
Sieving in Function Fields
Ralf Flassenberg and Sachar Paulus

CONTENTS

1. Introduction

2. Arithmetic in the Jacobian of a Hyperelliptic Curve

3. The Algorithm

4. Sieving

5. Practical Results and Discussion

We present the first implementation of sieving techniques in the

context of function fields. More precisely, we compute in class

groups of quadratic congruence function fields by combining

the algorithm of Hafner and McCurley with sieving ideas known

from factoring. We apply our methods to the computation of

generators and relations of the Jacobian variety of hyperelliptic

curves over finite fields.

The algorithms introduced here were implemented in C++ with

the help of LEDA and LiDIA. We provide examples of running

times and comparisons with earlier algorithms.

1. INTRODUCTIONJacobian varieties of hyperelliptic curves over �nite�elds can (under certain conditions) be interpretedas class groups of imaginary quadratic congruencefunction �elds; the algorithm of Hafner and Mc-Curley [1989] known to compute the class groupof imaginary quadratic number �elds and havingsubexponential running time in the size of the dis-criminant can be applied. This idea is realized (witha slight modi�cation) in [Adleman et al. 1994] byAdleman, DeMarrais and Huang who claim this al-gorithm to be of subexponential running time in thegenus, based on heuristic evidence. An uncondi-tional proof for this statement can probably be ruledout by adapting [M�uller et al. 1999] to the case ofimaginary quadratic congruence function �elds. Inthat paper, M�uller, Stein and Thiel prove that thecomputation of the regulator and of a fundamentalunit in a real quadratic congruence function �eld issubexponential in the genus of the curve.Experiments in [Paulus 1996b] showed that the al-gorithm of [Adleman et al. 1994], though thought tobe subexponential, is even slower than the in princi-ple exponential algorithms as baby-step-giant-stepand Pollard rho. The second author proposed toapply the sieving principles from factoring and com-bine them with the above method. Even using trial
c A K Peters, Ltd.

1058-6458/1999 $0.50 per page
Experimental Mathematics 8:4, page 339

340 Experimental Mathematics, Vol. 8 (1999), No. 4division instead of the real sieve for computing fac-torizations of several polynomials he got a consid-erable speedup (see [Paulus 1996b]). Based on thiswork, the �rst author implemented a sieving pro-cedure to compute these factorizations analogous tothe sieving principle used in factoring methods. Thisagain gave drastic speedups. To our knowledge, thisis the �rst implementation of sieving principles inthe context of function �elds. The objectives of thispaper are to present the methods used and to de-scribe the implications from practical experiments.This work has cryptographic signi�cance in thefollowing sense: Koblitz [1989] proposed the discretelogarithm on the Jacobian variety of a hyperellipticcurve over a �nite �eld as a new cryptographic one-way function. The major advantage in comparisonwith discrete logarithms on elliptic curves, that is,hyperelliptic curves of genus 1, consists in a consid-erably smaller underlying �nite �eld, where all basiccomputations are done, for approximately the samesize of the group where the discrete logarithm is de-�ned. To examine the practical security of thesecryptosystems it is necessary to compute such dis-crete logarithms with up-to-date methods.The paper is organized as follows: �rst we explainhow to do arithmetic in the Jacobian of a hyperel-liptic curve. Then we recall the algorithm of Hafnerand McCurley to compute imaginary quadratic classgroups, together with the principal sieving idea be-fore we show how we implemented the sieving forcongruence function �elds. All algorithms will bedescribed in a general matter in words and addition-ally precisely formulated in pseudo code. Finally, wegive practical results concerning timings and stor-age requirements when using di�erent parametersfor the sieving procedure and give generators andrelations for some class groups.We formulate theoretical statements in the con-text of hyperelliptic curves over any �eld. Theoreti-cally, there is no reason which restricts the algorithmto the �nite �eld case, but the practical realizationof some components may be di�cult to achieve (forexample, computing prime divisors). Furthermore,some modi�cations should be made taking into ac-count the probable in�nity of the Jacobian variety.We restrict our presentation of the algorithm to thecase of a �nite �eld.

2. ARITHMETIC IN THE JACOBIAN OF A
HYPERELLIPTIC CURVELet k be a �eld and C a hyperelliptic curve de�nedover k. Assume for simplicity that char k 6= 2. De-note the function �eld of C over k by k(C), the primedivisors of k(C) by Pk, the divisors of degree 0 byDiv0k(C) and the principal divisors by Pk(C). Thefactor group Pic0k(C) = Div0k(C).Pk(C)is called the divisor class group of C over k and isequal to the group of k-rational points of the Ja-cobian of the curve. See [Mumford 1974] for thede�nitions.Let S (Pk be a nonempty set of prime divisors.Let OS := ff 2 k(C) : �p(f) � 0 for all p 2 Sgbe the intersection of all valuation rings Op for p 2S. We have the following exact sequence:1! Ker! Pic0k(C)! Cl(OS)! 1:Ker is generated by the degree 0 divisors with sup-port in Pk nS modulo principal divisors. If S =Pk nfp0g with deg p0 = 1, then to every ideal a =Qp2S pap can be assigned the preimageXp2S app��Xp2S ap deg p�p0and thus Pic0k(C) is isomorphic to the (ideal) classgroup of OS.The existence of such a prime divisor p0 withdeg p0 induces the existence of an equation of thecurve of the form Y 2 = �(X) with �(X) monic,squarefree and of degree 2g + 1. We will always as-sume the existence of such a prime divisor in thesequel. The discriminant of OS is then generated by� = �(X). Consequently, we will do arithmetic inthe Jacobian of the curve described by Y 2 = � bycomputing in the class group of k[X]�p� �.We show now how to do arithmetic in this classgroup. Another formulation of this arithmetic hasbeen proposed by Cantor [1987] and goes back toArtin [1924]. In the special case g = 1, we recoverthe classical representation of points on an ellipticcurve together with the geometric chord-tangent ad-dition of points.

Flassenberg and Paulus: Sieving in Function Fields 341We will explain the arithmetic using binary quad-ratic forms since this notion will be used in the se-quel. There exists a one-to-one correspondence be-tween classes of ideals (modulo principal ideals) ink[X]�p� � and classes of primitive binary quadraticforms (a; b; c) with coe�cients in k[X] of discrimi-nant b2�4ac = � such that gcd(a; b; c) = 1 (shortlycalled forms in the sequel) (modulo the action ofGL2(k[X])). There exists a reduction theory forforms, that is, an algorithm which computes for agiven form a unique equivalent form with a monic,deg a � g and deg(b) < deg(a). Such a form is calledreduced.A class is represented by the �rst two coe�cients(a; b) of the unique reduced form (a; b; c) of discrim-inant � in this class. Given (a; b), a representationof the inverse class is (a;�b). A class is the iden-tity element if the �rst coe�cient a = 1. Two classes(a1; b1) and (a2; b2) are multiplied in two steps: �rst,a form (a3; b3; c3) representing the product class ofthe two forms is computed (this is called composi-tion of forms) and second, the unique reduced form(a4; b4; c4) equivalent to (a3; b3; c3) is computed (thisis called Gaussian reduction). Then the productclass is represented by (a3; b3).Several algorithms for composition and reductioncan be found in [Artin 1924; Cantor 1987; Koblitz1989; Paulus and R�uck 1999]. Optimized versionsfor both algorithms including a rigorous complexityanalysis can be found in [Paulus and Stein 1998]using the reduction variant of Tanner.
3. THE ALGORITHMThe principal idea to do fast computations in theJacobian variety consists in computing generatingelements of a special kind|called generators|andrelations between them. We will explain a variantof the algorithm which computes a minimal set ofgenerators for the Jacobian together with relationsin Hermite normal form. We �rst explain the gen-eral method, then we show how to compute relationsand �nally we discuss the number of needed gener-ators. As discussed in the introduction, we restrictourselves to the case of a �nite �eld k = F q withchar k 6= 2.At the end of this section, we will shortly explainthe necessary modi�cations for computing discrete

logarithms on the Jacobian of a hyperelliptic curveusing this algorithm.
3.1. The Algorithm of Hafner and McCurleyAs shown in [Paulus 1996a], the algorithm is genericin the sense that it is applicable for computations ofclass groups of quadratic orders over principal idealdomains. We will therefore call irreducible poly-nomials of F q[X] also primes; the order of �, de-noted by O�, for a � 2 F q[X] is the F q[X]-modulegenerated by �1; p�� over F q[X]. The class groupof O� is denoted by Cl(O�) and is our represen-tation for the Jacobian of the curve Y 2 = �. Aform fp = (p; bp; cp) of discriminant � with b2p � �mod p and deg bp < deg p for a prime p 2 F q[X] iscalled prime form for p (and corresponds to a primedivisor of the curve). Note that there exists eitherexactly one prime from for p (if p j�) or exactly twoprime forms for p, namely (p; bp; cp) and (p;�bp; c0p).The method of Hafner and McCurley is based onthe following observation:
Proposition 1. Let � 2 F q[X] be a non-square, P aset of n primes, for which � is a quadratic residue.Suppose that the prime forms fp for the primes p 2P generate Cl(O�). Then the map
 : Zn ! Cl(O�)(xp)p2P 7! �Qp2P fxpp �is a surjective homomorphism and we haveZn.ker
 �= Cl(O�) and det(ker
) = jCl(O�)j:The set of primes P is called the factor base. Thevectors (xp) 2 ker
 are called relations; such re-lations are collected during the computation. Thesublattice � spanned by the relations already com-puted is called relation lattice and is representedby the relation matrix, whose columns are the com-puted relations.Assume that the prime forms for the primes of thefactor base generate the whole class group of O� andthat we know an upper bound L for the class num-ber of the form L=2 < jCl(O�)j � L. The method ofHafner and McCurley proceeds in three steps: First,determine prime forms corresponding to the primesin the factor base, that is, compute a set of gen-erators. For a given prime p, this amounts to thedecision whether � is a quadratic residue mod p

342 Experimental Mathematics, Vol. 8 (1999), No. 4and to the computation of a quadratic root of �mod p. Both tasks can be achieved by computing inthe multiplicative group (F q[X]=(p))�, using a gen-eralization of the RESSOL algorithm of Shanks (see[Buchmann and Paulus 1995]). Second compute re-lations until the relation matrix is regular and �nallycompute relations until det(�) � L. The computa-tion of a relation is the object of the next subsection.A bound L of the shape described above is in mostcases given by the theorem of Hasse{Weil. It inducesthe following
Proposition 2. Let C be a hyperelliptic curve of genusg over a �nite �eld F q. Then the number of pointsj Jac(C)j of the Jacobian variety of C ful�lls(pq + 1)2g=2 < ��Jac(C)�� � (pq + 1)2gexactly when q > � 221=(2g) � 1 + 1�2:The proof is immediate. Such a bound is, for exam-ple, ful�lled for g = 2 if q > 134, for g = 4 if q > 301and for q � 1040 if g < 1020.We formulate the basic algorithm as follows:
Algorithm 3 (Hafner–McCurley-type class group).

Input: � 2 F q[X] not a square; the factor base P �F q[X] such that the prime ideals lying over theprimes of P generate the class group; emax 2 Nupper bound for the exponents (ep); L 2 N suchthat L=2 < jCl(�)j � L
Output: (1; : : : ; k) such that h1; : : : ; ki = Cl(�);the relation matrix A in Hermite normal form;jCl(�)j
1. Compute for each p 2 P a prime form fp
2. Compute relations until the relation matrix A isregular
3. A Hermite(A)
4. Compute the determinant of A
5. while detA > L do

a. repeat
i. Compute a relation s
ii. B Hermite(A; s)until detB < detA

b. A B
6. C nontrivial rows and columns of A;P0 those p 2 P corresponding to the rows of C
7. output (P0, C, detA)

By \taking nontrivial rows and columns" we meanrejecting those columns whose diagonal element isone and removing the corresponding rows by chang-ing the other columns appropriately.There are several choices for computing a Hermitenormal form and it is not clear which algorithm isbest in practice. We do not emphasize on that point.We used in our �nal implementation a non-modularimplementation of Havas [Havas and Majewski 1997]and a modular version due to Domich, Kannan andTrotter [Domich et al. 1987], taking account of theadditional information we have about the maximalvalue of the determinant.
3.2. Computing RelationsWe �rst recall the original idea of Seysen [1987] usedin the method of Hafner and McCurley for getting arelation. The following proposition is an immediategeneralization of in [Seysen 1987, Theorem 3.1] tothe function �eld situation.
Proposition 4. Let (a; b; c) be a form of discriminant� 2 F q[X] and let a = "Yp pvpbe a prime decomposition of a where " 2 F q[X]�.Then we have (a; b; c) �Yp f "pvpp ;where fp = (p; bp; cp) are prime forms and "p = �1such that b � "pbp mod 2pF q[X].This induces the following method to compute rela-tions: compute a random form by choosing randomexponents ep 2 Z:(a; b; c) =Y f epp :The reduction of this form yields a form (a0; b0; c0).If a0 factors over the factor base, saya0 =Y pgp ;we get a relation (ep � "pgp)p2P, where "p = �1 isde�ned by b0 = "pbp mod 2p.Note that the algorithm of Adleman and Huangdi�ers from the algorithm of Hafner and McCurleyin that point. They do not compute a random formstarting from the factor base elements; instead, they

Flassenberg and Paulus: Sieving in Function Fields 343generate a random element A+Bp� 2 F q[X]�p� �and try and factor it over the prime forms corre-sponding to the primes in the factor base.Both ways of getting a relation have been provennot to compute enough relations in the congruencefunction �eld case. We use a more general idea suchthat we obtain many forms equivalent to (a; b; c).This is done as follows: any form that is equiva-lent to (a; b; c) is of the shape (ax2+ bxy+ cy2; �; �)for some relatively prime x; y 2 F q[X] (see [Paulus1996a]). For several relatively prime pairs (x; y) wetry and factor ax2 + bxy + cy2, the sieve elements,over the factor base. Assume that we can do this ef-fectively. If this is successful, we compute u, v suchthat ux + vy = 1, that is, we compute in fact thetransformation matrixA = �x �vy u�with g = Af and recover from there the second co-e�cient of the form which is needed for the deter-mination of the "p. The set of pairs (x; y) is calledsieve array and is denoted by B.In fact, we do not require (x; y) to be relativelyprime. If d = gcd(x; y), then (x=d; y=d) are rela-tively prime and d2 divides ax2 + bxy + cy2, suchthat we get a relation by taking the decompositionof (ax2+bxy+cy2)=d2. In practice, this does not oc-cur, since the pair (x=d; y=d) will be treated before(x; y) and the number of y will be very small.We formulate our technique to compute a relationas follows:
Algorithm 5 (Relation computation).

Input: P factor base; B � F q[X]�F q[X] �nite sievingarray; emax 2 N upper bound for exponents
Output: relations (np)p2P or \No relation found"
1. Determine random integers ep 2 [0; emax � 1] foreach p 2 P and compute (a; b; c) �Q f epp
2. for all (x; y) 2 B with gcd(x; y) = 1

a. n deg(ax2 + bxy + cy2)
b. for all p 2 P

i. vp vp(n)
ii. n n� vp
iii. if n = 0 thencompute u; v 2 F q[X] such that xu�yv=1b0 2axv + b(xu+ yv) + 2cyu

for all vp 6= 0if b0 6� bp mod 2pF q[X] then vp �vp
c. output �(vp � ep)p2P�

3. output \No relation found"Here vp(n) denotes the valuation of p at n. Thealgorithm does not describe in which way vp(n) iscomputed. In a �rst implementation we used trialdivision and got remarkable improvements over thetraditional Hafner{McCurley algorithm. A muchcleverer method analogous to the sieving proceduresknown from factoring is explained in the next sec-tion.
3.3. The Factor BaseWe discuss the size of the factor base. The use ofa factor base which provably generates the wholeclass group is a major problem in practice: usingtechniques of Bach [1990], it is proved in [M�ulleret al. 1999] that all primes having degree at most�2 log(4g � 1)log q �generate the whole class group. This bound yieldseven a polynomial bound in g for the size of thefactor base. But this number is at least 1; this meansthat one should always include all primes of degree1 which split in O� in the factor base. Since thereare about q=2 primes of degree 1 which split, this isunacceptable in practice for large �elds. Instead ofthis, we proceed as follows:Pick at random a certain number of primes havingdegree respecting the bound given above and split-ting in the quadratic extension. Compute the gen-erated group| ignoring the known bound L for theorder of the class group|with a prescribed preci-sion. That is, if generating a random form by choos-ing exponents at random does not give a new non-trivial relation l times successively, then the prob-ability for the group being generated by the primeforms for the primes in the factor base is greaterthan 1 � 1=2l. If the result �ts the L-bound, thenthe output is the whole class group with probabilitygreater than 1� 1=2l.Much research and many experiments and have tobe done to evaluate which method is best used forchoosing the members of the factor base. We willpropose one method which produced the best prac-tical results in our experiments in the last section.

344 Experimental Mathematics, Vol. 8 (1999), No. 4

3.4. Discrete LogarithmsLet g be an element of the class group and a = gx.The discrete logarithm problem consists in comput-ing logg(a) = x given a and g.The modi�cations of the algorithm of Hafner andMcCurley to compute a discrete logarithm are asfollows: The generator for the discrete logarithmg is added to the factor base. Instead of Hermitereducing the relation matrix, one solves the systemsuch that we have logg[fp] for all classes [fp] of primeforms fp lying over the factor base. (The solutionof the system can be realized, for example, witha modular variant of Hermite reduction). Finally,an additional relation involving a to the power 1 iscomputed and the discrete logarithm extracted as alinear combination of the logg p. See [Lenstra andLenstra 1990], for example.
4. SIEVINGThe factorization of the sieve elements ax2 + bxy +cy2 is not done sequentially as presented in the pre-vious algorithm, but it is done \in parallel": First,we store the degree of all these polynomials. Now forevery prime p in the factor base we �nd out whichelements ax2 + bxy+ cy2 are divisible by p. We usesieving ideas for this step. If a sieve element is divis-ible by p, we subtract the degree of p of the degreeof this sieve element. If this degree is zero, we havea complete factorization of ax2+ bxy+ cy2 over thefactor base.We discuss how to adapt the sieving techniquesfrom factoring to our situation. We recall the princi-pal sieving idea and explain di�erences to the sievingover Z. We present the sieving procedure in detailand demonstrate our implementation solutions.
4.1. The IdeaAssume that we have a polynomial g 2 Z[X], a �niteset of prime numbers P and an interval [a; b] � Z.Assume that we want to know those z 2 [a; b] forwhich g(z) splits completely over P together withtheir factorization. Let us call such a z interesting.The naive method consists in testing for each p ifp divides g(z) for every z. The sieving idea is thefollowing: for every prime p 2 P compute the rootsof g(X) mod p. Then p divides g(z) exactly whenz = r + s � p, where r is a root of g(X) mod p and

s 2 Z. By this way, one can mark all interesting zby \jumping" through the interval with steps of sizep for all primes p 2 P. One stores the logarithm ofg(z) for each z at the beginning and subtracts log pevery time when a jump hits z. If this number be-comes (approximately) 0, then we have completelyfactored g(z) over P.This method ignores those z for which g(z) hasa square as a factor. Using Hensel lifting one couldextend this method to higher exponents and deter-mine all vp(g(z)). But experience shows that ex-ponents greater than 1 occur rarely in a completefactorization over the factor base so that the addi-tional amount of work is not worth it. One discardsthose numbers which have a square as a factor.In our situation, the polynomial g 2 Z[X] is re-placed by a primitive binary quadratic formg(x; y) = ax2 + bxy + cy2with coe�cients a; b; c 2 F q[X] taking as argumentstwo elements x; y 2 F q[X]. The prime elements arenow irreducible polynomials of F q[X] and the log-arithm of a number is replaced by the degree of apolynomial. The sieving procedure di�ers in twopoints from the classical situation:� We are sieving in two directions, since f takestwo arguments. Thus the interval is replaced bya sieving array. The set of solutions mod p has tobe computed for two variables as has to be donethe \jumping" through the sieving array.� Jumping through the sieving array is not as im-mediate as in the classical case, since the stepsbetween two consecutive interesting polynomialsvary in size.As in the classical case, complete factorizations withexponents greater than 1 occur very rarely, so we donot use Hensel lifting and discard numbers whichhave a square as a factor.
4.2. The Sieving ProcedureWe �rst explain how to represent polynomials forindexing array entries. Every element � 2 F q canbe uniquely represented by a natural number �(�)such that 0 � �(�) < q. E.g. if � is a generatingelement of F q over F q0 where q0 is the characteristicof F q, then �(�) = �(Pd�1j=0 xi�i) = �(xi)qi0, where�(xi) is the unique integer in the range f0; : : : ; q0�1g

Flassenberg and Paulus: Sieving in Function Fields 345naturally representing xi. So there is a one-to-onemap � : F q[X] ! N sending a = Pmi=0 �iX i toPmi=0 �(�i)qi. If we write D(x; y) for an array entryin the sequel, we really compute with D(�(x); �(y)).This representation induces a restriction on theform of the sieving array. Since array indices haveto be a series of consecutive numbers, there is animplicit ordering of the elements of F q[X] and thesieving array has to be, for example, of the formB = fx 2 Fq[X] : 0 � �(x) � x boundg�fy 2 Fq[X] : 0 � �(y) � y boundg:The idea of the sieving procedure has been pre-sented above. We now formulate this central part ofour algorithm in pseudo-code. We will explain theremaining details which di�er from sieving in Z inthe following subsection.
Algorithm 6 (Sieving in congruence function fields).

Input: P factor base; B sieving array as described;and g(x; y) = ax2 + bxy + cy2 a primitive binaryquadratic form.
Output: all (xp)p2P with xp 2 f0; 1g such thatQp2P pxp = g(x; y) for (x; y) 2 B
1. Compute a two-dimensional integer matrix�D(x; y)�(x;y)2Bcontaining the degrees of g(x; y) for all (x; y) 2 B
2. Initialize a three-dimensional integer matrix�R(x; y; p)�(x;y)2B;p2Pwhich codes whether p divides g(x; y) with zeroes
3. for all p 2 P

a. Compute a complete set of solutionsS�f(x; y) : x; y 2 F q[X]; deg x;deg y < deg pgof g(x; y) = 0 mod p.
b. for all (x; y) 2 S

i. R(x; y; p) 1
ii. D(x; y) D(x; y)� deg p
iii. if D(x; y) = 0 output (R(x; y; p))p2P
iv. for all r; s 2 F q[X] with (x+rp; y+sp) 2 B(Jumping through the sieving array)R(x+ rp; y + sp; p) 1;D(x+rp; y+sp) D(x+rp; y+sp)�deg p;if D(x+ rp; y + sp) = 0output (R(x+ rp; y + sp; p))p2PRemark: In step 3a, it may occur that deg p isgreater than x bound or y bound. One obviously

computes only a set of solutions for the existing sieveelements.
4.3. Implementation DetailsIn the rest of this section we explain how to initializethe matrix D, which are the solutions of g(x; y) � 0mod p and how the jumping through the array isrealized in practice.
4.3.1. Initializing In step 1 of Theorem 6, we have tocompute for every (x; y) 2 B the degree of g(x; y) =ax2+bxy+cy2. The naive method would be to reallycompute g(x; y) and to deduce the degree. This isvery slow. Most of the time we can do better. Setdega = deg(a) + 2deg(x);degb = deg(b) + deg(x) + deg(y);degc = deg(c) + 2deg(y);and denote by m the maximum among these threenumbers. The degree is computed as follows:
1. if only one of them equals m, then deg g(x; y) =m.
2. (at least two values equal m). Compute the sumof the leading coe�cients of those terms havingdegreem. If it is di�erent from 0, then deg(x; y)=m.
3. (deg g(x; y) 6= m). Compute g(x; y) explicitely.Note that if x and y do not change their degree, thevalues of dega, degb and degc are unchanged. Thiscan be taken into account when �lling the degreematrix successively.
4.3.2. Solutions “mod p” Let g(x; y) = ax2+ bxy+ cy2be a primitive binary quadratic form with coe�-cients a; b; c 2 F q[X], p(x) 2 F q[X] an irreduciblepolynomial and (p; bp; cp) a prime form correspond-ing to p. The set of polynomials with degree lessthan deg p form a complete set of representatives ofF q[X]=hpi. A complete set of solutions of g(x; y) � 0mod p is given by S, where S is as follows:� if a � 0 mod p and b � 0 mod p, then S =�(x; 0) : deg x < deg p	� if a � 0 mod p and b 6� 0 mod p, then S =�(x; 0) : deg x < deg p	 [���y cb ; y� : deg y <deg p	,� if a 6� 0 mod p and bp � 0 mod p, then S =���y b2a ; y� : deg y < deg p	,

346 Experimental Mathematics, Vol. 8 (1999), No. 4� if a 6� 0 mod p and bp 6� 0 mod p, then S =���y b�bp2a ; y� : deg y < deg p	.
4.3.3. Jumping The objective of this section is to showhow one can compute all �(x+ rp) for0 � deg r < logq(x bound)� deg p+ 1most e�ectively, since this part of the algorithm isvery time consuming in the congruence function �eldcase. We explain the procedure for the �rst compo-nent (x), the same method is applied to the secondcomponent (y).The polynomials x + rp are computed by subse-quent additions of p, p2, p3, up to x. The poly-nomials involved here are treated as vectors of in-tegers; that is, the i-th coe�cient of a is denotedby a[i] and interpreted as a number in the range0; : : : ; q � 1. Addition of pi to x is done by \shift-ing" the coe�cients of p by i before adding them tothe corresponding coe�cients of x. The completejumping algorithm is now straightforward and lookslike this:
Algorithm 7 (Fast index computation).

Input: p 2 F q[X] irreducible polynomial; (x; y) 2 Ssolution of g(x; y) � 0 mod p; x bound 2 Nbound for the sieving array
Output: All 0 � �(x+rp) < x bound such that g(x+rp; y) � 0 mod p
1. act poly x; r 0
2. while deg r < logq x bound� deg p+ 1

a. if r[0] 6= q then
i. for j 2 [0 : : deg(p)] doact poly[j] act poly[j] + p[j] mod q
ii. output �(act poly)
iii. r[0] r[0] + 1else
i. i maxfj : r[k] = q for all 0 � k � jg
ii. for j 2 [0 : : deg(p)] do act poly[j + i] act poly[j + i] + p[j] mod q
iii. output �(act poly)
iv. for j 2 [1 : : i] do r[j] 0
v. r[i+ 1] r[i+ 1] + 1Further optimization can be obtained by taking carehow to modify �(act poly) from the previous valueinstead of recomputing it from scratch every time.

5. PRACTICAL RESULTS AND DISCUSSIONWe computed the divisor class group of the curveY 2 = X2g+1 + 2X + 1 over F p, where X2g+1 +2X + 1 was squarefree in all examples. The bestresults| input parameters, timings and storage re-quirements| for the fastest computation are pre-sented in Table 1.We now discuss the input values. The possiblesize of the sieving array is bounded by the maxi-mum memory limit. Furthermore, experiences withlarger sieving arrays gave not much more relationscompared with the additional time needed. It wouldhave been necessary to increase the size of the factorbase to get better results. The size of the factor basewill be discussed in the sequel. Another observationis that it seems to be optimal to choose a small valuefor one dimension of the factor base and and a largevalue for the other dimension. This covers experi-ence from sieving in the factoring context, althoughpeople from factoring suggest to choose the value forone dimension being 1. This had not proven to beoptimal in our context.The factor base is computed from the �rst twovalues A and B as follows: take A successive poly-nomials of degree at most B and compute for allirredicuble polynomials in this set a prime form if itexists. The resulting number of factor base elementsis then given by the third value. The examples havenot been large enough to observe a dependency ofthe number of computed relations from B, althoughthe computation of a single relation is faster as Bgrows. It may be possible to think of a large primevariant analogous to the factoring variant.The possible size of the factor base is governedby the Hermite reduction. Twice the average en-try of the matrix being Hermite reduced is given bythe last input value, namely the upper bound forthe exponents of the factor base elements used inthe relation computation. The determinant of thematrix should �nally, that is, assuming that enoughrelations have been computed, be of size approxi-mately qg. With growing size of the factor base andgrowing determinant, the Hermite reduction beginsto dominate the computation both in time and inspace. Since Hermite reduction is di�cult to paral-lelize over several machines, this is the real bottle-neck of the computation.

Flassenberg and Paulus: Sieving in Function Fields 347p g x y F1 F2 F3 M T Tr Th Sr Sh11 1 2 10 5 1 4 5 100 100 � 1 128411 2 5 10 10 1 8 5 300 300 � 2 129211 3 5 50 20 2 15 5 700 700 � 17 136811 4 20 100 40 2 29 5 1700 1500 � 243 170811 5 20 80 50 2 29 5 5300 5000 � 194 165611 6 20 100 50 2 33 5 10100 5900 � 274 178811 7 20 100 50 2 38 5 204600 204400 � 313 193211 8 20 2000 400 3 232 10 1704200 1103300 4800 36578 4786811 9 20 2000 400 3 231 10 1805600 1405000 3700 36421 4716411 10 20 2000 400 3 242 10 3405300 3201900 102900 38140 5762011 11 20 2000 400 3 232 10 1h110 5603700 1303400 36578 8888811 12 20 2000 400 3 254 10 3h410 1h400 1h590 40015 214928101 1 20 40 20 1 10 5 900 900 � 37 1348101 2 30 500 35 1 19 10 3300 3200 � 1234 2644101 3 10 5000 60 1 32 10 203000 202800 � 6679 8660101 4 5 5000 100 1 43 10 301600 302100 100 4433 6604101 5 5 5000 150 1 51 10 200600 200100 200 5214 7796101 6 10 5000 150 2 129 10 5h10 4h5300 80500 25625 504041009 1 10 1000 100 1 52 10 104200 103700 100 2117 40721009 2 10 10000 300 1 153 10 90300 802600 1800 60625 666361009 3 10 10000 400 1 205 10 1h400 4603700 5301300 80937 17764810007 1 20 4000 100 2 55 10 1h50 1h40 200 17843 22040
TABLE 1. Input parameters, timings and storage requirements. The table is indexed by g and p. The columns x andy indicate the size of the sieve array in both dimensions; F1; F2; F3 are three values concerning the constructionof the factor base and M is the maximum random exponent for a factor base element used for the relationcomputation. T is the total time needed, Tr the time needed for computing the relations and Th that needed forthe Hermite reduction. Sr and Sh are the memory sizes needed by the relation computation and the Hermitereduction, both in kilobytes.To achieve further improvements, it is necessaryto tailor the relations for an e�cient Hermite re-duction. The major modi�cation should be to usesparse relations, that is, relations where only a fewfactor base elements are used to produce a randomform together with a much larger factor base. Theresulting matrix would consist of a dense and asparse part, where the dense part looks like the ma-trices we produce now and the dense part consistsonly of some 1 as entries. A drawback is that thecomputation of a matrix with full rank is much morecomplicated. This method is more convenient forcomputing discrete logarithms.We show in Table 2 the timings of the Hafner{McCurley method used with di�erent sieving strate-gies.Finally, in Table 3 we give some examples for theclass groups we computed. The class groups arepresented in the following format: we give the type

of the group and generators for the correspondingcyclic subgroups.The computations were done using the computeralgebra and packages LiDIA [LiDIA n.d.] and LEDA[LEDA n.d.]. Most of the programs implementedhere are available on request via ftp as an add-onpackage for LiDIA.
REFERENCES[Adleman et al. 1994] L. M. Adleman, J. DeMarrais,and M.-D. Huang, \A subexponential algorithm fordiscrete logarithms over the rational subgroup of theJacobians of large genus hyperelliptic curves over�nite �elds", pp. 28{40 in Algorithmic number theory:ANTS-I (Ithaca, NY, 1994), edited by L. M. Adlemanand M.-D. Huang, Lecture Notes in Comp. Sci. 877,Springer, Berlin, 1994.[Artin 1924] E. Artin, \Quadratische K�orper im Gebieteder h�oheren Kongruenzen, I", Math. Zeitschrift 19

348 Experimental Mathematics, Vol. 8 (1999), No. 4p g T1 T2 T3 T411 1 600 300 100 30011 2 4900 600 300 100011 3 1304300 1000 700 250011 4 4403200 5900 1700 10120011 5 103000 5300 2010011 6 702600 10100 17020011 7 20460011 8 1h410 1704200 2h8011 9 180560011 10 340530011 11 1h11011 12 3h410101 1 4300 1600 900 700101 2 1h310 105300 3300 4300101 3 801600 203000 40300101 4 2203100 301600 1h550101 5 23h310 200600101 6 5h101009 1 1h130 403100 104200 11001009 2 7h340 90300 3037001009 3 42h370 1h400 3h20010007 1 3h330 1h50 410010007 2 11h370 440100003 1 5h30 2034001000003 1 905100100000007 1 1h320
TABLE 2. Timings for di�erent sieving strategies.T1: no sieving (comparable to the Adleman{Huangmethod). T2: using only trial division to determinethe factorizations. T3: same as T in Table 1. Forcomparision, we also give the time T4 needed by ababy-step-giant-step implementation.

(1924), 153{206. reprinted in The collected papers ofEmil Artin, edited by S. Lang and J. Tate, Addison-Wesley, Reading, MA, 1965.[Bach 1990] E. Bach, \Explicit bounds for primalitytesting and related problems", Math. Comp. 55:191(1990), 355{380.[Buchmann and Paulus 1995] J. Buchmann and S.Paulus, \Algorithms for �nite abelian groups", pp.151{161 in Number-theoretic and algebraic methods incomputer science (Moscow, 1993), edited by A. van derPoorten et al., World Sci. Publishing, River Edge, NJ,1995.[Cantor 1987] D. G. Cantor, \Computing in the Jacobianof a hyperelliptic curve", Math. Comp. 48:177 (1987),95{101.[Domich et al. 1987] P. D. Domich, R. Kannan, andL. E. Trotter, Jr., \Hermite normal form computationusing modulo determinant arithmetic", Math. Oper.Res. 12:1 (1987), 50{59.[Hafner and McCurley 1989] J. L. Hafner and K. S.McCurley, \A rigorous subexponential algorithm forcomputation of class groups", J. Amer. Math. Soc.2:4 (1989), 837{850.[Havas and Majewski 1997] G. Havas and B. S. Ma-jewski, \Integer matrix diagonalization", J. SymbolicComput. 24:3-4 (1997), 399{408.[Koblitz 1989] N. Koblitz, \Hyperelliptic cryptosys-tems", J. Cryptology 1:3 (1989), 139{150.[LEDA n.d.] The LEDA Group, \LEDA: a C++ libraryof data types and algorithms for combinatorial com-puting", software, Max-Planck-Institute for ComputerScience, University of Saarland, Germany. See http://www.mpi-sb.mpg.de/LEDA.p g Type Generators11 1 (16) (X; 10)11 2 (237) (X; 1)11 3 (1130; 2) (X+2; 1); (X2+10X+8; 0)11 4 (6398; 2; 2) (X4+10X2+2X+8; X3+8X2+9X+9); (X+8; 0); (X4+10X3+5X2+5X+6; 0)11 5 (80526) (X5+6X4+8X3+1X2+9X+7; 10X4+4X3+5X2)101 1 (92) (X+16; 69)101 2 (4798; 2) (X2+31+18; 54X+3); (X+58; 0)101 3 (1079904) (X3+26X2+87X+74; 99X2+16X+65)1009 1 (1060) (X+54; 1006)1009 2 (501356; 2) (X2+211X+561; 885X+190); (X+797; 0)10007 1 (5014; 2) (X+6900; 4673); (X+2271; 0)
TABLE 3. Examples for Jacobians of Y 2 = X2g+1 + 2X + 1 over F p.

Flassenberg and Paulus: Sieving in Function Fields 349[Lenstra and Lenstra 1990] A. K. Lenstra and H. W.Lenstra, Jr., \Algorithms in number theory", pp.673{715 in Handbook of theoretical computer science,vol. A, edited by J. van Leeuwen, Elsevier, Amster-dam, 1990.[LiDIA n.d.] The LiDIA Group, \LiDIA: a C++ libraryfor computational number theory", software, Tech-nische Universit�at Darmstadt, Germany. See http://www.informatik.tu-darmstadt.de/TI/LiDIA.[M�uller et al. 1999] V. M�uller, A. Stein, and C. Thiel,\Computing discrete logarithms in real quadraticcongruence function �elds of large genus", Math.Comp. 68:226 (1999), 807{822.[Mumford 1974] D. Mumford, Abelian varieties, 2nd ed.,Tata Inst. Fund. Res. Stud. math. 5, Oxford Univ.Press, London, 1974.[Paulus 1996a] S. Paulus, \An algorithm of subexpo-nential type computing the class group of quadraticorders over principal ideal domains", pp. 243{257 in

Algorithmic number theory: ANTS-II (Talence, 1996),edited by H. Cohen, Lecture Notes in Comp. Sci.1122, Springer, Berlin, 1996.[Paulus 1996b] S. Paulus, Ein Algorithmus zur Berech-nung der Klassengruppe quadratischer Ordnungen �uberHauptidealringen, Dissertation, Universit�at GH Essen,Essen, 1996.[Paulus and R�uck 1999] S. Paulus and H.-G. R�uck,\Real and imaginary quadratic representations ofhyperelliptic function �elds", Math. Comp. 68:227(1999), 1233{1241.[Paulus and Stein 1998] S. Paulus and A. Stein,\Comparing real and imaginary arithmetics for divisorclass groups of hyperelliptic curves", pp. 576{591 inAlgorithmic number theory: ANTS-III (Portland, OR,1998), edited by J. P. Buhler, Lecture Notes in Comp.Sci. 1423, Springer, Berlin, 1998.[Seysen 1987] M. Seysen, \A probabilistic factorizationalgorithm with quadratic forms of negative discrimi-nant", Math. Comp. 48:178 (1987), 757{780.Ralf Flassenberg, Institut f�ur Experimentelle Mathematik, Universit�at|GH Essen, 45326 Essen, Germany. Currentaddress: SECUNET Security Networks AG, Im Teelbruch 116, 45219 Essen, Germany (assenberg@secunet.de)Sachar Paulus, Institut f�ur Theoretische Informatik, Technische Hochschule Darmstadt, 64283 Darmstadt, Germany.Current address: SECUDE Sicherheitstechnologie, Informationssysteme GmbH, Landwehrstra�e 50a, 64293Darmstadt, Germany (paulus@secude.com)Received July 18, 1997; accepted in revised form November 5, 1998

