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Bestvina and Handel have introduced an effective algorithm that

determines whether a given homeomorphism of an orientable,

possibly punctured surface is pseudo-Anosov. We present a Java

software package that realizes this algorithm for surfaces with

one puncture. It allows the user to define homeomorphisms in

terms of Dehn twists, and in the pseudo-Anosov case it generates

images of train tracks in the sense of Bestvina–Handel.

1. INTRODUCTIONThe fundamental group of a surface S of genus gwith one puncture is a free group F on 2g genera-tors. A homeomorphism of S induces an outer au-tomorphism O of F , and we can represent O as ahomotopy equivalence f : G ! G of a �nite graphG � S homotopy equivalent to S.plus 1mu A homotopy equivalence f :G!G issaid to be a train track map if for every n�1 and forevery edge e of G, the restriction of fn to the interiorof e is an immersion. Bestvina and Handel [1992]have given an e�ective algorithm that takes a ho-motopy equivalence f :G!G representing an outerautomorphism O and attempts to �nd a train trackrepresentative f 0 :G0!G0 of O, where G0, like G, isembedded in and homotopy equivalent to S. If O isirreducible the algorithm will always succeed. (See[Bestvina and Handel 1995] for a de�nition of irre-ducibility. For our purposes, it is su�cient to knowthat an outer automorphism induced by a pseudo-Anosov homeomorphism of a surface with one punc-ture will always be irreducible.) If O is reducible, thealgorithm will either �nd a train track representa-tive, or it will conclude that O is reducible.Given a train track representative f : G ! G ofan outer automorphism induced by a surface homeo-morphism ' : S ! S, Bestvina and Handel [1992]construct a train track � , which can be thought
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of as being embedded in S. (Note that their no-tion of train tracks is slightly di�erent from that ofThurston, as de�ned in [Thurston 1979; Fathi et al.1979].) Using � , one can e�ectively decide whether' is pseudo-Anosov. Furthermore, in the pseudo-Anosov case one can extract from � and f� the growth rate of ', and� the structure of the stable and unstable foliationsof ', and in particular singular points of the fo-liations and their indices.The software package implements this theory in thecase of surfaces of genus at least two with exactlyone puncture. The motivation behind this restric-tion is that pseudo-Anosov homeomorphisms of sur-faces with one puncture induce irreducible automor-phisms of the fundamental group. This is not truefor surfaces with more than one puncture, and han-dling this case would require the implementation ofa more complicated algorithm. However, the the-ory developed in [Bestvina and Handel 1992] worksin full generality (including the case of closed sur-faces, which can be reduced to the case of puncturedsurfaces by removing the orbit of a periodic point).The package consists of three main parts:� The �rst part takes a surface homeomorphism' : S ! S de�ned by a sequence of Dehn twistsand turns it into a homotopy equivalence of agraph.� The second part takes a homotopy equivalenceof a graph and either �nds a reduction or a traintrack representative.� The third part constructs a train track � from atrain track representative and generates an imageof � embedded in the surface S.The output of the second and third part combinedcontain all the information about ' listed above. Inparticular, they decide whether ' is pseudo-Anosov.The package is highly modular, and the threeparts can be used independently. For example, thehandling of Dehn twists has applications beyondthe scope of this paper, and the second part alsoworks for nongeometric outer automorphisms of freegroups (see [Bestvina and Handel 1995]). Moreover,each of the three parts falls into several functionalunits, many of which (such as computations and

graphics in the hyperbolic plane) may be used inother contexts.The software is available free of charge (see sectionon Electronic Availability at the end of this paper).
2. RELATED ALGORITHMS AND IMPLEMENTATIONSThere are at three least other implementations ofthe Bestvina{Handel algorithm, each with an em-phasis di�erent from the implementation describedhere.� T. White's FOLDTOOL software [1990] is an im-plementation of the train track algorithm from[Bestvina and Handel 1995] for free groups. Au-tomorphisms are entered and displayed as homo-topy equivalences of graphs.� B. Menasco and J. Ringland [1996] implementedthe Bestvina{Handel algorithm in the case of au-tomorphisms of punctured spheres. Homeomor-phisms can be entered as braid words or as ho-motopy equivalences of graphs. Results are dis-played as homotopy equivalences of graphs.� T. Hall's implementation [1996] handles arbitrarypunctured surfaces. Homeomorphisms are inputas homotopy equivalences of graphs, as horseshoemaps according to Smale, or as braid words. Re-sults are displayed as homotopy equivalences ofgraphs.A common characteristic of all implementations isa program realizing some part of the theory devel-oped in [Bestvina and Handel 1995; 1992]. The maindistinguishing characteristic of the implementationdiscussed here is that homeomorphisms of surfaceswith one puncture can be entered as compositionsof Dehn twists, and results can be displayed as pic-tures of graphs embedded in surfaces, which signi�-cantly facilitates the generation of examples as wellas the interpretation of results. Hence, the softwaredescribed here provides a powerful yet easy-to-useenvironment for mathematical experimentation.Finally, we note that independent approaches totrain tracks have been found by other authors; see,for example, [Lustig 1992; Los 1993; Franks andMisiurewicz 1993]. In the �rst of these references,train tracks are used to study automorphisms of freegroups, while the other two papers are concernedwith homeomorphisms of punctured spheres.
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3. DEHN TWISTSThe software contains a class with two methods forhandling Dehn twists: One of them is extremelyeasy to use and allows the user to de�ne surfacehomeomorphisms as a composition of Dehn twistswith respect to a �xed set of curves (see Figure 1).The Dehn twists with respect to this set of curvesgenerate the mapping class group [Lickorish 1964].This set of generators is not minimal; rather, it waschosen with the user's convenience in mind.
c1 c0a1 a0

b1 b0
d1 d0

FIGURE 1. Generators of the mapping class group.The other method for handling Dehn twists re-moves the restriction to a �xed set of curves, whichresults in a slightly more complicated input format.This method is the part of the package that pro-vides the link between surface homeomorphisms andhomotopy equivalences of graphs; the method de-scribed in the previous paragraph merely generatesinput for the second one.When computing Dehn twists, we adopt the fol-lowing convention: We equip the surface with anoutward pointing normal vector �eld. When twist-ing with respect to a curve c, we turn right when-ever we hit c. (The notion of turning left or rightis de�ned with respect to the chosen normal vector�eld.)
4. EXAMPLESFigures 2{5 were generated by the software package.Each shows a train track belonging to a pseudo-Anosov homeomorphism of a once punctured sur-face of genus 2 or 3. The identi�cation pattern onthe boundary of the polygons is given by matchinglabels of edges intersecting the boundary, and thepuncture corresponds to the vertices of the polygon.Singularities of the stable or unstable foliation ofthe pseudo-Anosov map in question correspond ei-ther to the puncture or to shaded areas containing

at least three edges. If a shaded area contains k � 3edges, it gives rise to a singularity of index 1 � k2 .For the proofs of these statements, see [Bestvina andHandel 1992].Since the sum of the indices of all singularitiesequals the Euler characteristic of the surface withthe puncture closed, we can compute the index ofthe singularity at the puncture, if any. Moreover,the singularities of the two foliations are �xed pointsor periodic points of the pseudo-Anosov homeomor-phism in question. There are more periodic pointsthan just the singularities of the foliations| in fact,the set of periodic points of a pseudo-Anosov homeo-morphism is dense, see [Fathi et al. 1979, expos�e 9,proposition 18].In the following examples, Sg is a surface of genusg with one puncture, and Dc denotes the Dehn twistwith respect to a curve c, which will always be oneof the curves from Figure 1. All the results in thefollowing paragraphs were computed by the softwarepackage, the only input being the genus of the sur-face and a sequence of Dehn twists.
Example 4.1 (maximal index I). Consider the map h :S2 ! S2 given byh = Da1Dc0Dd0Da1Dd1Da1 :By using the algorithm from [Bestvina and Handel1992], the software concludes that h is a pseudo-Anosov homeomorphism with growth rate� � 1:722084:A train track for h is shown in Figure 2. None ofthe shaded areas gives rise to a singularity of thestable or unstable foliation, so the puncture is theonly singularity, and its index is �2.
Example 4.2 (maximal index II). Let h : S2 ! S2 begiven by h = D�1a1 Dd1D�1c0 Dd0 :Then h is a pseudo-Anosov homeomorphism withgrowth rate � � 4:390257. Figure 3 shows the cor-responding train track. The unique shaded area inFigure 3 contains six edges, so it gives rise to a sin-gularity p of index �2. We conclude that there isno singularity at the puncture.
Example 4.3 (minimal index). Let the homeomorphismh : S2 ! S2 be given by h = Da0D�1c0 Dd0D�1d1 . Then
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FIGURE 2. Train track for Example 4.1.
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FIGURE 3. Train track for Example 4.2.h is a pseudo-Anosov homeomorphism with growthrate � � 2:015357. Figure 4 shows the correspond-ing train track. The shaded areas labeled 0, 1, 3, 4give rise to singularities of index � 12 , which showsthat there is no singularity at the puncture. The sin-gularities 0 and 4 as well as 1 and 3 are exchangedby h.

Example 4.4 (genus 3). Let h : S3 ! S3 be given byh = Dd0Dc0Dd1Dc1Dd2D�1c2 :
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FIGURE 4. Train track for Example 4.3.Then h is a pseudo-Anosov homeomorphism withgrowth rate � � 2:042491. Figure 5 shows the cor-responding train track. The shaded areas labeled0, 2 give rise to singularities of index �2, and theyare exchanged by h. There is no singularity at thepuncture.
0

1

2 A

B

D

F

G

H
a

b
c

d
e
f

g h
FIGURE 5. Train track for Example 4.4.
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Example 4.5 (a reducible example). Finally, considerh : S2 ! S2 de�ned byh = Dd0Dc0Dd1 :Then h is reducible since the complement of thecurves d0, c0, and d1 is not a (punctured) disc, andin fact the software reaches the same conclusion.
5. IMPLEMENTATIONThe complete online documentation of the softwarepackage, including a user manual and the sourcecode, is available with the software (see last sec-tion, on Electronic Availability). Here we restrictourselves to a brief discussion of the main imple-mentation issues. For the most part, we take thepoint of view of mathematics rather than that ofcomputer science.
5A. Encoding of EmbeddingsFor the rest of this discussion, it will be advanta-geous to think of punctures as being distinguishedpoints of closed surfaces. Given a closed surfaceS with a distinguished point p and a �nite graphG � S homotopy equivalent to S � fpg, we need ane�cient way of encoding the embedding of G in S.To this end, consider a loop �0 around p. �0 is homo-topic to a closed edge path � in G that crosses everyedge of G twice, once for each direction (assumingthat G has no vertices of valence one). Conversely,givenG and �, we can reconstruct S: We simply takea polygon P with 2n sides, where n is the numberof edges of G, and interpret � as an identi�cationpattern on the boundary of P . Moreover, we cantriangulate P (and hence S) by �xing a point p inthe interior of P and connecting p to all the verticesin the boundary of P . Hence, we see that G and �give us an e�cient way of encoding the embeddingof G in S along with a triangulation of S.
5B. Finding a MetricNow, given a triangulation � of S, we want to �nda hyperbolic metric on S with the property that theedges of � are geodesic segments. There are vari-ous ways to accomplish this; see [Colin de Verdi�ere1991], for example. Our method of choice is a specialcase of Thurston's circle packing [Thurston 1979]:Given a surface S with a hyperbolic metric � and

with a triangulation � whose edges are geodesic seg-ments, there is a collection of circles centered atthe vertices of � such that no two circles intersecttransversally and two vertices of � are connected byan edge if and only if their corresponding circles aretangent. For each triangulation, there exists exactlyone such set of circles, and their radii can be com-puted numerically. Moreover, they uniquely deter-mine �. Hence, circle packing gives us an e�ectiveway of drawing S as a polygon (with identi�cationson the boundary) in the hyperbolic plane.
5C. PhilosophyThe package takes advantage of many features ofthe object-oriented paradigm, such as data encap-sulation and reusability. For example, the class thatimplements maps of graphs does not allow direct ac-cess to its contents; the other parts of the packageoperate on such maps through a small and well de-�ned set of methods, which results in ease of main-tenance and great exibility.The mathematical part of the package consistsof 16 classes, reecting increasing levels of special-ization. Some of them, like the implementation ofthe train track algorithm from [Bestvina and Han-del 1995], will only be used in the context of thispackage. Others, like the collection of methods forcomputations and drawings in the hyperbolic plane,have been designed with other uses in mind. In fact,the package presented here does not even use all themethods de�ned in this collection.Finally, the classes and methods handling mapsof graphs may be useful beyond the context of thisarticle. For example, the author has already usedthem for a tentative implementation of some of thealgorithms in [Stallings 1983].
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ELECTRONIC AVAILABILITYThe software package, written in Java, is availablefree at http://www.math.utah.edu/~brinkman. Anolder version of the package, written in ANSI-C,is also available. Both versions are portable andshould run on most systems.
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