On Some Elliptic Curves with Large Sha

Harvey E. Rose

CONTENTS

1. Introduction
2. Method
3. Rank-Zero Curves
4. Observations About the Calculations

References

We consider a class of elliptic curves many of whose associated Shafarevich-Tate groups Ш are relatively large, and give examples of curves with $o(Ш)=k^{2}$ for all $k \leq 100$.

1. INTRODUCTION

Let p be a prime satisfying $p \equiv 1(\bmod 8)$ throughout, and let $C(n)$ denote the elliptic curve

$$
C(n): y^{2}=x^{3}+n x,
$$

where $n \in \mathbb{Z}$. We shall mainly be concerned with the case $n=p^{3}$. Further, for the curve $C(n)$, let $r(C(n))$ denote the (Mordell-Weil) rank over \mathbb{Q}, and $s t(C(n))$ denote the (analytic) order of the Shafa-revich-Tate group $Ш_{C(n)}$. We shall assume that the full Birch and Swinnerton-Dyer conjecture holds for all curves under consideration; see [Silverman 1986] for further details. The conjecture has been established in the rank zero case, except possibly for the 2 component of the formula; see [Rubin 1991].

Whilst undertaking some general investigations on the elliptic curves $C(n)$ for various small n, we noted that in the cases when $n=p^{3}$ a surprising number of the curves had comparatively large values for $s t(C(n))$; for instance $s t\left(C\left(233^{3}\right)\right)=64$ and $s t\left(C\left(433^{3}\right)\right)=81$. This phenomenon was also noted for the curves $C\left(2 p^{3}\right)$ but to a lesser extent. After some further computations it became clear that the curves $C\left(p^{3}\right)$ regularly have large sha; and hence it was possible, and thought to be worthwhile, to produce a list of elliptic curves with $o(\amalg)=k^{2}$ for each k in some typical range. We chose $k \leq 100$ as being attainable in a few weeks using a reasonably fast machine, although the last entry found, for $k=98$, did extend this timetable somewhat (and so it is remarkable in this case that a second prime occurs so soon after the first; although there are a number of
similar instances, for example when $k=6$ or 35). See Table 2.

Cassels [1964] showed that there are elliptic curves with arbitrarily large Shafarevich-Tate groups Ш by considering quadratic twists by many different primes. Recently de Weger [1998] has given some specific examples of curves with large sha, his largest satisfies $o(\amalg)=224^{2}$. He also discusses the Gold-feld-Szpiro Conjecture, first considered in [Goldfeld and Szpiro 1995], relating the size of \amalg to the conductor; see Section 4E.

A prime p is called a G-prime if it can be expressed in the form $p=x^{2}+64 y^{2}$ (or, equivalently, if 2 is a quartic residue modulo p). A easy extension of this gives: p^{3} can be expressed in the form

$$
p^{3}=x_{1}^{2}+64 y_{1}^{2} \quad \text { with } \quad\left(x_{1}, y_{1}\right)=1
$$

if and only if p is a G-prime. Repeating the argument given in [Silverman 1986, Chapter 10] for the curves $C(p)$, we see that $C\left(p^{3}\right)$ has rank zero or two provided we assume, as we are doing, that the Birch and Swinnerton-Dyer Conjecture holds. (Note. The curve $C\left(p^{3}\right)$ is a quadratic twist of $C(p)$.) In [Rose 1995] we showed, using elementary methods, that $r(C(p))=0$ if p is not a G-prime (and so the conjecture is not needed in this case); an exactly similar argument shows that $r\left(C\left(p^{3}\right)\right)=0$ when p is not a G-prime, and again the conjecture is only needed in the G-prime case.

2. METHOD

For $p \equiv 1(\bmod 8)$ consider the elliptic curve $C\left(p^{3}\right)$. Note first that, whilst the discriminant of this curve is $64 p^{9}$, its conductor is $64 p^{2}$, and so it is as easy to calculate the value of $L(s)$-function at $s=1$ for the curve $C\left(p^{3}\right)$ as it is for $C(p)$ (as these curves have the same conductor). The calculations were undertaken using the method given in [Buhler et al. 1985] and the computer package Pari/GP 1.39.

In [Rose 1997] we conjecture that the probability for the curve $C(p)$ to have rank 2 is $O\left(p^{-1 / 8}\right)$ (this is backed up with some numerical evidence and the implied constant is close to $3 / 2$). The computations undertaken for this paper suggest that a similar estimate applies for the curves $C\left(p^{3}\right)$; that is, the probability of the rank of $C\left(p^{3}\right)$ equalling two is $O\left(p^{-3 / 8}\right)$. The data given in Table 1 provides

89	6529	26249	41177	52673	67057	83089
601	8969	26417	43441	54401	67129	83177^{*}
937	12697^{*}	26497^{*}	43721	54497	70921	84857
1889	13913	27449	45281	57073	71233	86161
2969	14249	29569	47057	57529	71761	87641
3257	16633	32009	47609	57697	73417^{*}	88873
3529	17881	32377	47713	60089	75289	91873
3673	25057^{*}	35449	49681	65729	77249	96001
4289	25409	40577	52489	66569	79537	96137

TABLE 1. Primes $p \equiv 1(\bmod 8)$ less than 10^{5} for which the curve $C\left(p^{3}\right)$ has rank 2 . The asterisk means that $r(C(p))=0$.
some evidence for the validity of this estimate. It is perhaps also of interest to note that there is no close correspondence between the ranks of $C(p)$ and $C\left(p^{3}\right)$ for fixed p - for many primes $p, C(p)$ has rank 2 and $C\left(p^{3}\right)$ has rank 0 , whilst those p marked with an asterisk in Table 1 satisfy the opposite: namely, $r(C(p))=0$ and $r\left(C\left(p^{3}\right)\right)=2$. In the remaining cases in this table both curves have rank 2. Note also that, for all the asterisked primes p in the table, we have $\operatorname{st}(C(p))=64$ using data given in [Rose 1997]; for larger p this equation will probably need to be replaced by the condition $64 \mid \operatorname{st}(C(p))$. Note that $\operatorname{st}(C(p))$ need not be a power of two even in the rank 2 case, for example $s t(C(51137))=9$ as noted in [Rose 1997].

We have confirmed that these curves have rank 2 (by finding two independent generators) for the first three primes only, although one generator is known in 20 cases. In the remaining cases we are relying on the Birch and Swinnerton-Dyer conjecture, and the fact that our calculated estimate for the value of the $L(s)$-function at $s=1$ equals zero to an accuracy of at least four places. It would be a major undertaking to find the generators for the remaining curves; in no case will elementary (that is, quadratic) arguments help.

3. RANK-ZERO CURVES

We consider now the elliptic curves $C\left(p^{3}\right)$ with rank zero; note that in this case the Birch-SwinnertonDyer conjecture has been established except for the power of 2 in their formula; see [Rubin 1991]. We have calculated the values of the $L(s)$-functions of these curves at $s=1$ for all primes congruent to

1 modulo 8 up to 150000 , and up to 230000 for G primes congruent to 1 or 33 modulo 40 only; a summary of the results is given in Table 2. We curtailed the calculations once we had found at least one entry in every line of Table 2 , further details are available from the author via e-mail. We also calculated these L-function values in two higher, randomly chosen, ranges: 1200000 to 1205000 , and 4100100 to 4105100. All calculations were performed to an accuracy of at least three decimal places; this was sufficient to give, using the Birch and Swinnerton-Dyer conjecture, the value of $s t\left(C\left(p^{3}\right)\right)$ as this number is a square integer k^{2} whose parity can be determined in advance, see Section 4C below. Also we found that the larger the value of $\operatorname{st}\left(C\left(p^{3}\right)\right)$ the better was the accuracy of the calculation. Typical examples of actual calculated values are:

$$
\begin{aligned}
& \operatorname{st}\left(C\left(229321^{3}\right)\right)=8464.0733 \approx 8464=92^{2} \\
& \operatorname{st}\left(C\left(219361^{3}\right)\right)=2.8927 \approx 4
\end{aligned}
$$

(here 219361 is a G-prime, so the st value is an even square).

4. OBSERVATIONS ABOUT THE CALCULATIONS

4A. The Spread of Values of k

All values of k occur and, generally speaking, they occur with a similar frequency. It seems reasonable to assume that for all k there are infinitely many primes p such that

$$
s t\left(C\left(p^{3}\right)\right)=k^{2},
$$

although the frequency of these occurrences probably drops considerably as p increases. For example the values $k=1,2$ or 3 do not occur in the range $1200000<p<1205000$, the smallest value of $s t\left(C\left(p^{3}\right)\right)$ for rank zero curves in this range is 16 .

Further the first prime p for which the displayed equation above holds increases relatively smoothly with k, except that there is a slight tendency for this prime to be larger than 'normal' when k has the form $k=2 n$ and n is odd. Examples are when $k=6,26,50$ and 98 . This is probably not significant; for instance, although the smallest prime p with $\operatorname{st}\left(C\left(p^{3}\right)\right)=2500$ is $p=79769$, there are at least eleven further primes with this property less then 200000 . Finally note that there is also a tendency for the 'first' prime to be congruent to $3 \bmod 5$
(or, to a lesser extent, congruent to $1 \bmod 5$); this is also probably not significant but explains the choice of primes between 150001 and 230000 above.

4B. The Size of Values k

Compared with some previously published tables, for example Cremona [1997], the sizes of the Shafa-revich-Tate groups for the curves under consideration are relatively large. We have if $p<50000$ the largest value for $s t\left(C\left(p^{3}\right)\right)$ is 7744 , for the prime 46681 ; if $p<10^{5}$ the largest value is 11025 , for the prime 99233 ; if $p<150000$ the largest value is $28561=169^{2}$, for the prime 137873 .

Further in the range $1200000<p<1205000$ the largest st value is $111556=334^{2}$ for the prime 1200833 , and in the range $4100100<p<4105100$ we found the values

$$
\begin{aligned}
& \operatorname{st}\left(C\left(4102393^{3}\right)\right)=391^{2} \\
& \operatorname{st}\left(C\left(4103353^{3}\right)\right)=474^{2} \\
& \operatorname{st}\left(C\left(4105033^{3}\right)\right)=635^{2}=403225
\end{aligned}
$$

which is the largest explicitly calculated value of sha for any elliptic curve known to the author.

4C. G and Non-G Primes

For the curves $C\left(p^{3}\right)$,
$s t\left(C\left(p^{3}\right)\right)$ is even if and only if $\quad p$ is a G-prime.
We used this to complete the table below by considering only G-primes between 150000 and 230000 . Note that, for the curves $C(p)$, we have $4 \mid \operatorname{st}(C(p))$ for all p and
$16 \mid \operatorname{st}(C(p))$ if and only if p is a G-prime;
see [Rose 1995]. Also note that although $C\left(p^{3}\right)$ is a quadratic twist of $C(p)$ there is no precise relationship between their corresponding 'shas'. For example $s t(C(56081))=6^{2}$ whilst $\operatorname{st}\left(C\left(56081^{3}\right)\right)=55^{2}$.

4D. Relationship Between $C\left(p^{3}\right)$ and $C(p)$ for G-Primes p

There is some connection between the 2-component of $s t\left(C\left(p^{3}\right)\right)$ and the rank of $C(p)$. Using the data given in [Rose 1995; 1997], the following properties hold for $p<10^{5}$ for the curves under consideration:
(a) If $4 \| s t\left(C\left(p^{3}\right)\right)$ then $r(C(p))=0$.
(b) If $16 \mid \operatorname{st}\left(C\left(p^{3}\right)\right)$ then either $r(C(p))=2$, or $r(C(p))=0$ and $64 \mid \operatorname{st}(C(p))$.

k	n	p_{1}	p_{2}																
1	96	17	41	22	43	3761	7841	43	16	31081	41513	64	5	51913	59473	85	5	49433	74873
2	68	257	577	23	33	2753	5641	44	15	20353	27073	65	4	70393	71633	86	0	134593	163481
3	116	137	241	24	45	3313	5113	45	16	31481	41953	66	2	57793	70321	87	2	48073	78713
4	126	73	113	25	46	2953	4561	46	5	23761	67049	67	3	29873	38113	88	1	46681	142193
5	123	313	401	26	25	19433	26297	47	7	32441	52433	68	7	16553	25633	89	2	64153	86353
6	72	2833	2857	27	27	7681	11369	48	13	27953	41233	69	1	81353	109001	90	0	159833	224881
7	82	641	2417	28	34	11633	14633	49	8	20233	30593	70	3	82073	89273	91	2	72353	96233
8	98	233	1153	29	22	5273	5953	50	4	79769	83737	71	4	82913	84761	92	0	123593	133033
9	92	433	673	30	32	9281	13921	51	7	11353	45121	72	3	50833	80273	93	2	67153	95233
10	60	1721	2441	31	19	12401	14081	52	13	14713	18433	73	2	28793	76873	94	0	145513	179801
11	63	953	2713	32	31	7993	12073	53	7	15233	31193	74	1	94273	103049	95	0	128873	141041
12	91	1753	1801	33	20	8513	16561	54	1	48593	113489	75	2	44953	48761	96	3	69833	71473
13	70	1321	5009	34	7	21961	30697	55	3	56081	63281	76	3	66593	78233	97	2	66713	90313
14	50	4001	5737	35	25	11393	11593	56	5	43313	51241	77	2	36473	73681	98	0	222193	224993
15	70	9049	11489	36	32	18481	24281	57	8	45673	52153	78	4	58073	62761	99	0	106321	139201
16	60	1193	3833	37	19	15473	17713	58	4	60601	70913	79	1	43913	146273	100	1	50153	103553
17	49	3881	8521	38	10	28001	29137	59	2	67961	79633	80	3	56713	57601	101	1	92033	
18	36	7817	12497	39	17	17401	19753	60	10	23633	25673	81	2	82193	94033	102	0	114073	201673
19	42	3793	6473	40	14	24953	31649	61	3	82793	89513	82	1	87281	123953	103	0	117193	
20	60	2273	3361	41	13	7193	12113	62	2	48953	78569	83	4	23593	45641	104	0	109433	117881
21	37	4793	6329	42	12	25913	32993	63	5	35593	49033	84	1	68713	109313	105	1	99233	

TABLE 2. For each $k \leq 105$, the second column gives the number n of primes $p<10^{5}$ for which $\operatorname{st}\left(C\left(p^{3}\right)\right)=k^{2}$. The columns headed p_{1} and p_{2} give the two smallest primes p for which $\operatorname{st}\left(C\left(p^{3}\right)\right)=k^{2}$; only one such prime is known for $k=101,103$ and 105.

In this final case, divisibility cannot be replaced by equality: for example if $p=50177$, we have $r(C(p))=0$ whilst $\operatorname{st}(C(p))=256$.

4E. The Goldfeld-Szpiro Conjecture

In [Goldfeld and Szpiro 1995] it was conjectured that elliptic curves defined over \mathbb{Q} with Shafarevich-Tate group \amalg, conductor N, and $\varepsilon>0$, satisfy

$$
o(Ш) \ll N^{1 / 2+\varepsilon} .
$$

Let GS denote the ratio $o(\amalg) / \sqrt{N}$, and dW denote the ratio $o(\amalg) / \Delta^{1 / 12}$ where Δ is the discriminant of the curve in question. In [de Weger 1998] there are several examples of elliptic curves with GS larger than 1 , the largest value being 6.893 for the curve mentioned in the introduction. In the same article de Weger proves, assuming the validity of the Birch and Swinnerton-Dyer Conjecture in the rank zero case, that there are many elliptic curves with dW larger than unity (the precise statement is: for all $\varepsilon>0$, there exist infinitely many elliptic curves E defined over \mathbb{Q} with the property $\left.o\left(\amalg_{E}\right) \gg \Delta^{1 / 12-\varepsilon}\right)$. For the curves discussed in this paper all values of GS are less than 0.040 but
some satisfy dW >1. The six curves $C\left(p^{3}\right)$ with the largest values of GS are:

p	GS	dW	$s t\left(C\left(p^{3}\right)\right)$
23593	0.0365	2.559	6889
16553	0.0349	2.241	4624
233	0.0343	0.759	64
7193	0.0292	1.522	1681
11353	0.0286	1.672	2601
73	0.0274	0.453	16

Incidently, the elliptic curve $C\left(4105033^{3}\right)$, having the largest sha we have found to date (see Section 4 B above), has $\mathrm{GS}=0.01228$ and $\mathrm{dW}=3.1264$.

REFERENCES

[Buhler et al. 1985] J. P. Buhler, B. H. Gross, and D. B. Zagier, "On the conjecture of Birch and SwinnertonDyer for an elliptic curve of rank 3", Math. Comp. 44:170 (1985), 473-481.
[Cassels 1964] J. W. S. Cassels, "Arithmetic on curves of genus 1, VI: The Tate-Safarevič group can be arbitrarily large", J. Reine Angew. Math. 214/215 (1964), 65-70.
[Cremona 1997] J. E. Cremona, Algorithms for modular elliptic curves, 2nd ed., Cambridge Univ. Press, Cambridge, 1997.
[Goldfeld and Szpiro 1995] D. Goldfeld and L. Szpiro, "Bounds for the order of the Tate-Shafarevich group", Compositio Math. 97:1-2 (1995), 71-87. Special issue in honour of Frans Oort.
[Rose 1995] H. E. Rose, "On a class of elliptic curves with rank at most two", Math. Comp. 64:211 (1995), 1251-1265, S27-S34.
[Rose 1997] H. E. Rose, "On some classes of elliptic curves with rank two or three", preprint, 1997.
[Rubin 1991] K. Rubin, "The "main conjectures" of Iwasawa theory for imaginary quadratic fields", Invent. Math. 103:1 (1991), 25-68.
[Silverman 1986] J. H. Silverman, The arithmetic of elliptic curves, vol. 106, Graduate Texts in Math., Springer, New York, 1986.
[de Weger 1998] B. M. M. de Weger, " $A+B=C$ and big Ш's", Quart. J. Math. Oxford Ser. (2) 49:193 (1998), 105-128.

Harvey E. Rose, Department of Mathematics, University Walk, Bristol, BS8 1TW, United Kingdom (h.e.rose@bris.ac.uk)

Received May 26, 1998; accepted in revised form March 8, 1999

