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Let I be a torsion-free finite-index subgroup of SL,(Z) or GL,(Z),
and let v be the cohomological dimension of ['. We present an
algorithm to compute the eigenvalues of the Hecke operators on
HY~UT;7Z), forn = 2, 3, and 4. In addition, we describe a mod-
ification of the modular symbol algorithm of Ash and Rudolph
for computing Hecke eigenvalues on HY(I"; Z).

1. INTRODUCTION

1.1. Let I be a finite-index subgroup of SL,(Z) or
GL,(Z), and let M be a ZI-module. The group
cohomology H*(I'; M) plays an important role in
number theory, through its connection with auto-
morphic forms and representations of the absolute
Galois group. For an introduction to this conjec-
tural framework, see [Ash 1992a].

For n = 2 and T" a congruence subgroup, the arith-
metic nature of H*(I'; M) has been decisively con-
firmed [Shimura 1971]. For higher dimensions the
picture is mysterious, although several compelling
examples for n = 3 have appeared recently in the
literature. In [Ash et al. 1991], rational cohomology
classes of certain I' C GL3(Z) are related to mod-
ular Galois representations. Many more examples
of this phenomenon appear in [Ash and McConnell
1992]. In [van Geemen and Top 1994; van Geemen
et al. 1997], rational cohomology classes of certain
congruence groups are related to the Hasse—Weil
zeta functions of certain surfaces. Finally, in [Al-
lison et al. 1998] torsion classes in the cohomology
of I' = GL3(Z) with twisted coefficients are linked
to modular Galois representations, and in [Ash and
Tiep 1997] the arithmetic nature of many of these
classes is proven.
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1.2. In all cases, the arithmetic significance of
H*(T'; M)

is revealed through the Hecke operators. These are
endomorphisms of the cohomology associated to cer-
tain finite-index subgroups of I'. The eigenvalues of
these linear maps provide a “signature” for the coho-
mology, which one hopes can be matched to number-
theoretic data. Thus to test these conjectures, or to
search for counterexamples, it is crucially important
to be able to compute Hecke eigenvalues.

1.3. In general, computing these eigenvalues is a dif-
ficult problem. Essentially the only technique avail-
able in the literature is the modular symbol algo-
rithm (Section 3.1), due to Manin [1972] (in the case
n = 2) and Ash and Rudolph [1979] (for n > 3). Us-
ing this algorithm one can compute the Hecke action
on H”(I'; M), where v is the cohomological dimen-
sion of I'. That is, v is the smallest number such
that H(T; M) = 0 for ¢ > v and any M.

In particular, if I' C SL3(Z) or GL3(Z), then
v = 3. This is the focus of [Ash et al. 1991; Ash and
McConnell 1992; van Geemen and Top 1994; van
Geemen et al. 1997; Allison et al. 1998; Ash and
Tiep 1997]. For certain congruence groups I', the
groups H3(T; Q) and H*(T'; Q) contain cuspidal co-
homology classes [Ash et al. 1984]. In a certain sense
these classes are the most interesting constituents of
the cohomology. A Lefschetz duality argument [Ash
and Tiep 1997, Theorem 3.1] shows that the cuspi-
dal eigenclasses in H*(T'; Q) have the same eigenval-
ues as those in H*(T'; Q), and therefore the modular
symbol algorithm suffices to compute Hecke eigen-
values in this dimension.

Now suppose I' C SL4(Z), so that v = 6. In
this case H%(T'; Q) does not contain cuspidal classes,
and one is interested in H°(I'; Q). Again one wants
to compute Hecke eigenvalues, and since Lefschetz
duality relates H® to H® and not H®, the modular
symbol algorithm doesn’t apply. Thus one has the
natural problem of devising an algorithm for this
context.

1.4. The purpose of this article is to describe an
algorithm that —in practice —allows computation
of the Hecke action on H*71(T';Z), where T is a
torsion-free subgroup of SL,,(Z) or GL,,(Z), and n <

4. We emphasize that the phrase “in practice” is to
be taken literally.

Let us be more precise. To represent elements
of H""Y(T;Z), we use chains in the sharbly com-
plez S, (Section 2.5). The sharbly complex (whose
name was introduced by Lee Rudolph, in honor of
the authors of [Lee and Szczarba 1976]) is a com-
plex of infinite I'-modules such that the homology
of the complex of coinvariants (S, )r is naturally iso-
morphic to H*(I';Z). Furthermore, S, has a natu-
ral Hecke action (Section 2.10) that passes to (S.)r.
Hence the sharbly complex provides a convenient
setting to study the cohomology as a Hecke module.

Both S, and (S,)r are infinitely generated, while
H*(T';Z) is finitely generated. Hence, for practi-
cal computations, we must identify a finite subset
of (Si)r that spans the cohomology. For n < 4
and H"~!, a spanning set is provided by the reduced
sharblies (Section 4), which form a subcomplex of
S,. Unfortunately, the Hecke operators do not pre-
serve this subcomplex. Thus to compute eigenval-
ues, we must describe an algorithm that writes a
general sharbly cycle as a sum of reduced sharbly
cycles.

1.5. So suppose £ is a sharbly cycle mod I' repre-
senting a class in H *(T';Z). There is a function
Il |l : S« = Z such that ¢ is reduced if and only if
Il€]] = 1 (Definition 3.2). Algorithm 4.13 describes
a process that takes £ as input and produces a cy-
cle ¢ homologous to & in (S,)r. Geometrically, the
algorithm acts by applying the modular symbol al-
gorithm simultaneously over all of £. Of course, to
be useful for eigenvalue computations, we want that
if ¢l > 1, then [|€']| < €]l

We cannot prove that the output & will satisfy
this inequality. However, for n < 4—the cases of
practical interest — this inequality has always held.
More precisely, in computer experiments (Section
5) with both random data and 1-sharbly cycles for
n < 4, Algorithm 4.13 has always successfully writ-
ten a general 1-sharbly cycle as a sum of reduced
1-sharbly cycles. Currently we are applying Algo-
rithm 4.13 in joint work with Avner Ash and Mark
McConnell to decompose H°(T'; Q) as a Hecke mod-
ule for certain congruence groups I' C SL4(Z) [Ash
et al. 2000]. Details of these computations will ap-
pear in a later publication.
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1.6. Here is a guide to this paper. In Section 2 we
recall the topological and combinatorial background
necessary for computing H*(I';Z). We discuss the
reduction theory due to Voronoi [1908] and the shar-
bly complex, as well as the Hecke operators and
how they interact with the sharbly complex. In Sec-
tion 3 we recall the modular symbol algorithm, and
describe two new conjectural techniques to imple-
ment it (Conjectures 3.5 and 3.9). These techniques
link the modular symbol algorithm to Voronoi re-
duction and LLL-reduction, and are conjectured to
be true in all dimensions. We also include proofs of
the conjectures in special cases. Then in Section 4
we present Algorithm 4.13 and prove that, given a
sharbly cycle £ mod I' as input, the output £’ is a
homologous cycle mod I' (Theorem 4.15). We also
discuss conditions under which we expect ||€']] < ||€]|
(Conjecture 4.18). Finally, in Section 5, we describe
experiments we performed to generate evidence for
Conjectures 3.5, 3.9, and 4.18.

2. BACKGROUND

In this section we describe the topological tools we
use to study H*(I';Z): the Voronoi polyhedron and
the sharbly complex. We present these objects in
the context of I' C SL,,(Z). However, all of what we
say applies with minor modification to I' C GL,,(Z).

2.1. Let V be the R-vector space of symmetric n xn
matrices, and let C C V be the cone of positive-
definite matrices. The linear group G = SL,(R)
acts on C by (g,c) — g-c-g', and the stabilizer of
any given point is isomorphic to SO,,.

Let X be C' mod homotheties. The G-action on
C commutes with the homotheties and induces a
transitive G-action on X. The stabilizer of any
fixed point of X is again SO,. After choosing a
basepoint, we may identify X with the global Rie-
mannian symmetric space SL,(R)/SO,,, which is a
contractible, noncompact, smooth manifold of real
dimension N = n(n+1) — 1.

The group SL,(Z) acts on X via the G-action,
and does so properly discontinuously. Hence if I' C
SL,(Z) is any torsion-free subgroup, the quotient
I'\ X is a real noncompact manifold, and is an Eilen-
berg-Mac Lane space for I'. We may then identify
the group cohomology H*(T';Z) with H*(T'\X;Z).

Although the dimension of I'\X is N, it can be
shown that H(T'\X;Z)=0if i > N —n+1 [Borel
and Serre 1973, Theorem 11.4.4]. The number v =
N —n+1 is called the cohomological dimension of T.

2.2. Recall that a point in Z" is said to be primitive
if the greatest common divisor of its coordinates is
1. In particular, a primitive point is nonzero. Let
P C Z" be the set of primitive points. Any v € P,
written as a column vector, determines a rank-one
quadratic form ¢(v) € C by q(v) = v - v*.

Definition 2.3. The Voronoi polyhedron 11 is the closed
convex hull of the points ¢(v), as v ranges over P.

Note that, by construction, SL,(Z) acts on II. The
cones over the faces of II form a fan V that induces a
I'-admissible decomposition of C' [Ash 1977, p. 117].
Essentially, this means that I" acts on V; that each
cone is spanned by a finite collection of points ¢(v)
where v € P; and that mod I" there are only finitely
many orbits in V. The fan V provides a reduction
theory for C in the following sense: any point x € C
is contained in a unique o € V.

Given o € V, let vert o be the set of all v € P
such that ¢(v) is a vertex of the face of II generating
o. For later use, we record the following theorem of
Voronoi:

Theorem 2.4 [Voronoi 1908]. Let E be the standard
basis of Z", and let ¥ be the cone spanned by the
n(n + 1)/2 points q(e;) and q(e; — €;), where e; €
E and 1 <i < j <n. Then X occurs as a top-
dimensional cone in 'V for all n.

2.5. We now discuss an algebraic tool to compute
H*(T';Z). The material in this section closely fol-
lows [Ash 1994].

Recall that the Steinberg module St(n) is the ZI'-
module H”(I'; ZT).

Theorem 2.6 [Ash 1994|. The Steinberg module is
isomorphic to the module of formal Z-linear com-
., Un)*, where each
v; € Q" is nonzero, mod the relations:

binations of the elements [vy, ..

1. If T is a permutation on n letters, then

[V1,. .., 0, =sgn(7)[r(v1),...,7(v,)],
where sgn(T) is the sign of T.
2. If g € Q, then [qui,va, ..., v,]* = [v1,...,v,]".
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3. If the v; are linearly dependent, then

[U1,...,0,]" = 0.

4. If’Uo, ..

., U, are nonzero points in Q", then
> (=1)[ve .-, Biy oy va]" = 0.
By Borel-Serre duality [1973, § 11.4], if " is torsion-

free, then for any ZI'-module M we have a natural
isomorphism

®: H*(I;M) — H,_(T;St(n) @ M).  (2-1)

Hence one may compute H*(I'; Z) by computing the
homology of a ZI'-free resolution of St(n) ® Z. Such
a resolution is provided by the sharbly complex.

Definition 2.7 [Ash 1994]. The sharbly complez is the
chain complex {S.,, 0} given by the following data:

1. For £ > 0, S}, is the module of formal Z-linear
combinations of elements

u = [Ula' .- 7Un+k]7

where each v; € P, mod the relations:
a. If 7 is a permutation on (n + k) letters, then

(V1o Upar] = sgn(7)[T(v1), -« o, T(Vnir)]s

where sgn(7) is the sign of 7.
b. If ¢ = +1, then

[qu,Uz e ,?JnJrk] = [Ul, e 7Un+k].

c. If the rank of the matrix (vq,..., v, %) is less
than n, then u = 0.

2. The boundary map 9 : Sy — Sp_1 is

n+k
01,y V] = Y (=1 ors B V]
i=1
The elements u = [vy,. .., v,4] are called k-shar-

blies. A 0O-sharbly is also called a modular symbol.
By abuse of notation, we will often use the same
symbol u to denote a k-sharbly and the k-sharbly
chain 1-wu. The obvious left action of I" on S, com-
mutes with 9.

Proposition 2.8 [Ash 1994|. The complex {S.,0} is
a ZT-free resolution of St(n), with the map Sy —
St(n) given by u — u*.

For any k > 0, let (Sy)r be the module of I'-coinvari-
ants. This is the quotient of S; by the relations of
the form v -u — u, where v € I', u € S;,. This is

also a complex with the induced boundary, which we
denote by Or. Proposition 2.8 and (2-1) imply that
H*(T';Z) is naturally isomorphic to H,_;((S.)r)-

2.9. Now we recall the definition of the Hecke oper-
ators. More details can be found in [Shimura 1971,
Chapter 3].

Fix an arithmetic group I' C SL,(Z). Given g €
GL,(Q), let 'Y = g 'I'g and I" = ' NI Then
[[': I"] and [I'Y : '] are finite. The inclusions IV — I
and I — I'Y determine a diagram

'\ X

I\ X I'\X

Here s(I"z) = T'z and t is the composition of Iz —
'z with left multiplication by g. This diagram is
the Hecke correspondence associated to g. It can
be shown that, up to isomorphism, the Hecke corre-
spondence depends only on the double coset T'gT".

Because the maps s and t are proper, they induce
a map on cohomology:

T, :=t.s": H'(T\X;Z) - H(I'\X; Z).

This is the Hecke operator associated to g. We let
Hr be the Z-algebra generated by the Hecke opera-
tors, with product given by composition.

For an example, let I' = SL,(Z). Then Hr de-
composes as a tensor product

He = Q) H,.

p prime

Each H, is a polynomial ring generated by the dou-
ble cosets

T,(k,n) =T'diag(1,... (2-2)

2.10. Now let u € H*(I';Z) be a cohomology class.
Choose g € GL,(Q), and let T, € 3 be the Hecke
operator associated to g. We want to explicitly de-
scribe the action of T, on u in terms of the sharbly
complex.

Choose & € S}, such that £ is a cycle mod I' and
O 1(¢) = u. Write & = Y n(u)u, where n(u) € Z,
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and almost all n(u) = 0. The double coset I'gT’
decomposes as
Tyl =[] Tn
hel
for some set I C GL,,(Q). Note that I is finite. We
have a map S;, — Sj given by

T,:&E— Zn(u)hu
hel
One can show that the right-hand side of (2-3) is
a well-defined cycle mod I', and that under ® this
cycle passes to Tj(u).
In general, I ¢ SL,,(Z). Thus the Hecke operators
do not preserve the subcomplex of S, generated by

V.

(2-3)

3. MODULAR SYMBOLS

In this section we recall the Ash—Rudolph modular
symbol algorithm and present our conjectural im-
plementations of it.

3.1. Let £ be a k-sharbly chain, and write

£=Y n(uu,

where n(u) € Z and almost all n(u) = 0. Let
supp & be the set of k-sharblies {u | n(u) # 0}. Let
Z (&) be the set of all modular symbols that appear
as a submodular symbol of some u € supp&. In
other words, v € Z(§) if and only if there is a u =
[U1,...,Unsk| € supp& such that v = [v;,,...,v; ]
for {i1,...,i,} C{1,...,n+k}.

Definition 3.2. Given any modular symbol

v=[v1,...,0,],
let
lv]| = |det(vy, ... ,v,)].
We extend this to || || : Sy — Z by setting

€]l = Maxveze){lv]l}-

We say € is reduced if [|£]| = 1. In the special case
that £ = v is a modular symbol, we say that £ is a
unimodular symbol.

Note that || || is well-defined modulo the relations
in Definition 2.7.

The reduced k-sharbly chains form a finitely gen-
erated subgroup of (Sy)r. In general, the image of

this subgroup under the map Sy — H* *(I';Z) does
not generate. However, we have the following result:

Theorem 3.3 [Ash and Rudolph 1979]. The restriction
of So — H¥(I';Z) to the subgroup generated by the
unimodular symbols is surjective.

Proof. We present the proof of [Ash and Rudolph
1979]. It suffices to show that any modular sym-
bol is equivalent mod 9S; to a sum of unimodular
symbols.

Let v = [vy,...,v,], and suppose that ||v] > 1.
Let w € Z" be any point not in the lattice generated
by the v;. (Such a point exists since ||v|| > 1.) Let v;
be the modular symbol obtained by replacing v; with
w in v. Applying relation (4) from Theorem 2.6, we

have
v = Z(—l)”lvi

in Sp/05;. We claim w can be modified so that 0 <
|lvi|| < ||v]|, and at least one v, satisfies ||v;|| # O.
This proves the theorem, because after repeating the
argument finitely many times, we can write v as a
sum of unimodular symbols.

To prove the claim, write w = ) ¢;v;, where
¢ € Q. We have |lv;|| = |gl|lv]|. If we modify
w by subtracting integral multiples of the v;, we can
ensure 0 < |g;| < 1. Furthermore, at least one ¢; # 0
since w was originally chosen not to lie in the lattice
generated by the v;. O

-1

3.4. Given a modular symbol v, the set of candi-
dates of v is the set

candv = {w ez | w#0and w="> gu;,
where 0 < |¢;| < 1}.

The set cand v contains exactly the points that may
be used to construct the homology (3—1) so that the
resulting modular symbols are closer to unimodu-
larity.

For application of Theorem 3.3 to Hecke eigen-
value computations, we need to construct a candi-
date for any v with ||v|| > 1. We now discuss two
conjectural ways to do this. These are useful for
three reasons:

1. The conjectures will play an important role in
our algorithm to compute the Hecke action on
H" YT Z).



356 Experimental Mathematics, Vol. 9 (2000), No. 3

2. The candidates produced by these methods are
efficient in practice, in the sense that ||v;| from
(3-1) will be much smaller than ||v]].

3. Conjecture 3.9 provides an explicit polynomial-
time implementation of the modular symbol al-
gorithm.

Write v = [v1,...,v,], and let b(v) be the point
> v;vf. One can show b(v) € C since |lv| # 0.
Recall that if o € V, then verto C P is the set of
primitive points corresponding to the face of II that
generates o (Section 2.2).

Conjecture 3.5. Let v be a modular symbol with ||v|| >
1. Let 0 € V be a top-dimensional cone containing

b(v). Then
cand v Nverto # 2.

Remark 3.6. The cone ¢ can be computed using the
Voronoi reduction algorithm [Voronoi 1908, § 271f].

3.7. Although geometrically attractive, the use of
Conjecture 3.5 in practice suffers from two disad-
vantages. First, to the best of our knowledge, the
complexity of the Voronoi reduction algorithm is un-
known. Second, the structure of II is difficult to de-
termine.! An alternative uses L L L-reduction, which
we now recall.

Definition 3.8 [Cohen 1993, Section 2.6]. Let B =
{b1,...,b,} be an ordered basis of R", and let B* =
{b7,...,b:} be the orthogonal (not orthonormal) ba-
sis obtained from B using the Gram-Schmidt pro-
cess. Let

Hi5 = (b; - b;)/(b; : b;)a
Then B is LLL-reduced if the following inequalities
hold:

1o |pil <1/2,for 1 <j<i<n.
2. |b} + a0y [P > (3/4) |6, %
Furthermore, a quadratic form is said to be LLL-

reduced if it is the Gram matrix of an LLL-reduced
basis.

where 1 < j <i<n.

1 However, for n < 4, the structure of II is well understood. An
elegant technique to index the faces using configurations in projec-
tive space (in the sense of [Hilbert and Cohn-Vossen 1952]) can be
found in [McConnell 1991]. To the best of our knowledge, the com-
plete structure of IT is unknown for any other n, although much
is known for 5 < n < 8 (see [Conway and Sloane 1988] and the
references there).

We emphasize that the basis B in Definition 3.8 is
ordered. Changing the order of B changes B*, which
affects the conditions of the definition.

Conjecture 3.9. Let v be a modular symbol with ||v|| >
1, and suppose that b(v) is an LLL-reduced quad-
ratic form. Let E be the standard basis for Z". Then

candv N E # @.

Remark 3.10. To apply Conjecture 3.9 in practice,

one finds a matrix v € GL,(Z) such that b(y - v) is

LLL-reduced, and then a candidate for v will be in
-1

Yy E.

3.11. We can prove the conjectures in some cases.
We begin by describing a geometric interpretation
of what it means for w € F to be a candidate for v.

Let v = [vy,...,v,] be a modular symbol, and
fix an ordering of the v;. Let A be the matrix with
columns v;, and let B = {by,...,b,} be the basis
made up of the rows of A. Then one easily checks
that the quadratic form b(v) is the Gram matrix of
B.

Lemma 3.12. Let w = e, € E. For 1 < i < n, let v,
be the modular symbol constructed from v and w as
n (3-1). Also for 1 <i < mn, let B; C R"™" be the
set of (n—1) vectors obtained by projecting B~ {b}
into P;, where P; is the span of E \ {e;}. Then the
following statements are equivalent:

1. vl < ||v|| for 1 <i<mn.
2. volB; < volB for1<i<n.

Here the volume in P; is normalized so that the fun-
damental domains of Z" C R"™ and Z" N P; each
have volume 1.

Proof. We have ||v|| = vol B = | det A|. Furthermore,
after choosing ey, we observe that ||v;|| and vol B;
are the absolute value of the determinant of the same
(n—1) x (n — 1) minor of A. O

Lemma 3.13. Let v and B be as above, and assume
|lv|| > 1. If |b| > 1, then e, € candwv.

Proof. First note that vol B = []|b}], since B* is
orthogonal. Since |b%| > 1 and vol B = ||v|| > 1, we
have

[11¥:1 < vol B.

i<n
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Now let B; be the projection of B ~ {b,} into
the coordinate hyperplane P;, as in Lemma 3.12.
Clearly vol B; < [],_,, [b;|. Hence by Lemma 3.12,
|lvi|| < ||v]|, and e, € cand v. O

Proposition 3.14. Suppose ||v|| > 1 and b(v) is a diag-
onal quadratic form. Then Conjectures 3.5 and 3.9
are true.

Proof. First we show that Conjecture 3.9 is true.
Since b(v) is a diagonal quadratic form, we have
B = B*, and the p;; from Definition 3.8 vanish.
Thus vol B =[] |b;] > 1, and |b;| > 1 for all i since
B is integral.

Assume first that B satisfies |b;| < |b;] for ¢ < j.
This implies |b,| > 1, and by Lemma 3.13 we have
e, € cand v, and Conjecture 3.9 is true.

Now drop the assumption that B is ordered by in-
creasing lengths. We can multiply v by a permuta-
tion matrix v so that B satisfies |b;| < |b;| for i < j.
This means that v~ 'e, € candwv. Since v 'e, € E,
Conjecture 3.9 follows.

Finally, in this case Conjecture 3.9 implies Con-
jecture 3.5. Since b(v) is diagonal, it lies in the cone
o spanned by {g(e) | e € E}. This cone is a proper
face of the cone X from Theorem 2.4, and hence
b(v) € . Since E C vert X, the result follows. [

Using standard estimates on B and B*, we can find
a lower bound on ||v|| so that Conjecture 3.9 is true.

Proposition 3.15. Suppose that ||v| > 2"("~1/2. Then
Conjecture 3.9 is true.

Proof. We show that |lv|| > 2"(™~1/2 guarantees
|b%| > 1, which by Lemma 3.13 implies e,, € cand v.
According to [Cohen 1993, Theorem 2.6.2], B satis-

fies
[T 161 = Il
J
and
b;| <2=V21px) for j=1,...,n.
Hence

A LT I
J
Solving for |b%|, we see ||v|| > 2"("~1/2 ensures that
|b%| > 1, which proves the claim. O

Theorem 3.16. Conjecture 3.5 is true for n = 2 and
n = 3.

Proof. We use Lemma 3.13 and direct investigation
of the reduction domains. First we recall some facts
about reduction theory in these dimensions. For
convenience we use GL, (Z) instead of SL,(Z).

For n < 3 the cone ¥ from Theorem 2.4 is the
only top-dimensional Voronoi cone modulo GL,,(Z).
According to [Conway and Sloane 1992], b(v) € o if
and only if B is an obtuse superbase. By definition,
this means the following. Let by = — > b;, and let
B = BU{by}. Then B satisfies

The set X N C' is not a fundamental domain for
GL,(Z) acting on C. In fact, the stabilizer I'(X) C
GL,(Z) is a finite group, which for n = 2 has order
6 and for n = 3 has order 24. By placing addi-
tional conditions on the basis B, we can describe a
fundamental domain T for I'(X) acting on X.

First we consider the case n = 2. The cone X
is a 3-dimensional cone inside the cone C, and is
spanned by q(e;), g(ez2), and g(e; — ey). Figure
1 shows a 2-dimensional affine slice of C, with X
divided into fundamental domains for I'(¥). The
shaded region T is half of the classical fundamental
domain for SLy(Z) acting on C.

T
-1

FIGURE 1. Two-dimensional affine slice of C.

Now we claim that if b(v) € T" and ||v|| > 2, then
ey € cand(v). This implies the theorem for n = 2,
because multiplying by elements of I'(X) stabilizes
vert 2.

To prove the claim, we present another way to
picture bases in the region T'. If B = (b1, b,), then
b(v) € T if and only if B appears as in Figure 2. In
this figure, we have fixed by, and b, must be in the
infinite shaded region S that lies above the semicir-
cle of radius |b;|. Points in S correspond to ways
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to complete b; to an obtuse superbase satisfying the
additional inequalities |bo| > |ba| > |by].

S~

bz

by

FIGURE 2. Relative position of the elements of a basis
B = (b1, bg) such that b(v) € T.

Now consider the orthogonal basis B* constructed
from B. We have b; = b;. It is easy to compute that
|b3| > /3|b1|/2 for all b, € S, and that the minimum
occurs when b, is at the lower left corner of S. Hence
if [b1] > v/2, we have |b3| > 1, and by Lemma 3.13
we have e; € cand v.

Since B is integral, the remaining possibility is
|b1| = 1. However, this implies that b, lies along the
right edge of S, and hence b5 = b,. If |by| = 1, then
|lv]] = 1. Thus |by] > 1, and again e; € candw.
This proves the theorem for n = 2.

The argument for n = 3 is similar, although the
reduction domain is more complicated. Now X is 5-
dimensional, and the fundamental domain 7" can be
described as follows. As before, fix b;, and take b,
to lie in the 2-dimensional region S from the n = 2
case. Together b, and b, determine the Dirichlet-
Voronoi domain pgrstu (see Figure 3). Let Z be the
intersection of pqrstu with

{x:)\1b1+>\2b2|$blgo,beSO}

Then if b(v) € T, the point b; must lie in the 3-
dimensional region consisting of the points on or
outside the hemisphere of radius |by| that project
to Z. Figure 3 shows the basis B, and Figure 4
shows Z for different choices of b,. Altogether T
is a b-dimensional family of obtuse superbases that
can be described by additional inequalities similar
to those for n = 2.

We want to find conditions that imply b3 > 1,
which will imply e3 € candv. Clearly the minimum
value of |bj| occurs when |b;| = |ba| = |b3|. Then
for any fixed by, the value of |b3| will be smallest

FIGURE 3. The basis B in the case n = 3.

G

C

FIGURE 4. Schematics of Z for different choices of by.

when b3 projects to the vertices a or ¢ of Z shown
in Figure 4.
So consider the set of bases satisfying

1. [by] = [ba] = [bs],
2.0 Z b1 . b2 Z —|b1|2/2, and
3. bz projects to either a or ¢ in Figure 4.

It is not difficult to show that the minimal value
of |b3| in this family occurs when a = ¢, or when
by - by = 0. For this basis, |b5| = |b1|/v/2. Hence if
|b1] > /2, we have es € cand v.

The remaining cases are |b;| = 1 or v/2. As for
n = 2, it is straightforward, although tedious, to
check that for any basis in 7' satisfying these condi-
tions, we have either cand vNvert ¥ # @ or ||v|| = 1.

O

Remark 3.17. For n = 4, there is only one other
type of top-dimensional Voronoi cone mod GL4(Z),
which corresponds to Voronoi’s second perfect form
[Voronoi 1908, §34]. This cone corresponds to the
lattice D,. We are not aware of a useful characteri-
zation of the bases appearing in this cone.
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4. ONE-SHARBLIES

In this section we describe our technique to compute
the Hecke action on H* *(T'; Z).

4.1. Let £ = ) n(u)u be a k-sharbly chain, where
n(u) € Z, and almost all n(u) = 0. Recall that a k-
sharbly is said to be reduced if and only if all its sub-
modular symbols are unimodular (Definition 3.2).
In general the reduced k-sharblies do not span
H" ®(T;Z) (Section 5.9). However, according to
[McConnell 1991], H**(T; Z) is spanned by reduced
1-sharblies if I' C SL,,(Z) and n < 4. Hence to com-
pute the Hecke action on HY *(I';Z) it suffices to
describe an algorithm that takes as input a 1-sharbly
cycle £ and produces as output a cycle £’ satisfying;:

(a) The classes of ¢ and ¢ in HY Y(T;Z) are the
same.

b) [IE"]F < NIl if fiEl > 1.

We will present an algorithm satisfying (a) in Al-
gorithm 4.13; in Conjecture 4.18 we claim that the
algorithm satisfies (b) for n < 4. To simplify the
exposition, in Sections 4.2—4.9 we describe the al-
gorithm for n = 2. This case is arithmetically un-
interesting— we are describing how to compute the
Hecke action on H°(T'; Z) — but the geometry faith-
fully reflects the situation for all n. We defer pre-
sentation for general n to Section 4.10.

42. Fix n = 2, let £ € S; be a l-sharbly cycle
mod I for some I' C SLy(Z), and suppose that &
is not reduced. We want to construct a cycle &’
homologous to &, such that ||£'|| < ||£]|. Since £ is not
reduced, there exist v € Z(§) with ||v|| > 1. Hence
we want to perform the modular symbol algorithm
simultaneously over all of supp £ while constructing
&', This leads to two problems:

1. How should one choose candidates for the sub-
modular symbols of £7 Is the usual modular sym-
bol algorithm sufficient for this?

2. Given ¢ and a collection of candidates for its
submodular symbols, how does one assemble the
data into &'7

Although these questions appear to be independent,
they are in fact coupled. To answer the first, we
claim that candidates should be chosen using either

Conjecture 3.5 or 3.9; we indicate why in Section 4.7.
We discuss the second in Sections 4.3—4.5.

4.3. Suppose first that all v € Z(&) are nonuni-
modular. We begin by selecting candidates for each
v € Z(§) using either Conjecture 3.5 or 3.9, and we
make these choices I'-equivariantly. This means the
following. Suppose u,u’ € supp§ and v € supp(du)
and v' € supp(du’) are modular symbols such that
v = v-v' for some v € I'. Then we select w € cand v
and w’ € cand v’ such that w =~y - w'.

We can do this because if v is a modular symbol
and w € candv, then v-w € cand(y - v) for any
~v € I'. Since there are only finitely many I-orbits in
Z(&), we can choose candidates I'-equivariantly by
selecting them for some set of orbit representatives.

It is important to note that I'-equivariance is the
only “non-local” criterion we use when selecting can-
didates. In particular, there is a priori no relation-
ship among the 3 candidates chosen for any u €

supp §.

4.4. Now we want to use the candidates and the 1-
sharblies in £ to build ¢’. Choose u = [vy, vy, v3] €
supp &, and denote the candidate for [v;,v;] by wy,
where {i,7,k} = {1,2,3}. We use the v; and the w;
to build a 2-sharbly chain n(u) as follows.

Let P be an octahedron in R®. Label the ver-
tices of P with the v; and w; such that the vertex
labelled v; shares no edge with the vertex labelled
w;. Now subdivide P into four tetrahedra without
adding new vertices. This can be done by connect-
ing two opposite vertices, say those with labels v,
and wi, by a new edge:

wq

U1

Now use the four tetrahedra to construct n(u) as
follows. For each tetrahedron T, take the labels of
four vertices and arrange them into a quadruple. If
we orient P, then we can use the induced orienta-
tion on T to order the four primitive points. In this
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way, each T' determines a 2-sharbly, and n(w) is de-
fined to be the sum. For example, if we use the
decomposition

LAYV

we have

n(w) = [v1, Vg, ws, wy] + [v1, W3, Wa, w1 ]

+ [v1, wa, v3, w1 ] + [V1, V3, V2, wy].  (4-1)

Now repeat this construction for all w € suppé,
and let n = Y n(w)n(w). Finally, let ' = £ + On.

4.5. By construction, £ is a cycle mod I in the same
class as €. We claim in addition that no submodular
symbols from ¢ appear in £'. To see this, consider
On(u). From (4-1), we have

on(u) = —[v1, v, v3] + [v1, V2, W]
+ [v1, we, vs] + (w1, va, vs] — [V1, Wy, ws]
— (w1, vo, ws] — (w1, wa, v3] + (w1, wa, w3].  (4-2)

Note that this is the boundary in S,, not (S,)r. Fur-
thermore, it’s easy to see that On(u) is independent
of which pair of opposite vertices of P we connected
to define n(u).

From (4-2), we see that in £ + O, the 1-sharbly
—[v1,v9,v3] is canceled by u € supp&. Consider the
1-sharblies in (4-2) of the form [v;, v;, wi]. We claim
these 1-sharblies vanish in Orn.

To see this, suppose that u,u’ € supp &, and sup-
pose v = [vy,v3] € suppdu equals v - v" for some
v’ = [v],v}] € suppOu’. Since the candidates were
chosen T-equivariantly, we have w = ~ - w’. This
means that the 1-sharbly [v;, vy, w] € dn(u) will be
canceled mod I" by [v}, v, w'] € On(u'). Hence, in
passing from & to &', the effect in (S,)r is to replace
u with four 1-sharblies in supp¢’:

[U1,U2,’03] — —[Ul,w2,w3]

—[wl, Va, U]3] — [wl, Wa, '03] + [wl, Wa, wg]. (4—3)

Note that in (4-3), there are no 1l-sharblies of the
form [v;, v;, wg).

Remark 4.6. For implementation purposes, it is not
necessary to explicitly construct . Rather, one may
work directly with (4-3).

4.7. Why do we expect & to satisfy ||| < [|€]|?
First of all, in the right hand side of (4-3) there
are no submodular symbols of the form [v;,v;]. In
fact, any submodular symbol involving a point v;
also includes a candidate used to reduce the [v;, v;].

However, consider the submodular symbols of the
form [w;, w,] in (4-3). Since there is no relationship
among the w;, one has no reason to believe that
these modular symbols are closer to unimodularity
than those in u. Indeed, one might expect that these
modular symbols satisfy ||[w;,w;]|] > |lu||. This is
the content of problem 2 from Section 4.2.

We claim that—in practice—if one uses Con-
jecture 3.5 or 3.9 to select candidates, then these
new modular symbols will be very close to unimod-
ularity. In fact, usually they are trivial or satisfy
|l[w;, w;]|| = 1. To us, it seems that Conjectures 3.5
and 3.9 select candidates “uniformly” over suppé,
although we will not attempt to make this notion
precise.

Remark 4.8. To ensure ||¢'|| < ||£||, one must also
choose the best candidate offered by the conjectures
in a suitable sense (Section 4.16).

4.9. In the previous discussion we assumed that no
submodular symbols of any u € supp{ were uni-
modular. Now we discuss what to do if some are.
As before, pick candidates for the nonunimodular
symbols. There are three cases to consider.

First, all submodular symbols of w4 may be uni-
modular. In this case there are no candidates, and
(4-3) becomes

[Ula ’02, US] — [Ula U27 US]- (4_4)

Second, one submodular symbol of 4 may be non-
unimodular, say the symbol [v;,v5]. In this case we
take P to be a tetrahedron, and n(w)=[vy,vs,vs,ws]:

U1

V2 U3
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As before, [v1, vy, w3] vanishes in the boundary of n
mod I', and (4-3) becomes

[v1, Vg, v3] = —[v1, V3, ws] + [vg, U3, w3).

Finally, two submodular symbols of w4 may be
nonunimodular, say [v, vs] and [v, v3]. In this case
we take P to be the cone on a square:

(%1

U3 V2

To construct n(u) we must choose a decomposition
of P into tetrahedra. Since P has a non-simplicial
face we must make a choice that affects £'. If we
choose to subdivide P by connecting the vertex la-
belled v, with the vertex labelled w,, we obtain

[/Ula/v%/US] — [1}2,11)2,11)3] + [’Ug,’Ug,wg] + [Ul)v37w2]-

4.10. We now describe the procedure for general n.
First we recall some facts about convex polytopes.
Proofs can be found in [Ziegler 1995].

Let P be a d-dimensional convex polytope em-
bedded in R%. The facets of a d-polytope P are the
faces of dimension (d — 1). The cone on P is the
polytope cP constructed as follows. Choose a linear
embedding i : R* — R*™" and let z € R < R™
Then cP is the convex hull of z and i(P). One can
show that the combinatorial type of ¢P is indepen-
dent of the choice of = or i. We also write c°P := P
and c*(P) := ¢(cF71P).

Let E be the standard basis of R". Then the
(n — 1)-simplex A, _; is the convex hull of E, and
the n-crosspolytope (3, is the convex hull of —EUE.
Write E = {e;}, and let P(n,j) be the convex hull
of E and the j points {—e; | 1 <k < j < n}.

Lemma 4.11. The polytope P(n,j) is isomorphic to
the iterated cone c" 1 [3;.

Proof. By definition, the convex hull of A := {+e; |
1 <k <j}is B;. The remaining vertices of P(n,j)
are the points B := {—e; | 1 + 1 < k < n}. Since
B is linearly independent, and is also linearly inde-
pendent of the linear span of A, the lemma follows
easily by induction. O

Lemma 4.12. There exist j distinct subdivisions of
P(n,j) into simplices without adding new vertices.

Proof. This follows immediately from Lemma 4.11.
Any such subdivision of 3; is formed by connecting
one of the j pairs of vertices not already connected
by an edge of 3;, and any such subdivision of ¢"73;
is formed by subdividing 3; first. O

Algorithm 4.13. Let I' be a torsion-free subgroup, and
let £ = > n(u)n(u) be a l-sharbly cycle mod T’
representing a class in H” *(I';Z). The output of
this algorithm is a class & € H" (T} Z).

A. Choose candidates. For each u € supp&, and for
each v € supp du with ||v|| > 1, choose a candi-
date w(v). Make these choices I'-equivariantly
over all of supp& as in Section 4.3. For each
u € suppé&, we let C(u) be the set {w(v) | v €
supp Ou}.

B. Shift candidates. Choose

. avn—H] € supp é.a

and set j = #C(u). Apply relation (1) from
Definition 2.7 so that the j submodular symbols

(o' =[o1, 05,y v0p] [ 1< <5}

satisfy ||v?]] > 1. Write w; for w(v’), and let
n'(u) be the new coefficient of u in &.

C. Construct 2-sharblies. Let P = P(n + 1,j) be
the polytope from Lemma 4.11, and choose a
subdivision of P into simplices without adding
new vertices as in Lemma 4.12. Orient P so
that the induced orientation on the face spanned
by ei1,...,e,y1 is the opposite of the orientation
given by the standard ordering of e,..
Via the correspondence

u=[v,..

c 9y €ntl-

e, «— v, forl<k<n+41,

—ep +— wy, for 1 <k <j,

and the orientation of P, use the subdivision of
P to construct a 2-sharbly chain n(u).
D. Continue. Complete steps B and C for all u €

supp €.
E. Terminate. Set

n= Y n'(wnu),

uEsupp &

and define ¢’ := 9n + &.
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4.14. Now we want to describe how &’ is related to
¢, and in particular in what sense &' is closer to
unimodularity than £. Let u € supp¢, and let n(w)
be the 2-sharbly chain constructed above. Define

67701d(u) — _[Ula .. 7Un+1]7
J
a"7side(’u‘) = Z[Ulv v 7fUAk:7 <+ Unti, wk]7
k=1

Oew(u) = On(u) — Onoia(u) — Onsiac(w).

Note that 9ngq(u) and Ongqee(u) contain all the sub-
modular symbols of w that are nonunimodular.

Theorem 4.15. The cycle &' constructed in Algorithm
4.13 is homologous to £&. If uw € supp€ and v €
supp Ou with ||v|| > 1, then v does not appear as
submodular symbol of &' in the following sense:

gl = Z n,(u)anneW(u)'
u€esupp §
Proof. 1t is clear that £ is homologous to & mod T.
To see the rest of the statement, first note that we
have chosen orientations so that

E+on= Y n'(u)(0nsae() + Onew(w)).

u€Esupp &

Hence we must show
ONside(u) =0 mod T

We claim this follows since the candidates we cho-
sen I'-equivariantly over all of supp(§). Indeed, any
1-sharbly in supp(9nsige(w)) is built from a certain
candidate and a O-sharbly in supp(9€). An investi-
gation of the orientations we chose in the construc-
tion of On and the fact that Or(§) = 0 show that
ONside(u) = 0 mod T". O

4.16. To conclude this section we discuss conditions
under which we expect ||£’|| < [|£]|. First we clarify
Remark 4.8.

Let v be a modular symbol, and let w € candv.
Let {v,;} be the modular symbols from (3-1) con-
structed using v and w. Define an integer p(w) by

p(w) = Maxi—y. . {llvill} -

Definition 4.17. Let S C candv. Then w € S is a
good candidate from § if

p(w) = Minyres {p(w)} .

Furthermore, we say that w is a good candidate
chosen using Conjecture 3.5 (respectively Conjec-
ture 3.9) if w is a good candidate for the (conjec-
turally nonempty) intersection indicated in Conjec-
ture 3.5 (respectively Conjecture 3.9).

Good candidates are not necessarily unique.

Conjecture 4.18. Suppose n < 4, and let £ and &' be
as in Algorithm 4.13. Assume that ||£|| > 1. Then if
each w(v) from step A of Algorithm 4.13 is a good
candidate chosen using Conjecture 3.5 or 3.9, then

€71 < llE]l-

5. EXPERIMENTS

We conclude by describing experiments that we per-
formed to test Conjectures 3.5, 3.9, and 4.18. These
experiments were performed at MIT and Columbia
at various times from 1995 to 1998, on Sun (SunOS)
and Intel (Linux) workstations. We are grateful to
these departments for making this equipment and
support available.

Before we describe the experiments, we remark
that all trials completed successfully, and no coun-
terexamples to the conjectures were found.

5.1. The first experiments we performed addressed
Conjectures 3.5 and 3.9. Because of implementation
difficulties mentioned immediately after Remark 3.6,
we were only able to test Conjecture 3.5 in dimen-
sions < 4. However, we were able to test Con-
jecture 3.9 in dimensions < 40, thanks to LLL-
reduction code available in GP-Pari and LiDIA.

e We began by testing finding candidates for ran-
dom modular symbols for SL, (Z). A random square
integral matrix m was constructed with entries cho-
sen some fixed range. If detm # 0, then we at-
tempted to find a candidate for the modular symbol
formed from the columns of m. We tried to test ma-
trices with small determinant, since for these mod-
ular symbols the set of candidates is small.

1. For n = 4 we verified Conjecture 3.5 on approxi-
mately 20000 matrices.

2. For 2 < n < 20, we verified Conjecture 3.9 on ap-
proximately 20000 matrices from each dimension,
and for 21 < n < 40 we tested Conjecture 3.9 on
approximately 1000 matrices from each dimen-
sion. In these tests we rejected those matrices
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whose determinants were outside the range spec-
ified by Proposition 3.15.

e Instead of random modular symbols, we tested
coset representatives of the double cosets in (2-2) for
different dimensions and values of p and k. We used
the standard coset representatives found in [Krieg
1990].

1. For T,(1,3), T,(2,3), T,(1,4), and T,(3,4), we
tested all primes p < 97 using both conjectures
(again discarding those outside the range of Prop-
osition 3.15).

2. For T,(2,4), we tested all primes p < 67 using
both conjectures.

3. For dimensions 5 < n < 10, we verified Conjec-
ture 3.9 on representatives of T,,(1,n) for p = 2, 3.

e Finally, we performed complete reduction of ran-
dom modular symbols. In the previous experiments,
we only verified that a candidate for a given modu-
lar symbol could be found using our conjectures. In
this case, we stored the resulting modular symbols
on a stack and iterated the process until all modular
symbols were unimodular. Due to the large number
of modular symbols produced, we limited our tests
of Conjecture 3.9 to dimensions < 10, and tested
only medium-sized determinants, typically with ab-
solute value less than 20. We verified Conjecture 3.5
on approximately 2000 modular symbols and Con-
jecture 3.9 on approximately 1000 modular symbols
from each dimension.

5.2. To test Conjecture 4.18, we wanted to mimic
the experiments in Section 5.1. This cannot be done
naively for the following reason. A single modular
symbol is automatically a cycle mod I', but for a 1-
sharbly chain £ to be a cycle mod I', nontrivial con-
ditions must be met. Furthermore, Algorithm 4.13
uses these conditions in an essential way to decrease
€l

This dilemma has two resolutions. Either we must
test Conjecture 4.18 on cycles for specific groups
I' € SL,(Z), or we must design an implementation
of Algorithm 4.13 that is “local,” i.e. operates on a
single 1-sharbly at a time. The first solution is not
feasible if one wishes to test many 1-sharbly cycles,
because such cycles are very difficult to construct.
Hence we must take the second approach.

Definition 5.3. Let u be a basis element of S;,. Then
a lift for w is an n x (n + k) integral matrix M with
primitive columns such that [Mi,..., M, ;] = wu,
where M; is the ith column of M.

Let & be a k-sharbly cycle mod I'. We claim that
& may be encoded as a finite collection of 4-tuples
(u, n(u), {v}, {M(v)}), where:

u € suppé.

n(u) € Z.

{v} = supp Ju.

{M(v)} is a set of lifts for {v}. These lifts are
chosen so they satisfy the following [~equivariance
condition. Suppose that for w,u’ € supp§ we
have v € supp(0u) and v’ € supp(du’) satisfy-
ing v = - v’ for some v € I'. Then we require
M(v) =~yM(v').

AW N =

Clearly any cycle can be represented by such data,
although the representation is far from unique.

5.4. Let ¥ = (u,n(u),{v},{M(v)}) be a 4-tuple
that is part of a cycle £&. We claim that we can
choose candidates for {v} that will the equivariance
condition in Section 4.3 without knowing the rest of
€.

To see this, recall that a square matrix M = (M,;)
with det M # 0 is in Hermite normal form if M;; =
0 for @ < j, and 0 < M,;; < M;; for ¢ > j. Further-
more, if det M > 0, then M;; > 0. It is standard
that for any M, the orbit GL, (Z)- M contains only
one element in Hermite normal form [Cohen 1993,
2.4.2).

Now to choose a candidate w for v € supp(du),
we compute the Hermite normal form M, (v) of M (v)
first, and input Mj(v) into Conjecture 3.5 or 3.9
to compute w. If M(v) = yvM(v'), then My(v) =
My (v"). Hence by using lifts we guarantee that can-
didate selection is I'-equivariant, even though the
choices are made locally.

5.5. This means that we can think of a random 4-
tuple ¥ as being a piece of some unknown cycle &
mod I', and can test Algorithm 4.13 by trying to
write ¥ as a collection of reduced 4-tuples. To com-
plete the discussion, we must say how lifts are chosen
for the submodular symbols of 9n(u) that survive to

£
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Definition 5.6. Let w = [vy,...,v,41] be a 1-sharbly,
and let

for1<i<n+1

v = [Ul,...,’f)i,---,anrl]v

be the submodular symbols in supp du. Suppose
that ||v']| > 1for 1 <i<j<n+1, and let W =
{w; | 1 <14 < j} be the set of candidates. Let U be
the set {vy,...,v,01} UW. Let v = [uy,...,u,| be
a modular symbol with u; € U.

1. The modular symbol v is called an outer submod-
ular symbol of u if exactly one u; € W.

2. The modular symbol v is called an inner submod-
ular symbol of w if two or more u; € W.

Here is the meaning behind Definition 5.6. For con-
venience suppose n = 2 and j = 3, and consider
what happens when we apply the algorithm to w.
We can think of u as being a triangle with vertices
labelled by vy, vy, and vs. With this picture, to
apply (4-3), we can think of subdividing the trian-
gle into four new triangles, with the new vertices
labelled by the candidates W'

U1 U1

w3 w2

V2 U3 V2 w1 U3

Now we discuss the relevance of inner and outer to
our implementation. For an inner submodular sym-
bol v, we can choose any lift we like, as long as we
choose the same lift for any other 1-sharbly in (4-3)
containing v. If v is an outer submodular symbol,
however, we must be more careful. In particular,
consider the preceding figure. The lift M ([vy,v;])
was chosen using the I'-action, and we must choose
M ([vy,w3]) and M ([vq, w3]) to reflect this.

In practice, we can do the following. If v € Z(u),
then each outer submodular symbol v; arising from
v is obtained by replacing the ith primitive point
of v with w. We construct M (v;) by replacing the
corresponding column of M (v) with w, and say that
the lifts {M (v,)} are inherited.

Remark 5.7. One might think that we could avoid
computing Hermite normal forms, by just applying

Conjecture 3.5 or 3.9 directly. But this will not nec-
essarily determine a unique representative of the or-
bit GL,,(Z)- M (v), since this orbit may not uniquely
meet the Voronoi and LLL reduction domains.

5.8. Now we describe the tests we performed to in-
vestigate Conjecture 4.18.

e We generated random 1-sharblies £ with ran-
domly chosen lifts. Using both modular symbol con-
jectures we constructed candidates for £ and verified
that ||£'|| < ||€||. Because we only investigated di-
mensions 2, 3, and 4, we were able to test many &,
approximately 10000 per trial for 50 trials.

e We also tested all Hecke images within certain
ranges associated to certain “standard” reduced 1-
sharblies. It is easy to see that mod SL,(Z), any
reduced 1-sharbly has the form

1 0 ... 0 €1
01 ... 0 €9
. . . (5-1)
0O 0 ... 1 g,

where the number of columns is (n+1), and the last
column is

(e1,...,60) = (1,

where £k =2,...,n.

Using these 1-sharblies and randomly chosen lifts,
we tested all Hecke images that lay within the fol-
lowing ranges:

1. For T,(1,3), T,(2,3), T,(1,4), and T,(3,4), we
tested all primes p < 97 using Conjectures 3.5
and 3.9.

2. For T,(2,4), we tested all primes p < 67 using
Conjectures 3.5 and 3.9.

We repeated this experiment 10 times to vary the
lifts used.

e We tested complete reduction of randomly cho-
sen 1-sharblies with lifts. At each step, the new 1-
sharblies inherited lifts as described in Section 5.4.
This introduces the possibility that for some initial
choice of lifts, iteration of the algorithm could fail to
terminate. However, this situation never arose. In
50 trials with approximately 10000 randomly cho-
sen l-sharblies, the complete reduction always ter-
minated successfully.
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o After testing with random data, we computed
the Hecke action on cuspidal cycles occurring in
H?*(T4(53); Q), where T'y(53) C GL3(Z) is the sub-
group of matrices with bottom row equivalent to
(0,0,%) mod 53. These cycles, or rather their Lef-
schetz duals, were first discovered and investigated
in [Ash et al. 1984].

We computed the characteristic polynomials of
the Hecke operators 7,(1,3) for p < 13. We found
that these polynomials matched those in [Ash et al.
1984], which is consistent with the duality argument
of [Ash and Tiep 1997, Theorem 3.1].

e Finally, in current work we are using the algo-
rithm to compute the Hecke action on H®(Ty(N); Q),
where T'o(N) C SL4(Z) is the subgroup of matri-
ces with bottom row congruent to (0, 0,0, *) mod N
[Ash et al. 2000]. At the time of this writing, we have
completed computations for prime levels N < 31.
We have computed the characteristic polynomials
for the Hecke operators T),(k,4) for 1 < k£ < 3 and
a range of p. In all cases the program wrote the
Hecke image of a 1-sharbly cycle as sum of reduced
1-sharbly cycles.

For these GL3 and SL, tests, I was helped and en-
couraged enormously by Mark McConnell, who pro-
vided data for the cycles generated by his program
SHEAFHOM [McConnell 1998], and computed the

characteristic polynomials.

5.9. We conclude with some remarks and open prob-
lems.

e In general, if one wishes to implement the mod-
ular symbol algorithm, Conjecture 3.9 is much more
efficient to work with than Conjecture 3.5. Voronoi
reduction is somewhat difficult to program and re-
quires a substantial amount of preliminary compu-
tation. On the other hand, high-quality computer
code for LLL-reduction is available from a variety
of sources.

e Algorithm 4.13 can be adapted to work on shar-
bly cycles £ € S, with k& > 1. In particular, we
can describe the analogues of the polytopes P(n, j)
used in the construction of &¢’: their facets involve
iterated cones on hypersimplices [Ziegler 1995, Ex-
ample 0.11]. In practice this is not useful for com-
puting Hecke eigenvalues, since we cannot expect in
general that ||| < [|€]|.

e Throughout the description of Algorithm 4.13,
we used the determinant as a measure of “nonuni-
modularity” of a 1-sharbly. Ultimately this approach
suffers from several shortcomings:

e ForI' C SL,(Z) with n > 4, we must use a nonre-
duced sharbly cycle to write a nontrivial element
of H'(T;Z).

e One would like to compute Hecke eigenvalues in
H*(I';Z) for more exotic I'. For example, espe-
cially interesting is I' C SL,(Ok), where Ok is
the ring of integers in a number field K/Q. If
Ok is not a euclidean domain, then there is no
obvious notion of a primitive vector. One can
still define the analogue of the sharbly complex,
and can use the determinant to define a I'-finite
subset of sharblies [Gunnells 2000a], but a prac-
tical modular symbol algorithm is unknown in
general.

A different approach is to use the relative position
of a sharbly with respect to II instead of the de-
terminant. This is carried out in [Gunnells 1999]
and [Gunnells and McConnell 1999] for all arith-
metic groups for which II is available. It would be
nice to fuse the approach of these articles and the
approach described here.

e IfI'is not torsion-free, then our results hold if we
use cohomology with rational coefficients. However,
one can also consider the equivariant cohomology
H{(T';Z), and can formulate conjectures about the
arithmetic significance of equivariant torsion classes
[Ash 1992b]. Can Algorithm 4.13 be modified to
compute the Hecke action on H: *(I';Z)?

e The modular symbol algorithm can be general-
ized to Sp,, [Gunnells 2000b], and there is a cell
complex that can be used to compute H,(I'), where
I' C Sps(Z) [MacPherson and McConnell 1993]. Is
there a “symplectic” sharbly complex, and can an
algorithm be devised to compute Hecke eigenvalues
on H* 1(I')?
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