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This paper deals with the effective computation of normal forms,

centre manifolds and first integrals in Hamiltonian mechanics.

These calculations are very useful since they allow us, among

other things, to give explicit estimates on the diffusion time and

to compute invariant tori. The approach presented here is based

on the algebraic manipulation of formal series with numerical

coefficients for them. This, together with a very efficient soft-

ware implementation, allows big savings in memory and execu-

tion time in comparison with the use of commercial algebraic

manipulators. The algorithms are discussed together with their

C/C++ implementations, and they are applied to some concrete

examples from celestial mechanics.

1. INTRODUCTIONThe importance of invariant objects in understand-ing the phase space of a dynamical system has beenwell-known since Poincar�e. Invariant objects are in-teresting not only in themselves but also becausethey organize the nearby ow. Despite their im-portance, there are not many numerical methodsto compute such objects. The aim of this paper isto explain some techniques that can help performsome of these computations, in the particular casein which the system is Hamiltonian. As we willsee, many topics can be extended to general (an-alytic) systems and also to discrete dynamical sys-tems. Among the several possible approaches, wehave chosen methods based on the computation of(truncated) normal forms and (approximate) �rstintegrals. Truncated normal forms are very usefulsince they can provide, under suitable hypotheses,integrable approximations to the dynamics. Inte-grability allows one to give explicitly all the invari-ant objects (for example, tori) in phase space. If
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156 Experimental Mathematics, Vol. 8 (1999), No. 2the normal form approximates the true dynamics,the invariant objects of the initial system are alsoapproximated accordingly; for examples see [Sim�oet al. 1995; Jorba and Villanueva 1998; 1999]. Ap-proximate �rst integrals are quantities that are al-most preserved by the ow of the system. Thismeans that their surface levels are almost invariantby the ow. This property can be used to obtain in-formation about some aspects of the dynamics. Forinstance, if one is able to estimate the correspondingremainders, it is not di�cult to bound the di�usionvelocity around elliptic �xed points. For a numericalexample, see [Celletti and Giorgilli 1991].One of the main problems faced when consider-ing such computations is how to store the objectin the computer. The easiest case is the computa-tion of a single trajectory, which can be stored asa sequence of points in phase space. When the in-variant object has higher dimension, it can be verydi�cult or impossible to store it by simply stor-ing a net of points. The approach taken here isto use some kind of series expansion (such as poweror Fourier expansions, or a combination of both)to represent the object. The advantage is that inmany cases only \a few" terms of these series areneeded to get a good accuracy and that they canbe handled very easily. As disadvantages we notethat sometimes the series have convergence prob-lems, making it impossible to represent the objectin this way. Due to the particularities of the prob-lems considered here we will only focus on the useof power expansions. You can �nd examples withtrigonometric expansions in [Jorba and Masdemont1998; G�omez et al. 1997]. For a general discussion,see [Sim�o 1990].Sometimes, when only a qualitative descriptionof the dynamics is needed, it is enough to use alow-order computation (this is the typical situationencountered, for instance, in the analysis of a bifur-cation). This is not the case considered here. Themethodology presented in this paper is geared to-ward high-order computations, with a high degreeof accuracy, ready for use in many practical appli-cations. This necessity usually comes from the ap-plications of the dynamical systems theory to realproblems, like the design and analysis of trajecto-ries for some spacecrafts; see [G�omez et al. 1985;1987; D��ez et al. 1991; G�omez et al. 1991a, 1991c;

1991b; 1993a; 1993b; 1993c; Sim�o 1998]. Even inmore academic problems, one many need to per-form very accurate computations. See, for example,[Sim�o 1994], where the computation (by means offormal expansions) of exponentially small quantitiesis considered.Hence, the �rst point addressed is how to build ane�cient algebraic manipulator (in an e�cient lan-guage such as C or C++) in order to manipulatethese expansions fast, using as little memory as pos-sible. Then, as an application, we use these routinesto study some aspects of the restricted three bodyproblem (RTBP). More concretely, we show how touse these techniques to describe the dynamics nearthe �ve equilibrium points of the RTBP. We alsodiscuss related topics such as error analysis (includ-ing the use of interval arithmetic), e�ciency (fromthe points of view of memory and speed) and somepossible extensions to these routines, such as morevariables, time dependence, etc.In the work described here we have made exten-sive use of the particularities of Hamiltonian sys-tems, so that many of the algorithms cannot be usedoutside of this environment. However, our method-ology for building algebraic manipulators is verygeneral and can be applied in a lot of di�erent con-texts.In order to simplify the exposition, we restrictourselves to analytic and autonomous Hamiltoniansystems with three degrees of freedom, having a�xed point at the origin. In Section 7 we will dis-cuss possible extensions to more general contexts.The discussion assumes some knowledge of Hamil-tonian mechanics, but for self-containedness we haveincluded in Appendix A a summary of the main con-cepts and properties of Hamiltonian systems.
1.1. ExamplesIn this section we summarize a few problems whereclassical numerical methods, such as numerical in-tegration of single trajectories, are not enough togive a good answer. They will be used as exam-ples throughout the paper, and they were a primarymotivation for our work. However, there are manyother applications of our tools (both practical andtheoretical) beyond the ones presented here. Wehave selected a few simple ones in order to haveconcrete problems to work with and be able to give



Jorba: Numerical Computation of Normal Forms, Centre Manifolds and First Integrals of Hamiltonian Systems 157concrete results. We hope that the interested readerwill be able to apply these ideas to similar problemsin other �elds.
1.1.1. Dynamics near an elliptic equilibrium point. As-sume that we are interested in the dynamics nearan elliptic equilibrium point (which, for simplicity,we will locate at the origin) of a Hamiltonian sys-tem with three degrees of freedom. Since the phasespace has dimension six, it is very di�cult to get apicture of the dynamics using numerical integrationof single trajectories.Assume we are able to rewrite the initial Hamil-tonian H as H = H0 +H1; (1–1)where H0 is an integrable Hamiltonian (so, in thiscase, the phase space is completely foliated by in-variant tori) and H1 is a nonintegrable one. Then,if H1 is small enough near the point, the trajectoriescorresponding to H0 are close to the trajectories ofH, at least for moderate time spans. Hence, fromthe integrable character of H0 it is not di�cult toobtain approximations for the invariant tori of H.The e�ect that H1 has on the solutions of H0 isdiscussed in Appendix A. Essentially, near the ori-gin, most of the tori of H0 are not destroyed by H1but only slightly deformed. However, we cannot ex-clude the possibility that an orbit originating in anyvicinity of the origin may escape, thus making theorigin unstable. This phenomenon has been namedArnol'd di�usion, because a mechanism for it wasproposed by Arnol'd [1964].Assume that we are also interested in estimatesof the di�usion time near the origin. The computa-tional e�ort needed to do this by single numericalintegration is too big for it to be a feasible option:the large number of trajectories one has to considerplus the huge interval of integration for each one(which also introduces the problem of accumulationof rounding errors) makes this calculation impossi-ble for present computers. An alternative procedureis the following: Suppose we are able to rewrite theinitial Hamiltonian H as in (1{1). Since H0 is inte-grable, the di�usion present in H must come fromH1. Hence, one can easily derive bounds for the dif-fusion time in terms of the size of H1. Of course, inorder to produce realistic di�usion times one needsto have H1 as small as possible. A standard way

of producing the splitting (1{1) is by means of anormal form calculation: H0 is the normal form andH1 the corresponding remainder. See [Giorgilli et al.1989; Sim�o 1989; Jorba and Sim�o 1994].There are alternative ways of estimating the dif-fusion time near elliptic equilibrium points. For in-stance, one can construct approximate �rst integralsnear the point and estimate the \drift" of these in-tegrals. Of course, although one can use as many�rst integrals as degrees of freedom, it is enough touse a single positive-de�nite integral (near the point,its level surfaces split the phase space into two con-nected components so they act as a barrier to thedi�usion).Although from the theoretical point of view bothapproaches are equivalent|the �rst integrals wecompute are in fact the action variables of the nor-mal form|from the computational point of viewthey behave di�erently. We will see this in detaillater.
1.1.2. Dynamics in a centre manifold. Consider a Ham-iltonian system with three degrees of freedom withan equilibrium point at the origin, and assume thatthe linear ow around this point is of the type cen-tre � centre � saddle.We are interested in �nding a description of thedynamics in a neighbourhood (as big as possible) ofthe origin. One possibility is called reduction to thecentre manifold; it consists in performing changesof variables in order to uncouple (up to some �-nite order) the hyperbolic behaviour from the centremanifold behavior. (One can regard this as a partialnormal form.) The restriction of the Hamiltonian tothis approximate centre manifold will be a Hamil-tonian system with two degrees of freedom. So, se-lecting an energy level H = h and taking a suitablePoincar�e section we can produce a collection of two-dimensional plots that can give a good descriptionof the dynamics. As far as we know, this was �rstdone in [G�omez et al. 1991c]; see also [Jorba andMasdemont 1999].
1.2. MethodologyHere we will present the methodology we use to dealwith those computations, based on the use of al-gebraic manipulators. There are several possibleschemes, depending on the kind of calculation we



158 Experimental Mathematics, Vol. 8 (1999), No. 2are interested in. For instance, if the procedure onlyneeds to substitute trigonometric series in the non-linear terms of the equations|as in the Lindstedt{Poincar�e method: see [G�omez et al. 1991c; G�omezet al. 1997; Jorba and Masdemont 1999]|one ofthe best choices is to look for a recurrent expressionof those nonlinear terms; the substitution is donesimply by inserting the series into the recurrence.In this paper, we will apply schemes that work withthe power expansion of the Hamiltonian. (Whenthe system is not Hamiltonian, one must work withthe di�erential equations|or with the equations ofthe map if the system is discrete|but, of course,this increases the computational e�ort.) So a gen-eral scheme for the problems considered here is thefollowing:
1. Power expansion of the Hamiltonian around theorigin.
2. Complexi�cation of the Hamiltonian. This is nota necessary step but, as we will see, it allows oneto simplify further computations.
3. Changes of variables (usually by means of Pois-son brackets), up to some �nite order.
4. Reali�cation of the �nal Hamiltonian. Again,this is not a necessary step. It is done only toreduce the size of the resulting series.
5. Computation of the change of variables that goesfrom the initial Hamiltonian to the �nal one.So, one needs computer routines for all these steps.A natural way of handling the power expansions isas a sequence of homogeneous polynomials:H =Xk�2Hk;where Hk is an homogeneous polynomial of degreek. So one of the most important problems will be todeal with homogeneous polynomials of several vari-ables. As we will see, the bottleneck (with respect tospeed) of the methods exposed here is the handlingof homogeneous polynomials.
1.3. Earlier SoftwareThere are several computer packages that, in prin-ciple, are able to deal with the computations men-tioned here. Among the commercial software thebest-known packages are perhaps Maple and Math-ematica. Although they have the advantage of be-

ing very general packages, dealing with much moreproblems than the ones discussed here, they are notvery e�cient in terms of either time and memory,and in any case one needs to write the high-level op-erations such as Poisson bracket. (In this direction,[Rand and Armbruster 1987] discusses the solutionof typical problems in dynamical systems by usingMacsyma, and [Raines and Uzer 1992] contains com-putations of normal forms using Mathematica.) Soif one is interested in low-order computations (some-times this is enough in academic problems) they canbe considered as a valid option. But if one wants toreach high orders, general-purpose packages are notcompetitive at all. In this case one has to go tosoftware tailored to the particularities of the prob-lem. This is the line we have followed in this work.In fact, it is possible to write even faster routines(see Section 5) than we did, but then the code is, inour opinion, more obscure. In some cases, especiallytaking into account the development and debuggingtime, the gain in speed is not enough to justify theloss of clarity. Anyway, we hope the reader inter-ested in this point will not have problems in modi-fying the software.There are some other packages similar to this onein the literature. In fact, there is a long tradition ofbuilding algebraic manipulators in celestial mechan-ics. We cite [Giorgilli 1979; Broucke and Garthwaite1969; Broucke 1989; Ricklefs et al. 1983; Meyer andSchmidt 1986; Brumberg et al. 1989; Laskar 1990];see also references therein. These works are directedtoward concrete problems of celestial mechanics andare very e�cient when dealing with them. We alsorefer to [Henrard 1989] for a survey of those earlierworks.
1.4. Programming ConsiderationsOur programming language is ANSI C, except whenwe have to deal with complex numbers, in whichcase we use C++ due to its ability of overloadingarithmetic operators, that is, assigning di�erent be-haviors to the operator depending of the type ofthe operands. This technique also allows one to usemore sophisticated types as coe�cients, such as mul-tiple precision, intervals, Fourier series, etc.It is not necessary to know C or C++ to read thispaper, but in order to understand the details of theimplementation of the algorithms it is necessary to



Jorba: Numerical Computation of Normal Forms, Centre Manifolds and First Integrals of Hamiltonian Systems 159look at the source code. Information about C can befound in [Kernighan and Ritchie 1988], and aboutC++ in [Stroustrup 1992].If one does not wish to use C++, it is straightfor-ward, though tedious, to rewrite these operations inANSI C. Another interesting possibility is to use theSCC precompiler [Schelter 1991]. This is a prepro-cessor that allows one to de�ne new operations, andoverload with them the standard arithmetic opera-tors as well as the corresponding input and outputfunctions (in a similar way as C++ does). SCCtranslates this code into C, to be processed by astandard C compiler.It is not di�cult to use these algorithms in otherlanguages. In fact, the �rst version of these routineswas written in Fortran 77. The main advantage ofC for these problems, in our opinion, is the dynamicallocation of memory and the use of structures. InFortran 77 one has to set some parameters beforecompiling in order to declare big enough arrays, tohave room for the expansions as well as workingspace.This paper is structured as follows. Sections 2and 3 give the details on the algebraic manipula-tors. Section 4 is devoted to some applications ofthis software to concrete problems. Section 5 dis-cuss the e�ciency of these methods as well as someimprovements to them. Section 6 contains some re-marks about the propagation of the rounding er-rors. Finally, Section 7 points out some extensionsto these methods to be used in more complex prob-lems (for instance, when the Hamiltonian dependson time in a periodic or quasiperiodic way). Wehave added two Appendices in order to make thepaper self-contained: Appendix A contains a shortdescription of the properties of Hamiltonian systemsused here and Appendix B contains a basic descrip-tion of the restricted three body problem, as wellas some properties that are used in the applica-tions. We have included these appendices becausewe are not aware of similar summaries in the liter-ature.
2. BASIC TOOLSIn this section we describe the basic algorithms androutines used to handle homogeneous polynomials.This is the most important part of the package.

To simplify the notation, we make the conventionthat the set N of natural numbers contains 0.
2.1. Storing and Retrieving MonomialsAssume that we want to store an homogeneous poly-nomial Pn of degree n, with 6 variables x0; : : : ; x5:Pn = Xk2N 6jkj=n pkxk;where we use the notation xk � xk00 : : : xk55 and jkj =k0 + � � � + k5. For the moment we assume that allthe coe�cients pk are di�erent from zero. De�ne 6(n) = #fk 2 N 6 such that jkj = ng (that is, 6(n) denotes the number of monomials of Pn).To store the polynomial we use an array of  6(n)components, each appropriate for the storage of onecoe�cient of the polynomial. We use the position(index) of a coe�cient inside the array to know themonomial it corresponds to. To this end we con-struct a function, called llex6, which, given a posi-tion in the array (that is, an integer between 0 and 6(n)� 1), returns the multiindex that correspondsto this coe�cient. Of course we need the inversefunction, called exll6, to know where to store agiven monomial.Before going into the details of these functions,we stress that, from the point of view of e�ciency,they are of crucial importance: if they are e�cient,the package will be e�cient. This will be discussedin Section 5.2.In order to have a fast implementation, we usean integer array (we assume here that every integeris four bytes long) to store some information to beused by function llex6. This array has  6(n) com-ponents and each one contains in encoded form themultiindex of the corresponding coe�cient. We usethis array in the obvious way: each time we needto know the exponent of the monomial whose co-e�cient is stored in position j of the homogeneouspolynomial, we get it from the component j of thisarray.The way of encoding the multiindex k is the fol-lowing: since we know the degree we are workingwith, one of the exponents (say k0) is redundant,so we only need to store k1; : : : ; k5. This has to bestored inside a 32-bit number, so we can use 6 bitsfor each index, leaving 2 unused. This introduces



160 Experimental Mathematics, Vol. 8 (1999), No. 2the restriction kj < 64. Since we want to handlehomogeneous polynomials, the maximum degree al-lowed is 63, more than enough for the applicationsconsidered here.
2.2. The RoutinesHere we discuss in some detail the basic routinesof the manipulator, since these routines are of �rstimportance from the viewpoint of e�ciency. Theirsource code is stored in the �le mp6.c. (See the sec-tion on Electronic Availability at the end of the pa-per for information on how to obtain the software.)The number 6 in the �le name and the routine namesrefers to the fact that we are working with six vari-ables in our running example of a Hamiltonian sys-tem with three degrees of freedom.For portability reasons, in the heading of several�les we rede�ne the standard type int as integer.This is because the �rst version of these routines wasdeveloped on an old 286 machine, where ints were2 bytes long, and it was run on a HP workstation,where ints were 4 bytes long. We can allow fordi�erent kinds of integers, simply by rede�nig thetype integer. Of course, this is not relevant forcomputers at present (1997).
Headings of the file mp6.c. Here we have placed thedeclarations of three variables that must be accessi-ble by all the routines in this �le. They are namednor, clmo and psi, and are initialized by routineimp6. Their meaning is explained in the next sec-tions.
The routine imp6. This routine has to be called be-fore using any other routine in the package, becauseit allocates and initializes some internal arrays tostore the encoded multiindices. The only parame-ter to this routine is an integer, nr, which containsthe maximum degree we want to use. This value isstored in the variable nor.Before continuing, we de�ne a function i(n) = #fk 2 N i such that jkj = ng;which can be easily evaluated by means of the re-currence i(n) = nXj=0  i�1(j) = �n+ i� 1i� 1 �: (2–1)

The routine imp6 starts by checking that it isbeing called with a suitable degree and that theinteger type of the machine (or compiler) is longenough.The �rst step is to allocate space to store the val-ues of the function  i(j). At this moment we onlyneed to know  6, but we also compute  2; : : : ;  5,since they will be needed later. To this end we al-locate a rectangular matrix psi with the �rst indexranging from 2 to 6 and the second one from 0 tonor. Then, the values  i(j) are computed (usingthe recurrence given in (2{1)) and stored in posi-tion (i; j) of the matrix psi.The next step is to allocate space for the tableclmo. The �rst dimension of this table ranges from0 to nor, and it refers to the degree of the homoge-neous polynomials. If the �rst index is i, the secondindex ranges from 0 to  6(i)� 1 � psi[6][i] � 1.The position (i; j) of this array is the encoded ver-sion of the multiindex of the monomial number jof a polynomial of degree i. Once this table hasbeen allocated, we �ll it with information about themultiindices, as we now explain.We de�ne an order inside the set of multiindicesof a given degree: Let k be a multiindex of degree nand de�ne k as the integer expressed as k5k4k3k2k1k0in base n+ 1. The order is given byk(1) < k(2) () k(1) < k(2):This is usually called reverse lexicographic order.Now, for a given degree i, we compute all the mul-tiindices according to this order and we store themin the table clmo: the �rst multiindex for degree iis (i,0,0,0,0,0), and all the others are generatedby routine prxk6 (see below). We store the compo-nents of each multiindex in the corresponding placeof clmo, using 6 bits for each component: this meansthat the coded version of the multiindex isk1 + k2 � 26 + k3 � 212 + k4 � 218 + k5 � 224: (2–2)(We don't need to code k0 because, since we knowthe degree, it is redundant.) This is the value we willstore in clmo[i][j], where j stands for the positionof the multiindex (and the monomial) in this order.Finally, the routine returns the amount of mem-ory (in kbytes) used by these tables. It is up to thecalling routine whether to use this value.
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The routine amp6. This routine frees the memory al-located by imp6. Of course, once it has been calledthe manipulator cannot be used until a new call toimp6 has been made.
The routine llex6. Given a location in the array of co-e�cients, lloc, and a degree, no, llex6 computesthe corresponding multiindex. The way it works isvery straightforward because the multiindex is con-tained (encoded) in clmo[no][lloc], and to decodeit we only need to invert (2{2) using the modulusfunction. An improvement to this routine consistsin directly extracting the corresponding bits fromclmo[no][lloc].
The routine exll6. Given a multiindex k of degree no(this is redundant information but it is very usefulto prevent calls to these routines with wrong argu-ments), exll6 returns the corresponding place. So,this is the inverse of llex6. The implementation ofthis routine can be done in many ways; here is howwe have done it. Denote by k = (k0; : : : ; k5) themultiindex and let n be k0 + � � � + k5. De�ne k(5)as (k0; : : : ; k4) and let n5 = n � k5 be the degree ofk(5). Then, if we are able to compute
1. the number of multiindices (l0; : : : ; l5) of 6 vari-ables with degree n such that 0 � l5 < k5,
2. the place it corresponds to k(5) among the multi-indices of 5 variables of degree n5,the sum of these two quantitites is the place we arelooking for. The �rst of these numbers is  5(n5 +1)+ � � �+ 5(n), and can be easily obtained from thetable psi. The second one is the same problem wewant to solve, but with one dimension less, so wecan apply again the same procedure until we reachdimension 2 (this corresponds to polynomials in twovariables), where the solution becomes obvious. Animprovement to this routine is to use auxiliar tablesto reduce these integer computations.
The routine ntph6. This routine returns the numberof monomials of a given degree (this information iscontained in the array psi).
The routine prxk6. It is used to produce all the mul-tiindices of a given order, according to the order weare using. For more details, we refer the reader tothe source code.

2.3. Taking Advantage of SymmetriesIt is quite common in physical examples to havesome kind of symmetry in the Hamiltonian. For in-stance, in the examples used in this paper we have asymmetry with respect to the variable z (see (4{1)and Appendix B). This implies that not all thepossible monomials of the power expansion of theHamiltonian are really present. In the examplesused here, if i is the exponent of z and j the expo-nent of pz, the only monomials that appear in theexpansion are the ones in which i+j is even. Hence,taking this into account it is possible to reduce theamount of memory used and the computing time bya factor of approximately two.In order to exploit the symmetry we have devel-opped special versions of the routines of Section 2.2.The source code is stored in the �les mp6s.c andmp6p.c.File mp6s.c contains counterparts to the routinesin mp6.c (with an \s" at the end of the name, toallow their use in the same program if necessary);they assume that the only monomials present arethose for which k4 + k5 is even. Since they work ina very similar way as the routines in mp6.c, we onlymention the main di�erences:imp6s. The function  6(n) is no longer valid for com-puting the number of monomials, because of thesymmetry. The number of monomials for a givendegree n is now given bybn=2cXj=0 (2j + 1) 4(n� 2j);
where bn=2c denotes the integer part of n=2.exll6s. To have a simple formula for the positioncorresponding to a given index, we have changedthe order used for the monomials: we �rst use re-verse lexicogra�c order for the exponents (k4; k5)and, in second place, reverse lexicographic orderfor the exponents (k0; k1; k2; k3). This is usuallycalled product reverse lexicographic order. It al-lows one to easily derive a closed formula for theposition (see the source code).prxk6s. This routine is changed in order to pro-duce the exponents in the product reverse lex-icographic order de�ned above.



162 Experimental Mathematics, Vol. 8 (1999), No. 2File mp6p.c contains the same routines as mp6s.c,but with a di�erent symmetry: here it is assumedthat all the monomials that are present satisfy thatk4+k5 is odd (this kind of symmetry appears in somecomputations; see Section 4.4). The implementationis almost identical to that of mp6s.c, so we do notadd further remarks.In fact, since the examples considered in this pa-per have these symmetries, we do not make use ofthe routines in mp6.c. We have included them forthe sake of completeness, and because they are themost natural ones to start describing how routinesof this kind work.Finally, note that if the symmetries are \too com-plex" to derive closed formulas for the routines exll,one can always perform a binary search on the arrayclmo. In this case, it is very convenient to use anorder such that the integer values stored in clmo aresorted as integers. Although this is not as e�cientas a closed formula, it can be easily applied in allthe cases.
2.4. Different Number of VariablesSince the examples in this paper involve Hamilto-nian systems with three degrees of freedom, the ba-sic routines explained here handle polynomials withsix variables. If one is interested in a di�erent num-ber of variables, it is not di�cult to build the cor-responding basic routines. For instance, in Sec-tion 4.1.3 we need to handle the normal form of aHamiltonian system with three degrees of freedom,which involves only 3 variables. It is very easy towrite the corresponding routines, using the same al-gorithms as for six variables. We have put thoseroutines in �le mp3.c, which is essentially a minormodi�cation of �le mp6.c. In a similar way we havederived the routines of mp4s.c and mp4p.c, neededduring the reduction to the centre manifold (see Sec-tion 4.3).
3. HANDLING HOMOGENEOUS POLYNOMIALSThe routines of this section are contained in the�les basop6s.cc and basop6sp.cc. There are sev-eral versions of some of them, in order to deal withpolynomials with di�erent symmetries. As before,we recommend that the reader look at the sourcecode.

Let p1 and p2 be homogeneous polynomials ofdegrees g1 and g2|that is, arrays containing thecoe�cients of the polynomials, as explained above.
3.1. SumsAssume �rst we want to add two both polynomialsof the same degree (the only case that arises), stor-ing the result in an array called p3. If we call nm thenumber of monomials of each polynomial|a num-ber that can be determined by the routine ntph6,for example|the sum is easily computed:for (i=0; i<nm; i++)p3[i]=p1[i]+p2[i];
Here we assume that we have de�ned the operation+ for the type of the coe�cients of the polynomial:if they are double variables one does not need todo anything special since they are already de�nedin any C compiler. If they are of complex type|by which we mean a structure with two membersof type double|we assume that we are workingin C++ or that we are using a C extension able tooverload the arithmetic operators with the complexoperations. If the coe�cients are more sophisticatedtypes, we assume that we have the correspondingarithmetic, as well as a way to overload arithmeticoperators.Similarly, it is very easy to implement the productof a complex number by a polynomial, so we makeno comments on that.
3.2. ProductsNow consider the product of homogeneous polyno-mials p1 and p2, not necessarily of the same de-gree. The algorithm is very simple and uses theroutines explained in Section 2. To account for thecontribution of the product of monomial i of p1 withmonomial j of p2 we just have to compute the corre-sponding multiindices k(i) and k(j), ask for the posi-tion where the coe�cient of the monomial k(i)+k(j)must be stored, and add the product of the coe�-cients to the value found in this position. Doing thisfor all the possible values of i and j we obtain thedesired product of polynomials. See the source codefor more details.
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3.3. Poisson BracketThe Poisson bracket of two homogeneous polynomi-als can be implemented using the same ideas as theproduct. The algorithm we have used is based onthe identity�Xk;l pk;lxkyl; Xk0;l0 qk0;l0xk0yl0�= Xk;l;k0;l0 pk;lqk0;l0� 3Xj=1(kjl0j � k0jlj)xk+k0yl+l0xjyj �;
where, of course, k, l, k0 and l0 belong to N 3. Thus,for any term of this sum, we proceed as in the prod-uct of homogeneous polynomials: we look �rst forthe exponents of the monomials involved, then wecompute the exponents of the resulting monomi-als and, �nally we add the resulting coe�cients tothe position corresponding to those monomials. Formore details, see the source code.
3.4. Input and OutputWe have coded several routines in order to read andwrite power expansions and homogeneous polyno-mials, in both ASCII and binary format. We do notprovide a complete set of routines to handle all thepossible situations, but simply give the ones neededin the examples. As mentioned before, our inten-tion is to show that they can be written very easilyand we hope that the interested reader will have noproblem in coding a similar routine.There are a lot of di�erent routines, each one fora di�erent purpose. Although it is not di�cult towrite a common front-end for all of them we havenot done so. The main reason is that the aim ofthis paper is not to give an easy-to-use library offunctions but to show how to build such a library.Hence, we have avoided any construction that hidesthe inner working of the routines.
3.4.1. ASCII files. There are several routines to readand write homogeneous polynomials and series. Theformat is very easy: for each coe�cient, we computethe corresponding exponents and write the expo-nents followed by the value of the coe�cient. Weuse a single line for each coe�cient.There are several sets of routines for the di�erentkind of series (mp6s, mp6p, real or complex coe�-cients, etc.). Some of the routines use a threshold

to decide if a monomial has to be written or not (ifthe absolute value of the coe�cient is smaller thanthe threshold, the monomial is not written).The advantage of ASCII �les is that they can beprinted and read by an ordinary text editor. Themain disadvantages are that they are big and thatinput and output are slow. Hence, ASCII �les areonly used to write the �nal results and to store in-termediate values during the development and de-bugging.
3.4.2. Binary files. This format is used to store inter-mediate calculations or series that are only used asinput for other programs (such as change of variableroutines).The routines that write homogeneous polynomi-als simply write (sequentially) all the coe�cients inthe �le, without storing the exponents of the corre-sponding monomials. The reading routine will readall the coe�cients in a row, without any checking(except, of course, the end of �le), and they will bestored sequentially in the corresponding array. Eachcoe�cient is then identi�ed by its position inside the�le. This is done to minimize the size of the �le andto maximize processing speed.The routines that write series simply write se-quentially the homogeneous polynomials, adding alittle bit of information to the �le according to thekind of series stored. This extra information is putat the beginning and consists of four integer values,with the following meaning:
1. The �rst integer contains the number of variablesof the expansion.
2. The second integer contains the kind of symme-try of the expansion. This value can be:0: No symmetry. All the monomials are presentin the �le.1: Only present are monomials such that the sumof the exponents of the last two variables iseven.2: Only present are monomials such that the sumof the exponents of the last two variables isodd.
3. The third integer is the initial degree of the ex-pansion, usually 1 or 2.
4. The fourth integer is the �nal degree of the ex-pansion.



164 Experimental Mathematics, Vol. 8 (1999), No. 2The reading routine checks this information andgives error messages when necessary. Observe thatthere is nothing indicating the kind of coe�cients ofthe series being stored. It is up to the user to takethis into account.Of course, writing in this way assumes that thereading routine will use the same algebraic manipu-lator as the writing routine, since the exponent of amonomial is known from the position of the mono-mial inside the series. You have to take this intoaccount if you modify these routines.
4. EXAMPLESIn this section we apply these routines to some prac-tical computations on a concrete model. For thispurpose we have selected the well-known restrictedthree body problem (RTBP), near one of the �veequilibrium points L1;:::;5 of the system. For a de-scription of this problem, including the notation, seeAppendix B.
4.1. Example I: Normal FormThe HamiltonianH of the RTBP, in suitable dimen-sionless units and with the origin at L4 or L5, takesthe formH = 12(p2x + p2y + p2z) + ypx � xpy + � 12 � ��x�p32 y � 1� �rPS � �rPJ ; (4–1)where r2PS = (x� xS)2 + (y � yS)2 + z2;r2PJ = (x� xJ)2 + (y � yJ)2 + z2;xS = 12 , yS = �p32 , xJ = � 12 and yJ = �p32 . The\�" sign is for L4 while \+" is for L5. The massratio � is taken below the Routh critical value, sothe origin is linearly stable.
4.1.1. Complexification and power expansion. The �rststep is to produce a power expansion of (4{1) up toa �nite order N , H = NXn=2Hn;where Hn denotes a homogeneous polynomial of de-gree n in six variables. To describe how to producesuch an expansion, we focus �rst on the term 1=rPS

of (4{1). Naming  the angle between (xS; yS; 0)and (x; y; z), and letting �2 = x2 + y2 + z2, one has1rPS = 1p1� 2� cos + �2 = 1Xn=0 �nPn(cos );where Pn is the Legendre polynomial of degree n.De�ne An as �nPn(cos ); note that An is an ho-mogeneous polynomial of degree n. Then, from thewell-known recurrence of the Legendre polynomials,one obtainsAn+1=2n+1n+1 (xxS+yyS)An� nn+1(x2+y2+z2)An�1;
(4–2)starting with A0 = 1 and A1 = xxS + yyS. This re-currence can easily be implemented using a routinethat multiplies homogeneous polynomials. Since itis numerically stable and not too computation-inten-sive, this recurrence is very suitable for practicalcomputations. Of course, the expansion of 1=rPJcan be done in the same way, and the remainingterms of (4{1) can be added directly to the sum ofthese two expansions.Before continuing, we make a very important re-mark. Since the �rst step is to put H2 in normalform (see Section B.1), and this is done by a lin-ear change of variables, we can insert this change ofvariables directly into the recurrence (4{2), in orderto produce the expansion with this �rst change al-ready done. This is much better than to composethe change with the �nal expansion. The real nor-mal form of H2 isH2 = 12!1(x2 + p2x) + 12!2(y2 + p2y) + 12(z2 + p2z);where we have kept the same notation for the vari-ables and we have used the fact that the frequencyin the vertical direction is always 1 (for all �). Inorder to facilitate the computation of the generatingfunction, it is very convenient to diagonalize H2 (seeSection A.4 for more details). This can be done bya complexifying change of variables, of the form

x = q1 +p�1 p1p2 ; px = p�1 q1 + p1p2 (4–3)

(similarly for the other variables). So, we composethis change with the �rst one to obtain a complex



Jorba: Numerical Computation of Normal Forms, Centre Manifolds and First Integrals of Hamiltonian Systems 165and symplectic linear change of variables that bringsthe initial H2 into the normal formH2 = p�1!1q1p1 +p�1!2q2p2 +p�1 q3p3: (4–4)This is, in fact, the change inserted into the recur-rence (4{2) to produce the expansion in these vari-ables.The routines that perform this expansion are con-tained in the �le exp-l5.cc. We give a short de-scription of them.ccvl5 computes the linear change of variables thatputs the initial H2 into the �nal normal form(4{4). This change is derived in Section B.1.exp l5 is the main routine for the expansion of theHamiltonian. It calls exrec and reste.exrec performs one of the recurrences (4{2). It iscalled twice by exp l5 (�rst to expand 1=rPS andthen 1=rPJ).reste computes the terms in (4{1) that are neither1=rPS nor 1=rPJ .
4.1.2. The normal form. The next step is the compu-tation of the normal form. We use Lie series, sincethey are very suitable to perform explicit computa-tions. More details on this method are contained inSections A.3 and A.4; here we will only focus on theimplementation. The main properties of the Poissonbracket used here are that it is bilinear and that, ifPr and Qs are homogeneous polynomials of degreesr and s respectively, then fPr; Qsg is an homoge-neous polynomial of degree r + s� 2.The computation is done in several steps, one foreach degree. We explain the �rst of these steps.We want to compute a generating function G3 (anhomogeneous polynomial of degree 3) such that thetransformed HamiltonianH 0 = H + fH;G3g+ 12!ffH;G3g; G3g+ 13!fffH;G3g; G3g; G3g+ � � � (4–5)has no terms of degree 3. Using the notation H =H2 + H3 + H4 + � � � one obtains that the terms ofdegree 3 of the transformed Hamiltonian H 0 areH 03 = H3 + fH2; G3g:Hence, we demand that H 03 = 0. This equation iseasily solved, because H2 is of the form (4{4): De-note by kq the three indices of k that correspond to

the variable q and by kp the ones corresponding top. The expressions of H3 and G3 can be written asH3 = Xjkj=3hk3qkqpkp ; G3 = Xjkj=3 gk3qkqpkp :Hence, assuming that the frequencies ! = (!1; !2; 1)of H2 are rationally independent, it is not di�cultto obtain the coe�cients gk3 of G3:gk3 = �hk3p�1 hkp � kq; !i :Since in this case jkj is odd, the denominator is neverzero. When jkj is even one must consider the casekp = kq (note that, since the components of ! arerationally independent, this is the only possibilityof getting a zero divisor). This implies that thismonomial cannot be eliminated and then we selectthe corresponding gk3 equal to zero. Of course, ifone wants to perform the normal form up to degreeN , it is enough to demand that hk; !i 6= 0 when0 < jkj < N . If this condition is not satis�ed wecan still perform a resonant normal form, that is,we can eliminate all the monomials except the onesfor which hk; !i = 0 (usually called resonant mono-mials). Even when the frequencies are rationally in-dependent, some of the denominators hk; !i can bevery small, reducing drastically the domain wherethese transformations are valid. In this case it isalso possible to leave those monomials in the nor-mal form, in order to keep a reasonable size for thedomain of convergence (note that then the normalform will not be integrable; see [Sim�o 1989] for adiscussion of this technique).Once the generating function has been computed,we can use (4{5) to compute the transformed Hamil-tonian. We look at the implementation we have usedfor this formula. Assume we are working with an ex-pansion of H up to degree N :H = H2 +H3 + � � �+HN�1 +HN ;and, for instance, we want to transform it using asa generating function an homogeneous polynomialG3 of degree 3. To save memory, the result willbe stored in the same space used for H. To givethe idea, we write explicitly the �rsts steps of themethod:
Step 1.1. HN  HN + fHN�1; G3g
Step 2.1. HN�1  HN�1 + fHN�2; G3g
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Step 2.2. HN  HN + 12!ffHN�2; G3g; G3g
Step 3.1. HN�2  HN�2 + fHN�3; G3g
Step 3.2. HN�1  HN�1 + 12!ffHN�3; G3g; G3g
Step 3.3. HN  HN + 13!fffHN�3; G3g; G3g; G3g

...The Poisson bracket done in step 2.1 can be reusedto compute step 2.2, the one in 3.1 can be used in 3.2and this last one in 3.3, and so on. In this way, weare minimizing the number of arithmetic operations(each Poisson bracket is done only once), we canwork on the initial Hamiltonian (the parts of it thatare overwritten are not needed in further steps) andthe need of working space is not very big: we needworking space for two homogeneous polynomial ofdegree N in the worst case (one is used to store thePoisson bracket done in i:j�1 to be used in i:j, theother one is to compute the next Poisson bracket).This has been implemented in routine traham (seebelow).The routines for these algorithms are contained in�le nf6s.cc. We give a short description of them:nf6s is the main routine for the computation of thenormal form. It assumes that the initial Hamil-tonian H2 is in diagonal form. It gets the fre-quencies ! from the corresponding positions inH2 and, for each degree, it computes the gen-erating function of the change of variables (seecage below) and transforms the Hamiltonian (seetraham below). The generating function is writ-ten to a binary �le, degree by degree. Since this isnot considered a series but a sequence of di�erentgenerating functions, no heading is added to the�le (this heading was explained in Section 3.4.2).cage computes the generating function correspond-ing to a given degree. One of the parameters isa pointer to a function that, given the exponentsof the monomial, returns 1 if the monomial hasto be removed from the normal form, and 0 oth-erwise. This is done in this way in order to makeit easy to change the \killing criterion".traham transforms the Hamiltonian according to thealgorithm mentioned above, using the generatingfunction computed in cage. After the transfor-mation, the routine places zeroes in the placesthat corresponds to killed monomials. This line

of code can be commented out if the user doesnot this behavior; in this case, those values willnot be exactly zero because of rounding errors(see Section 6 for a more detailed discussion).Moreover, in the �le kill-nf.c there is a functionthat decides if a given monomial has to be killed ornot (see remarks on routine cage above).
4.1.3. Back to real coordinates. The �nal step is to re-alify the transformed Hamiltonian. The case of non-integrable normal forms can be done using the con-siderations in Section 4.4; see also Section 4.3.We start by using the inverse of the complexifyingchange (4{3),

qj = xj �p�1 yjp2 ; pj = �p�1xj + yjp2 ; (4–6)where j = 1; 2; 3 and q1, q2, q3, p1, p2, p3 are newnames for x, y, z, px, py, pz, respectively. In orderto put the Hamiltonian in the easiest possible form,we compose this change withxj =p2Ij cos'j; yj = �p2Ij sin'j;for j = 1; 2; 3. This is equivalent toqj = I1=2 exp(p�1'j);pj = �p�1 I1=2 exp(�p�1'j): (4–7)

Hence, since the monomials that appear in the nor-mal form have the same exponent both for positionsand momenta (kq = kp in the notation above), thechange (4{7) makes them to depend only on the ac-tions Ij: hkqkqpkp = hk(p�1 )jkqjIkq :The routines in the �le rnf6s.cc, which we nowdescribe briey, apply the change (4{7) to the nor-mal form. (Since we have to deal with polynomialsin three variables, we need the routines in mp3.c.)rnf6s applies the change (4{7) to the normal form.Assumes that the manipulator contained in mp3.chas been initialized by the calling routine.check rlf checks if a given multiindex correspondsto the normal form. It is used by rnf6s to knowwhich terms to realify; all others are assumed tobe zero.
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4.1.4. Main program and results. The �le main nf.cccontains a main program that uses these routines.It is very short and computes the normal form, up toa given order, around the equilibrium point L5 of theRTBP. The output of the program is contained inseveral �les: the normal form is stored in the ASCII�le nf.res, the generating function is stored in thebinary �le nf.gen and the linear change of variablesused to diagonalize the linearized vector �eld aroundL5 is put in the ASCII �le nf.cvl. The degree andthe mass parameter used in the actual run are storedin the ASCII �le nf.ctl.In Table 1 we include the �rst terms of the normalform for the Earth{Moon case. The last column inthat table corresponds to the imaginary part of thecoe�cients and it should be zero. It is not zero dueto the rounding errors in this process. This columnis not taken into account for subsequent computa-tions with the normal form, but we have includedit to give an heuristic estimate about how round-o� errors behave in this case. See also remarks inSection 6.2.
4.2. Example II: First IntegralsAssume we are interested in computing (approxi-mate) �rst integrals of a given Hamiltonian systemH, in a neigbourhood of an equilibrium point. Ofcourse, if H is not integrable, the �rst integrals willnot be convergent but, close enough to the equilib-rium point, they will be quantities that are almostpreserved by the ow. This can be used for dif-ferent purposes, for instance to bound the di�usiontime around an elliptic equilibrium point. See Sec-tion A.7 for more details.We summarize the procedure to compute thoseintegrals. Let H = Pj�2Hj the power expansionof H around the equilibrium point (which, for sim-plicity, we assume is the origin), where each Hj isan homogeneous polynomial of degree j. Denoteby F = Pj�2 Fj the expansion for the �rst inte-gral we are looking for. Then, since F must satisfyfH;Fg = 0, one has the recursive equation

fH2; Fng = � nXj=3fHj; Fn�j+2g; (4–8)

which yields Fn in terms of Fn�1, : : : , F2 and H.To simplify the discussion, assume H2 is in complex

1 0 0 9:5450087346985146e�01 0:0000000000000000e+000 1 0 �2:9820811951603865e�01 0:0000000000000000e+000 0 1 1:0000000000000000e+00 0:0000000000000000e+002 0 0 1:1568661352624510e�01 1:9950987004677088e�151 1 0 �1:7127952377596927e+00 1:6464553654140052e�140 2 0 3:3855424993051031e�01 �1:6132819906367057e�141 0 1 8:9130919974620498e�02 7:6519569570206439e�160 1 1 2:2531870698905809e�01 �1:8153505446248392e�150 0 2 �2:2354591332438556e�03 �9:4980345474466460e�173 0 0 �2:9478784724938123e�01 �8:8195876408494016e�142 1 0 8:1656946590496773e+00 �2:4411186045905709e�111 2 0 �5:4586887250177915e+02 �1:5117692624804247e�100 3 0 �5:1021278394561250e+01 �4:4683867166008548e�112 0 1 �4:3799694571855952e�01 1:4016167918231831e�131 1 1 1:4116984215354037e+01 �9:8915697135260128e�120 2 1 2:0187058976961225e+00 �1:7373839789087187e�121 0 2 �5:5905039470536266e�02 �1:9157633989231475e�140 1 2 �1:7898209821803412e�01 1:0442695912981926e�140 0 3 �5:1325740689130392e�05 �1:8243944685427148e�154 0 0 1:2775512804655591e+00 �6:7431830234291555e�103 1 0 �3:5068853734061122e+01 �5:4267568786972957e�102 2 0 �5:4875008796056733e+04 4:6093383107028067e�081 3 0 3:2223469268329442e+04 1:5779814576740623e�070 4 0 3:5185007412806153e+03 �7:6035412461354353e�093 0 1 2:1759346547114546e+00 �4:0412062928307053e�102 1 1 2:0101335538551211e+01 �1:8846523533034277e�091 2 1 1:3647631576893851e+04 1:2205347940204729e�080 3 1 1:4507386615262367e+03 �1:4038343557712580e�092 0 2 2:1938211094638973e+00 �6:7723532456943524e�111 1 2 �4:9540209943972513e+01 6:1719014476874278e�100 2 2 �1:0178742459873320e+01 3:9061093991945888e�111 0 3 3:5475354854384022e�02 8:1934049924464103e�130 1 3 7:1211245121958200e�02 1:7453335694916767e�110 0 4 5:2188851777046352e�04 3:2941657400195349e�13
TABLE 1. Coe�cients of the normal form for theEarth{Moon case (� = 1:2150581623433623�10�2).The �rst three columns contain the exponents of theactions; the fourth and �fth columns are the real andimaginary part of the coe�cients. Imaginary partsmust be zero, but they are not due to the roundingerrors. See more comments in the text.diagonal form, that is, H2 = Pjp�1!jqjpj. Sincefqjpj; qlplg = 0, we conclude that

1. the coe�cients of the monomials qlpl of Fn can-not be determined;
2. if the coe�cient of the monomial qlpl in the right-hand side of (4{8) is not zero, this equation can-not be solved.There are conditions under which the right-handside of (4{8) does not contain monomials of the formqlpl. For instance, when the frequencies are nonreso-nant (hk; !i = 0 if and only if k = 0) and the initialHamiltonian is reversible (an even function of themomenta).



168 Experimental Mathematics, Vol. 8 (1999), No. 2The example we are going to use is again theRTBP near L4;5 for the Sun{Jupiter case, for whichthe frequencies are nonresonant. (As in the normalform case, we only need the nonresonance conditionup to a �nite order. Hence, this is a condition thatcan be checked in practical examples.) Since in thiscase the Hamiltonian is not reversible, we need an-other kind of argument to justify the solvability of(4{8). We will use without proof the fact that thisequation can be solved for the RTBP case, and thatit is enough to take as zero the terms of Fn that wecannot determine (qlpl). See [Celletti and Giorgilli1991] for a discussion of these properties.Another point worth mentioning is that F2 is notdetermined by the method, but it should be selectedby the user. In [Celletti and Giorgilli 1991], since theauthors want to have three �rst integrals F (1), F (2),F (3), they use F (j)2 = p�1 qjpj, for j = 1; 2; 3. Wenote that, if one only wants to bound the di�usionaround the point, it is enough to compute a singlede�nite-positive �rst integral. This can be achievedusing, for instance, F2 = Pjp�1 qjpj. Of course,one can put di�erent \weights" in front of each qjpjto try to optimize the size of the region of e�ectivestability (we recall that this region is, in general, notspherical).
4.2.1. Implementation. Most of the routines needed forthis case have already been developed for the normalform computation. In fact, we only need to imple-ment the recursion (4{8) and the reali�cation of the(approximate) �rst integral.An overview of the program is the following. Firstwe expand the Hamiltonian around the equilibriumpoint using the same rutines as in the normal formcase (the ones in the �le exp-l5.cc). In this waywe obtain a complexi�ed expansion such that thesecond degree terms are in diagonal form. Then,we solve recurrently equation (4{8), where the ini-tial value F2 is provided by the user (this is doneby the routines in the �le fi.cc). Once the �rstintegral has been computed up to the desired order,it is reali�ed (the routines for this are in the �lesirex.cc and re6s.cc, and the reali�cation processwill be explained in Section 4.5) and written to theASCII �le fi.res. This is the only �le produced bythis program. The main program that controls thisprocess is in main-fi.cc.

4.3. Example III: Centre ManifoldsWe now consider the dynamics near one of the col-linear points L1;2;3 of the RTBP. We recall that thelinearization of the vector �eld at these points is ofthe type centre � centre � saddle. In order to givean accurate description of the dynamics in a neigh-bourhood of L1;2;3 one can perform the so-called re-duction to the centre manifold. This process is ex-plained with more detail in Section A.6 and the ideais the following: assume that the diagonal form ofH2 isH2 = �q1p1 +p�1!2q2p2 +p�1!3q3p3;for �; !2; !3 2 R . Hence, the hyperbolic direction isgiven (to �rst order) by the variables (q1; p1). Weperform canonical transformations on the Hamilto-nian (in the same way it has been done in Sec-tion 4.1.2) but now, instead of cancelling all thenonresonant monomials, we only cancel monomialssuch that the exponent of q1 is di�erent from theexponent of p1 (for a di�erent scheme that cancelsfewer monomials, see [Sim�o 1996]). Then, after a�nite number of transformations, the Hamiltoniantakes the formH = H(0)(q1p1; q2; p2; q3; p3)+R(q1; p1; q2; p2; q3; p3);where H(0) is the part of the Hamiltonian that wehave arranged and R denotes the remainder. SinceH(0) depends on the product q1p1 we can performthe change I1 = q1p1 to produceH = H(0)(I1; q2; p2; q3; p3) +R(I1; '1; q2; p2; q3; p3);where ' is the conjugate variable of I1. If we dropthe remainder R (it is very small near the origin)then I1 is a �rst integral of the system and puttingI1 = 0 we are skipping the hyperbolic part of theHamiltonianH(0). The resulting two degrees of free-dom Hamiltonian represents the ow inside the (ap-proximation to the) centre manifold. So, near theorigin, the phase space of the original Hamiltonianmust be the phase space ofH(0)(0; q2; p2; q3; p3) timesan hyperbolic direction. To visualize the phase spaceof H(0) one can �x the value of the Hamiltonian andthen use a Poincar�e section. Varying the value ofthe Hamiltonian we will obtain a collection of two-dimensional plots representing the dynamics in thephase space. This has already been done in [G�omezet al. 1991c; Jorba and Masdemont 1998; 1999].
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4.3.1. Implementation. The implementation is similarto the one of the normal form, with the only dif-ference that now we want to kill fewer monomials.Hence, for the computation of the complex normalform we have used exactly the same routines as be-fore (the ones contained in the �le nf6s.cc), onlychanging the function used to decide which mono-mials are killed (this function is stored in the �lekill-nf.c for the normal form case and now is theone in the �le kill-cm.c).The main di�erence appears when we need to re-alify the transformed Hamiltonian. In the normalform case, reali�cation is done by taking advantageot the particularities of a complete normal form.Here it is a little bit more di�cult. We summa-rize the process. First, to save memory, the (stillcomplex) partial normal form is written in a binary�le and then it is read monomial by monomial. Foreach monomial corresponding to the centre manifold(namely those for which the exponent of q1 equalsthat of p1) we compute the result of applying the re-alifying change (4{6) to this monomial; other mono-mials are discarded. The process is the same oneused in Section 4.5 (see there for more details), butfor four variables monomials. The reali�ed monomi-als are added to the reali�ed series (di�erent com-plex monomials can contribute to the same reali-�ed monomial) until all the complex monomials aretransformed. The routines that perform the real-ifying process are stored in the �les irex.cc andrcm6s.cc. Finally, the centre manifold is written toan ASCII �le. The main program for this computa-tion is stored in the �le main-cm.cc.The output �les are: cm.res contains (in ASCIIformat) the Hamiltonian reduced to its centre man-ifold, cm.gen is a binary �le with the generatingfunction used, cm.cvl is an ASCII �le with the lin-ear change used to put H2 in diagonal form andcm.ctl contains the parameters used in the actualrun.
4.4. Changes of VariablesAn important part of the computations is to producethe changes of variables going from the �nal coordi-nates (normal form or centre manifold) to the initialones. This can be used for several purposes, rangingfrom estimates on the di�usion time to the practi-cal computation of invariant tori (of any dimension).

We refer to [Jorba and Villanueva 1998] for exam-ples of this.The global change is split in two di�erent sub-changes. The �rst one is the linear change that putsH2 in diagonal form (we will refer to these coordi-nates as \diagonal" coordinates) plus the translationof the origin from the libration point to the centre ofmasses of the RTBP. The second sub-change consistsof the nonlinear change that goes from the normalform (or centre manifold) coordinates to the diag-onal ones. Here we will focus on this last changesince the �rst one is explicitly given in Appendix B.Here is the process for obtaining the nonlinearchange. We start by considering the �rst change ofvariables done on the Hamiltonian by means of agenerating function G3. The corresponding changefor this transformation can be obtained by applyingthe transformation (4{5) to a single coordinate qi orpi, where 1 � i � 3:q(3)i = qi + fqi; G3g+ 12!ffqi; G3g; G3g+ � � � ; (4–9)p(3)i = pi + fpi; G3g+ 12!ffpi; G3g; G3g+ � � � ;(4–10)where q(3)i and p(3)i denote the series obtained in thistransformation. This is done using the algorithmexplained in Section 4.1.2. Expressions (4{9) and(4{10) are changes of coordinates: they relate thecoordinates of the transformed Hamiltonian underG3, namely qi and pi, with the initial (diagonal) co-ordinates q(3)i and p(3)i . This idea can be used to pro-duce the changes to higher orders. For instance,q(4)i = q(3)i + fq(3)i ; G4g+ 12!ffq(3)i ; G4g; G4g+ � � � ;p(4)i = p(3)i + fp(3)i ; G4g+ 12!ffp(3)i ; G4g; G4g+ � � � ;is the transformation that goes from the normalform coordinates of degree 4 to the initial diago-nal coordinates. Of course, this transformation isdone on the expressions (4{9) and (4{10) as if theywere Hamiltonians, by means of the algorithm ex-plained in Section 4.1.2. In this way, we obtain theexplicit transformation that puts the Hamiltonian innormal form up to the desired order. When doingthese transformations, it is only necessary to trans-form up to the same degree as in the normal form.Note that the series obtained are still in complexcoordinates. They are reali�ed using the methodsthat will be explained in Section 4.5.



170 Experimental Mathematics, Vol. 8 (1999), No. 2The change corresponding to the centre manifoldhas some di�erences with the change for the normalform case. Since the centre manifold is of dimensionfour (the �rst two variables have been set to zero),the �nal change is given by six real expansions, eachone depending on four variables (the �rst four ex-pansions are of the type mp4s and the last two areof the type mp4p).
4.4.1. The inverse change. As before, we are going tofocus on the nonlinear part of the change, since thelinear part is easily inverted. We only provide rou-tines for the normal form case (the inverse changefor the centre manifold can be produced similarly).This computation is based on the following fact:the change induced by the generating function G isthe inverse of the change induced by the generatingfunction �G. This is because the change is the timeone ow of the Hamiltonian G, and to reverse thetime in this ow one has to change the sign of thevector �eld, i.e., of the Hamiltonian G. Hence, onecan use the same scheme as before but using as gen-erating functions �Gn, �Gn�1, : : : , �G4, �G3, inthis order. We refer to the previous section for morecomments.As before, the obtained series are still in complexcoordinates. Section 4.5 deals with the algorithmsused to realify them.
4.5. Realification of Power ExpansionsA common operation at the end of these compu-tations is the reali�cation of the complex power ex-pansions obtained, because we are usually interestedin the dynamics corresponding to real coordinates.Hence, reali�ed expansions are much smaller (thememory needed to store them is halved) and thisimplies that all the computations involving them arealso faster. We stress that it is not compulsory toperform such reali�cation, because all the compu-tations with these expansions can be done with thecomplexi�ed version. The reali�cation is only usedfor e�ciency reasons.We now explain the algorithm used. To simplifythe discussion, assume we have to realify a 6 vari-ables expansion, in which all the variables have beenpreviously complexi�ed. (It is possible to have acomplex expression in which not all the variableshave been complexi�ed; see the expansion of the

Hamiltonian in Section 4.3, for instance.) To start,we focus on the reali�cation of a single monomial,ckqk11 pk21 qk32 pk42 qk53 pk63 : (4–11)In order to apply the realifying change (4{6), wemake some remarks:
1. If we know the reali�cation of the product qk11 pk21 ,for any k1 and k2, we know the reali�cation of allthe products qk32 pk42 , qk53 pk63 (the only di�erence isin the subindices of the variables).
2. If we know the reali�cations of the three pairsqk2j�1j pk2jj (j = 1; 2; 3), the product of these reali-�ed expansions (note that each one of them is anhomogeneous polynomial with two variables) isnot di�cult to compute, since we are multiplyingpolynomials that depend on di�erent variables.Hence, we will apply the following scheme: �rstwe will compute the reali�cations of all the pow-ers qk11 pk21 , where the exponent (k1; k2) is such that0 < k1 + k2 � n, and n denotes the degree upto which we plan to realify. The result of eachreali�cation will be stored in a table (see below).Then, for each monomial like (4{11), we will ob-tain from the table the reali�cations of the threepairs qk11 pk21 , qk32 pk42 and qk53 pk63 (they will be threehomogeneous polynomials of degrees k1+k2, k3+k4and k5 + k6, respectively). Finally, we will form theproduct (4{11), taking advantage of the fact thatthe three homogeneous polynomials depend only ontwo variables, and that these variables are di�erent.We explain this in more detail.
4.5.1. The realifying table. Now we consider the prob-lem of computing and storing expressions like qipj,i 2 N , j 2 N , whereq = x�p�1 yp2 ; p = �p�1x+ yp2 : (4–12)We start with the storing procedure. Fix i and j,and de�ne m = i + j. Then, the substitution of(4{12) into qipj produces an homogeneous polyno-mial of degree m, in the variables x and y. A nat-ural way of naming the di�erent coe�cients of thispolynomial is to use a single integer to denote themonomial we refer to: monomial number 0 will bexmy0, monomial number 1 will be xm�1y1, and soon. Generically, the monomial number k will bexm�kyk, 0 � k � m. We need three indices (i; j; k)



Jorba: Numerical Computation of Normal Forms, Centre Manifolds and First Integrals of Hamiltonian Systems 171to identify one of these coe�cients (i, j refer to themonomial qipj, and k refers to the position of thecoe�cient inside the reali�cation of qipj). Hence,we can look at all these reali�cations as polynomi-als with three variables: the coe�cient number kof the reali�cation of qipj is the coe�cient of themonomial (i; j; k) of a (real but not homogeneous)polynomial of degree 2m. This implies that, to storeall these reali�cations, it is enough to allocate spacefor a three variables power expansion up to degree2n, where n denotes the maximum degree we planto realify. Not all the monomials of this expansionare going to be used, but
1. the amount of memory used by the whole tableis not very big (see examples below),
2. in this way the access to the elements of the ta-ble is very easy (we can use the manipulator mp3explained before) and very fast.It would be possible to only allocate the elementswe really need, but this would decrease the speedof the program and, as has been said, the amountof memory saved is not enough (in our opinion) tojustify the increase in complexity of the program.To simplify and speed up the computation of therealifying table we also initialize a couple of auxil-iar tables, one with the negative powers of p2 andanother one with the binomial coe�cients. Withthese auxiliar tables, it is not di�cult to computethe di�erent powers qipj and to store them in thecorresponding place of the table.The routines that initialize the realifying processhave been stored inside the �le irex.cc. They are:ini real allocates space for the table that will con-tain the reali�cations of the di�erent monomialsqipj. It also computes and stores that table. Thisrutine calls routine imp3 (�le mp3.c) to initial-ize the tables needed to handle power expansionswith three variables.end real frees the space allocated by ini real, in-cluding a call to amp3 to free the space allocatedby imp3.coef computes the coe�cient of xk�jyj in qk or pk.
4.5.2. The main algorithm. Now it is not very di�cultto realify a power series. In order to minimize theamount of RAM used, the series to be reali�ed is�rst written in a (binary) �le. Then, this �le is

read sequentially and each monomial is reali�ed andadded to the (proper place of the) resulting series.So, the only point that needs to be discussed isthe reali�cation of a single monomial. The processis as follows. We use the same notation as in (4{11).Each couple qkji pkj+1i becomes, once reali�ed, an ho-mogeneous polynomial of degree kj + kj+1 in twovariables, xi and yi. The coe�cients of this polyno-mial are stored in the suitable places of the realifyingtable (see Section 4.5.1). Therefore, in order to mul-tiply these three reali�ed polynomials, we will usethree (nested) loops to \run" over the coe�cients ofthem (these coe�cients are directly obtained fromthe realifying table). In this way we will obtain thecoe�cients of the reali�cation of (4{11) as the prod-uct of these three coe�cients with the coe�cent ck.The exponent that corresponds to this �nal productis easily obtained and this allows one to add the co-e�cient to the suitable place of the resulting series.
4.5.3. The final output. Before continuing with the de-scription of the algorithm we explain, up to now,what we have obtained. As before, to simplify thediscussion we will focus on a position-momentumpair, which we denote as q1, p1. We denote the ini-tial change of variables that we want to realify asq01 = q1 +O2(q; p);p01 = p1 +O2(q; p);where the primed variables are the initial ones andthe unprimed variables the �nal ones. Of course,by O2(q; p) we denote the higher-order terms of thechange, which we do not write explicitly. After thereali�cation process we have just described, we ob-tain something likex01 �p�1 y01p2 = x1 �p�1 y1p2 +O2(x; y);�p�1x01 + y01p2 = �p�1x1 + y1p2 +O2(x; y):The next (and �nal) step is to isolate x01 = x01(x; y)and y01 = y01(x; y). For instance, x01 can be iso-lated from the �rst equation by taking real partsand multiplying by p2, and y01 can be obtainedby the �rst equation by taking the imaginary partstimes �p2. A similar process can be applied tothe second equation to obtain the same expressions.



172 Experimental Mathematics, Vol. 8 (1999), No. 2Maybe the most important conclusion we can getfrom this fact is that it is enough to compute onlyone of the expressions for the change of variables:for instance, to obtain the changes of variables forthe normal form of Section 4.1 (a Hamiltonian withthree degrees of freedom) we only need to computethe changes for the three positions. The changes forthe three corresponding momenta are obtained fromthem when realifying (note that we are using thatwe have complexi�ed with respect to all the vari-ables). Of course, we have taken advantage of thisproperty in the software.
4.5.4. A few remarks. In some cases, it is necessary torealify not all the variables, but only some of them.A typical example appears when we have been deal-ing with an expansion of the kind centre � saddle.The saddle variables does not need to be complex-i�ed, since they already appear in \diagonal form"(see Section 4.1.1). Hence, once the computationis �nished, they are still in real form. Of course,the realifying change have to be only applied to thepairs qi, pi that have been complexi�ed. The maindi�erence appears in the change that corresponds tovariables that have not been complexi�ed. Denoteby q1, p1 one of these pairs. After the reali�cation(of the complexi�ed variables), the change for q1, p1looks likex01 = x1 +O2(x; y); y01 = y1 +O2(x; y):We have changed q1, p1 by x1, y1 to denote that thereali�cation has been done. The realifying changeshave been applied to variables qj, pj, j 6= 1 (theyonly a�ect to O2(x; y)). Hence, we have directly thechange of variables (in particular, all the imaginaryparts of the coe�cients of this change must vanish),without need of taking real or imaginary parts. Thebad news are that now we need to compute bothchanges (for x01 and y01), since we cannot derive easilyone from another.
4.6. The Linear Part of the ChangeWe have seen how to produce the nonlinear changefor variables used to achieve the normal form but,to reach the initial coordinates we still need to ap-ply the linear change used at the beginning to putH2 in normal form. This change has been computedin order to diagonalize the second degree terms of

the Hamiltonian, and it has been stored in a �le. Inprinciple, this transformation goes from the \diag-onal" coordinates of H2 to the usual coordiantes ofthe RTBP centred at the equilibrium point. If oneis interested in the inverse change, it is not di�cultto see that the inverse of any symplectic matrix Mcan be obtained as M�1 = �JMTJ , that is verysuitable for numerical purposes.
4.7. Tests of the SoftwareWe have done some checks on the software, to besure that there are no bugs present. The tests wehave done are very similar for the three examplesso we will mainly focus on the tests for the normalform computation.To this end, we have written the program ninf,that produces a numerical integration of the normalform obtained. In fact, since the normal form is in-tegrable, this program computes the gradient of thenormal form for the given actions to obtain the fre-quencies and then it simply tabulates the solution.Then, this table is sent through the changes of vari-ables into the synodical coordinates of the RTBP.Finally, program rtbp tests this table in the follow-ing way: for each point of the table, it integrates(numerically) the point to obtain a prediction forthe following point of the table. Then, the pro-gram writes the di�erences between the two points(the one obtained from the changes of variables andthe one obtained using numerical integration). Ide-ally, if the normal form, the changes of variables andthe numerical integration were all exact (zero error),these di�erences must be zero. Of course, they arenot zero due to the several sources of error.We illustrate this. We have taken the initial con-ditions I1 = I2 = I3 = �0, with initial phases '1 ='2 = '3 = 0, for t = 0 (call u0 this initial condi-tion). We have tabulated the corresponding solu-tion at t = 0:1 (call u1 this value), and we have sentboth points to synodical coordinates, to obtain twopoints v0 and v1. Then, we have computed (numer-ically) the trajectory of the RTBP that starts at v0,till t = 0:1 (call this point v10), with a local errorof the order of the roundo� of the arithmetic. Thedi�erence v1 � v102 is given in Table 2.The parameter �0 is, essentially, the distance fromthe initial condition to the origin. If the software isworking properly, the error v1 � v102 is due to the
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�0 v1 � v1020:00001 2:4828078245222093e�160:00002 5:1198523403369423e�150:00004 1:3192410121093586e�120:00008 3:4023375555581652e�100:00016 8:8211434435268124e�080:00032 2:3101212284736493e�05
TABLE 2. Di�erences between a normal form pre-diction and a numerical integration near L5 in theRTBP. The local error of the numerical integrationis of the order of 10�16 and the normal form (andthe corresponding changes of variables) have beencomputed up to degree 16.truncation of the power series (to degree 16, in thecase corresponding to Table 2). Hence, the errorshould behave like c�n0 , where n is the last order inthe normal form that we have taken into account(see below). Then, one has that the order of theerror can be approximated byn � log(e1=e2)log��(1)0 =�(2)0 � :Applying this to the results in Table 2 we obtainTable 3. The �rst value in this table is not very ac-curate because the estimation of the error is not real-istic for �(1)0 = 0:00001 (it is smaller than 10�16 andthis is not detected since we are working with dou-ble precision arithmetic). The other values are moreaccurate and produce an exponent for �0 very closeto 8. Note that if the order of the normal form in the(q; p) variables is 16, it is 8 in the Poincar�e variables;see (4{7). Moreover, the numerical integrations aredone on the di�erential equations (that involve thederivatives of the Hamiltonian). Thus the error forthis case is not of the order of the neglected terms ofthe Hamiltonian but of the neglected terms of thecorresponding di�erential equations. Hence, as �0\moves" in the space of the Poincar�e coordinates,

�(1)0 �(2)0 n0:00001 0:00002 4:3660:00002 0:00004 8:0090:00004 0:00008 8:0110:00008 0:00016 8:0180:00016 0:00032 8:033
TABLE 3. Estimation of the order of the error.

we expect an estimated exponent of the same orderas the biggest degree present in the normal formexpressed in Poincar�e variables.The same procedure can be applied for the centremanifold computation and for the �rst integrals, toestimate the order of the error. The concrete calcu-lations for these cases are left to the reader.
4.8. Invariant ToriHere we note that, using the tools we have devel-oped, it is very easy to compute invariant tori closeto any of the libration points of the RTBP. For in-stance, let's focus on the neighbourhood of the L5point of the Earth{Moon RTBP.Figure 1 is a two-dimensional torus obtained bytaking, in the normal form, the actions I1 = I2 =0:0001, and I3 = 0. This corresponds to an elliptic(planar) Lyapunov torus obtained from two of the(three) linear oscillations at L5 [Jorba and Villa-nueva 1997a]. Figure 2 corresponds to a two-dimen-sional elliptic torus obtained taking I1 = I3 = 0:0001and I2 = 0. This torus can also be seen as comingfrom the linear oscillations around the periodic Lya-punov family associated to the vertical oscillation atL5 [Jorba and Villanueva 1998]. In both cases, wehave plotted a dot every 0.1 units of time.It is not di�cult to compute Poincar�e sectionsof these trajectories, to see that they are invariantcurves. We left this for the interested reader, as wellas the computation of more invariant tori. Finally,note that it is also possible to ask for a torus withpre�xed frequencies: one has to solve a system ofthree nonlinear equations to �nd the correspondingactions. Of course, this is only possible for suitablefrequencies.
5. EFFICIENCY CONSIDERATIONSWhen one considers the optimality of a given calcu-lation, there are two main things to be taken intoaccount: the algorithm used and its implementa-tion. Here we are not going to discuss the e�ciencyof the algorithm selected (although there are otherpossibilities, for example to use quadratic schemesinstead of linear ones; see [Llave et al. 1986], forinstance), and we are going to focus on their imple-mentation.
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FIGURE 1. Projection on the (x; y) plane (synodical coordinates) of an elliptic two-dimensional invariant torusnear L5. The intrinsic frequencies are !1 = 0:954347344380 and !2 = �0:298324062073. The normal frequencyis !n = 1:00003161731. Ten thousand points are shown.We now make a few remarks on the optimalityof these routines. The implementation we have se-lected here (to use integer functions|sometimescalled \hash functions"|to know the position cor-responding to a given exponent and viceversa) al-lows for very easy implementations, but adds anoverhead to the program (the time taken by these

functions and the memory used by the integer ta-bles). In some cases, it is possible to use speci�corders for the polynomials such that the main oper-ations can be performed directly, without the helpof such functions: for instance, when dealing withpolynomials of one variable, we can store the coe�-cient of the monomial xj into the position number j
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FIGURE 2. Projections on the (x; y) plane (left) and on the (x; z) plane (right) of a two-dimensional invariant torusnear L5. The intrinsic frequencies are !1 = 0:954532905738 and !2 = 1:00000846050. The normal frequency is!n = �0:298356646196. Ten thousand points are shown.



Jorba: Numerical Computation of Normal Forms, Centre Manifolds and First Integrals of Hamiltonian Systems 175of the corresponding array, so all the operations canbe performed trivially (for instance, the product oftwo polynomials is p[i]*q[j]! r[i+j]). This isstill possible in two variables but it becomes moretricky in several variables. Moreover, if the coe�-cients of the polynomials are of sophisticated types(such as trigonometric polynomials), the time takenby the hash functions is unnoticeable compared tothe time taken by the operation involving the coe�-cient. So, in our opinion, the gain obtained by usingtricks of this kind is not big enough to compensatefor the increased complexity of the code.In what follows, the measures of the time neededfor the programs to execute have been taken fromruns done on a Pentium Pro 200 MHz PC run-ning Linux, with the GNU compiler gcc/g++ ver-sion 2.7.2.1. The amount of needed memory hasbeen estimated directly from the size of the expan-sions.
5.1. StorageWe start by considering the e�ciency from the pointof view of the amount of memory used by the pro-grams. Since the memory is allocated and freed dy-namically, we will focus on the \worst moment" ofthe program, that is, when the maximum amount ofmemory is needed.Table 4 displays the number of monomials forsome of the expansions used here. From this table,and knowing the number of series we use in eachprogram, it is not di�cult to have an idea of theorder of the amount of memory needed.
5.1.1. Normal forms. In a normal form computation asthe one performed here, we use the following expan-sions (we denote by n the maximum degree wanted):
1. A power expansion up to degree n of the typemp6s (for the Hamiltonian).
2. An auxiliar power expansion (to be used onlyduring the computation of the power expansionof the Hamiltonian) of the same degree as theHamiltonian.
3. Three polynomials of degree n, of the type mp6s,to be used as a working space during the normalform computations.The expansion in item 2 and the three polynomi-als in item 3 are needed in di�erent places of the

n mp4s mp6s mp6p0 1 1 1 1 0 01 2 3 4 5 2 22 6 9 13 18 8 103 10 19 32 50 24 344 19 38 70 120 56 905 28 66 136 256 116 2066 44 110 246 502 216 4227 60 170 416 918 376 7988 85 255 671 1589 616 14149 110 365 1036 2625 966 238010 146 511 1547 4172 1456 383611 182 693 2240 6412 2128 596412 231 924 3164 9576 3024 898813 280 1204 4368 13944 4200 1318814 344 1548 5916 19860 5712 1890015 408 1956 7872 27732 7632 2653216 489 2445 10317 38049 10032 3656417 570 3015 13332 51381 13002 4956618 670 3685 17017 68398 16632 6619819 770 4455 21472 89870 21032 8723020 891 5346 26818 116688 26312 11354221 1012 6358 33176 149864 32604 14614622 1156 7514 40690 190554 40040 18618623 1300 8814 49504 240058 48776 23496224 1469 10283 59787 299845 58968 29393025 1638 11921 71708 371553 70798 36472826 1834 13755 85463 457016 84448 44917627 2030 15785 101248 558264 100128 54930428 2255 18040 119288 677552 118048 66735229 2480 20520 139808 817360 138448 80580030 2736 23256 163064 980424 161568 96736831 2992 26248 189312 1169736 187680 115504832 3281 29529 218841 1388577 217056 1372104
TABLE 4. Number of monomials for expansions ofthe kind mp4s, mp6s and mp6p. Here n denotes thedegree. In each of the remaining three sections, the�rst column shows the number �(n) of monomialsin a polynomial of degree n, and the second showsthe numberPnj=0�(j) of monomials in a expansionup to degree n.

program, so we only need to take the maximum ofthem.In fact we need a little bit of memory (like the in-ner tables of the manipulators or the three-variablesexpansion for the normal form), but the series men-tioned above are the most important ones.As for the amount of hard disk memory used, weneed:
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1. A binary �le to store the generating function.This is about the size of a power expansion ofdegree n, of the type mp6s.
2. A few extra ASCII �les (to store the normal form,the control parameters, etc.) that, as they arevery small, we skip them.Of course, one can modify the program in order towrite more information (you can ask for intermedi-ate series) of less (you can skip the writing of thegenerating function if you are not interested in thechange of variables). In such a case, you should re-estimate the amount of memory needed.Table 5 summarizes our estimates for the amountof memory needed. We have assumed that each co-e�cient is a double precision complex number, thatis, each one needs 16 bytes to be stored.degree time nf time cm RAM HD8 0.40 0.46 0.058 0.02512 8.01 9.51 0.306 0.15316 82.25 95.77 1.218 0.60924 3002.14 3505.71 9.595 4.79832 48422.61 55769.46 44.435 22.217

TABLE 5. Time (in seconds) and memory (in Mbytes)needed for the normal form (nf) and centre manifold(cm) computation. The latter computation requiresas temporary disk storage about the same space asthe results. Thus the actual amount of free diskspace needed to run the program is about twice theHD column.
5.1.2. Centre manifolds. The only di�erence betweena normal form and a centre manifold computation(concerning the amount of memory used) appearswhen realifying the Hamiltonian restricted to thecentre manifold. From the program, it is seen thatthis only a�ects to the amount of hard disk needed.In Table 5 we have summarized those values. As inthe normal form case, we have skipped the size ofthe ASCII �le with the �nal Hamiltonian, since it isnot very big. We note that this �le is written aftererasing the temporal �le, so if it was room for this�le, there is enough room for the results. However,if one wants precise estimations of the �nal amountof used disk, one must take into account the size ofthat ASCII �le. The concrete runs displayed therehave been done for the L1 case of the Earth{Sunsystem.

5.1.3. First integrals. The calculation of a �rst integralis a little bit simpler than a normal form one. Infact, the program needs RAM space for the Hamil-tonian and the �rst integral, and disk space for theresults as well as a temporary (binary) �le used torealify the �rst integral. In the actual version ofthe program, the output �le is an ASCII �le, to beable to look directly at the results using an stan-dard text editor (like vi or emacs). In Table 6 wehave included the time and memory used for severalruns of the program. Note that we have been usinga lower degree for the calculations. This is becausethe huge amount of disk space needed to store theoutput in ASCII format. If one is interested in run-ning to higher orders it should be better to changethe program in order to store the �rst integral ina binary �le (this is, in fact, very easy using theroutines provided here). Then, the amount of diskspace is similar to the one used by the centre mani-fold program (see Table 5).degree time RAM HD tmp. HD �nal8 0.38 0.05 0.02 0.1112 5.36 0.30 0.15 0.6716 49.98 1.16 0.58 2.6620 337.09 3.56 1.78 8.1724 1800.57 9.15 4.58 20.99
TABLE 6. Time (in seconds) and memory (in Mbytes)needed for the calculation of a �rst integral. The col-umn \HD tmp." only refers to the temporary (bi-nary) �les, while the column \HD �nal" only refersto the �nal (ASCII) �le.

5.1.4. Changes of variables. We now discuss the cal-culations needed to obtain the expansions for thechanges of variables corresponding to the normalform case. We will only focus on the direct changes,since the inverse ones need approximately the sameamount of memory and time.As before, n will denote the degree of the expan-sion of the transformation. During the computationof the direct change, we use one expansion up todegree n and three homogeneous polynomials of de-gree n. In fact, we need polynomials of the typemp6s for the transformation corresponding to thefour �rst variables, and of the type mp6p for the lasttwo. Since the polynomials of the type mp6s containmore monomials than the corresponding ones of the



Jorba: Numerical Computation of Normal Forms, Centre Manifolds and First Integrals of Hamiltonian Systems 177type mp6p, we have done the memory estimationsfor the type mp6s. They are summarized in Table 7.A special case is the computation of the changes ofvariables corresponding to the reduction to the cen-tre manifold. In this case, we obtain six series, eachone depending on four variables (see Section 4.4),so the �nal amount of disk space is smaller than inthe normal form case. To estimate the maximumamount of disk space needed during the execution,we note that this occurs during the reali�cation ofthe last couple of variables. At this moment, wehave four real series (of the type mp4s) written inthe disk, and we write a temporal �le with a com-plex series (of the type mp6p) corresponding to thelast couple of variables. From these observations, itis not di�cult to derive the �gures shown in Table 7.degree time cvnf time cvcm RAM HD cvnf HD cvcm8 1.11 1.32 0.06 0.07 0.0312 24.24 29.36 0.29 0.43 0.1716 272.46 330.22 1.05 1.72 0.6320 1942.21 2340.47 3.01 5.30 1.9024 10395.05 12644.89 7.31 13.64 4.80
TABLE 7. Time (in seconds) and memory (in Mbytes)needed to compute the changes of variables for thenormal form (cvnf) and the centre manifold (cvcm).

5.2. SpeedFinally we discuss the optimality, according to thespeed, of these routines. To start the discussion,we focus on the routine that multiplies homoge-neous polynomials (see Section 3): for each coupleof monomials that we are multiplying we need toknow the exponents of them and the position tostore the result. Since every product is an unavoid-able operation (we recall that we are discussing theoptimality of the implementation, not of the algo-rithm), all the overhead of this implementation isdue to the routines that look for exponents and po-sitions. In fact, if these routines use zero time, theproduct would be optimal, since all the time spendby the product would correspond to the unavoidableoperations. This is also true for the other routines(Poisson brackets, power expansions, etc.). For thisreason we say that the optimality of the package isbasically given by the optimality of the routines ofthe �les mp6s.c, mp6p.c, etc. In order to quantify

this, we have done a run of the program nf using thepro�ling facilities of the compiler. The results areshown in Table 8. We must eliminate from this tablethe time used by routine mcount, which was intro-duced by the pro�ler itself. Then the time taken byroutines exll6s and llex6s is a little bit less than
% time time/call (ms)time (s) calls self total name40.15 51.96 269 193.16 347.79 papu6s26.48 34.27 mcount26.46 34.24 84136095 0.00 0.00 exll6s6.02 7.79 55490539 0.00 0.00 llex6s0.58 0.75 14 53.57 6737.27 traham0.24 0.31 66 4.70 11.02 pph6s0.04 0.05 14 3.57 3.95 cage0.01 0.01 14 0.71 1.10 put00.01 0.01 1 10.00 747.48 exp_l50.01 0.01 1 10.00 54.09 reste0.01 0.01 1 10.00 15.34 rnf6s0.00 0.00 76062 0.00 0.00 kill_nf0.00 0.00 38044 0.00 0.00 check_rlf0.00 0.00 38032 0.00 0.00 prxk6s0.00 0.00 1474 0.00 0.00 ntph6s0.00 0.00 164 0.00 0.00 exll30.00 0.00 164 0.00 0.00 llex30.00 0.00 156 0.00 0.00 prxk30.00 0.00 26 0.00 0.00 ntph30.00 0.00 14 0.00 0.00 wpb6s0.00 0.00 5 0.00 0.00 uneix0.00 0.00 2 0.00 341.69 exrec0.00 0.00 1 0.00 0.00 amp30.00 0.00 1 0.00 0.00 amp6s0.00 0.00 1 0.00 0.00 ccvl50.00 0.00 1 0.00 0.00 imp30.00 0.00 1 0.00 0.00 imp6s0.00 0.00 1 0.00 95140.00 main0.00 0.00 1 0.00 94377.18 nf6s0.00 0.00 1 0.00 0.00 wctl50.00 0.00 1 0.00 0.00 wcvl0.00 0.00 1 0.00 0.00 wea3

TABLE 8. Output of the pro�ler for a run (up todegree 16) of the program nf. The �rst two columnsshow the time spent by the program in this function;the next column contains the number of times thefunction is called. The next two columns show theaverage time per call (\self" refers to the functionitself and \total" is based on a recursive total of thetime taken by the function and everything it calls.)The routine mcount does not belong to our programbut to the pro�ler.



178 Experimental Mathematics, Vol. 8 (1999), No. 2half the total time taken by the program. This im-plies that if we were able to optimize these routinesin order to reduce the time they take to almost zero,the factor in the total gain in speed would be close to2 (but no better!). Moreover, Table 8 gives preciseinformation about the routines one must optimizeto make the program run faster.Tables 5, 6 and 7 contain the time for several runsof the software. We stress that those are approxi-mate values: time has been taken from a single runof the program, and the amount of RAM memoryneeded has been estimated form the size of the sev-eral expansions used (should increase these �guresa little to obtain the real amount of memory used).
6. ERROR CONTROLA very important point is to know the numericalerrors introduced in the coe�cients when this hugeamount of computations is performed. A �rst, heu-ristic, indication is given by the size of the imaginaryparts of the real normal forms, centre manifolds or�rst integrals that are not zero due to the roundo�errors. It is very natural to take these values as zerobecause they must vanish in an exact computation.The testing methods discussed in Section 4.7 pro-vide a rough idea of the global amount of error wehave accumulated in the computations. This shouldbe enough if we are only interested in numerical re-sults, since this is typically the kind of output ob-tained from classical numerical methods (think ofthe solution of an ode, pde or simply the solution ofa linear system). In fact, we are in a better positioncompared with other numerical procedures, since wehave a good checking procedure.However, if one is interested in these methods tobe used in a computer assisted proof, we need amuch better mechanism to control the error. Thisis the reason to introduce the interval arithmetic. Inwhat follows, we will focus on a normal form com-putation, although the same ideas can be extendedto the other examples considered here.
6.1. Interval ArithmeticIn order to carry exact bounds on the error, assumethat, instead of a oating point number, we have aninterval such that it contains the number. To addtwo intervals, we simply add the lower bounds of the

interval using rounding toward �1, and we add theupper bounds using rounding toward +1. In thisway we ensure that the result of the addition is con-tained in the �nal interval. The same ideas can beused to easily derive the operations of subtraction,multiplication and division.The next step is to code e�ciently those routines.Fortunately, most of the actual processors allow tothe user to alter the rounding mode, to set a round-ing toward �1 or to the nearest (this is the de-fault). To do this, many compilers and/or operat-ing systems have suitable functions in their libraries.Here we have used the corresponding routines ofthe Linux operating system (with the compiler gccfrom Gnu), running on an Intel processor. The maindisadvantages of this are that the memory require-ments are doubled and the execution time is muchbigger. This last inconvenient is due to the archi-tecture of the processors, since when the roundingmode of the processor is changed, the pipeline of theprocessor is re-started with the corresponding loss ofperformance.Since the code is in C++, it is very easy to usethe overloading the arithmetic operators to replacestandard complex arithmetic by our interval arith-metic (you can also use [Schelter 1991] if you wantto avoid using C++). Then, it is not di�cult to ob-tain the normal form but, instead of the coe�cients,we will obtain intervals containing the exact values.This is what allows one to derive computer assistedproofs. See [Celletti and Chierchia 1988] and [Llaveand Rana 1990] to see concrete applications of theseideas.
6.2. An Example with Interval ArithmeticHere we have included the computation of the nor-mal form around L5 for the RTBP using intervalartihmetic. The idea is to give a feeling about howthese computations are.Table 9 shows the normal form, using double pre-cision interval arithmetic, around the L5 point of theRTBP, for the mass parameter corresponding to theEarth{Moon system. We have skipped the imagi-nary parts because they can be assumed to be zero(this is one advantage of interval computations). Itis interesting to compare these results with the onespresented in Table 1.



Jorba: Numerical Computation of Normal Forms, Centre Manifolds and First Integrals of Hamiltonian Systems 179lower bound upper bound1 0 0 9:5450087346978552e�01 9:5450087346991741e�010 1 0 �2:9820811951634596e�01 �2:9820811951573489e�010 0 1 1:0000000000000000e+00 1:0000000000000000e+002 0 0 1:1568661303889360e�01 1:1568661401345537e�011 1 0 �1:7127952451731403e+00 �1:7127952303486182e+000 2 0 3:3855424323176919e�01 3:3855425662676453e�011 0 1 8:9130919836368838e�02 8:9130920112820977e�020 1 1 2:2531870640182916e�01 2:2531870757604811e�010 0 2 �2:2354591590257877e�03 �2:2354591074729147e�033 0 0 �2:9479121860441637e�01 �2:9478447589701773e�012 1 0 8:1656201621290165e+00 8:1657691558011720e+001 2 0 �5:4586913901624575e+02 �5:4586860598896601e+020 3 0 �5:1021371160130911e+01 �5:1021185629532283e+012 0 1 �4:3799836956028315e�01 �4:3799552187429924e�011 1 1 1:4116969490546651e+01 1:4116998940124972e+010 2 1 2:0186927381142823e+00 2:0187190572228246e+001 0 2 �5:5905224456048508e�02 �5:5904854484518651e�020 1 2 �1:7898271680742539e�01 �1:7898147963031263e�010 0 3 �5:1334316020434586e�05 �5:1317165340935330e�054 0 0 1:2677680341002997e+00 1:2873345241823699e+003 1 0 �3:5434024811722338e+01 �3:4703682770952582e+012 2 0 �5:4877274309542030e+04 �5:4872743283411488e+041 3 0 3:2220252371445298e+04 3:2226686164319515e+040 4 0 3:5177942440398037e+03 3:5192072384618223e+033 0 1 2:1707021092443028e+00 2:1811671985342400e+002 1 1 1:9986363951466046e+01 2:0216307091992348e+011 2 1 1:3647290105217136e+04 1:3647973048501415e+040 3 1 1:4506020027436316e+03 1:4508753202967346e+032 0 2 2:1927585054381780e+00 2:1948837131021719e+001 1 2 �4:9551211330863225e+01 �4:9529208559599283e+010 2 2 �1:0188391081203008e+01 �1:0169093839605921e+011 0 3 3:5386579632358917e�02 3:5564130055718124e�020 1 3 7:0933774363425073e�02 7:1488715816371950e�020 0 4 5:1925348264703075e�04 5:2452355219756441e�04
TABLE 9. Coe�cients of the normal form obtainedfor the Earth{Moon case using interval arithmetic.Only the real parts are presented.Note the big size of the intervals, especially forthe highest degrees displayed. We have not opti-mized the algorithm to minimize the growing of theintervals, so a di�erent implementation might leadto narrower intervals. Of course, the size of the in-tervals does not prove that the coe�cients in Ta-ble 1 contain big numerical errors, but it suggeststhat we should check this more carefully. In orderto do that, we can use higher-precision arithmetic.In this case, we have taken the standard quadru-ple precision arithmetic that it is contained in thelibraries of many compilers (this concrete compu-tation has been done on a Sun workstation). Theresults are displayed in Table 10. It is interest-ing to compare this last table with Table 1: if wetake the coe�cients in Table 10 as exact, we note

real part imaginary part1 0 0 0:9545008734698507e+00 0:0000000000000000e+000 1 0 �0:2982081195160388e+00 0:0000000000000000e+000 0 1 0:1000000000000000e+01 0:0000000000000000e+002 0 0 0:1156866135262217e+00 �0:1927100002836750e�321 1 0 �0:1712795237759768e+01 �0:8974646880952045e�320 2 0 0:3385542499303071e+00 �0:4812484744069060e�321 0 1 0:8913091997461692e�01 �0:4814824860968090e�330 1 1 0:2253187069890425e+00 �0:1155557966632342e�320 0 2 �0:2235459133244455e�02 0:0000000000000000e+003 0 0 �0:2947878472529007e+00 �0:1521362462732897e�292 1 0 0:8165694658984183e+01 0:1185016987263866e�281 2 0 �0:5458688725020474e+03 �0:1174332188770398e�280 3 0 �0:5102127839458834e+02 �0:1863024703269571e�282 0 1 �0:4379969457189379e+00 �0:1484998366081301e�301 1 1 0:1411698421534677e+02 0:3358157455523530e�290 2 1 0:2018705897693666e+01 �0:3811527650397076e�301 0 2 �0:5590503947042638e�01 0:1150165425481089e�300 1 2 �0:1789820982175625e+00 �0:5503192785483820e�310 0 3 �0:5132574067108261e�04 �0:1954016422742883e�324 0 0 0:1277551279966923e+01 0:6516229084136752e�273 1 0 �0:3506885376119049e+02 0:1930958293998747e�252 2 0 �0:5487500879622420e+05 0:1108578486500471e�241 3 0 0:3222346926821930e+05 0:1264834400557989e�240 4 0 0:3518500741321633e+04 �0:2977673781142404e�253 0 1 0:2175934654360213e+01 0:1498922726564656e�272 1 1 0:2010133553242287e+02 0:4112326735122740e�261 2 1 0:1364763157688629e+05 0:4301991684680189e�260 3 1 0:1450738661531158e+04 0:6827018990166253e�272 0 2 0:2193821109377304e+01 0:2410685221214210e�281 1 2 �0:4954020994411146e+02 0:1635601948530436e�270 2 2 �0:1017874245948335e+02 0:1985868172512715e�271 0 3 0:3547535485371232e�01 �0:4504667333242595e�300 1 3 0:7121124512960337e�01 0:9633349924466193e�290 0 4 0:5218885184995916e�03 0:1527174289047186e�30
TABLE 10. Coe�cients of the normal form obtainedfor the Earth{Moon case using quadruple precision.The imaginary parts (last column) should be 0.that the error in the ones of Table 1 is of the orderof the imaginary part. This suggests an heuristiccriterion to estimate the accuracy of this computa-tion.Now, it is clear the ampli�cation of errors that wehave in this process. There are two (standard) waysof overcoming this:

1. Interval arithmetic. Although the intervals growvery fast, they are still providing exact boundsfor the coe�cients, that can be useful in orderto derive computer assisted proofs (they are go-ing to be a much sharper bound than any otherestimation obtained by analytical methods).
2. Multiple precision arithmetic. This is the \bruteforce" solution, but it is valid in several cases.



180 Experimental Mathematics, Vol. 8 (1999), No. 2The advantages are obvious, but one should notethat, when dealing with real-life problems, it isnot always appropriate: for instance, the massparameter corresponding to the Earth{Moon caseis only known up to 10 or 11 digits, so there isno gain in using multiple precision.Of course, in academic problems it is always possibleto use a combination of both, to derive very accuratecoe�cients and/or very sharp estimates for them.Concerning the normal form around L5 of theRTBP, we add that the ampli�cation of errors isbigger when the mass ratio � is smaller.Finally, note that the routines for interval arith-metic and the extension for quadruple precision arenot included in the software.
6.3. On Computer Assisted ProofsThe methods explained here allow, among others,the computation of manifolds (such as tori, �rst in-tegrals, etc.) that are nearly invariant for the dy-namics of the system. We will refer to these mani-folds as approximately invariant objects. A naturalquestion is whether an approximately invariant ob-ject is an approximation of a true invariant object ornot. From a generic point of view, we already knowthat the answer is going to be positive in some cases(such as nonresonant invariant tori) and negative insome others (such as �rst integrals of nonintegrablesystems).To simplify the discussion, we focus on the proofsof existence of maximal-dimensional invariant tori.The standard results show that, under generic con-ditions of nondegeneracy and nonresonance, invari-ant tori are not destroyed by small perturbations butonly slightly deformed; see Appendix A.5.2. (In fact,the essential condition is nondegeneracy because itallows one to obtain nonresonant conditions by sim-ply changing a little bit the value of the actions.)We assume that we have rewritten (numerically) theoriginal Hamiltonian as an integrable part (the nor-mal form) plus a small perturbation (the remain-der). To know whether a nonresonant torus of thenormal form persists under the e�ect of the remain-der we need a quantitative KAM theorem (givingconcrete bounds on the size of the allowed pertur-bation) plus rigorous estimates on the size of theperturbation (remainder), in order to know if we

are in the domain of applicability of the theorem.The estimates on the size of the perturbation foreach concrete application are usually obtained bymeans of interval arithmetic; see [Llave and Rana1990; Celletti and Chierchia 1988].It is important to note that the only rigorous es-timate needed is the size of the remainder. Thatis, it is possible to compute an approximately in-variant torus by using standard oating point arith-metic, and then to estimate \how invariant" (i.e.,the size of the remainder) is this torus by using inter-val arithmetic. This is usually much more e�cientthan to perform all the calculations using intervals;see [Llave and Rana 1990].
7. EXTENSIONSIn this package we have only considered the caseof autonomous Hamiltonians with three degrees offreedom. It is not di�cult to extend the ideas andthe routines presented here to more degrees of free-dom. For instance, to work with a four degrees offreedom Hamiltonian system (without any symme-try) one only needs to write the basic routines ofthe corresponding �le mp8.c, and to introduce mi-nor modi�cations in the other routines.If one is interested in the computation of normalforms around another objects, in [Jorba and Villa-nueva 1998] it is explained (from a numerical pointof view) the computation of the normal form arounda periodic orbit of the spatial RTBP. The routinesused there are based in the methodology explainedhere.The case in which the Hamiltonian depends ontime can also be considered. For instance, considerthe Hamiltonian of the RTBP with a perturbationthat depends periodically on time. In this case, onecan still use the routines here but one has to changethe basic arithmetic: now, the coe�cients of themonomials are going to be Fourier series. We canstore Fourier series in complex form as polynomialsof one variable, using an array to put the coe�cientsand using the place inside the array to know the cor-responding exponent (in this case one should say fre-quency instead of exponent). Since the relation be-tween positions and frequencies is very easy one doesnot need to write any special function for this. (Thecase is altered drastically when one has to deal with



Jorba: Numerical Computation of Normal Forms, Centre Manifolds and First Integrals of Hamiltonian Systems 181quasiperiodic time-dependent functions, because themapping between postions and frequencies is morecomplex. The main problem comes from the factthat these series are usually a little bit \sparse" andit is very convenient to store only the meaningfulcoe�cients, to save memory. This is used and dis-cussed in [G�omez et al. 1991c; 1993a].)Then, one needs to write the arithmetic routines(sums and products) for these Fourier series and touse them instead of the complex arithmetic for thecoe�cients. This can be easily done if one uses a Cextension allowing for overload of arithmetic opera-tors, such as C++ or SCC [Schelter 1991]. Finally,you have to modify the input/output routines ac-cordingly. This is what we have done in [Jorba andSim�o 1994; Sim�o et al. 1995] for the case of a peri-odically perturbed Hamiltonian system.
APPENDIX A. BASIC HAMILTONIAN MECHANICSIn this appendix we give the basic de�nitions andproperties related to Hamiltonian systems. The in-formation presented here is biased towards the itemsneeded in this paper. For a more complete and rig-orous presentation see [Arnol'd 1978] or [Meyer andHall 1992], for instance, or [Abraham and Marsden1978] for a more formal approach.To simplify the discussion, from now on we willassume (without explicit mention) that all the func-tions that will appear here are analytic.
A.1. Basic DefinitionsA Hamiltonian system is a (continuous) dynamicalsystem whose ow satis�es an ordinary di�erentialequation of the type

_q = @H@p ; _p = �@H@q : (A–1)

The variable p 2 R l is called the momentum andq 2 R l is called the position. The function H �H(p; q; t) is called the Hamiltonian of the system(A{1), and equations (A{1) are known as the Hamil-ton equations. Moreover, l is known as the numberof degrees of freedom of the Hamiltonian H.De�ne J = � 0 I�I 0� ;

where I is the identity matrix l � l. Then we canwrite equations (A{1) as_z = JrH(z); z = (q; p):Since J satis�es JT = �J , it de�nes a symplec-tic form (that is, a nondegenerate bilinear skew-symmetric form) !0 on R 2l:!0(u; v) = uTJv; for u; v 2 R 2l:A matrix M is said to be symplectic if it satis�esMTJM = J:A function f : R l � R l ! R , f : (p; q) 7! f(p; q), issaid to be a �rst integral of the Hamiltonian H if itssurface levels are invariant by the ow (A{1), thisis, if f takes a constant value on each orbit of thesystem. It is immediate to check that the functionH is always a �rst integral of the Hamiltonian H.The Poisson bracket of two functions f(p; q) andg(p; q) is de�ned asff; gg = rfTJrg = @f@q @g@p � @f@p @g@q :It is not di�cult to show that, if f is a �rst integral ofthe Hamiltonian H, then it must satisfy fH; fg = 0.Two functions f(p; q) and g(p; q) are said to be ininvolution if their Poisson bracket is zero:ff; gg = 0:The functions ffjg1�j�n are said to be independenton some open domain D if the vectors frfjg1�j�n,de�ned on the domain D, are linearly independenton each point of the domain.In the next sections we will use the following prop-erty of the Poisson bracket: if Pr and Qs are homo-geneous polynomials of degree r and s respectively,then fPr; Qsg is an homogeneous plynomial of de-gree r + s� 2.In what follows, we will assume that all the Hamil-tonians that will appear here are autonomous (theydo not depend on time) and with l degrees of free-dom.
A.2. Basic PropertiesWe assume that a Hamiltonian system H has l �rstindependent integrals, ffjg1�j�l, that are in involu-tion. We de�ne M0 asM0 = f(p; q) : fj(p; q) = f (0)j for j = 1; : : : ; lg:



182 Experimental Mathematics, Vol. 8 (1999), No. 2The well-known Liouville{Arnol'd theorem [Arnol'd1978; Arnol'd et al. 1988] says that
1. the manifold M0 is invariant by the ow, and
2. if M0 is a compact connected manifold, it is dif-feomorphic to the l-dimensional torusT l = f('1; : : : ; 'l)mod 2�g:In this latter case it is possible to introduce, bymeans of a change of variables (p; q) = F (I; ') (I 2R l is the new momentum and ' 2 T l is the newposition) the so-called action-angle variables (I arethe actions and ' are the angles). In these vari-ables the Hamiltonian does not depend on the an-gles, H = H(I), so the equations of motion are ofthe form _I = 0; _' = @H@I � !(I):These equations can be easily integrated:I(t) = I0; '(t) = !(I0)t+ '0:If the values !(I0) � !0 are linearly independentover the rationals, each solution is a dense quasiperi-odic trajectory on a torus of dimension l. It is verycommon to use the frequency vector to identify aconcrete torus of the system. If the mapI 7! @H@I (I) � !(I)is a di�eomorphism (between suitable domains), itis also possible to identify a torus by the value ofthe action variable.If hk; !0i = 0 for some k 2 Z l, then the orbitson this torus are not dense: if there are li inde-pendent frequencies, the torus I = I0 contains a(l � li)-parametric family of li-dimensional tori, be-ing each one densely �lled by any trajectory start-ing on it. These tori of dimension li are known aslower-dimensional tori, while the tori of dimension lare called maximal-dimensional ones.
A.3. Canonical TransformationsWe now consider the e�ect that the changes of vari-ables have on Hamiltonian systems. Let H(q; p) bea Hamiltonian function, and consider a change ofvariables (q; p) = 	(x; y). The Hamilton equationsobtained from the Hamiltonian H �	 can be di�er-ent from the equations obtained applying the trans-formation 	 to the Hamilton equations related to

H. When these di�erential equations coincide, it issaid that the transformation 	 preserves the Hamil-tonian form.A change of variables is called canonical when itpreserves the Hamiltonian form (for any Hamilto-nian function). It is not hard to show that a trans-formation is canonical if and only if the di�erentialof the change (on any point) is a symplectic matrix.Canonical transformations are very useful bothfrom the theoretical and the practical points of view,since they allow to work on a single function (theHamiltonian) instead of a system of 2l di�erentialequations.To produce canonical changes of variables is notan easy problem, since it is very di�cult to imposethat the di�erential be a symplectic matrix. For-tunately, there exists several techniques to producesuch transformations. The one that we will use hereis based on the following properties of the Hamilto-nian ows:
1. Let �t(x; y) be the time t ow of a Hamiltoniansystem. Then, (q; p) = �t(x; y) is a canonicaltransformation.
2. Let G(q; p) a Hamiltonian system with l degreesof freedom, and let (q0(t); p0(t)) be a solution ofG. Then,ddtf(q0(t); p0(t)) = ff;Gg(q0(t); p0(t)); (A–2)for any smooth function f .It is not di�cult to see that to transform a Hamilto-nianH by means of the time 1 ow of a HamiltonianG, we can apply the formulaĤ � H + fH;Gg+ 12!ffH;Gg; Gg+ 13!fffH;Gg; Gg; Gg+ � � � ; (A–3)where Ĥ denotes the transformed Hamiltonian. Thisformula is deduced applying the Taylor formula forthe transformation and using (A{2) for the deriva-tives involved. The Hamiltonian G is usually calledthe generating function of the change of variables.Formula (A{3) is very suitable for e�ective com-putations, since it can be easily implemented ona computer. All the operations involved are verysimple if we are working with some kind of expan-sion, such as power expansions or Fourier expan-sions. One can argue that the problem for this kind



Jorba: Numerical Computation of Normal Forms, Centre Manifolds and First Integrals of Hamiltonian Systems 183of transformation (for a practical point of view) isthat it is de�ned by an in�nite series. This is not aproblem since we usually work with a �nite trunca-tion of these series. This will produce a high-orderapproximation to the results wanted that, in manycases, are good enough for pratical purposes. Onthe other hand, it is possible to derive rigorous esti-mates on the size of this remainder so one can obtainbounds on the error of the results obtained with thetruncated series (see [Sim�o 1989], [Jorba and Sim�o1994] or [Jorba and Villanueva 1998] for numericalexamples of this).
A.4. Normal FormsWe are going to restrict ourselves to the normalform around a �xed point of a Hamiltonian system.For normal forms around more complex objects (likeperiodic orbits or invariant tori), see [Bruno 1989;Jorba and Villanueva 1997a; 1997b].Let H be a real analytic Hamiltonian of l degreesof freedom having an elliptic equilibrium point that,without loss of generality, we can assume that it islocated at the origin. The case in which the equi-librium is of the type \some centres" times \somesaddles" will be discussed later.We start by expanding H in power series aroundthe origin,
H(q; p) = H2(q; p)+H3(q; p)+H4(q; p)+ � � � ; (A–4)

where Hj(q; p) is an homogeneous polynomial of de-gree j in the variables (q; p). Our purpose is to per-form (canonical) transformations in order to sim-plify as much as possible this expansion. Ideally,one would like to remove completely all the Hj withj � 3 but we will see that this is, generically, impos-sible. What we will show here is that, under somehypotheses, it is possible to remove the necessaryterms to produce integrable approximations to thedynamics.In order to simplify the subsequent steps, it isvery convenient to simplify H2(q; p). Let A be thelinearization of the Hamiltonian ow of H aroundthe origin (i.e., A = JrH2(0; 0)). Since A is an

elliptic matrix, we can reduce it to Â = C�1AC,being C a real matrix and Â of the form
Â = 0@ Â1 . . . Âl

1A ;
where the elements outside the Âj are zero andÂj = � 0 !j�!j 0 � ;with !j 2 R for j = 1; : : : ; l. It is not di�cult tocheck that this change can be selected canonical. Ifwe call (x; y) to the new variables (x is the positionand y the momentum), we want to note that theorder (\permutation") of these variables to achievethis form for Â is (x1; y1; x2; y2; : : : ; xl; yl). In thesecoordinates, H2 takes the form

Ĥ2(x; y) = lXj=1 !j2 �x2j + y2j � : (A–5)

In order to simplify the computations in the normalform process (basically, the computations of gen-erating functions), we will perform the (linear andsymplectic) transformation
xj = qj +p�1 pjp2 ; yj = p�1 qj + pjp2 ; (A–6)where we call (again) (q; p) to the new variables. Inthese variables, H2 takes the formH2(q; p) = lXj=1 p�1!jqjpj:In what follows, we will denote ! = (!1; : : : ; !l), andwe will assume that the values !j , 1 � j � l, arelinearly independent over the rationals.Assume that the initial expansion (A{4) has beenrewritten in these variables, and we want to apply asequence of canonical transformations (based on thescheme (A{3)). We start by trying to remove H3,by means of a generating function G3 that is also ahomogeneous polynomial of degree 3. From (A{3)it is immediate to see that the monomials of degree3 of the transformed Hamiltonian Ĥ obtained usinga generating function G3 are given byĤ3 = H3 + fH2; G3g:



184 Experimental Mathematics, Vol. 8 (1999), No. 2We try to select a G3 such that Ĥ3 is zero. To thisend, we introduce some notation: if z = (z1; : : : ; zn)and k = (k1; : : : ; kn) 2 N n, we de�nezk = zk11 � � � zknn ; with jkj = k1 + � � �+ kn:Then, we write H3 and G3 asH3(q; p) = Xjkqj+jkpj=3hkq;kpqkqpkp ;G3(q; p) = Xjkqj+jkpj=3 gkq;kpqkqpkp :The next step is to solve the equation Ĥ3 = 0. Notethat LH2( � ) = fH2; � g is a linear operator in diago-nal form, becauseLH2(qkqpkp) = fH2; qkqpkpg= p�1 hkp � kq; !i qkqpkp :This diagonal form is due to the complex coordi-nates introduced in (A{6). Now it is very easy to�nd a G3 such that fH2; G3g = �H3:G3(q; p) = Xjkqj+jkpj=3 �hkq;kpp�1 hkp � kq; !iqkqpkp :Of course, we need that the denominators hk; !i donot vanish for any k 2 Z l nf0g. Since jkqj+ jkpj = 3,this condition is automatically satis�ed if the com-ponents of the frequency vector ! = (!1; : : : ; !l) arelinearly independent over the rationals.We rename the transformed Hamiltonian as H,that now takes the formH(q; p) = H2(q; p) +H4(q; p) +H5(q; p) + � � � :The next step is to look for a generating transfor-mation G4 (a homogeneous polynomial of degree 4),to remove the monomials of degree 4 from H. Thisis not possible in general, since LH2 has some zeroeigenvalues:LH2(qkpk) = fH2; qkpkg = 0:Note that this never happens for monomials of odddegree. The monomials of the type qkpk are usu-ally called resonant monomials or unavoidable res-onances. Hence, when we try to solve the equationLH2(G4) = �H4 we only can solve for the monomi-als of H4 of the form qkqpkp , with kq 6= kp:G4(q; p) = Xjkqj+jkpj=4kq 6=kp �hkq;kpp�1 hkp � kq; !iqkqpkp :

With this change, H takes the form (we call againH to the transformed Hamiltonian)H(q; p) = H2(q; p)+ �H4(q; p)+H5(q; p)+ � � � ; (A–7)where �H4 = Xjkj=2 �hkqkpk:Fortunately, the monomials present in �H4 do not ob-struct integrability: let's skip the terms in (A{7) oforder bigger than 4 (this is what we call the normalform of the initial Hamiltonian (A{4) up to degree4). Apply the canonical transformationxj = I1=2j exp(p�1'j);yj = �p�1 I1=2j exp(�p�1'j) ; (A–8)where j = 1; : : : ; l, so that the truncated Hamilto-nian takes the formH = H(I) = h!; Ii+H2(I);withH2(I) = Xjkj=2 �hkIk and I = (I1; : : : ; Il):This is now an integrable Hamiltonian, that givesan approximate description of the dynamics aroundthe equilibrium point. The equations of motion are_I = 0; _' = @H(I)@I = �!(I):The solutions are I = I0 (which corresponds toinvariant tori) and ' = �!(I0)t + '0, which is aquasiperiodic ow on the torus.Of course, the process of reduction to normal formcan be done up to any �nite order. Omitting theremainder and using (A{8) we obtain a Hamiltonianlike H = H(I) = h!; Ii+ NXn=2Hn(I):
A.4.1. On the convergence. Generically, normal formreduction is a divergent process. The divergence ismainly due to the e�ect of the divisors hk; !i thatappear in the generating functions (in fact, it is pos-sible to have divergence even in the absence of smalldivisors; see [Jorba and Llave � 1999]). In order tocontrol the size of these denominators, it is usual toask for a Diophantine condition such as��hk; !i�� > cjkj ; (A–9)



Jorba: Numerical Computation of Normal Forms, Centre Manifolds and First Integrals of Hamiltonian Systems 185with k 2 Z n f0g and  > l � 1. This allows oneto derive estimates on the size of the remainder ob-tained when we stop the normal form to some orderN . The set of ! such that condition (A{9) is notsatis�ed has Lebesgue measure O(c).In fact, one may look at a normal form as a powerexpansion of a nonanalytic C1 function at the ori-gin. The power series is divergent but, if we stopthe expansion to some order N , the remainder be-haves like O(RN+1), where R denotes the distanceto the origin. This last property is what makes theseexpansions useful.
A.5. StabilityHere we will explain some of the applications of thenormal forms. Let us consider the neighourhood ofan elliptic equilibrium point (that we locate at theorigin) of a l > 1 degrees of freedom autonomousHamiltonian system H(q; p). Consider an initialcondition close to the origin. We are interested inknowing if the corresponding trajectory will be closeto the origin for all times (stability in the sense ofLyapounov), or if it is going to escape to a distanceO(1) from the equilibrium point.
A.5.1. The Dirichlet theorem. This is a particular casein which the stability problem can be easily solved.Call M the Hessian matrix of the Hamiltonian atthe origin (we recall that M is symmetric and thatr(q;p)H(0; 0) = 0). Assume that M is a positivede�nite matrix. Then, the Dirichlet theorem saysthat origin is Lyapounov stable.The proof is based on the fact that, close to thepoint, the level surfaces of the Hamiltonian are \likeellipsoids" having the origin inside (those manifoldsare of codimension 1 so they split the phase space).Then, since they are invariant for the dynamics,they act as a barrier that the trajectories startingnear the point cannot cross. The same argumentholds if there exists a �rst integral, de�ned on aneighbourhood of the origin, that is positive de�-nite at (0; 0).Unfortunately, there are many interesting caseswhere the matrix M is not positive de�nite and,hence, we need a di�erent kind of results to studythe stability.
A.5.2. KAM and Nekhoroshev theory. In the last sectionwe have seen that, using a �nite number of steps of

a normal form scheme, we can put the Hamiltonianinto the formH(x; y) = H2(x; y) + 2NXj=3 �Hj(x; y) + R2N (x; y):
Now, using condition (A{9) it is possible to deriveestimates on the size of the remainder R2N that areof the kind c1 exp(�c2(1=R)2=(+1)) (c1 > 0, c2 > 0).Here R denotes the radius of the ball centred at theorigin on which we take the norm of R2N , and itis assumed to be su�ciently small. This has beenobtained optimizing the size of the remainder withrespect to the degree up to which the normal formis obtained, for each value of R.From this bound on the remainder, it is not dif-fcult to obtain lower bounds on the di�usion time(i.e., the time to move away) around the point. Forinstance, if we call T (R) to the time to go out froma ball of radius 2R starting in a ball of radius R, wehave T (R) � c3 exp�c4� 1R�2=(+1)�;c3 and c4 being positive constants (to obtain thisestimate, analyticity plays an essential role). Ofcourse, this is not a proof of stability but a \boundon the unstability". This kind of estimates are whatis usually called Nekhoroshev estimates.A second approach is to try to remove completelythe remainder. This cannot be done using the nor-mal form scheme we have explained in the previ-ous sections, but it can be done through a Newtonmethod. This is a quadratically convergent iterativescheme, that only converges on a Cantor set of thephase space. On this Cantor set, the trajectoriestake place on invariant tori and, hence, they nevergo away from a vicinity of the point. The Lebesguemeasure of the complementary of this Cantor setcan be bounded by c5 exp(�c6(1=R)2=(+1)), c5 > 0,c6 > 0. This kind of results belong to the so-calledKAM theory. To decide about the stability we musttake into account the motion outside the Cantor setof invariant tori. For instance, consider �rst thecase l = 2. The phase space is four-dimensionaland, �xing the energy level H = h we restrict toa three-dimensional space. The invariant tori areof dimension 2 so they split the phase space and,hence, this allows one to conclude the Lyapounov



186 Experimental Mathematics, Vol. 8 (1999), No. 2stability of the elliptic point. The case l = 3 (orbigger) is much more di�cult. The reason is this:�xing the energy level produces a �ve-dimensionalinvariant manifold and the invariant tori are three-dimensional so they do not split phase space andwe cannot conclude stability. In fact, the stabilityof Hamiltonian systems with three or more degreesof freedom is today an open question. The moreaccepted conjecture says that they are, generically,unstable [Arnol'd 1964]. The unstability mechanismis usually known as Arnol'd di�usion.It is outside the scope of this paper to give de-tailed explanations of these results. We refer thereader to [Arnol'd and Avez 1968] or [Arnol'd et al.1988] for a general explanation, and to [Jorba andVillanueva 1997a] for more concrete results aboutinvariant objects such as elliptic points, periodic or-bits, and invariant tori.
A.6. Centre ManifoldsNow consider a Hamiltonian with three degrees offreedom, in a neighbourhood of an equilibrium pointof the type centre � centre � saddle, that we willassume to be the origin. Of course, this is an unsta-ble equilibrium point but we are interested in theexistence of trajectories that remain close to thepoint for all times. If we consider the lineariza-tion of the vector �eld at this point, and we skipthe hyperbolic part, we obtain a couple of harmonicoscillators. Hence, for the linearized vector �eld,we have a couple of families of periodic orbits nearthe point, plus the quasiperiodic solutions obtainedas product of the two families of periodic orbits.These quasiperiodic solutions are sometimes calledLissajous orbits. Consider now the e�ect of the non-linear terms of the vector �eld on these bounded so-lutions. Under generical conditions the well-knownLyapounov centre theorem says that, for each linear(periodic) oscillation, there exists a one-parametricfamily of periodic orbits of the complete Hamilto-nian system that emanates from the point in a tan-gent way to the linear family of oscillations. Thelimit frequency of these periodic orbits at the �xedpoint is the frequency of the linear oscillations (fora proof see [Siegel and Moser 1971], for instance). Asimilar result holds for the Lissajous orbits. Undergeneral hypotheses, it can be shown that these linearoscillations can be extended to the complete system

as a Cantorian family of invariant tori. Moreover,the measure of the gaps between tori is exponen-tially small with the distance to the origin (for theproofs, see [Jorba and Villanueva 1997a]).To give a more accurate description of the dy-namics around the point, we apply a normal formtechnique, as has been done in previous sections.We start expanding the Hamiltonian in power se-ries around the point, as in (A{4). Next, we writethe second degree terms H2 in real coordinates suchthatH2(x; y) = �x1y1 + !22 (x22 + y22) + !32 (x23 + y23);for (�; !2; !3) 2 R 3. The coordinates x1, y1 are al-ready in diagonal form, so we only need to complex-ify the pairs (x2; y2) and (x3; y3). Using the change(A{6) for these two pairs we obtainH2(q; p) = �q1p1 +p�1!2q2p2 +p�1!3q3p3:Now we can start a normal form process as the onedescribed in Section A.4 but, instead of killing allthe possible monomials, we will only kill the mono-mials such that the exponent of q1 is di�erent fromthe exponent of p1 (for a di�erent killing criterion,see [Sim�o 1996]). That is, the generating functionused to remove monomials of degree n will be of theformXkq1 6=kp1 �hkqkp(kp1�kq1)�+p�1 (kp2�kq2)!2+p�1 (kp3�kq3)!3 :Since kq1 6= kp1 , the denominators of the generatingfunction are bounded from below. This is why thenormal form process diverges very slowly (like anharmonic series; see [Jorba and Llave � 1999]).If we stop this scheme after a �nite number ofsteps, we obtain a Hamiltonian of the formH(q; p) = HN(q1p1; q2; q3; p2; p3) + R(q; p):Neglecting the remainder R, which is very small nearthe origin, we can de�ne I1 = q1p1 (this is a canon-ical change if we de�ne properly the correspondingangle variable) to obtain a HamiltonianHN(I1; q2; q3; p2; p3):The equation corresponding to the variable I1 is_I1 = 0, so this is a �rst integral of the system. Se-lecting the value I1 = 0 we are restricting the Hamil-tonian HN to an invariant manifold that is tangent



Jorba: Numerical Computation of Normal Forms, Centre Manifolds and First Integrals of Hamiltonian Systems 187at the origin with the linear central part of the sys-tem. This is the so called reduction to the centremanifold.Once I1 has been replaced by 0, we have obtaineda two degrees of freedom Hamiltonian system Hc �HN(0; q2; q3; p2; p3), where the origin is an ellipticequilibrium point. It is not di�cult to produce aqualitative description of the dynamics of Hc: thephase space is four-dimensional, so �x a energy levelHc = hc to reduce to a three-dimensional phasespace. Now, Poincar�e sections are two-dimensionaland can be plotted easily. Doing several plots forseveral values of hc one gets a description of thetrajectories that remain close to the origin. The dy-namics of the initial Hamiltonian near the origin canbe obtained adding the hyperbolic part that we haveskipped when reducing to the centre manifold. See[Jorba and Masdemont 1999] or [Jorba and Masde-mont 1998] for examples of this.Although this reduction is divergent in general,we can apply KAM techniques to show, under suit-able hypotheses, the existence of a Cantorian centremanifold, completely �lled up by invariant tori. (ACantorian manifold is parametrized by two param-eters, each of which moves in a Cantor set.) Thecomplementary of the measure of this manifold (inthe parameters space) decreases exponentially withthe distance to the origin. See [Jorba and Villanueva1997a] for more details. For a general discussion ofthe main features of centre manifolds, see [Sijbrand1985] or [Vanderbauwhede 1989].
A.7. First IntegralsAgain, consider the dynamics near an equilibriumpoint of a Hamiltonian system. Now we are inter-ested in producing �rst integrals of the motion. Ofcourse, if the Hamiltonian is not integrable (this is,in fact, the general case) these integrals are not go-ing to exist but, as we will see, it is still possibleto produce approximate �rst integrals that can beuseful for some applications.To simplify the discussion, we will assume thatthe equilibrium point is at the origin and that it isof elliptic type. The case in which some directionsare hyperbolic can be done in a very similar way.As in the previous cases, assume that the Hamil-tonian is expanded in power series as in (A{4), withH2 in diagonal form as in (A{5). Denote by F the

desired �rst integral, which we will expand in powerseries around the origin as F = Pj�2 Fj, whereFj denotes a homogeneous polynomial of degree j.From the condition fH;Fg = 0 it is immediate toobtain the recurrencefH2; Fng = � nXj=3fHj; Fn�j+2g: (A–10)Hence, due to the diagonal form ofH2, it is very easyto solve Fn in terms of F2; : : : ; Fn�1, assuming thestandard nonresonant conditions on the frequenciesof the point.1 Then, given a F2, we can compute thefollowing terms F3, F4 and so on.As usual, the series F = Pj�2 Fj is divergent.However, from its asymptotic character we can de-rive quasi-integrals of motion by simply truncatingthe series to �nite order. This means that, if fn de-notes a quasi-integral and (q(t); p(t)) is an orbit ofthe Hamiltonian system H then,_fn(q(t); p(t)) = fH; fng(q(t); p(t))Bounding the Poisson bracket of this formula in aneighbourhood of the elliptic point one can deriveestimates on the di�usion time near the point. Foran application of these techniques, see [Celletti andGiorgilli 1991]. See also [Marchal 1980] for an earlyconstruction of quasi-integrals.
APPENDIX B. LINEAR NORMAL FORM FOR THE
EQUILIBRIUM POINTS OF THE RTBPWe start with a brief description of the so-called re-stricted three body problem (RTBP). More detailscan be obtained in [Szebehely 1967] or other text-books on celestial mechanics.Consider two point masses (usually called prima-ries) that attract each other according to the gravi-tational Newton's law. Assume that they are mov-ing in circular orbits around their common centre ofmasses, and consider the motion of an in�nitesimalparticle (here, in�nitesimal means that its mass isso small that we neglect the e�ect it has on the mo-tion of the primaries and we only take into accountthe e�ect of the primaries on the particle) under the1As already mentioned, the operator LH2( � ) = fH2; � g is not bi-jective. Then it is possible that, if the right hand side of (A{10) con-tains resonant monomials, this equation cannot be solved. Thereare several cases when it can be proved that such monomials neverappear. See [Celletti and Giorgilli 1991] for a discussion of this.



188 Experimental Mathematics, Vol. 8 (1999), No. 2attraction of the two primaries. The study of themotion of the in�nitesimal particle is what is knownas RTBP.To simplify the equations of motion, take units ofmass, length and time such that the sum of massesof the primaries, the gravitational constant and theperiod of the motion of the primaries is 1, 1 and 2�respectively. With these units the distance betweenthe primaries is also equal to 1. We denote as �the mass of the smallest primary (the mass of thebiggest is then 1� �), � 2 (0; 12 ].The system of reference is de�ned as follows: theorigin is taken at the centre of masses of the prima-ries, the X-axis points to the biggest primary (withthis orientation), the Z-axis points to the directionof the vector of angular motion of the primaries withrespect to their common centre of mass (it is per-pendicular to the plane of motion) and the Y -axis isde�ned such that we obtain an orthogonal, positive-oriented system of reference. Note that we have de-�ned a rotating system of reference, that is usuallycalled synodic. In this system, the primary of mass� is at the point (� � 1; 0; 0) and the one of mass1� � is at (�; 0; 0).De�ning momenta as PX = _X � Y , PY = _Y +X and PZ = _Z, the equations of motion can bewritten in Hamiltonian form. The correspondingHamiltonian function isH = 12(P 2X +P 2Y +P 2Z) + Y PX �XPY � 1� �r1 � �r2 ;
(B–1)with r21 = (X � �)2 + Y 2 + Z2;r22 = (X � �+ 1)2 + Y 2 + Z2:It is well-known that the system de�ned by (B{1)has �ve equilibrium points. Two of them can befound as the third vertex of the two equilateral tri-angles that can be formed using the two primaries asvertices (usually called L4;5 or Lagrangian points).The other three lie on the X-axis and are usuallycalled L1;2;3 or Eulerian points; see Figure 3.In the next sections we will study the linear be-haviour around these equilibrium points. We willobtain the linear normal form around them as wellas the corresponding (symplectic) changes of vari-ables. These calculations, summarized in [Giorgilli
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FIGURE 3. The �ve equilibrium points of the RTBP.The graphic corresponds to the Earth{Moon case,with � � 0:01215.et al. 1989; G�omez et al. 1991c], are given here indetail, for completeness.
B.1. The Equilateral PointsThe equilibrium points L4 and L5 are located at(� � 12 ;�p32 ; 0), where the upper (\�") sign is forL4 while the lower (\+") one is for L5. These pointsare known to be linearly stable when the mass pa-rameter � is less than the Routh critical value �R =12�1�p 2327 � � 0:03852. In what follows we will as-sume that our mass parameter is less than �R (theinterested reader should not have any problem tocomplete the opposite case).The �rst step is to translate the origin of coordi-nates to the equilibrium point. This is done apply-ing the (symplectic) changeX = x+ �� 12 ;Y = y � p32 ;Z = z;

PX = px � p32 ;PY = py + �� 12 ;PZ = z;to the Hamiltonian (B{1). As before, the upper signis for the L4 case and the lower one for the L5 case(this rule for the signs will be used along this sec-tion). To simplify the notation, we call again H tothe Hamiltonian obtained,H = 12(p2x + p2y + p2z) + ypx � xpy + � 12 � ��x� p32 y � 1� �rPS � �rPJ ;



Jorba: Numerical Computation of Normal Forms, Centre Manifolds and First Integrals of Hamiltonian Systems 189where r2PS = (x� xS)2 + (y � yS)2 + z2;r2PJ = (x� xJ)2 + (y � yJ)2 + z2;xS = 12 , yS = �p32 , xJ = � 12 and yJ = �p32 . (Thesubscripts stand for \Sun" and \Jupiter", and cor-respond to a classical example for the RTBP, wherethe small particle can be an asteroid.) Note that(xS; yS; 0) are the coordinates of the big primary inthe new coordinates and that (xJ ; yJ ; 0) is the posi-tion of the small one.The next step is to expand H around the ori-gin. Since the origin is an equilibrium point, the�rst-order terms must vanish (we simply don't careabout the constant value H(0), since it is irrelevantto the dynamics). The �rst nontrivial terms are ofsecond order and they are responsible for the lineardynamics around the point. They areH2 = 12(p2x+p2y+p2z)+ypx�xpy+ 18x2� 58y2�axy+ 12z2;where a = � 3p34 (1 � 2�). The behaviour in the(z; pz) directions is uncoupled from the behaviourin the (x; y; px; py) directions. Moreover, the motionon the z-axis corresponds to an harmonic oscillatorwith frequency 1 (for all �), that it is already in(real) normal form. Hence, we restrict ourselves tothe (x; y; px; py)-plane:H2 = 12(p2x+p2y)+ypx�xpy+ 18x2� 58y2�axy: (B–2)De�ne the 4� 4 matrix J asJ = � 0 I2�I2 0 � ;where I2 denote the 2�2 identity matrix. The equa-tions of motion of (B{2) are given by the linear sys-tem0BB@ _x_y_px_py
1CCA = JrH2 = J Hess(H2)

0BB@ xypxpy
1CCA : (B–3)

An easy computation shows that the matrix M =J Hess(H2) is given by
M = 0BB@ 0 1 1 0�1 0 0 1� 14 a 0 1a 54 �1 0

1CCA : (B–4)

The characteristic polynomial is p(�) = �4 + �2 +2716 � a2. From this expression it is easy to concludethat system (B{3) is stable if � � �R = 12�1�p2327 �(this is the so-called Routh mass) and unstable if�r < � � 12 . Since we are studying the case � < �R,we assume that the solutions of p(�) = 0 are allpurely imaginary, that is, �j = �!jp�1 for j = 1; 2.The real values !j are the frequencies of the linearoscillations at the equilibrium points L4;5, and it istrivial to show that they always di�er when 0 < � <�R. Call !1 the one that satis�es !21 > 12 and !2 theone such that !22 < 12 . For the moment we do notspecify the sign we take for each frequency. Thesesigns will be determined below.Now we want to obtain a real (and symplectic)change of variables such that the Hamiltonian (B{2)is reduced to its (real) normal form. The �rst stepwill be to look for the eigenvectors of the matrixM given by (B{4). To simplify the computation, wewil take advantage of the special form of this matrix.We denote byM� the matrixM��I4, and we de�nea splitting M� = �A� I2B A��into 2� 2 blocksA� = ��� 1�1 ��� ; B = �� 14 aa 54 � ;where � denotes one of the eigenvalues of the matrixM . The kernel of M� is now easy to �nd: to solve�A� I2B A���w1w2� = � 00� ;we can start by solving (B � A2)w1 = 0 and thenw2 = �Aw1 (note that the kernel of B�A2 is trivialto �nd since it is a 2 � 2 matrix). In this way, we�nd the eigenvector(2�+ a; �2 � 34 ; �2 + a�+ 34 ; �3 + 54�+ a)T :Since the eigenvalues of M satisfy � = p�1!, ! 2R , we conclude that the frequencies ! are deter-mined by the equation!4 � !2 + 2716 � a2 = 0: (B–5)We also apply � = p�1! to the expression of theeigenvector. Separating real and imaginary parts,



190 Experimental Mathematics, Vol. 8 (1999), No. 2we conclude that it can be expressed as u+p�1 v,where
u(!) = �a;�!2 � 34 ;�!2 + 34 ; a�T ;v(!) = �2!; 0; a!;�!3 + 54!�T : (B–6)

We start considering the change of variables givenby the matrix C = (u1; u2; v1; v2), where uj and vjdenote the values of u and v given by (B{6) corre-sponding to the frequencies !j, j = 1; 2. For themoment we do not specify which sign is taken foreach frequency. In order to know whether C is sim-plectic or not, we check the property CTJC = J : atedious but not di�cult computation produces
CTJC = � 0 D�D 0 � ; D = � d(!1) 00 d(!2)� :

where d(!) = !(2!4 + 12!2 � 34). Of course, to de-rive this expression you need to use the properties(B{5) and !21!22 = 2716 � a2. Note that the zeros ob-tained in CTJC and D were expected, due to theway we have constructed C. The only question wasto know whether d were 1 or not. Since it is not,we need to perform some scaling to the columns ofC: de�ne sj = pd(!j), for j = 1; 2, and rede�neC as (u1=s1; u2=s2; v1=s1; v2=s2). This matrix is nowsymplectic, but we also want C to be real, that is,we want the values d(!j) to be positive. This willdetermine the signs we must choose for the frequen-cies !j. Since !21 < 12 , if one wants d(!1) > 0 isnecessary to take !1 > 0 and, conversely, as !22 < 12implies that we must take !2 < 0 in order to haved(!2) > 0. Hence, the change we have obtained isreal, symplectic and it brings the Hamiltonian (B{2)into the real normal form
H2 = !12 (x2 + p2x) + !22 (y2 + p2y); (B–7)

where we recall that !1 > 0 and !2 < 0.In the paper we have used a complex normal formfor H2, because it allows one to solve the homologi-cal equation that determines the generating function(see Section A.4) in a very easy way. Now it is notdi�cult to derive the change that brings (B{7) into

complex normal form. We compose the complexify-ing changex = q1 +p�1 p1p2 ;
y = q2 +p�1 p2p2 ;

px = p�1 q1 + p1p2 ;
py = p�1 q2 + p2p2 ;with the above-de�ned matrix C to produce the �-nal change used in the paper. If we de�ne rj =p!j�4!4j + !2j � 32� for j = 1; 2, the matrix of thischange is0BBBBBBBBBBB@

ar1+2!1r1 p�1 2!1r1 + ar1p�1 ... ...�!21� 34r1 �!21� 34r1 p�1 ... ...�!21+ 34r1 + a!1r1 p�1 a!1r1 +�!21+ 34r1 p�1 ... ...ar1+�!31+ 54!1r1 p�1 �!31+ 54!1r1 + ar1p�1 ... ...

1CCCCCCCCCCCA
;

where the columns indicated by dots are obtainedfrom the �rst two by replacing the subscript 1 by 2everywhere. Here the order is (x; y; px; py) for theinitial variables and (q1; q2; p1; p2) for the �nal vari-ables. (In the implementation of the software theorder is di�erent.)
B.2. The Collinear PointsFor j = 1; 2, de�ne j as the distance from the small-est primary (the one of mass �) to the point Lj.(Note: the literature disagrees on the conventionfor the subscripts 1 and 2; typically, books on astro-dynamics de�ne L1 and L2 as in our Figure 3, butbooks on celestial mechanics, including the already-cited reference [Szebehely 1967], tend to interchangethem.) Let 3 be the distance from the biggest pri-mary to L3. It is well-known|see [Szebehely 1967],for example| that j is the only positive solutionof the Euler quintic equation, which takes the form5j � (3� �)4j + (3� 2�)3j � �2j � 2�j � � = 0for j = 1; 2 (where the upper sign is for j = 1 andthe lower one for j = 2), and5j + (3� �)4j + (3� 2�)3j � �2j � 2�j � � = 0for j = 3, with � = 1 � �. These equations can besolved numerically by Newton's method, using the



Jorba: Numerical Computation of Normal Forms, Centre Manifolds and First Integrals of Hamiltonian Systems 191starting point ( 13�)1=3 for j = 1; 2 and 1 � 712� forj = 3.Next step would be to translate the origin to theselected point Lj, as has been done for the trian-gular points. In this case, however, to have goodnumerical properties for the coe�cients of the �nalexpansions it is better to perform some scaling; see[Richardson 1980; G�omez et al. 1991c; 1997]. Sincethe scalings are not symplectic transformations, con-sider the following process: �rst we write the di�er-ential equations related to (B{1) and then, on theseequations, we perform the substitutionX = �jx+ �+ �j ;Y = �jy;Z = jz;where the upper sign corresponds to j = 1; 2 andthe lower to j = 3, and we have set �1 = �1 + 1,�2 = �1 � 2 and �3 = 3. The unit of distanceis now the distance from the equilibrium point tothe closest primary. Finally, it is not di�cult tocheck that the di�erential equations obtained can berewritten in Hamiltonian form, with HamiltonianHLj =12�p2x + p2y + p2z�+ ypx � xpy �Xn�2 cn(�)�nPn�x��;where �2 = x2+ y2+ z2, Pn is the Legendre polyno-mial of degree n and the coe�cients cn(�) are givenby cn(�) = 13j �(�1)n�+ (�1)n (1� �)n+1j(1� j)n+1 �for j = 1; 2 (where as before the upper sign is forj = 1 and the lower for j = 2), andcn(�) = (�1)n3j �1� �+ �n+1j(1 + j)n+1�for j = 3.The linearization around the equilibrium point isgiven by the second order terms (linear terms mustvanish) of the Hamiltonian, which, after some rear-ranging, takes the formH2 = 12(p2x+p2y)+ypx�xpy�c2x2+ 12c2y2+ 12p2z+ 12c2z2: (B–8)It is not di�cult to derive intervals for the values ofc2 when � 2 [0; 12 ] (see Figure 4). Since c2 > 0 (for

the three collinear points), the vertical direction isan harmonic oscillator with frequency !2 = pc2. Inwhat follows, we will focus on the planar directions,i.e.,H2 = 12 �p2x + p2y�+ ypx � xpy � c2x2 + c22 y2; (B–9)where, for simplicity, we keep the name H2 for theHamiltonian.

0:1 0:2 0:3 0:4 0:512
34
56
78 L1

L2 L3
FIGURE 4. Values of c2(�), with � 2 [0; 12 ].We now proceed as in Section B.1. De�ne

M = J Hess(H2) =
0BB@ 0 1 1 0�1 0 0 12c2 0 0 10 �c2 �1 0

1CCA :
(B–10)The characteristic polynomial of M is p(�) = �4 +(2� c2)�2+(1+ c2� 2c22). Setting � = �2, the rootsof p(�) = 0 are�1 = c2 � 2�p9c22 � 8c22 ;

�2 = c2 � 2 +p9c22 � 8c22 :Since � > 0, we obtain c2 > 1, which forces �1 < 0and �2 > 0. This shows that the equilibrium pointis a centre � centre � saddle. Thus, de�ne !1 asp��1 and �1 as p�2. For the moment, we do notspecify the sign taken for each value (this will bediscussed later on).Now, as we did in the previous section, we want to�nd a symplectic linear change of variables casting(B{9) into its real normal form and, hence, we willlook for the eigenvectors of matrix (B{10). As usual,



192 Experimental Mathematics, Vol. 8 (1999), No. 2we will take advantage of the special form of thismatrix: if we denote by M� the matrix M � �I4,then M� = �A� I2B A��with A� = ��� 1�1 ��� ; B = � 2c2 00 �c2� :The kernel ofM� can be found using the same tricksas in the previous section: denoting as (wT1 ; wT2 )Tthe elements of the kernel, we start by solving(B � A2)w1 = 0and then w2 = �Aw1. Thus, the eigenvectors of Mare(2�; �2�2c2�1; �2+2c2+1; �3+(1�2c2)�)T ;where � denotes the eigenvalues.We �rst consider the eigenvectors related to !1.From p(�) = 0, we conclude that !1 satis�es!41 � (2� c2)!21 + (1 + c2 � 2c22) = 0:We also apply � = p�1!1 to the expression of theeigenvector and, separating real and imaginary partsas u!1 +p�1 v!1 , we obtainu!1 = (0; �!21�2c2�1; �!21+2c2+1; 0)T ;v!1 = (2!1; 0; 0; �!31+(1�2c2)!1)T :Now consider the eigenvalues related to ��1,u+�1 = (2�; �2�2c2�1; �2+2c2+1; �3+(1�2c2)�)T

andv��1 = (�2�; �2�2c2�1; �2+2c2+1;��3�(1�2c2)�)T :We consider, initially, the change of variables C =(u+�1 ; u!1; v��1 ; v!1). To know whether this matrixis symplectic or not, we check CTJC = J . A tediouscomputation shows thatCTJC = � 0 D�D 0 � ; D = � d�1 00 d!1 � :This implies that we need to apply some scalingon the columns of C in order to have a symplecticchange. The scaling is given by the factorsd�1 = 2�1�(4 + 3c2)�21 + 4 + 5c2 � 6c22�;d!1 = !1�(4 + 3c2)!21 � 4� 5c2 + 6c22�:Thus, we de�ne s1 = pd�1 and s2 = pd!1. Sincewe want the change to be real, we have to demandthat d�1 > 0 and d!1 > 0. It is not di�cult to checkthat this condition is satis�ed for 0 < � � 12 in allthe points L1;2;3, if �1 > 0 and !1 > 0.To obtain the �nal change, we have to take intoaccount the vertical direction (z; pz): to put it intoreal normal form we use the substitutionz 7! 1p!2 z; pz 7! p!2 pz:This implies that the �nal change is given by thesymplectic matrix C given below.

C =

0BBBBBBBBBBBBBBBBBBB@

2�s1 0 0 �2�s1 2!1s2 0�2�2c2�1s1 �!21�2c2�1s2 0 �2�2c2�1s1 0 0
0 0 1p!2 0 0 0�2+2c2+1s1 �!21+2c2+1s2 0 �2+2c2+1s1 0 0�3+(1�2c2)�s1 0 0 ��3�(1�2c2)�s1 �!31+(1�2c2)!1s2 00 0 0 0 0 p!2

1CCCCCCCCCCCCCCCCCCCA
Matrix for the �nal change of coordinates. The order of the variables is (x; y; z; px; py; pz). (In the software theorder is (x; px; y; py; z; pz) instead.)



Jorba: Numerical Computation of Normal Forms, Centre Manifolds and First Integrals of Hamiltonian Systems 193Finally, to produce the change that brings (B{8)into its complex normal form, we compose C withthe same complexi�cation as in the previous section.
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