finally, to produce the change that brings (B-8)
into its complex normal form, we compose C' with
the same complexification as in the previous section.

ACKNOWLEDGEMENTS

The techniques expounded here have been learned
or developed together with some colleagues from
the Dynamical Systems Group at Barcelona (http://
www.maia.ub.es/dsg). I am particularly indebted
with Carles Sim¢ for the fruitful discussions we have
had about this subject. My first algebraic manipu-
lator [Diez et al. 1991] started as an undergraduate
project at the University of Barcelona.

I thank R. de la Llave for suggesting this work
and for his comments to a preliminary version of
this paper. I also thank J. Villanueva for his re-
marks and R. Broucke, A. Giorgilli and J. Henrard
for some bibliographical comments. I also want to
acknowledge the hospitality of TICAM (University
of Texas at Austin), where this project started.

ELECTRONIC AVAILABILITY

The source code for the implementation of the algo-
rithms discussed in this paper can be retrieved from
http://www.maia.ub.es/dsg, in the section Preprints
and Publications.

REFERENCES

[Abraham and Marsden 1978] R. Abraham and J. E.
Marsden, Foundations of mechanics, 2nd ed., Ben-
jamin/Cummings, Reading, MA, 1978.

[Arnol’d 1964] V. I. Arnol’d, “Instability of dynamical
systems with several degrees of freedom”, Dokl. Akad.
Nauk SSSR 156 (1964), 9-12. In Russian; translated
in Sov. Math. Dokl. 5:3 (1964), 581-585.

[Arnol’d 1978] V. I. Arnol'd, Mathematical methods
of classical mechanics, Graduate Texts in Math. 60,
Springer, New York, 1978. Second edition, 1989.

[Arnol’d and Avez 1968] V. I. Arnol’d and A. Avez,
Ergodic problems of classical mechanics, W. A. Ben-
jamin, Inc., New York, 1968.

[Arnol'd et al. 1988] V. I. Arnol’d, V. V. Kozlov, and
A. L. Neishtadt, Dynamical systems III, Encyclopaedia
of mathematical sciences 3, Springer, Berlin, 1988.
Second edition, 1993.

[Broucke 1989] R. Broucke, “A Fortran-based Poisson
series processor and its applications in celestial me-
chanics”, Celestial Mechanics 45 (1989), 255-265.

[Broucke and Garthwaite 1969] R. Broucke and K.
Garthwaite, “A programming system for analytical
series expansions on a computer”, Celestial Mechanics
1 (1969), 271-284.

[Brumberg et al. 1989] V. A. Brumberg, S. V. Tara-
sevich, and N. N. Vasiliev, “Specialized celestial me-
chanics systems for symbolic manipulation”, Celestial
Mechanics 45 (1989), 149-162.

[Bruno 1989] A. D. Bruno, Local methods in nonlinear
differential equations, Springer Series in Soviet Math-
ematics, Springer, Berlin, 1989.

[Celletti and Chierchia 1988] A. Celletti and L. Chier-
chia, “Construction of analytic KAM surfaces and ef-
fective stability bounds”, Comm. Math. Phys. 118:1
(1988), 119-161.

[Celletti and Giorgilli 1991] A. Celletti and A. Gior-
gilli, “On the stability of the Lagrangian points in the
spatial restricted three body problem”, Celestial Me-
chanics 50 (1991), 31-58.

[Diez et al. 1991] C. Diez, A. Jorba, and C. Simé, “A dy-
namical equivalent to the equilateral libration points
of the Earth-Moon system”, Celestial Mechanics 50
(1991), 13-29.

[Giorgilli 1979] A. Giorgilli, “A computer program for
integrals of motion”, Comp. Phys. Comm. 16 (1979),
331-343.

[Giorgilli et al. 1989] A. Giorgilli, A. Delshams, E.
Fontich, L. Galgani, and C. Simé, “Effective stability
for a Hamiltonian system near an elliptic equilibrium
point, with an application to the restricted three-body
problem”, J. Differential Equations 77:1 (1989), 167—
198.

[Gémez et al. 1985] G. Gémez, J. Llibre, R. Martinez,
and C. Simé, “Station keeping of libration point
orbits”, Final Report, ESOC Contract 5684/83/D/JS
(SC), 1985.

[Gémez et al. 1987] G. Gomez, J. Llibre, R. Martinez,
and C. Sim¢6, “Study on orbits near the trian-
gular libration points in the perturbed restricted
three-body problem”,; Final Report, ESOC Contract
6139/84/D/JS (SC), 1987.

[Gémez et al. 1991a] G. Gémez, A. Jorba, J. Masdemont,
and C. Simé, “A dynamical systems approach for
the analysis of the SOHO mission”, pp. 449-454 in
Proceedings of the Third International Symposium
on Spacecraft Flight Dynamics, ESA Publications
Division, ESTEC, Noordwijk, Holland, 1991.

194 Experimental Mathematics, Vol. 8 (1999), No. 2

[Gémez et al. 1991b] G. Gémez, A. Jorba, J. Masdemont,
and C. Sim¢, “A quasiperiodic solution as a substitute
of Ly in the Earth-Moon system”, pp. 35-41 in
Proceedings of the Third International Symposium
on Spacecraft Flight Dynamics, ESA Publications
Division, ESTEC, Noordwijk, Holland, 1991.

[Gémez et al. 1991c] G. Gémez, A. Jorba, J. Masdemont,
and C. Simé6, “Study of refinement of semi-analytical
halo orbit theory”, Final Report, ESOC Contract
8625/89/D/MD (SC), 1991.

[Gémez et al. 1993a] G. Gémez, A. Jorba, J. Masdemont,
and C. Simé6, “Study of Poincaré maps for orbits near
Lagrangian points”, Final Report, ESOC Contract
9711/91/D/IM (SC), 1993.

[Gémez et al. 1993b] G. Gémez, A. Jorba, J. Masdemont,
and C. Simo, “Study of the transfer between halo
orbits in the solar system”, Adv. Astronautical Sci.
84 (1993), 623-637.

[Gémez et al. 1993c] G. Gémez, A. Jorba, J. Masdemont,
and C. Sim6, “Study of the transfer from the Earth
to a halo orbit around the equilibrium point L;”,
Celestial Mechanics 56 (1993), 541-562.

[Gémez et al. 1997] G. Gémez, J. Masdemont, and C.
Simo, “Lissajous orbits around Halo orbits”, pp. 117—
134 in Spaceflight Mechanics 1997 (Huntsville, AL,
1997), edited by K. C. Howell et al., Advances in the
Astronautical Sciences 95, American Astronautical
Society and Univelt, San Diego, 1997.

[Henrard 1989] J. Henrard, “A survey of Poisson series
processors”, Celestial Mechanics 45 (1989), 245-253.

[Jorba and Llave >1999] A. Jorba and R. de la
Llave, “Regularity properties of center manifolds and
applications”, In preparation.

[Jorba and Masdemont 1998] A. Jorba and J. Masde-
mont, “Dynamics in the center manifold of the col-
linear points of the restricted three body problem”,
preprint, 1998. To appear in Physica D.

[Jorba and Masdemont 1999] A. Jorba and J. Masde-
mont, “Nonlinear dynamics in an extended neighbour-
hood of the translunar equilibrium point”, pp. 430-434
in Hamiltonian systems with three or more degrees of
freedom (S’Agaro, Spain, 1995), edited by C. Simd,
NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 533,
Kluwer, New York, 1999.

[Jorba and Simé 1994] A. Jorba and C. Simé, “Effective
stability for periodically perturbed Hamiltonian sys-
tems”, pp. 245-252 in Hamiltonian mechanics, edited
by J. Seimenis, Plenum Press, New York, 1994.

[Jorba and Villanueva 1997a] A. Jorba and J. Villanueva,
“On the normal behaviour of partially elliptic lower-
dimensional tori of Hamiltonian systems”, Nonlinear-
ity 10:4 (1997), 783-822.

[Jorba and Villanueva 1997b] A. Jorba and J. Villanueva,
“On the persistence of lower-dimensional invariant tori
under quasi-periodic perturbations”, J. Nonlinear Sci.
7:5 (1997), 427-473.

[Jorba and Villanueva 1998] A. Jorba and J. Villanueva,
“Numerical computation of normal forms around some
periodic orbits of the restricted three-body problem”,
Phys. D 114:3-4 (1998), 197-229.

[Jorba and Villanueva 1999] A. Jorba and J. Villanueva,
“Effective stability around periodic orbits of the
spatial RTBP” | pp. 628-632 in Hamiltonian systems
with three or more degrees of freedom (S’Agaro, Spain,
1995), edited by C. Simé, NATO Adv. Sci. Inst. Ser.
C Math. Phys. Sci. 533, Kluwer, New York, 1999.

[Kernighan and Ritchie 1988] B. Kernighan and D.
Ritchie, The C programming language, 2nd ed., Prent-
ice-Hall, Englewood Cliffs, NJ, 1988.

[Laskar 1990] J. Laskar, “Manipulation des series”,
in Modern methods in celestial mechanics (Gif-sur-
Yvette, 1989), edited by D. Benest and C. Froeschlé,
Editions Frontieres, Paris, 1990. Second edition, 1992.

[Llave and Rana 1990] R. de la Llave and D. Rana,
“Accurate strategies for small divisor problems”, Bull.
Amer. Math. Soc. (N.S.) 22:1 (1990), 85-90.

[Llave et al. 1986] R. de la Llave, J. M. Marco,
and R. Moriyon, “Canonical perturbation theory of
Anosov systems and regularity results for the LivSic
cohomology equation”, Ann. of Math. (2) 123:3
(1986), 537-611.

[Marchal 1980] C. Marchal, “The quasi integrals”,
Celestial Mechanics 21 (1980), 183-191.

[Meyer and Hall 1992] K. R. Meyer and G. R. Hall,
Introduction to Hamiltonian dynamical systems and
the N -body problem, Springer, New York, 1992.

[Meyer and Schmidt 1986] K. R. Meyer and D. S.
Schmidt, “The stability of the Lagrange triangular
point and a theorem of Arnol’d”, J. Differential
Equations 62:2 (1986), 222-236.

[Raines and Uzer 1992] P. E. Raines and T. A. Uzer,
“Computing normal forms of nonseparable Hamiltoni-
ans by symbolic manipulation”, Comp. Phys. Comm.
70 (1992), 569-578.

[Rand and Armbruster 1987] R. H. Rand and D.
Armbruster, Perturbation methods, bifurcation theory

Jorba: Numerical Computation of Normal Forms, Centre Manifolds and First Integrals of Hamiltonian Systems 195

and computer algebra, Applied Mathematical Sciences
65, Springer, New York, 1987.

[Richardson 1980] D. L. Richardson, “A note on a
Lagrangian formulation for motion about the collinear
points”, Celestial Mechanics 22 (1980), 231-236.

[Ricklefs et al. 1983] R. Ricklefs, W. Jefferys, and
R. Broucke, “A general precompiler for algebraic
manipulation”, Celestial Mechanics 29 (1983), 179-
190.

[Schelter 1991] W. Schelter, “SCC: An extension of
ANSI C”, 1991. See ftp://ftp.math.utexas.edu/pub/

maxima/scc-3.tgz.

[Siegel and Moser 1971] C. L. Siegel and J. K. Moser,
Lectures on celestial mechanics, Die Grundlehren der
mathematischen Wissenschaften 187, Springer, New
York, 1971. Reprinted 1995.

[Sijbrand 1985] J. Sijbrand, “Properties of center
manifolds”, Trans. Amer. Math. Soc. 289:2 (1985),
431-469.

[Simé 1989] C. Simé, “Estabilitat de sistemes hamilto-
nians”, Mem. de la Real Acad. de Ciencias y Artes de
Barcelona 48:7 (1989).

[Simé 1990] C. Simé, “Analytical and numerical compu-
tation of invariant manifolds”, pp. 285-330 in Mod-
ern methods in celestial mechanics (Gif-sur-Yvette,
1989), edited by D. Benest and C. Froeschlé, Editions
Frontieres, Paris, 1990.

[Simé 1994] C. Simé, “Averaging under fast quasiperi-
odic forcing”, pp. 13-34 in Hamiltonian mechanics

(Toruri, 1993), edited by J. Seimenis, NATO Adv. Sci.
Inst. Ser. B Phys. 331, Plenum, New York, 1994.

[Simé 1996] C. Simé, “Effective computations in Hamil-
tonian dynamics”, pp. 1-23 in Mécanique céleste: Cent
ans apres les Méthodes Nouvelles de H. Poincaré, Soc.
Math. France, Paris, 1996.

[Simé 1998] C. Simé, “Effective computations in celestial
mechanics and astrodynamics”, pp. 55-102 in Modern
methods of analytical mechanics and their applications
(Udine, Ttaly, 1997), edited by V. V. Rumyantsev and
A. V. Karapetyan, CISM Courses and Lectures 387,
Springer, 1998.

[Simé et al. 1995] C. Simé, G. Gdémez, A. Jorba,
and J. Masdemont, “The bicircular model near the
triangular libration points of the RTBP”, pp. 343—
370 in From Newton to Chaos: modern techniques
for understanding and coping with chaos in n-body
dynamical systems, edited by A. E. Roy and B. A.
Steves, NATO Adv. Sci. Inst. Ser. B Phys. 336,
Plenum Press, New York, 1995.

[Stroustrup 1992] B. Stroustrup, The C++ programming
language, 2nd ed., Addison Wesley, Reading, MA,
1992.

[Szebehely 1967] V. Szebehely, Theory of orbits: the
restricted problem of three bodies, Academic Press,
New York, 1967.

[Vanderbauwhede 1989] A. Vanderbauwhede, “Centre
manifolds, normal forms and elementary bifurcations”,
pp- 89-169 in Dynamics reported, vol. 2, Wiley,
Chichester, 1989.

Angel Jorba, Departament de Matematica Aplicada i Analisi, Universitat de Barcelona, Gran Via 585, 08007

Barcelona, Spain (angel@maia.ub.es)

Received January 12, 1998; accepted in revised form July 31, 1998

