
Computing Hecke Eigenvalues

Below the Cohomological Dimension
Paul E. Gunnells

CONTENTS

1. Introduction

2. Background

3. Modular Symbols

4. One-Sharblies

5. Experiments

Acknowledgements

References

The author was partially supported by a Columbia UniversityFaculty Research grant and NSF Grant DMS 96{27870.AMS Subject Classi�cation: 11F67, 11F75, 11H55, 11Y16Keywords: Hecke operators, cohomology of arithmetic groups,modular symbols, sharbly complex, automorphic forms,LLL-reduction, Voronoi-reduction

Let
L

be a torsion-free finite-index subgroup of SLn(Z ) or GLn(Z ),

and let � be the cohomological dimension of
L

. We present an

algorithm to compute the eigenvalues of the Hecke operators on

H��1(
L

;Z ), for n = 2, 3, and 4. In addition, we describe a mod-

ification of the modular symbol algorithm of Ash and Rudolph

for computing Hecke eigenvalues on H� (
L

;Z ).

1. INTRODUCTION

1.1. Let � be a �nite-index subgroup of SLn(Z ) orGLn(Z ), and let M be a Z�-module. The groupcohomology H�(�;M) plays an important role innumber theory, through its connection with auto-morphic forms and representations of the absoluteGalois group. For an introduction to this conjec-tural framework, see [Ash 1992a].For n = 2 and � a congruence subgroup, the arith-metic nature of H�(�;M) has been decisively con-�rmed [Shimura 1971]. For higher dimensions thepicture is mysterious, although several compellingexamples for n = 3 have appeared recently in theliterature. In [Ash et al. 1991], rational cohomologyclasses of certain � � GL3(Z ) are related to mod-ular Galois representations. Many more examplesof this phenomenon appear in [Ash and McConnell1992]. In [van Geemen and Top 1994; van Geemenet al. 1997], rational cohomology classes of certaincongruence groups are related to the Hasse{Weilzeta functions of certain surfaces. Finally, in [Al-lison et al. 1998] torsion classes in the cohomologyof � = GL3(Z ) with twisted coe�cients are linkedto modular Galois representations, and in [Ash andTiep 1997] the arithmetic nature of many of theseclasses is proven.
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1.2. In all cases, the arithmetic signi�cance ofH�(�;M)is revealed through the Hecke operators. These areendomorphisms of the cohomology associated to cer-tain �nite-index subgroups of �. The eigenvalues ofthese linear maps provide a \signature" for the coho-mology, which one hopes can be matched to number-theoretic data. Thus to test these conjectures, or tosearch for counterexamples, it is crucially importantto be able to compute Hecke eigenvalues.
1.3. In general, computing these eigenvalues is a dif-�cult problem. Essentially the only technique avail-able in the literature is the modular symbol algo-rithm (Section 3.1), due to Manin [1972] (in the casen = 2) and Ash and Rudolph [1979] (for n � 3). Us-ing this algorithm one can compute the Hecke actionon H�(�;M), where � is the cohomological dimen-sion of �. That is, � is the smallest number suchthat H i(�;M) = 0 for i > � and any M.In particular, if � � SL3(Z ) or GL3(Z ), then� = 3. This is the focus of [Ash et al. 1991; Ash andMcConnell 1992; van Geemen and Top 1994; vanGeemen et al. 1997; Allison et al. 1998; Ash andTiep 1997]. For certain congruence groups �, thegroups H3(�; Q ) and H2(�; Q ) contain cuspidal co-homology classes [Ash et al. 1984]. In a certain sensethese classes are the most interesting constituents ofthe cohomology. A Lefschetz duality argument [Ashand Tiep 1997, Theorem 3.1] shows that the cuspi-dal eigenclasses in H2(�; Q ) have the same eigenval-ues as those in H3(�; Q ), and therefore the modularsymbol algorithm su�ces to compute Hecke eigen-values in this dimension.Now suppose � � SL4(Z ), so that � = 6. Inthis case H6(�; Q ) does not contain cuspidal classes,and one is interested in H5(�; Q ). Again one wantsto compute Hecke eigenvalues, and since Lefschetzduality relates H6 to H3 and not H5, the modularsymbol algorithm doesn't apply. Thus one has thenatural problem of devising an algorithm for thiscontext.
1.4. The purpose of this article is to describe analgorithm that| in practice|allows computationof the Hecke action on H��1(�;Z ), where � is atorsion-free subgroup of SLn(Z ) or GLn(Z ), and n �

4. We emphasize that the phrase \in practice" is tobe taken literally.Let us be more precise. To represent elementsof H��1(�;Z ), we use chains in the sharbly com-plex S� (Section 2.5). The sharbly complex (whosename was introduced by Lee Rudolph, in honor ofthe authors of [Lee and Szczarba 1976]) is a com-plex of in�nite �-modules such that the homologyof the complex of coinvariants (S�)� is naturally iso-morphic to H�(�;Z ). Furthermore, S� has a natu-ral Hecke action (Section 2.10) that passes to (S�)�.Hence the sharbly complex provides a convenientsetting to study the cohomology as a Hecke module.Both S� and (S�)� are in�nitely generated, whileH�(�;Z ) is �nitely generated. Hence, for practi-cal computations, we must identify a �nite subsetof (S�)� that spans the cohomology. For n � 4and H��1, a spanning set is provided by the reducedsharblies (Section 4), which form a subcomplex ofS�. Unfortunately, the Hecke operators do not pre-serve this subcomplex. Thus to compute eigenval-ues, we must describe an algorithm that writes ageneral sharbly cycle as a sum of reduced sharblycycles.
1.5. So suppose � is a sharbly cycle mod � repre-senting a class in H��1(�;Z ). There is a functionk k : S� ! Z such that � is reduced if and only ifk�k = 1 (De�nition 3.2). Algorithm 4.13 describesa process that takes � as input and produces a cy-cle �0 homologous to � in (S�)�. Geometrically, thealgorithm acts by applying the modular symbol al-gorithm simultaneously over all of �. Of course, tobe useful for eigenvalue computations, we want thatif k�k > 1, then k�0k < k�k.We cannot prove that the output �0 will satisfythis inequality. However, for n � 4|the cases ofpractical interest|this inequality has always held.More precisely, in computer experiments (Section5) with both random data and 1-sharbly cycles forn � 4, Algorithm 4.13 has always successfully writ-ten a general 1-sharbly cycle as a sum of reduced1-sharbly cycles. Currently we are applying Algo-rithm 4.13 in joint work with Avner Ash and MarkMcConnell to decompose H5(�; Q ) as a Hecke mod-ule for certain congruence groups � � SL4(Z ) [Ashet al. 2000]. Details of these computations will ap-pear in a later publication.
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1.6. Here is a guide to this paper. In Section 2 werecall the topological and combinatorial backgroundnecessary for computing H�(�;Z ). We discuss thereduction theory due to Voronoi [1908] and the shar-bly complex, as well as the Hecke operators andhow they interact with the sharbly complex. In Sec-tion 3 we recall the modular symbol algorithm, anddescribe two new conjectural techniques to imple-ment it (Conjectures 3.5 and 3.9). These techniqueslink the modular symbol algorithm to Voronoi re-duction and LLL-reduction, and are conjectured tobe true in all dimensions. We also include proofs ofthe conjectures in special cases. Then in Section 4we present Algorithm 4.13 and prove that, given asharbly cycle � mod � as input, the output �0 is ahomologous cycle mod � (Theorem 4.15). We alsodiscuss conditions under which we expect k�0k < k�k(Conjecture 4.18). Finally, in Section 5, we describeexperiments we performed to generate evidence forConjectures 3.5, 3.9, and 4.18.
2. BACKGROUNDIn this section we describe the topological tools weuse to study H�(�;Z ): the Voronoi polyhedron andthe sharbly complex. We present these objects inthe context of � � SLn(Z ). However, all of what wesay applies with minor modi�cation to � � GLn(Z ).
2.1. Let V be the R -vector space of symmetric n�nmatrices, and let C � V be the cone of positive-de�nite matrices. The linear group G = SLn(R )acts on C by (g; c) 7! g � c � gt, and the stabilizer ofany given point is isomorphic to SOn.Let X be C mod homotheties. The G-action onC commutes with the homotheties and induces atransitive G-action on X. The stabilizer of any�xed point of X is again SOn. After choosing abasepoint, we may identify X with the global Rie-mannian symmetric space SLn(R )=SOn, which is acontractible, noncompact, smooth manifold of realdimension N = 12n(n+1)� 1.The group SLn(Z ) acts on X via the G-action,and does so properly discontinuously. Hence if � �SLn(Z ) is any torsion-free subgroup, the quotient�nX is a real noncompact manifold, and is an Eilen-berg{Mac Lane space for �. We may then identifythe group cohomology H�(�;Z ) with H�(�nX;Z ).

Although the dimension of �nX is N , it can beshown that H i(�nX;Z ) = 0 if i > N � n+ 1 [Boreland Serre 1973, Theorem 11.4.4]. The number � =N�n+1 is called the cohomological dimension of �.
2.2. Recall that a point in Z n is said to be primitiveif the greatest common divisor of its coordinates is1. In particular, a primitive point is nonzero. LetP � Z n be the set of primitive points. Any v 2 P,written as a column vector, determines a rank-onequadratic form q(v) 2 �C by q(v) = v � vt.
Definition 2.3. TheVoronoi polyhedron � is the closedconvex hull of the points q(v), as v ranges over P.Note that, by construction, SLn(Z ) acts on �. Thecones over the faces of � form a fan V that induces a�-admissible decomposition of C [Ash 1977, p. 117].Essentially, this means that � acts on V; that eachcone is spanned by a �nite collection of points q(v)where v 2 P; and that mod � there are only �nitelymany orbits in V. The fan V provides a reductiontheory for C in the following sense: any point x 2 Cis contained in a unique � 2 V.Given � 2 V, let vert� be the set of all v 2 Psuch that q(v) is a vertex of the face of � generating�. For later use, we record the following theorem ofVoronoi:
Theorem 2.4 [Voronoi 1908]. Let E be the standardbasis of Z n, and let � be the cone spanned by then(n + 1)=2 points q(ei) and q(ei � ej), where ei 2E and 1 � i < j � n. Then � occurs as a top-dimensional cone in V for all n.
2.5. We now discuss an algebraic tool to computeH�(�;Z ). The material in this section closely fol-lows [Ash 1994].Recall that the Steinberg module St(n) is the Z�-module H�(�;Z�).
Theorem 2.6 [Ash 1994]. The Steinberg module isisomorphic to the module of formal Z -linear com-binations of the elements [v1; : : : ; vn]�, where eachvi 2 Q n is nonzero, mod the relations :
1. If � is a permutation on n letters , then[v1; : : : ; vn]� = sgn(�)[�(v1); : : : ; �(vn)]�;where sgn(�) is the sign of � .
2. If q 2 Q �, then [qv1; v2; : : : ; vn]� = [v1; : : : ; vn]�.



354 Experimental Mathematics, Vol. 9 (2000), No. 3

3. If the vi are linearly dependent , then[v1; : : : ; vn]� = 0:
4. If v0; : : : ; vn are nonzero points in Q n, thenXi (�1)i[v0; : : : ; v̂i; : : : ; vn]� = 0:
By Borel{Serre duality [1973, x 11.4], if � is torsion-free, then for any Z�-module M we have a naturalisomorphism� : Hk(�;M) �! H��k(�; St(n)
M): (2–1)Hence one may compute H�(�;Z ) by computing thehomology of a Z�-free resolution of St(n)
Z . Sucha resolution is provided by the sharbly complex.
Definition 2.7 [Ash 1994]. The sharbly complex is thechain complex fS�; @g given by the following data:
1. For k � 0, Sk is the module of formal Z -linearcombinations of elementsu = [v1; : : : ; vn+k];where each vi 2 P, mod the relations:

a. If � is a permutation on (n+ k) letters, then[v1; : : : ; vn+k] = sgn(�)[�(v1); : : : ; �(vn+k)];where sgn(�) is the sign of � .
b. If q = �1, then[qv1; v2 : : : ; vn+k] = [v1; : : : ; vn+k]:
c. If the rank of the matrix (v1; : : : ; vn+k) is lessthan n, then u = 0.

2. The boundary map @ : Sk ! Sk�1 is[v1; : : : ; vn+k] 7�! n+kXi=1 (�1)i[v1; : : : ; v̂i; : : : ; vn+k]:The elements u = [v1; : : : ; vn+k] are called k-shar-blies. A 0-sharbly is also called a modular symbol.By abuse of notation, we will often use the samesymbol u to denote a k-sharbly and the k-sharblychain 1 �u. The obvious left action of � on S� com-mutes with @.
Proposition 2.8 [Ash 1994]. The complex fS�; @g isa Z�-free resolution of St(n), with the map S0 !St(n) given by u 7! u�.For any k � 0, let (Sk)� be the module of �-coinvari-ants. This is the quotient of Sk by the relations ofthe form  � u � u, where  2 �, u 2 Sk. This is

also a complex with the induced boundary, which wedenote by @�. Proposition 2.8 and (2{1) imply thatHk(�;Z ) is naturally isomorphic to H��k((S�)�).
2.9. Now we recall the de�nition of the Hecke oper-ators. More details can be found in [Shimura 1971,Chapter 3].Fix an arithmetic group � � SLn(Z ). Given g 2GLn(Q ), let �g = g�1�g and �0 = � \ �g. Then[� : �0] and [�g : �0] are �nite. The inclusions �0 ! �and �0 ! �g determine a diagram�0nX

	����
�s @@@@@t R�nX �nXHere s(�0x) = �x and t is the composition of �0x 7!�gx with left multiplication by g. This diagram isthe Hecke correspondence associated to g. It canbe shown that, up to isomorphism, the Hecke corre-spondence depends only on the double coset �g�.Because the maps s and t are proper, they inducea map on cohomology:Tg := t�s� : H�(�nX;Z )! H�(�nX;Z ):This is the Hecke operator associated to g. We letH� be the Z -algebra generated by the Hecke opera-tors, with product given by composition.For an example, let � = SLn(Z ). Then H� de-composes as a tensor productH� = Op primeHp:

Each Hp is a polynomial ring generated by the dou-ble cosetsTp(k; n) = �diag(1; : : : ; 1; p; : : : ; p| {z }k ) �: (2–2)

2.10. Now let u 2 Hk(�;Z ) be a cohomology class.Choose g 2 GLn(Q ), and let Tg 2 H be the Heckeoperator associated to g. We want to explicitly de-scribe the action of Tg on u in terms of the sharblycomplex.Choose � 2 Sk such that � is a cycle mod � and��1(�) = u. Write � = Pn(u)u, where n(u) 2 Z ,
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and almost all n(u) = 0. The double coset �g�decomposes as �g� =ah2I �hfor some set I � GLn(Q ). Note that I is �nite. Wehave a map Sk ! Sk given byTg : � 7�!Xh2I n(u)h � u: (2–3)

One can show that the right-hand side of (2{3) isa well-de�ned cycle mod �, and that under � thiscycle passes to Tg(u).In general, I 6� SLn(Z ). Thus the Hecke operatorsdo not preserve the subcomplex of S� generated byV.
3. MODULAR SYMBOLSIn this section we recall the Ash{Rudolph modularsymbol algorithm and present our conjectural im-plementations of it.
3.1. Let � be a k-sharbly chain, and write� =Xn(u)u;where n(u) 2 Z and almost all n(u) = 0. Letsupp � be the set of k-sharblies fu j n(u) 6= 0g. LetZ(�) be the set of all modular symbols that appearas a submodular symbol of some u 2 supp �. Inother words, v 2 Z(�) if and only if there is a u =[v1; : : : ; vn+k] 2 supp � such that v = [vi1 ; : : : ; vin ]for fi1; : : : ; ing � f1; : : : ; n+ kg.
Definition 3.2. Given any modular symbolv = [v1; : : : ; vn];let kvk = jdet(v1; : : : ; vn)j:We extend this to k k : Sk ! Z by settingk�k = Maxv2Z(�)�kvk	:We say � is reduced if k�k = 1. In the special casethat � = v is a modular symbol, we say that � is aunimodular symbol.Note that k k is well-de�ned modulo the relationsin De�nition 2.7.The reduced k-sharbly chains form a �nitely gen-erated subgroup of (Sk)�. In general, the image of

this subgroup under the map Sk ! H��k(�;Z ) doesnot generate. However, we have the following result:
Theorem 3.3 [Ash and Rudolph 1979]. The restrictionof S0 ! H�(�;Z ) to the subgroup generated by theunimodular symbols is surjective.
Proof. We present the proof of [Ash and Rudolph1979]. It su�ces to show that any modular sym-bol is equivalent mod @S1 to a sum of unimodularsymbols.Let v = [v1; : : : ; vn], and suppose that kvk > 1.Let w 2 Z n be any point not in the lattice generatedby the vi. (Such a point exists since kvk > 1.) Let vibe the modular symbol obtained by replacing vi withw in v. Applying relation (4) from Theorem 2.6, wehave v =X(�1)i+1vi (3–1)in S0=@S1. We claim w can be modi�ed so that 0 �kvik < kvk, and at least one vi satis�es kvik 6= 0.This proves the theorem, because after repeating theargument �nitely many times, we can write v as asum of unimodular symbols.To prove the claim, write w = P qivi, whereqi 2 Q . We have kvik = jqijkvk. If we modifyw by subtracting integral multiples of the vi, we canensure 0 � jqij < 1. Furthermore, at least one qi 6= 0since w was originally chosen not to lie in the latticegenerated by the vi. �
3.4. Given a modular symbol v, the set of candi-dates of v is the setcandv = �w 2 Z n �� w 6= 0 and w =P qivi,where 0 � jqij < 1	:The set candv contains exactly the points that maybe used to construct the homology (3{1) so that theresulting modular symbols are closer to unimodu-larity.For application of Theorem 3.3 to Hecke eigen-value computations, we need to construct a candi-date for any v with kvk > 1. We now discuss twoconjectural ways to do this. These are useful forthree reasons:
1. The conjectures will play an important role inour algorithm to compute the Hecke action onH��1(�;Z ).
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2. The candidates produced by these methods aree�cient in practice, in the sense that kvik from(3{1) will be much smaller than kvk.
3. Conjecture 3.9 provides an explicit polynomial-time implementation of the modular symbol al-gorithm.Write v = [v1; : : : ; vn], and let b(v) be the pointP vivti . One can show b(v) 2 C since kvk 6= 0.Recall that if � 2 V, then vert� � P is the set ofprimitive points corresponding to the face of � thatgenerates � (Section 2.2).
Conjecture 3.5. Let v be a modular symbol with kvk >1. Let � 2 V be a top-dimensional cone containingb(v). Then candv \ vert� 6= ?:
Remark 3.6. The cone � can be computed using theVoronoi reduction algorithm [Voronoi 1908, x 27�].
3.7. Although geometrically attractive, the use ofConjecture 3.5 in practice su�ers from two disad-vantages. First, to the best of our knowledge, thecomplexity of the Voronoi reduction algorithm is un-known. Second, the structure of � is di�cult to de-termine.1 An alternative uses LLL-reduction, whichwe now recall.
Definition 3.8 [Cohen 1993, Section 2.6]. Let B =fb1; : : : ; bng be an ordered basis of R n, and let B� =fb�1; : : : ; b�ng be the orthogonal (not orthonormal) ba-sis obtained from B using the Gram{Schmidt pro-cess. Let�i;j = (bi � b�j )=(b�j � b�j); where 1 � j < i � n:Then B is LLL-reduced if the following inequalitieshold:
1. j�i;j j � 1=2, for 1 � j < i � n.
2. jb�i + �i;i�1b�i�1j2 � (3=4)jb�i�1j2.Furthermore, a quadratic form is said to be LLL-reduced if it is the Gram matrix of an LLL-reducedbasis.1 However, for n � 4, the structure of � is well understood. Anelegant technique to index the faces using con�gurations in projec-tive space (in the sense of [Hilbert and Cohn-Vossen 1952]) can befound in [McConnell 1991]. To the best of our knowledge, the com-plete structure of � is unknown for any other n, although muchis known for 5 � n � 8 (see [Conway and Sloane 1988] and thereferences there).

We emphasize that the basis B in De�nition 3.8 isordered. Changing the order of B changes B�, whicha�ects the conditions of the de�nition.
Conjecture 3.9. Let v be a modular symbol with kvk >1, and suppose that b(v) is an LLL-reduced quad-ratic form. Let E be the standard basis for Z n. Thencandv \ E 6= ?:
Remark 3.10. To apply Conjecture 3.9 in practice,one �nds a matrix  2 GLn(Z ) such that b( � v) isLLL-reduced, and then a candidate for v will be in�1E.
3.11. We can prove the conjectures in some cases.We begin by describing a geometric interpretationof what it means for w 2 E to be a candidate for v.Let v = [v1; : : : ; vn] be a modular symbol, and�x an ordering of the vi. Let A be the matrix withcolumns vi, and let B = fb1; : : : ; bng be the basismade up of the rows of A. Then one easily checksthat the quadratic form b(v) is the Gram matrix ofB.
Lemma 3.12. Let w = ek 2 E. For 1 � i � n, let vibe the modular symbol constructed from v and w asin (3{1). Also for 1 � i � n, let Bi � R n�1 be theset of (n�1) vectors obtained by projecting Brfbkginto Pi, where Pi is the span of E r feig. Then thefollowing statements are equivalent :
1. kvik < kvk for 1 � i � n.
2. volBi < volB for 1 � i � n.Here the volume in Pi is normalized so that the fun-damental domains of Z n � R n and Z n \ Pi eachhave volume 1.
Proof. We have kvk = volB = jdetAj. Furthermore,after choosing ek, we observe that kvik and volBiare the absolute value of the determinant of the same(n� 1)� (n� 1) minor of A. �
Lemma 3.13. Let v and B be as above, and assumekvk > 1. If jb�nj > 1, then en 2 candv.
Proof. First note that volB = Q jb�i j, since B� isorthogonal. Since jb�nj > 1 and volB = kvk > 1, wehave Yi<n jb�i j < volB:
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Now let Bi be the projection of B r fbng intothe coordinate hyperplane Pi, as in Lemma 3.12.Clearly volBi � Qi<n jb�i j. Hence by Lemma 3.12,kvik < kvk, and en 2 candv. �
Proposition 3.14. Suppose kvk > 1 and b(v) is a diag-onal quadratic form. Then Conjectures 3.5 and 3.9are true.
Proof. First we show that Conjecture 3.9 is true.Since b(v) is a diagonal quadratic form, we haveB = B�, and the �ij from De�nition 3.8 vanish.Thus volB = Q jbij > 1, and jbij � 1 for all i sinceB is integral.Assume �rst that B satis�es jbij � jbj j for i � j.This implies jbnj > 1, and by Lemma 3.13 we haveen 2 candv, and Conjecture 3.9 is true.Now drop the assumption that B is ordered by in-creasing lengths. We can multiply v by a permuta-tion matrix  so that B satis�es jbij � jbj j for i � j.This means that �1en 2 candv. Since �1en 2 E,Conjecture 3.9 follows.Finally, in this case Conjecture 3.9 implies Con-jecture 3.5. Since b(v) is diagonal, it lies in the cone� spanned by fq(e) j e 2 Eg. This cone is a properface of the cone � from Theorem 2.4, and henceb(v) 2 �. Since E � vert�, the result follows. �Using standard estimates on B and B�, we can �nda lower bound on kvk so that Conjecture 3.9 is true.
Proposition 3.15. Suppose that kvk > 2n(n�1)=2. ThenConjecture 3.9 is true.
Proof. We show that kvk > 2n(n�1)=2 guaranteesjb�nj > 1, which by Lemma 3.13 implies en 2 candv.According to [Cohen 1993, Theorem 2.6.2], B satis-�es Yj jbj j � kvkand jbj j � 2(n�1)=2jb�nj; for j = 1; : : : ; n.Hence 2n(n�1)=2jb�nj �Yj jbj j � kvk:Solving for jb�nj, we see kvk > 2n(n�1)=2 ensures thatjb�nj > 1, which proves the claim. �
Theorem 3.16. Conjecture 3.5 is true for n = 2 andn = 3.

Proof. We use Lemma 3.13 and direct investigationof the reduction domains. First we recall some factsabout reduction theory in these dimensions. Forconvenience we use GLn(Z ) instead of SLn(Z ).For n � 3 the cone � from Theorem 2.4 is theonly top-dimensional Voronoi cone modulo GLn(Z ).According to [Conway and Sloane 1992], b(v) 2 � ifand only if B is an obtuse superbase. By de�nition,this means the following. Let b0 = �P bi, and let�B = B [ fb0g. Then �B satis�esbi � bj � 0 for 0 � i < j � n:The set � \ C is not a fundamental domain forGLn(Z ) acting on C. In fact, the stabilizer �(�) �GLn(Z ) is a �nite group, which for n = 2 has order6 and for n = 3 has order 24. By placing addi-tional conditions on the basis B, we can describe afundamental domain T for �(�) acting on �.First we consider the case n = 2. The cone �is a 3-dimensional cone inside the cone �C, and isspanned by q(e1), q(e2), and q(e1 � e2). Figure1 shows a 2-dimensional a�ne slice of �C, with �divided into fundamental domains for �(�). Theshaded region T is half of the classical fundamentaldomain for SL2(Z ) acting on C.

1 0
�1T

FIGURE 1. Two-dimensional a�ne slice of �C.Now we claim that if b(v) 2 T and kvk � 2, thene2 2 cand(v). This implies the theorem for n = 2,because multiplying by elements of �(�) stabilizesvert�.To prove the claim, we present another way topicture bases in the region T . If B = (b1; b2), thenb(v) 2 T if and only if B appears as in Figure 2. Inthis �gure, we have �xed b1, and b2 must be in thein�nite shaded region S that lies above the semicir-cle of radius jb1j. Points in S correspond to ways
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to complete b1 to an obtuse superbase satisfying theadditional inequalities jb0j � jb2j � jb1j:S b2

b1
FIGURE 2. Relative position of the elements of a basisB = (b1; b2) such that b(v) 2 T .Now consider the orthogonal basis B� constructedfrom B. We have b1 = b�1. It is easy to compute thatjb�2j � p3jb1j=2 for all b2 2 S, and that the minimumoccurs when b2 is at the lower left corner of S. Henceif jb1j � p2, we have jb�2j > 1, and by Lemma 3.13we have e2 2 candv.Since B is integral, the remaining possibility isjb1j = 1. However, this implies that b2 lies along theright edge of S, and hence b�2 = b2. If jb2j = 1, thenkvk = 1. Thus jb2j > 1 , and again e2 2 candv.This proves the theorem for n = 2.The argument for n = 3 is similar, although thereduction domain is more complicated. Now � is 5-dimensional, and the fundamental domain T can bedescribed as follows. As before, �x b1, and take b2to lie in the 2-dimensional region S from the n = 2case. Together b1 and b2 determine the Dirichlet-Voronoi domain pqrstu (see Figure 3). Let Z be theintersection of pqrstu withfx = �1b1 + �2b2 j x � b1 � 0; x � b�2 � 0g:Then if b(v) 2 T , the point b3 must lie in the 3-dimensional region consisting of the points on oroutside the hemisphere of radius jb2j that projectto Z. Figure 3 shows the basis B, and Figure 4shows Z for di�erent choices of b2. Altogether Tis a 5-dimensional family of obtuse superbases thatcan be described by additional inequalities similarto those for n = 2.We want to �nd conditions that imply jb�3j > 1,which will imply e3 2 candv. Clearly the minimumvalue of jb�3j occurs when jb1j = jb2j = jb3j. Thenfor any �xed b2, the value of jb�3j will be smallest

b3

b2b1
uts

pq r
FIGURE 3. The basis B in the case n = 3.

a c a c a=c
FIGURE 4. Schematics of Z for di�erent choices of b2.

when b3 projects to the vertices a or c of Z shownin Figure 4.So consider the set of bases satisfying
1. jb1j = jb2j = jb3j,
2. 0 � b1 � b2 � �jb1j2=2, and
3. b3 projects to either a or c in Figure 4.It is not di�cult to show that the minimal valueof jb�3j in this family occurs when a = c, or whenb1 � b2 = 0. For this basis, jb�3j = jb1j=p2. Hence ifjb1j > p2, we have e3 2 candv.The remaining cases are jb1j = 1 or p2. As forn = 2, it is straightforward, although tedious, tocheck that for any basis in T satisfying these condi-tions, we have either candv\vert� 6= ? or kvk = 1.�
Remark 3.17. For n = 4, there is only one othertype of top-dimensional Voronoi cone mod GL4(Z ),which corresponds to Voronoi's second perfect form[Voronoi 1908, x 34]. This cone corresponds to thelattice D4. We are not aware of a useful characteri-zation of the bases appearing in this cone.
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4. ONE-SHARBLIESIn this section we describe our technique to computethe Hecke action on H��1(�;Z ).
4.1. Let � = Pn(u)u be a k-sharbly chain, wheren(u) 2 Z , and almost all n(u) = 0. Recall that a k-sharbly is said to be reduced if and only if all its sub-modular symbols are unimodular (De�nition 3.2).In general the reduced k-sharblies do not spanH��k(�;Z ) (Section 5.9). However, according to[McConnell 1991], H��1(�;Z ) is spanned by reduced1-sharblies if � � SLn(Z ) and n � 4. Hence to com-pute the Hecke action on H��1(�;Z ) it su�ces todescribe an algorithm that takes as input a 1-sharblycycle � and produces as output a cycle �0 satisfying:
(a) The classes of � and �0 in H��1(�;Z ) are thesame.
(b) k�0k < k�k if k�k > 1.We will present an algorithm satisfying (a) in Al-gorithm 4.13; in Conjecture 4.18 we claim that thealgorithm satis�es (b) for n � 4. To simplify theexposition, in Sections 4.2{4.9 we describe the al-gorithm for n = 2. This case is arithmetically un-interesting|we are describing how to compute theHecke action on H0(�;Z )|but the geometry faith-fully reects the situation for all n. We defer pre-sentation for general n to Section 4.10.
4.2. Fix n = 2, let � 2 S1 be a 1-sharbly cyclemod � for some � � SL2(Z ), and suppose that �is not reduced. We want to construct a cycle �0homologous to �, such that k�0k < k�k. Since � is notreduced, there exist v 2 Z(�) with kvk > 1. Hencewe want to perform the modular symbol algorithmsimultaneously over all of supp � while constructing�0. This leads to two problems:
1. How should one choose candidates for the sub-modular symbols of �? Is the usual modular sym-bol algorithm su�cient for this?
2. Given � and a collection of candidates for itssubmodular symbols, how does one assemble thedata into �0?Although these questions appear to be independent,they are in fact coupled. To answer the �rst, weclaim that candidates should be chosen using either

Conjecture 3.5 or 3.9; we indicate why in Section 4.7.We discuss the second in Sections 4.3{4.5.
4.3. Suppose �rst that all v 2 Z(�) are nonuni-modular. We begin by selecting candidates for eachv 2 Z(�) using either Conjecture 3.5 or 3.9, and wemake these choices �-equivariantly. This means thefollowing. Suppose u;u0 2 supp � and v 2 supp(@u)and v0 2 supp(@u0) are modular symbols such thatv =  �v0 for some  2 �. Then we select w 2 candvand w0 2 candv0 such that w =  � w0.We can do this because if v is a modular symboland w 2 candv, then  � w 2 cand( � v) for any 2 �. Since there are only �nitely many �-orbits inZ(�), we can choose candidates �-equivariantly byselecting them for some set of orbit representatives.It is important to note that �-equivariance is theonly \non-local" criterion we use when selecting can-didates. In particular, there is a priori no relation-ship among the 3 candidates chosen for any u 2supp �.
4.4. Now we want to use the candidates and the 1-sharblies in � to build �0. Choose u = [v1; v2; v3] 2supp �, and denote the candidate for [vi; vj ] by wk,where fi; j; kg = f1; 2; 3g. We use the vi and the wito build a 2-sharbly chain �(u) as follows.Let P be an octahedron in R 3. Label the ver-tices of P with the vi and wi such that the vertexlabelled vi shares no edge with the vertex labelledwi. Now subdivide P into four tetrahedra withoutadding new vertices. This can be done by connect-ing two opposite vertices, say those with labels v1and w1, by a new edge:

w2 w3
v3 v2

w1

v1Now use the four tetrahedra to construct �(u) asfollows. For each tetrahedron T , take the labels offour vertices and arrange them into a quadruple. Ifwe orient P , then we can use the induced orienta-tion on T to order the four primitive points. In this
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way, each T determines a 2-sharbly, and �(u) is de-�ned to be the sum. For example, if we use thedecomposition

we have�(u) = [v1; v2; w3; w1] + [v1; w3; w2; w1]+ [v1; w2; v3; w1] + [v1; v3; v2; w1]: (4–1)Now repeat this construction for all u 2 supp �,and let � =Pn(u)�(u). Finally, let �0 = � + @�.
4.5. By construction, �0 is a cycle mod � in the sameclass as �. We claim in addition that no submodularsymbols from � appear in �0. To see this, consider@�(u). From (4{1), we have@�(u) = �[v1; v2; v3] + [v1; v2; w3]+ [v1; w2; v3] + [w1; v2; v3]� [v1; w2; w3]� [w1; v2; w3]� [w1; w2; v3] + [w1; w2; w3]: (4–2)Note that this is the boundary in S�, not (S�)�. Fur-thermore, it's easy to see that @�(u) is independentof which pair of opposite vertices of P we connectedto de�ne �(u).From (4{2), we see that in � + @�, the 1-sharbly�[v1; v2; v3] is canceled by u 2 supp �. Consider the1-sharblies in (4{2) of the form [vi; vj ; wk]. We claimthese 1-sharblies vanish in @��.To see this, suppose that u,u0 2 supp �, and sup-pose v = [v1; v2] 2 supp @u equals  � v0 for somev0 = [v01; v02] 2 supp @u0. Since the candidates werechosen �-equivariantly, we have w =  � w0. Thismeans that the 1-sharbly [v1; v2; w] 2 @�(u) will becanceled mod � by [v01; v02; w0] 2 @�(u0). Hence, inpassing from � to �0, the e�ect in (S�)� is to replaceu with four 1-sharblies in supp �0:[v1; v2; v3] 7�! �[v1; w2; w3]�[w1; v2; w3]� [w1; w2; v3] + [w1; w2; w3]: (4–3)Note that in (4{3), there are no 1-sharblies of theform [vi; vj ; wk].

Remark 4.6. For implementation purposes, it is notnecessary to explicitly construct �. Rather, one maywork directly with (4{3).
4.7. Why do we expect �0 to satisfy k�0k < k�k?First of all, in the right hand side of (4{3) thereare no submodular symbols of the form [vi; vj ]. Infact, any submodular symbol involving a point vialso includes a candidate used to reduce the [vi; vj ].However, consider the submodular symbols of theform [wi; wj ] in (4{3). Since there is no relationshipamong the wi, one has no reason to believe thatthese modular symbols are closer to unimodularitythan those in u. Indeed, one might expect that thesemodular symbols satisfy k[wi; wj ]k � kuk. This isthe content of problem 2 from Section 4.2.We claim that| in practice| if one uses Con-jecture 3.5 or 3.9 to select candidates, then thesenew modular symbols will be very close to unimod-ularity. In fact, usually they are trivial or satisfyk[wi; wj ]k = 1. To us, it seems that Conjectures 3.5and 3.9 select candidates \uniformly" over supp �,although we will not attempt to make this notionprecise.
Remark 4.8. To ensure k�0k < k�k, one must alsochoose the best candidate o�ered by the conjecturesin a suitable sense (Section 4.16).
4.9. In the previous discussion we assumed that nosubmodular symbols of any u 2 supp � were uni-modular. Now we discuss what to do if some are.As before, pick candidates for the nonunimodularsymbols. There are three cases to consider.First, all submodular symbols of u may be uni-modular. In this case there are no candidates, and(4{3) becomes[v1; v2; v3] 7�! [v1; v2; v3]: (4–4)Second, one submodular symbol of u may be non-unimodular, say the symbol [v1; v2]. In this case wetake P to be a tetrahedron, and �(u)=[v1; v2; v3;w3]:v1

v3v2 w3
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As before, [v1; v2; w3] vanishes in the boundary of �mod �, and (4{3) becomes[v1; v2; v3] 7! �[v1; v3; w3] + [v2; v3; w3]:Finally, two submodular symbols of u may benonunimodular, say [v1; v2] and [v1; v3]. In this casewe take P to be the cone on a square:v1
v2v3 w2 w3

To construct �(u) we must choose a decompositionof P into tetrahedra. Since P has a non-simplicialface we must make a choice that a�ects �0. If wechoose to subdivide P by connecting the vertex la-belled v2 with the vertex labelled w2, we obtain[v1; v2; v3] 7�! [v2; w2; w3] + [v2; v3; w2] + [v1; v3; w2]:
4.10. We now describe the procedure for general n.First we recall some facts about convex polytopes.Proofs can be found in [Ziegler 1995].Let P be a d-dimensional convex polytope em-bedded in R d. The facets of a d-polytope P are thefaces of dimension (d � 1). The cone on P is thepolytope cP constructed as follows. Choose a linearembedding i : R d ! R d+1 and let x 2 R d+1 r R d.Then cP is the convex hull of x and i(P ). One canshow that the combinatorial type of cP is indepen-dent of the choice of x or i. We also write c0P := Pand ck(P ) := c(ck�1P ).Let E be the standard basis of R n. Then the(n � 1)-simplex �n�1 is the convex hull of E, andthe n-crosspolytope �n is the convex hull of �E[E.Write E = feig, and let P (n; j) be the convex hullof E and the j points f�ek j 1 � k � j � ng.
Lemma 4.11. The polytope P (n; j) is isomorphic tothe iterated cone cn�j�j .
Proof. By de�nition, the convex hull of A := f�ek j1 � k � jg is �j . The remaining vertices of P (n; j)are the points B := f�ek j j + 1 � k � ng. SinceB is linearly independent, and is also linearly inde-pendent of the linear span of A, the lemma followseasily by induction. �

Lemma 4.12. There exist j distinct subdivisions ofP (n; j) into simplices without adding new vertices .
Proof. This follows immediately from Lemma 4.11.Any such subdivision of �j is formed by connectingone of the j pairs of vertices not already connectedby an edge of �j , and any such subdivision of cn�j�jis formed by subdividing �j �rst. �
Algorithm 4.13. Let � be a torsion-free subgroup, andlet � = Pn(u)�(u) be a 1-sharbly cycle mod �representing a class in H��1(�;Z ). The output ofthis algorithm is a class �0 2 H��1(�;Z ).
A. Choose candidates. For each u 2 supp �, and foreach v 2 supp @u with kvk > 1, choose a candi-date w(v). Make these choices �-equivariantlyover all of supp � as in Section 4.3. For eachu 2 supp �, we let C(u) be the set fw(v) j v 2supp @ug.
B. Shift candidates. Chooseu = [v1; : : : ; vn+1] 2 supp �;and set j = #C(u). Apply relation (1) fromDe�nition 2.7 so that the j submodular symbols�vi = [v1; : : : ; v̂i; : : : ; vn+1] �� 1 � i � j	satisfy kvik > 1. Write wi for w(vi), and letn0(u) be the new coe�cient of u in �.
C. Construct 2-sharblies. Let P = P (n + 1; j) bethe polytope from Lemma 4.11, and choose asubdivision of P into simplices without addingnew vertices as in Lemma 4.12. Orient P sothat the induced orientation on the face spannedby e1; : : : ; en+1 is the opposite of the orientationgiven by the standard ordering of e1; : : : ; en+1.Via the correspondenceek  ! vk for 1 � k � n+ 1,�ek  ! wk for 1 � k � j,and the orientation of P , use the subdivision ofP to construct a 2-sharbly chain �(u).
D. Continue. Complete steps B and C for all u 2supp �.
E. Terminate. Set� = Xu2supp � n0(u)�(u);and de�ne �0 := @� + �.
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4.14. Now we want to describe how �0 is related to�, and in particular in what sense �0 is closer tounimodularity than �. Let u 2 supp �, and let �(u)be the 2-sharbly chain constructed above. De�ne@�old(u) = �[v1; : : : ; vn+1];@�side(u) = jXk=1[v1; : : : ; v̂k; : : : ; vn+1; wk];@�new(u) = @�(u)� @�old(u)� @�side(u):Note that @�old(u) and @�side(u) contain all the sub-modular symbols of u that are nonunimodular.
Theorem 4.15. The cycle �0 constructed in Algorithm4.13 is homologous to �. If u 2 supp � and v 2supp @u with kvk > 1, then v does not appear assubmodular symbol of �0 in the following sense:�0 = Xu2supp � n0(u)@�new(u):
Proof. It is clear that �0 is homologous to � mod �.To see the rest of the statement, �rst note that wehave chosen orientations so that� + @� = Xu2supp � n0(u)(@�side(u) + @�new(u)):
Hence we must show@�side(u) = 0 mod �:We claim this follows since the candidates we cho-sen �-equivariantly over all of supp(�). Indeed, any1-sharbly in supp(@�side(u)) is built from a certaincandidate and a 0-sharbly in supp(@�). An investi-gation of the orientations we chose in the construc-tion of @� and the fact that @�(�) = 0 show that@�side(u) = 0 mod �. �
4.16. To conclude this section we discuss conditionsunder which we expect k�0k < k�k. First we clarifyRemark 4.8.Let v be a modular symbol, and let w 2 candv.Let fvig be the modular symbols from (3{1) con-structed using v and w. De�ne an integer �(w) by�(w) = Maxi=1;:::;n fkvikg :
Definition 4.17. Let S � candv. Then w 2 S is agood candidate from S if�(w) = Minw02S f�(w0)g :

Furthermore, we say that w is a good candidatechosen using Conjecture 3.5 (respectively Conjec-ture 3.9) if w is a good candidate for the (conjec-turally nonempty) intersection indicated in Conjec-ture 3.5 (respectively Conjecture 3.9).Good candidates are not necessarily unique.
Conjecture 4.18. Suppose n � 4, and let � and �0 beas in Algorithm 4.13. Assume that k�k > 1. Then ifeach w(v) from step A of Algorithm 4.13 is a goodcandidate chosen using Conjecture 3.5 or 3.9, thenk�0k < k�k.
5. EXPERIMENTSWe conclude by describing experiments that we per-formed to test Conjectures 3.5, 3.9, and 4.18. Theseexperiments were performed at MIT and Columbiaat various times from 1995 to 1998, on Sun (SunOS)and Intel (Linux) workstations. We are grateful tothese departments for making this equipment andsupport available.Before we describe the experiments, we remarkthat all trials completed successfully, and no coun-terexamples to the conjectures were found.
5.1. The �rst experiments we performed addressedConjectures 3.5 and 3.9. Because of implementationdi�culties mentioned immediately after Remark 3.6,we were only able to test Conjecture 3.5 in dimen-sions � 4. However, we were able to test Con-jecture 3.9 in dimensions � 40, thanks to LLL-reduction code available in GP-Pari and LiDIA.� We began by testing �nding candidates for ran-dom modular symbols for SLn(Z ). A random squareintegral matrix m was constructed with entries cho-sen some �xed range. If detm 6= 0, then we at-tempted to �nd a candidate for the modular symbolformed from the columns of m. We tried to test ma-trices with small determinant, since for these mod-ular symbols the set of candidates is small.
1. For n = 4 we veri�ed Conjecture 3.5 on approxi-mately 20000 matrices.
2. For 2 � n � 20, we veri�ed Conjecture 3.9 on ap-proximately 20000 matrices from each dimension,and for 21 � n � 40 we tested Conjecture 3.9 onapproximately 1000 matrices from each dimen-sion. In these tests we rejected those matrices



Gunnells: Computing Hecke Eigenvalues Below the Cohomological Dimension 363

whose determinants were outside the range spec-i�ed by Proposition 3.15.� Instead of random modular symbols, we testedcoset representatives of the double cosets in (2{2) fordi�erent dimensions and values of p and k. We usedthe standard coset representatives found in [Krieg1990].
1. For Tp(1; 3), Tp(2; 3), Tp(1; 4), and Tp(3; 4), wetested all primes p � 97 using both conjectures(again discarding those outside the range of Prop-osition 3.15).
2. For Tp(2; 4), we tested all primes p � 67 usingboth conjectures.
3. For dimensions 5 � n � 10, we veri�ed Conjec-ture 3.9 on representatives of Tp(1; n) for p = 2; 3.� Finally, we performed complete reduction of ran-dom modular symbols. In the previous experiments,we only veri�ed that a candidate for a given modu-lar symbol could be found using our conjectures. Inthis case, we stored the resulting modular symbolson a stack and iterated the process until all modularsymbols were unimodular. Due to the large numberof modular symbols produced, we limited our testsof Conjecture 3.9 to dimensions � 10, and testedonly medium-sized determinants, typically with ab-solute value less than 20. We veri�ed Conjecture 3.5on approximately 2000 modular symbols and Con-jecture 3.9 on approximately 1000 modular symbolsfrom each dimension.
5.2. To test Conjecture 4.18, we wanted to mimicthe experiments in Section 5.1. This cannot be donenaively for the following reason. A single modularsymbol is automatically a cycle mod �, but for a 1-sharbly chain � to be a cycle mod �, nontrivial con-ditions must be met. Furthermore, Algorithm 4.13uses these conditions in an essential way to decreasek�k.This dilemma has two resolutions. Either we musttest Conjecture 4.18 on cycles for speci�c groups� � SLn(Z ), or we must design an implementationof Algorithm 4.13 that is \local," i.e. operates on asingle 1-sharbly at a time. The �rst solution is notfeasible if one wishes to test many 1-sharbly cycles,because such cycles are very di�cult to construct.Hence we must take the second approach.

Definition 5.3. Let u be a basis element of Sk. Thena lift for u is an n� (n+ k) integral matrix M withprimitive columns such that [M1; : : : ;Mn+k] = u,where Mi is the ith column of M .Let � be a k-sharbly cycle mod �. We claim that� may be encoded as a �nite collection of 4-tuples(u; n(u); fvg; fM(v)g), where:
1. u 2 supp �.
2. n(u) 2 Z .
3. fvg = supp @u.
4. fM(v)g is a set of lifts for fvg. These lifts arechosen so they satisfy the following �-equivariancecondition. Suppose that for u;u0 2 supp � wehave v 2 supp(@u) and v0 2 supp(@u0) satisfy-ing v =  � v0 for some  2 �. Then we requireM(v) = M(v0).Clearly any cycle can be represented by such data,although the representation is far from unique.
5.4. Let  = (u; n(u); fvg; fM(v)g) be a 4-tuplethat is part of a cycle �. We claim that we canchoose candidates for fvg that will the equivariancecondition in Section 4.3 without knowing the rest of�. To see this, recall that a square matrixM = (Mij)with detM 6= 0 is in Hermite normal form if Mij =0 for i < j, and 0 � Mij < Mii for i > j. Further-more, if detM > 0, then Mii > 0. It is standardthat for any M , the orbit GLn(Z ) �M contains onlyone element in Hermite normal form [Cohen 1993,2.4.2].Now to choose a candidate w for v 2 supp(@u),we compute the Hermite normal formM0(v) ofM(v)�rst, and input M0(v) into Conjecture 3.5 or 3.9to compute w. If M(v) = M(v0), then M0(v) =M0(v0). Hence by using lifts we guarantee that can-didate selection is �-equivariant, even though thechoices are made locally.
5.5. This means that we can think of a random 4-tuple  as being a piece of some unknown cycle �mod �, and can test Algorithm 4.13 by trying towrite  as a collection of reduced 4-tuples. To com-plete the discussion, we must say how lifts are chosenfor the submodular symbols of @�(u) that survive to�0.
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Definition 5.6. Let u = [v1; : : : ; vn+1] be a 1-sharbly,and letvi = [v1; : : : ; v̂i; : : : ; vn+1]; for 1 � i � n+ 1be the submodular symbols in supp @u. Supposethat kvik > 1 for 1 � i � j � n + 1, and let W =fwi j 1 � i � jg be the set of candidates. Let U bethe set fv1; : : : ; vn+1g [W . Let v = [u1; : : : ; un] bea modular symbol with ui 2 U .
1. The modular symbol v is called an outer submod-ular symbol of u if exactly one ui 2W .
2. The modular symbol v is called an inner submod-ular symbol of u if two or more ui 2W .Here is the meaning behind De�nition 5.6. For con-venience suppose n = 2 and j = 3, and considerwhat happens when we apply the algorithm to u.We can think of u as being a triangle with verticeslabelled by v1, v2, and v3. With this picture, toapply (4{3), we can think of subdividing the trian-gle into four new triangles, with the new verticeslabelled by the candidates W : v1v1

v2v2 v3 v3w1
w2w3

Now we discuss the relevance of inner and outer toour implementation. For an inner submodular sym-bol v, we can choose any lift we like, as long as wechoose the same lift for any other 1-sharbly in (4{3)containing v. If v is an outer submodular symbol,however, we must be more careful. In particular,consider the preceding �gure. The lift M([v1; v2])was chosen using the �-action, and we must chooseM([v1; w3]) and M([v2; w3]) to reect this.In practice, we can do the following. If v 2 Z(u),then each outer submodular symbol vi arising fromv is obtained by replacing the ith primitive pointof v with w. We construct M(vi) by replacing thecorresponding column ofM(v) with w, and say thatthe lifts fM(vi)g are inherited.
Remark 5.7. One might think that we could avoidcomputing Hermite normal forms, by just applying

Conjecture 3.5 or 3.9 directly. But this will not nec-essarily determine a unique representative of the or-bit GLn(Z )�M(v), since this orbit may not uniquelymeet the Voronoi and LLL reduction domains.
5.8. Now we describe the tests we performed to in-vestigate Conjecture 4.18.� We generated random 1-sharblies � with ran-domly chosen lifts. Using both modular symbol con-jectures we constructed candidates for � and veri�edthat k�0k < k�k. Because we only investigated di-mensions 2, 3, and 4, we were able to test many �,approximately 10000 per trial for 50 trials.� We also tested all Hecke images within certainranges associated to certain \standard" reduced 1-sharblies. It is easy to see that mod SLn(Z ), anyreduced 1-sharbly has the form0BB@ 1 0 : : : 0 "10 1 : : : 0 "2... . . . ... ...0 0 : : : 1 "n

1CCA ; (5–1)

where the number of columns is (n+1), and the lastcolumn is ("1; : : : ; "n) = (1; : : : ; 1| {z }k ; 0; : : : ; 0)
where k = 2; : : : ; n.Using these 1-sharblies and randomly chosen lifts,we tested all Hecke images that lay within the fol-lowing ranges:
1. For Tp(1; 3), Tp(2; 3), Tp(1; 4), and Tp(3; 4), wetested all primes p � 97 using Conjectures 3.5and 3.9.
2. For Tp(2; 4), we tested all primes p � 67 usingConjectures 3.5 and 3.9.We repeated this experiment 10 times to vary thelifts used.� We tested complete reduction of randomly cho-sen 1-sharblies with lifts. At each step, the new 1-sharblies inherited lifts as described in Section 5.4.This introduces the possibility that for some initialchoice of lifts, iteration of the algorithm could fail toterminate. However, this situation never arose. In50 trials with approximately 10000 randomly cho-sen 1-sharblies, the complete reduction always ter-minated successfully.
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� After testing with random data, we computedthe Hecke action on cuspidal cycles occurring inH2(�0(53); Q ), where �0(53) � GL3(Z ) is the sub-group of matrices with bottom row equivalent to(0; 0; �) mod 53. These cycles, or rather their Lef-schetz duals, were �rst discovered and investigatedin [Ash et al. 1984].We computed the characteristic polynomials ofthe Hecke operators Tp(1; 3) for p � 13. We foundthat these polynomials matched those in [Ash et al.1984], which is consistent with the duality argumentof [Ash and Tiep 1997, Theorem 3.1].� Finally, in current work we are using the algo-rithm to compute the Hecke action onH5(�0(N); Q ),where �0(N) � SL4(Z ) is the subgroup of matri-ces with bottom row congruent to (0; 0; 0; �) mod N[Ash et al. 2000]. At the time of this writing, we havecompleted computations for prime levels N � 31.We have computed the characteristic polynomialsfor the Hecke operators Tp(k; 4) for 1 � k � 3 anda range of p. In all cases the program wrote theHecke image of a 1-sharbly cycle as sum of reduced1-sharbly cycles.For these GL3 and SL4 tests, I was helped and en-couraged enormously by Mark McConnell, who pro-vided data for the cycles generated by his programSHEAFHOM [McConnell 1998], and computed thecharacteristic polynomials.
5.9. We conclude with some remarks and open prob-lems.� In general, if one wishes to implement the mod-ular symbol algorithm, Conjecture 3.9 is much moree�cient to work with than Conjecture 3.5. Voronoireduction is somewhat di�cult to program and re-quires a substantial amount of preliminary compu-tation. On the other hand, high-quality computercode for LLL-reduction is available from a varietyof sources.� Algorithm 4.13 can be adapted to work on shar-bly cycles � 2 Sn+k with k > 1. In particular, wecan describe the analogues of the polytopes P (n; j)used in the construction of �0: their facets involveiterated cones on hypersimplices [Ziegler 1995, Ex-ample 0.11]. In practice this is not useful for com-puting Hecke eigenvalues, since we cannot expect ingeneral that k�0k < k�k.

� Throughout the description of Algorithm 4.13,we used the determinant as a measure of \nonuni-modularity" of a 1-sharbly. Ultimately this approachsu�ers from several shortcomings:� For � � SLn(Z ) with n � 4, we must use a nonre-duced sharbly cycle to write a nontrivial elementof H0(�;Z ).� One would like to compute Hecke eigenvalues inH�(�;Z ) for more exotic �. For example, espe-cially interesting is � � SLn(OK), where OK isthe ring of integers in a number �eld K=Q . IfOK is not a euclidean domain, then there is noobvious notion of a primitive vector. One canstill de�ne the analogue of the sharbly complex,and can use the determinant to de�ne a �-�nitesubset of sharblies [Gunnells 2000a], but a prac-tical modular symbol algorithm is unknown ingeneral.A di�erent approach is to use the relative positionof a sharbly with respect to � instead of the de-terminant. This is carried out in [Gunnells 1999]and [Gunnells and McConnell 1999] for all arith-metic groups for which � is available. It would benice to fuse the approach of these articles and theapproach described here.� If � is not torsion-free, then our results hold if weuse cohomology with rational coe�cients. However,one can also consider the equivariant cohomologyH��(�;Z ), and can formulate conjectures about thearithmetic signi�cance of equivariant torsion classes[Ash 1992b]. Can Algorithm 4.13 be modi�ed tocompute the Hecke action on H��1� (�;Z )?� The modular symbol algorithm can be general-ized to Sp2n [Gunnells 2000b], and there is a cellcomplex that can be used to compute H�(�), where� � Sp4(Z ) [MacPherson and McConnell 1993]. Isthere a \symplectic" sharbly complex, and can analgorithm be devised to compute Hecke eigenvalueson H��1(�)?
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