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The identity
(64—85)°—4176)"—2880 = (*— 1)’ —72)(x’—112)(*—13?),

discovered by R. E. Crandall, allows the evaluation of a product
of 8 integers by a succession of 3 squares and 3 subtractions.
The question arises whether there exist formulas like Crandall’s
with more than 3 nested squares. It will be shown that this is not
the case; however, there are infinitely many formulas of length 3.

1. INTRODUCTION

Crandall [1996, p. 109] found the following interest-
ing identity:

(2 —85)% — 4176)” — 2880
= (z° — 1*)(2* — 7*)(z® — 11*)(2* — 13%). (1-1)

The potential significance of this identity, which re-
sembles Horner’s scheme for polynomial evaluation,
lies in that a product of eight integers on the right
of (1-1) can be evaluated as a succession of three
squares and three subtracts.

Crandall [1996, p. 109] also asks whether there ex-
ist formulas like (1-1) with more than three (say k)
nested squares which would produce a product of 2*
integers, or linear factors of the form z +a;, a; € N.
Such formulas would have important consequences
for the fast computation of factorials, with further
consequences in the field of factorization, etc. (For a
general discussion of factorial evaluation, see [Cran-
dall 1996; Crandall et al. 1997].)

It is the main purpose of this note to show that
such larger formulas cannot exist; this will be done
in Section 3. However, we will first see, in Section
2, that it is easy to give infinitely many formulas
of type (1-1), by means of sums of squares. By
multiplying two or three such formulas together, one
can obtain expressions for products of a relatively
large number of integers in arithmetic progression.
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2. NESTED SQUARES OF LENGTH 3

The left-hand side of (1-1) can be factored in an
obvious way. In fact, the two parts thus obtained
can likewise be factored, and we get

((* —85)>—4176)” — 2880 =
= ((«* —85)* —4176+2880) ((x* —85)* — 4176 — 2880)
= ((2*—85)*—36) ((«* —85)* —84?)
= (22-85+36) (2% —85—36) (22 —85+84) (22 —85—84)
= (2% -7%)(2® = 11%)(2* — 1?)(2* - 13?).
Note that 724112 = 124132 = 2-85. This indicates
that we should get a similar formula whenever an

even number can be written as a sum of 2 squares
in at least two ways. Indeed: we have

Proposition 1. Suppose the even number n can be writ-
ten in two different ways as a sum of two squares,
say

n=aj+b2 =aj;+ b

Then

<x2— ﬁ)Q_ (n_Q_ a§b§+a§b§> : (agbg—agzﬁ)z
2 4 2 2

= (z°—a7)(2” =b})(¢” —a3) (2" = b3). (2-1)

This can be verified by simple calculation, just as in
the example above. Also note that

2 272 | 272
n asbs + aiby

4 2
and

= H(at — 57 + (a3 - )

272 272
asb; — ajbi

L R D

To obtain examples for (2-1), we let No(n) be the
number of integral solutions (z,y) of 2> + y?> = n
with x > 0 and y > 0. Then it is well-known that

H (14 ord,(n))

p=1(4)

Niy(n) = (2-2)

if there are solutions at all, i.e., if prime factors p = 3
(mod n) of n occur only to even powers (see [Ireland
and Rosen 1990, p. 279], for example). Note that
in (2-2), (z,y) and (y,z) for x # y count as two
different solutions. This means that the smallest
even n with two “essentially different” solutions, i.e.,
with Ny(n) =4, is n =2-5-13 = 130, the next one
being n = 2-5-17 = 170. Since 170 = 12 + 132 =
7% + 112, (2-1) specializes to (1-1) in this case. For

n = 130 = 32 + 112 = 7% + 92 we get the smaller
example

(2 — 65)% — 1696) " — 1440°

= (2° = 3*) (2> = 7*)(2® — 9*)(2® — 11%).  (2-3)
Table 1 shows the six smallest values of even n with
two different representations, along with the solu-
tions aq, as, by, by. It lists only those representations
for which all the a;, b; are distinct and nonzero, and
have no factors in common. (Otherwise the right-
hand side of (2-1) would have repeated factors, or
(2-1) could be reduced to an equivalent formula with
smaller coefficiencts).

n ai, a2, bQ, b1 A B
130 | 3, 7, 9,11 1696 1440
170 1, 7,11,13 4176 2880
250 5, 9,13, 15 5968 4032
200 | 1,11,13,17 | 10656 10080
370 3, 9,17, 19 20896 10080
410 | 7,11,17,19 | 15696 8640

TABLE 1. The six smallest values of n that have two
nontrivially distinct representations as a sum of two
squares, n = a3 +b? = a3 +b3. The last two columns
give the values of A = in? — 1(a3b3 + afb}) and
B = 1(a3b} — a}b?) in formula (2-1).

We see from Table 1 that if we multiply the for-
mulas for n = 250 and for n = 410, we obtain

(x—19)(x—17)...(z=5)(z+5)(z+7)...(z+19).

This can be completed to form a product of 20 inte-
gers in arithmetic progression by way of the identity

(x = 3)(z —1)(z+ 1)(z +3) = (z* — 5)* — 16,
which is a special case of a shorter and less interest-

ing analogue of (2-1).

3. NESTED SQUARES OF LENGTH 4

If we follow the construction that led to (2-1), it
is clear that we need two more distinct solutions of
n = x% + 9%, say

n =a; + b3 =aj +b;.



Then we obtain an exact analogue of (2-1), with
subscripts 3 and 4 instead of 1 and 2. Now in order
for the two to combine to give a formula of the form

(RO R R ) (!

Jj=1

3-1)

for integers A, B,C,cy,...,cs, it is necessary (and

sufficient) that

n?  a3bj +aib? _ n®  a3bj +a3b3
4 2 4 2 ’
or, equivalently,
aib? + a3bs = alb: + aib:. (3-2)

Our aim is to show that (3-2) cannot have a solution
inap,...,a4,by,...,by with a? +b? = n for i =
1,...,4. To do this, we define the difference

d := alb? + ajb; — a3b; — a3b;. (3-3)
Note that d is not uniquely determined but depends
on how the four solutions (a;, b;) of n = x* + y? are
combined to give the formulas (2-1) and its analogue
with subscripts 3 and 4. In fact, up to sign, we get
three different values of d by combining the four
terms according to the patterns

==, +—t+—, +——+.
However, the nonvanishing of d is independent of
this. In fact:

Proposition 2. No quadruple {(a;,b;), i =1,...,4} of
distinct solutions of n = x* + y* satisfies (3-2).

Proof. By (2-2) we can write n = nyn,, where n, has
at least one representation n, = a? + b? and n, has
at least two essentially distinct representations

ny=c +di =c;+ds, (3-4)

which combine, by way of the well-known formula
(a®+ %) (3 + d3) =

(CLC]‘ + bdj)2 + (adj F ij)2,

to give the four solutions (a;,b;) of the proposition.
Hence with (3-3) we get
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d = ((acy+bdy)(ady —bey))”
+ ((acl —bdy)(ad,+bey)
— ((acz +bdy)(ady —bey)
— ((acz —bdy)(ads+bey)
&2
1

= (e1dyi(a® —b%)—ab(c; —

),
)2
)
@)

2

)
@)

+ (e1dy (a® —b%) +ab(c; —d3)
—(Cde(a —b*)—ab(c;— 2))

— (cads(a®—b%) +ab(c3— dg))

= 2cid3(a* —b*)+2a*b*(c3 —d?)

—2c2d3(a*—b%)* —2a°b*(c3—d3)?
— 222 (a2 +b°)2 42026 (2 + d)? — 16a2bP 2 d?
—2c3d;(a”+b%) —2a’b*(c3+d3) +16a>b*cyd;
= 2(c3d; —c3d37)(8a’b® —n3).

Now we have 2d? # c3d3, since otherwise the two
representations in (3-4) would be the same. Also,

8a’b”> —ni #0

since both 4a®b* and n32 are squares while 2 is not.
Hence d # 0, which completes the proof. O

4. CONCLUDING REMARKS

1. Although a formula of the type (3-1) is not pos-
sible, there are formulas that are “close” to (3-1)
in the following sense: If the even integer n has
four essentially distinct representations as sum of
two squares, then it is not difficult to show, using
the methods of this note, that a product of 16 linear
factors (as on the right of (3-1)) can be written as
nested squares of length four (as on the left of (3-1)),
plus a certain polynomial of degree four with integer
coeflicients, as “error term”.

2. More generally, given 2" essentially different re-
spresentations of n, a product of 2¢*2 linear factors
can be written as nested squares of length k42, with
an error term of degree 2¢*2 — 12. These formulas,
however, become increasingly unpleasant.

3. The differences d, as defined in (3-3), have some
interesting arithmetical properties. For instance, it
can be shown that d is always divisible by 1152 =
27 .32, and by 28800 = 27 - 32 - 52 whenever 5 does
not divide n.



372 Experimental Mathematics, Vol. 9 (2000), No. 3

REFERENCES C. Pomerance, “A search for Wieferich and Wilson

primes”, Math. Comp. 66:217 (1997), 433—449.
[Crandall 1996] R. E. Crandall, Topics in advanced sci-

entific computation, TELOS, The Electronic Library [Ireland.and. Rosen 1'990] K. Ireland and M. Rosen, A
of Science, Springer, New York, 1996. classical introduction to modern number theory, 2nd

ed., Graduate Texts in Math. 84, Springer, New York,
[Crandall et al. 1997] R. Crandall, K. Dilcher, and 1990.

Karl Dilcher, Department of Mathematics and Statistics, Dalhousie University, Halifax, Nova Scotia, B3H 3J5,
Canada (dilcher@mathstat.dal.ca)

Received August 27, 1999; accepted in revised form October 31, 1999



