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We consider a class of elliptic curves many of whose associated

Shafarevich–Tate groupsX are relatively large, and give exam-

ples of curves with o(X) = k2 for all k � 100.

1. INTRODUCTIONLet p be a prime satisfying p � 1 (mod 8) through-out, and let C(n) denote the elliptic curveC(n) : y2 = x3 + nx;where n 2 Z. We shall mainly be concerned withthe case n = p3. Further, for the curve C(n), letr(C(n)) denote the (Mordell{Weil) rank over Q , andst(C(n)) denote the (analytic) order of the Shafa-revich{Tate group XC(n). We shall assume thatthe full Birch and Swinnerton-Dyer conjecture holdsfor all curves under consideration; see [Silverman1986] for further details. The conjecture has beenestablished in the rank zero case, except possibly forthe 2 component of the formula; see [Rubin 1991].Whilst undertaking some general investigationson the elliptic curves C(n) for various small n, wenoted that in the cases when n = p3 a surprisingnumber of the curves had comparatively large val-ues for st(C(n)); for instance st(C(2333)) = 64 andst(C(4333)) = 81. This phenomenon was also notedfor the curves C(2p3) but to a lesser extent. Aftersome further computations it became clear that thecurves C(p3) regularly have large sha; and hence itwas possible, and thought to be worthwhile, to pro-duce a list of elliptic curves with o(X) = k2 for eachk in some typical range. We chose k � 100 as be-ing attainable in a few weeks using a reasonably fastmachine, although the last entry found, for k = 98,did extend this timetable somewhat (and so it is re-markable in this case that a second prime occurs sosoon after the �rst; although there are a number of
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86 Experimental Mathematics, Vol. 9 (2000), No. 1similar instances, for example when k = 6 or 35).See Table 2.Cassels [1964] showed that there are elliptic curveswith arbitrarily large Shafarevich{Tate groups Xby considering quadratic twists by many di�erentprimes. Recently de Weger [1998] has given somespeci�c examples of curves with large sha, his largestsatis�es o(X) = 2242. He also discusses the Gold-feld{Szpiro Conjecture, �rst considered in [Goldfeldand Szpiro 1995], relating the size ofX to the con-ductor; see Section 4E.A prime p is called aG-prime if it can be expressedin the form p = x2 + 64y2 (or, equivalently, if 2 is aquartic residue modulo p). A easy extension of thisgives: p3 can be expressed in the formp3 = x21 + 64y21 with (x1; y1) = 1if and only if p is a G-prime. Repeating the argu-ment given in [Silverman 1986, Chapter 10] for thecurves C(p), we see that C(p3) has rank zero or twoprovided we assume, as we are doing, that the Birchand Swinnerton-Dyer Conjecture holds. (Note. Thecurve C(p3) is a quadratic twist of C(p).) In [Rose1995] we showed, using elementary methods, thatr(C(p)) = 0 if p is not a G-prime (and so the con-jecture is not needed in this case); an exactly similarargument shows that r(C(p3)) = 0 when p is not aG-prime, and again the conjecture is only needed inthe G-prime case.
2. METHODFor p � 1 (mod 8) consider the elliptic curve C(p3).Note �rst that, whilst the discriminant of this curveis 64p9, its conductor is 64p2, and so it is as easyto calculate the value of L(s)-function at s = 1 forthe curve C(p3) as it is for C(p) (as these curveshave the same conductor). The calculations wereundertaken using the method given in [Buhler et al.1985] and the computer package Pari/GP 1.39.In [Rose 1997] we conjecture that the probabilityfor the curve C(p) to have rank 2 is O(p�1=8) (thisis backed up with some numerical evidence and theimplied constant is close to 3/2). The computa-tions undertaken for this paper suggest that a sim-ilar estimate applies for the curves C(p3); that is,the probability of the rank of C(p3) equalling twois O(p�3=8). The data given in Table 1 provides

89601937188929693257352936734289
6529896912697�1391314249166331788125057�25409

262492641726497�274492956932009323773544940577
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526735440154497570735752957697600896572966569
670576712970921712337176173417�752897724979537

8308983177�84857861618764188873918739600196137
TABLE 1. Primes p � 1 (mod 8) less than 105 forwhich the curve C(p3) has rank 2. The asteriskmeans that r(C(p)) = 0.some evidence for the validity of this estimate. Itis perhaps also of interest to note that there is noclose correspondence between the ranks of C(p) andC(p3) for �xed p|for many primes p, C(p) has rank2 and C(p3) has rank 0, whilst those p marked withan asterisk in Table 1 satisfy the opposite: namely,r(C(p)) = 0 and r(C(p3)) = 2. In the remainingcases in this table both curves have rank 2. Notealso that, for all the asterisked primes p in the ta-ble, we have st(C(p)) = 64 using data given in [Rose1997]; for larger p this equation will probably needto be replaced by the condition 64 j st(C(p)). Notethat st(C(p)) need not be a power of two even in therank 2 case, for example st(C(51137)) = 9 as notedin [Rose 1997].We have con�rmed that these curves have rank 2(by �nding two independent generators) for the �rstthree primes only, although one generator is knownin 20 cases. In the remaining cases we are relying onthe Birch and Swinnerton-Dyer conjecture, and thefact that our calculated estimate for the value of theL(s)-function at s = 1 equals zero to an accuracy ofat least four places. It would be a major undertakingto �nd the generators for the remaining curves; in nocase will elementary (that is, quadratic) argumentshelp.

3. RANK-ZERO CURVESWe consider now the elliptic curves C(p3) with rankzero; note that in this case the Birch{Swinnerton-Dyer conjecture has been established except for thepower of 2 in their formula; see [Rubin 1991]. Wehave calculated the values of the L(s)-functions ofthese curves at s = 1 for all primes congruent to
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Rose: On Some Elliptic Curves with Large Sha 871 modulo 8 up to 150000, and up to 230000 for G-primes congruent to 1 or 33 modulo 40 only; a sum-mary of the results is given in Table 2. We curtailedthe calculations once we had found at least one en-try in every line of Table 2, further details are avail-able from the author via e-mail. We also calculatedthese L-function values in two higher, randomly cho-sen, ranges: 1200000 to 1205000, and 4100100 to4105100. All calculations were performed to an ac-curacy of at least three decimal places; this was suf-�cient to give, using the Birch and Swinnerton-Dyerconjecture, the value of st(C(p3)) as this number isa square integer k2 whose parity can be determinedin advance, see Section 4C below. Also we foundthat the larger the value of st(C(p3)) the better wasthe accuracy of the calculation. Typical examplesof actual calculated values are:st(C(2293213)) = 8464:0733 � 8464 = 922;st(C(2193613)) = 2:8927 � 4(here 219361 is a G-prime, so the st value is an evensquare).
4. OBSERVATIONS ABOUT THE CALCULATIONS

4A. The Spread of Values of kAll values of k occur and, generally speaking, theyoccur with a similar frequency. It seems reasonableto assume that for all k there are in�nitely manyprimes p such thatst(C(p3)) = k2;although the frequency of these occurrences prob-ably drops considerably as p increases. For exam-ple the values k = 1; 2 or 3 do not occur in therange 1200000 < p < 1205000, the smallest value ofst(C(p3)) for rank zero curves in this range is 16.Further the �rst prime p for which the displayedequation above holds increases relatively smoothlywith k, except that there is a slight tendency forthis prime to be larger than `normal' when k hasthe form k = 2n and n is odd. Examples are whenk = 6; 26; 50 and 98. This is probably not signif-icant; for instance, although the smallest prime pwith st(C(p3)) = 2500 is p = 79769, there are atleast eleven further primes with this property lessthen 200000. Finally note that there is also a ten-dency for the `�rst' prime to be congruent to 3 mod 5

(or, to a lesser extent, congruent to 1 mod 5); this isalso probably not signi�cant but explains the choiceof primes between 150001 and 230000 above.
4B. The Size of Values kCompared with some previously published tables,for example Cremona [1997], the sizes of the Shafa-revich{Tate groups for the curves under consider-ation are relatively large. We have if p < 50000the largest value for st(C(p3)) is 7744, for the prime46681; if p < 105 the largest value is 11025, forthe prime 99233; if p < 150000 the largest value is28561 = 1692, for the prime 137873.Further in the range 1200000 < p < 1205000the largest st value is 111556 = 3342 for the prime1200833, and in the range 4100100 < p < 4105100we found the valuesst(C(41023933)) = 3912;st(C(41033533)) = 4742;st(C(41050333)) = 6352 = 403225;which is the largest explicitly calculated value of shafor any elliptic curve known to the author.
4C. G and Non-G PrimesFor the curves C(p3),st(C(p3)) is even if and only if p is a G-prime.We used this to complete the table below by con-sidering only G-primes between 150000 and 230000.Note that, for the curves C(p), we have 4 j st(C(p))for all p and16 j st(C(p)) if and only if p is a G-prime;see [Rose 1995]. Also note that although C(p3) is aquadratic twist of C(p) there is no precise relation-ship between their corresponding `shas'. For exam-ple st(C(56081)) = 62 whilst st(C(560813)) = 552.
4D. Relationship Between C(p3) and C(p) for G-Primes pThere is some connection between the 2-componentof st(C(p3)) and the rank of C(p). Using the datagiven in [Rose 1995; 1997], the following propertieshold for p < 105 for the curves under consideration:
(a) If 4 jj st(C(p3)) then r(C(p)) = 0.
(b) If 16 j st(C(p3)) then either r(C(p)) = 2, orr(C(p)) = 0 and 64 j st(C(p)).
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TABLE 2. For each k � 105, the second column gives the number n of primes p < 105 for which st(C(p3)) = k2.The columns headed p1 and p2 give the two smallest primes p for which st(C(p3)) = k2; only one such prime isknown for k = 101, 103 and 105.In this �nal case, divisibility cannot be replacedby equality: for example if p = 50177, we haver(C(p)) = 0 whilst st(C(p)) = 256.

4E. The Goldfeld–Szpiro ConjectureIn [Goldfeld and Szpiro 1995] it was conjectured thatelliptic curves de�ned over Q with Shafarevich{TategroupX, conductor N , and " > 0, satisfyo(X)� N 1=2+":Let GS denote the ratio o(X)=pN , and dW de-note the ratio o(X)=�1=12 where � is the discrim-inant of the curve in question. In [de Weger 1998]there are several examples of elliptic curves with GSlarger than 1, the largest value being 6:893 for thecurve mentioned in the introduction. In the samearticle de Weger proves, assuming the validity ofthe Birch and Swinnerton-Dyer Conjecture in therank zero case, that there are many elliptic curveswith dW larger than unity (the precise statementis: for all " > 0, there exist in�nitely many el-liptic curves E de�ned over Q with the propertyo(XE) � �1=12�"). For the curves discussed inthis paper all values of GS are less than 0:040 but

some satisfy dW > 1. The six curves C(p3) with thelargest values of GS are:p GS dW st(C(p3))23593 0.0365 2.559 688916553 0.0349 2.241 4624233 0.0343 0.759 647193 0.0292 1.522 168111353 0.0286 1.672 260173 0.0274 0.453 16Incidently, the elliptic curve C(41050333), havingthe largest sha we have found to date (see Section4B above), has GS = 0:01228 and dW = 3:1264.
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